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Abstract

In this paper we study a phase change problem for non-isothermal incompressible viscous flows.
The underlying continuum is modelled as either as a viscous Newtonian fluid where the change
of phase is encoded in the viscosity itself, or using a Brinkman-Boussinesq approximation where
the solidification process influences the drag directly. We address these and other modelling as-
sumptions and their consequences in the simulation of differentially heated cavity flows of diverse
type. A second order finite element method for the primal formulation of the problem in terms of
velocity, temperature, and pressure is constructed, and we provide conditions for its stability. We
finally present several numerical tests corroborating the accuracy of the numerical scheme as well
as illustrating key properties of the model.
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phase; differentially heated cavity.
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1 Introduction

The phenomenon of natural convection driven by variations in temperature distribution has been
extensively studied from the viewpoint of physical properties and also using computational methods.
Common applications include ocean and atmosphere dynamics, design of double glass windows and
ventilation devices. If the density of the fluid is approximately constant and the buoyancy contribution
depends on temperature, the model equations consist of the so-called Boussinesq approximation [14].
Phenomena that involve phase change in addition to these elements have also a great relevance in
many industrial and natural processes, as in e.g. the melting and solidification in the refining of
metals.

As the nature of the physical scenario abruptly changes, modelling and computing formalisms
usually have difficulties in reproducing the behaviour of the system especially near the liquid-solid
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Numerical solution of phase change natural convection

interface. Phase changes have been incorporated into the Boussinesq approximation mainly using
two different approaches. One is based on enthalpy-porosity models (as in e.g. [43]), where a jump
function arising from the so-called Carman-Kozeny equations (see e.g. [16, 32]) enforces a large drag
force in the solid. Alternatively, phase change has been modelled by embedding a jump function into
the viscosity, as in e.g. [20]. One objective in the present paper is to give a numerical comparison
between these two models. Difficulties in incorporating phase change models are related to the choice
of regularisation and jump size parameters. We address this issue with a new viscosity-based model
that highlights an appropriate choice of parameters. The model considers the presence of microscopic
particles in the solid, which resembles porosity-based models. We choose a transition from fluid to
solid having a large gradient, which creates additional numerical challenges.

Recent numerical methods dedicated for phase change Boussinesq models include a class of sta-
bilised discontinuous Galerkin and finite volume methods proposed for porosity-based models in [43]
and [49], respectively; and the primal finite element scheme for viscosity-based models, introduced
in [20]. However these contributions do not address the stability of the discrete or continuous prob-
lems. Theoretical studies are available for other (typically simpler) related stationary models, as nat-
ural convection [36,50] including stabilisation analysis and errors estimates, and also time-dependent
Boussinesq-type problems under different contexts in [2, 3, 9, 22, 44, 45]. The discretisation of these
problems has been associated with Taylor-Hood finite elements for mass and momentum equations
and piecewise quadratic approximations for the temperature (as in [22, 36, 39, 50]), or Taylor-Hood
and piecewise linear elements as in [20], the MINI-element and Lagrange elements [3] and also piece-
wise quadratic, piecewise linear and piecewise quadratic for velocity-pressure-temperature as in [2].
Exactly divergence-free methods are available for the stationary Boussinesq equations [38], and other
related mixed formulations including a posteriori error estimates can be found in [6, 10, 17, 18, 27].
Finite volume, finite difference and Lagrangian schemes have also been used to simulate solidification
problems [7,29,31,34]. In summary, a large variety of methods could be employed to solve numerically
the equations we look at here. However the stability of the numerical methods applied to this specific
case has not yet been addressed, and this is precisely another objective of this paper.

The remainder of this paper is structured as follows. Section 2 recalls the model problems of flow
and temperature with and without phase change. In Section 3 we derive a weak formulation of the
governing equations and outline a solvability and stability analysis. In Section 4 we introduce two finite
element methods based on the primal velocity-pressure-temperature formulation and on the mixed-
primal stress-velocity-temperature formulation of the generalised Boussinesq equations. We specify
the fully discrete implicit scheme and write down the corresponding Newton linearisation. Next, in
Section 5 we present several tests serving as numerical validation for the enthalpy-free case, and we
then present a set of comparisons and concluding insights drawn from the simulations of the melting
case, collected in Section 6. These tests also include a qualitative analysis on the micro-structure and
its relationship with our modelling assumptions, and we close with some remarks and discussions on
alternative models.

2 Phase-change Boussinesq models

2.1 Main assumptions and model equations

Let t ∈ (0, tf ] denote time and let us consider an homogeneous and isotropic porous structure occupying
a spatial domain Ω ⊂ Rd, d = 2, 3 and saturated with an incompressible viscous fluid. This fluid has
kinematic viscosity ν, thermal expansion coefficient α, and nondimensional specific heat C.

The model problem arises from the description of flow using Navier-Stokes and Stefan problems.
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Applying the so-called Obereck-Boussinesq approximation, one ends up with the following set of
governing equations written in terms of the velocity u(t) : Ω → Rd, the pressure p(t) : Ω → R, and
the temperature θ(t) : Ω→ R:

∂tu+ u · ∇u− 1

Re
div

[
2µ(θ)ε(u)

]
+∇p+ η(θ)u = f(θ)k, (2.1)

divu = 0, in Ω× (0, tf ], (2.2)

∂tθ + u · ∇θ − 1

CPr
div (κ∇θ) + ∂ts+ u · ∇s = 0, (2.3)

and which state the conservation of momentum, mass, and energy with enthalpy, respectively. In
(2.1)-(2.3), ε(u) = 1

2(∇u+∇uT ) is the strain rate tensor, the function s is the enthalpy, the symbol
k stands for the unit vector pointing in the opposite direction to gravity, η, µ are nonlinear functions
of temperature that encode the permeability of the porous material and the viscosity of the fluid,
respectively. These functions will assume different specifications depending on the phase change model,
to be discussed later on. We also define the Reynolds number Re = ρrefVrefLrefµ

−1, the adimensional
buoyancy force f(θ) = Raθ(Pr Re2)−1 (depending linearly on the temperature distribution as in the
classical Boussinesq approximation [14]), κ is the adimensional heat conductivity tensor (here assumed
isotropic), Ra = gβLref(θh−θc)[να]−1 is the Rayleigh number, g is the gravity magnitude, Lref , ρref , Vref

are the reference length, density, and velocity defining the flow, θh, θc are maximum and minimum
temperatures, and Pr = να−1 is the Prandtl number.

In order to analyse the coupled system (2.1)-(2.3), we will suppose that the functions µ, η are
uniformly bounded and Lipschitz continuous: there exist positive constants µ1, µ2, η1, η2, Lµ and Lη,
such that

η1 ≤ η(ψ) ≤ η2, |η(ψ)− η(ϕ)| ≤ Lη|ψ − ϕ| ∀ψ,ϕ ∈ R, (2.4)

µ1 ≤ µ(ψ) ≤ µ2, |µ(ψ)− µ(ϕ)| ≤ Lµ|ψ − ϕ| ∀ψ,ϕ ∈ R. (2.5)

Similar assumptions will be placed on the source function f : we suppose that there exists positive
constants Cf and Lf such that

|f(ψ)| ≤ Cf |ψ|, |f(ψ)− f(ϕ)| ≤ Lf |ψ − ϕ| ∀ψ,ϕ ∈ R. (2.6)

On the other hand, we will suppose that for every ψ ∈ H1(Ω), we have s(ψ) ∈ H1(Ω), and that there
exist positive constants s1, s2, Ls1 and Ls2 such that

|s(ψ)| ≤ s1, |s(ψ)− s(ϕ)| ≤ Ls1 |ψ − ϕ| |∇s(ψ)| ≤ s2|∇ψ|, |∇s(ψ)−∇s(ϕ)| ≤ Ls2 |ψ − ϕ|, (2.7)

for all ψ,ϕ ∈ R. Finally, we suppose that κ is a uniform bounded and uniformly positive definite
tensor, meaning that there exist positive constants κ0 and κ1 such that

|κ| ≤ κ1, κv · v ≥ κ0|v|2 ∀v ∈ Rd. (2.8)

Boundary and initial data. Equations (2.1)-(2.3) are supplemented with boundary conditions as
follows. No-slip boundary conditions are prescribed on the velocity over the whole ∂Ω, and therefore
an additional condition is required for pressure uniqueness; as usual we impose a zero-mean property.
Regarding the energy equation, we assume that the domain boundary admits a splitting between two
disjoint sets ΓθD and ΓθN , where temperature and normal heat fluxes are prescribed, respectively. The
system is supposed to be initially at rest and isothermal, and so we set u(0) = 0, p(0) = 0 and
θ(0) = θ0 with θ0 constant.
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2.2 Enthalpy-porosity models for phase change

The permeability function η appearing in the drag term is usually defined in such a way that (2.1)
behaves as the well-known Carman-Kozeny equations (see e.g. the review [40]). That is, one uses a
phase change (or liquid fraction) field φ with

η(φ) = ξ
(1− φ)2

φ3 +m
, with φ =

1

2

[
tanh

(
5

δθ
(θ − θf )

)
+ 1
]
, (2.9)

where m > 0 is a small parameter that prevents division by zero. The term δθ represents the
temperature range corresponding to the width of the mushy region, and θf is a constant the jump
function is regularised about and it corresponds to the melting point subject to appropriate scaling
(in the sense that in the fluid one has φ = 1 by setting η = 0, and in the solid φ = 0 corresponds
to η = ξ[m]−1). This also implies that in the solid region one imposes a low permeability field that
generates a large drag force. The parameter ξ is a large constant that represents the morphology of
the melt front. It is related to the imposed permeability through ξ = 180

ρrefd2m
where dm is the particle

diameter, and the constant 180 depends on the material under consideration [11]. Alternatively to
(2.9), in our examples we will include a regularised jump function that takes the form

η =
ηs
2

[tanh(Mη(θf − θ)) + 1], (2.10)

where ηs corresponds to the relative size of the imposed force and Mη is the size of the mushy region.
These constants determine the degree of regularisation of the jump. As above, in the liquid phase we
have η = 0, and in the solid η = ηs, with ηs a large constant accounting for the morphology of the
melt front.

In many models from the literature, the phase change is often described by combining the per-
meability (or porosity) regularised jumps with an enthalpy formulation [11]. The non-dimensional
enthalpy function s should ideally be a Heaviside function assuming the values ss in the solid, and sl
in the liquid. After regularisation using the phase change field φ we employ

s(θ) = ss + (sl − ss)φ(θ). (2.11)

We will adopt this form in all of our models, so that the mushy region for the enthalpy will be
predetermined by the temperature range δθ.

2.3 Enthalpy-viscosity models for phase change

The incorporation of phase change can be alternatively embedded in the form of a temperature-
dependent viscosity combined with an enthalpy formulation (as in e.g. [20]). The information about
phase variation from solid to fluid is then carried by two different scaled viscosities. This family of
models can also be linked to the principle of packing spheres (more naturally associated with the
porosity model above, as a dense packing of spheres in the solid translates into a drag force that slows
down the flow), and its influence on viscosity variations.

Defining Φ as the ratio of volume occupied by solid particles, we notice that it is related to the
phase function φ by Φ = Φm(1− φ), where Φm is a constant depending on the maximum packing of
the imposed particles, and so the latter corresponds to the ratio of volume not corresponding to solid
particles. As a given solid melts, then there are less solid particles suspended in the liquid, implying an
adequate decrease in the viscosity µ = φ−BΦm . Defining then n = BΦm and using a security constant
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m (mimicking the regularisation in the Carman-Kozeny equation) we obtain

µ =
1

φn +m
. (2.12)

In analogy to (2.10) we will also employ

µ(θ) = µl +
(µs − µl)

2
[tanh(Mµ(θf − θ)) + 1], (2.13)

so that in the solid we have µ = µs, and in the liquid µ = µl. Here the constant Mµ encodes the width
of the mushy region.

2.4 Relationship with the rheology of suspended particles

Historic models for the rheology of suspensions go back to [24], where the relation µ = 1 + BΦ, with
B = 2.5 is postulated. This model can be derived by the consideration of slow flow past a sphere, and
it corresponds to linear Newton rheology and is only valid for very dilute suspensions (Φ . 0.01), so
it would not be suitable for phase change models. Extensions to the case of particles with varying size
were derived from first principles in [12] and [41]. These models also capture the property that the
viscosity tends to infinity as the ratio of solid volume to liquid volume tends to 1, and they deal much
better with non Newtonian viscosities observed at higher values of Φ. This form of the viscosity model
is still used for nano particles [26], or for the sedimentation-consolidation in macroscopic models [42],
and it relates to our model of phase change. Traditionally, these models incorporate differences in
density and enthalpy by considering nano-particles made of different materials. See for instance [23],
where thermal and density properties of copper nano-particles are taken into account. In this context,
the models in (2.12) and (2.13) consider nano-particles with the same density and thermal properties,
and an important distinction is that the concentration of nano-particles is dependent on temperature
in such a way that the particles are not present in the liquid phase, and they exhibit maximum
concentration in the solid phase. This is also linked to concept of critical fraction introduced in [41].
There, a packing density becomes high enough that the fluid behaves as a solid, µ = (1− Φ

Φm
)−2.5 where

Φm is a constant depending on the maximum particle packing, and the model was later extended to
µ = (1− Φ

Φm
)−BΦm , see [33].

3 Analysis of Boussinesq phase change models

3.1 Weak formulation

Firstly let us recall some recurrent notation. For instance, we will write L2(Ω) to denote the space
of square integrable functions, and will use H1(Ω),H1(Ω) to refer to the scalar and vector-valued
Sobolev spaces W 1,2(Ω) and W 1,2(Ω), respectively; whose norms will be denoted as ‖ · ‖1,Ω. The
inner product in L2(Ω) (or in its vectorial and tensorial counterparts) will be simply denoted as (·, ·)
and its associated norm as ‖ · ‖. In addition, the space L2

0(Ω) denotes the restriction of L2(Ω) to
functions with zero mean value over Ω. In view of incorporating the boundary conditions for velocity
and temperature, we also introduce the space H1

0(Ω) of vector functions in H1(Ω) whose trace vanishes
on ∂Ω, and the space H1

D(Ω) of scalar functions in H1(Ω) whose trace vanishes on the sub-boundary
ΓθD.
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Associated with the spaces introduced above, the following nonlinear, bilinear and trilinear forms
are defined for all u,v,w ∈ H1(Ω), p, q ∈ L2(Ω), and θ, ψ ∈ H1(Ω)

aθ1(u,v) :=
2

Re

∫
Ω
µ(θ)ε(u) : ε(v), b(v, q) := −

∫
Ω
q div v, c1(w;u,v) :=

∫
Ω

[(w · ∇)u] · v,

a3(θ, ψ) :=
1

C Pr

∫
Ω
κ∇θ · ∇ψ, c3(w; θ, ψ) :=

∫
Ω

[w · ∇θ]ψ.
(3.1)

On account of these definitions, we proceed to test (2.1)-(2.2) against adequate functions and integrate
by parts conveniently in order to arrive at the following problem in weak form. For all t ∈ (0, tf ], find
(u, p, θ) ∈ H1

0(Ω)× L2
0(Ω)×H1

D(Ω) such that

(∂tu,v) + c1(u;u,v) + aθ1(u,v) + (η(θ)u,v) + b(v, p) = (f(θ)k,v) ∀v ∈ H1
0(Ω),

b(u, q) = 0 ∀q ∈ L2(Ω),

(∂t[θ + s], ψ) + c3(u; θ + s, ψ) + a3(θ, ψ) = 0 ∀ψ ∈ H1
D(Ω).

(3.2)

The forms defined in (3.1) enjoy the following properties, established in e.g. [13]

|aθ1(u,v)| ≤ C‖u‖1,Ω‖v‖1,Ω, |aθ1(v,v)| ≥ C‖v‖21,Ω,
|a3(θ, ψ)| ≤ C‖θ‖1,Ω‖ψ‖1,Ω, |a3(ψ,ψ)| ≥ C‖ψ‖21,Ω, b(v, q) ≤ ‖v‖1,Ω‖q‖,

|c1(w;u,v)| ≤ C‖w‖1,Ω‖u‖1,Ω‖v‖1,Ω, |c3(w; θ, ψ)| ≤ C‖w‖1,Ω‖θ‖1,Ω‖ψ‖1,Ω,

for all u,v,w ∈ H1
0(Ω), p, q ∈ L2(Ω), and θ, ψ ∈ H1

D(Ω). Also, there exists C > 0 depending only on
the domain, such that

sup
v∈H1(Ω)\0

b(v, q)

‖v‖1,Ω
≥ C‖q‖0,Ω ∀ q ∈ L2(Ω). (3.3)

We can now define the kernel of the bilinear form b(·, ·), characterised by the space of divergence-free
velocities V, as

V = {v ∈ H1
0; div v = 0 on Ω}.

Thus, based on (3.3) and the definition of V, the incompressibility condition is included in the func-
tional space and the pressure can be removed from the formulation. That is, problem (3.2) is equivalent
to the following problem: For all t ∈ (0, tf ], find (u, θ) ∈ V ×H1

D such that

(∂tu,v) + c1(u;u,v) + aθ1(u,v) + (η(θ)u,v) = (f(θ)k,v) ∀v ∈ V,

(∂t[θ + s], ψ) + c3(u; θ + s, ψ) + a3(θ, ψ) = 0 ∀ψ ∈ H1
D(Ω),

(3.4)

(a proof can be carried out following e.g. [22]). Moreover, one can see that for all u ∈ V, v ∈ H1(Ω),
and ϑ, ψ ∈ H1(Ω), we have

c1(u;v,v) = 0, c3(u, ψ, ψ) = 0, c3(u;ψ, ϑ) = −c3(u;ϑ, ψ).

3.2 Stability analysis

Note also that the convective and advective terms can be rewritten using skew-symmetric forms as
follows

c1(w;u,v) =
1

2

∫
Ω

[(w·∇)u]·v−1

2

∫
Ω

[(w·∇)v]·u, c3(w; θ, ψ) =
1

2

∫
Ω

[w·∇θ]ψ−1

2

∫
Ω

[w·∇ψ]θ. (3.5)
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Single phase flows. Let us consider an enthalpy-free counterpart of (3.2), and proceed to derive
energy estimates. Testing the energy equation against the temperature solution, and using (3.5) we
obtain

1

2
∂t‖θ‖20,Ω +

κ

Pr
‖∇θ‖20,Ω = 0,

and then one can use Gronwall’s lemma to assert that

‖θ‖20,Ω +

∫ t

0

2κ

Pr
‖∇θ‖20,Ωds ≤ ‖θ0‖20,Ω.

Testing now the momentum equation against the velocity solution, exploiting again (3.5), and
applying Cauchy-Schwarz inequality we obtain

∂t‖u‖20,Ω +
∥∥2µ(θ)0.5

Re0.5 ε(u)
∥∥2

0,Ω
+ 2A‖u‖20,Ω ≤ A2

1‖θ0‖20,Ω + ‖u‖20,Ω,

where we have also used that |k| = 1. We can then we invoke Gronwall’s lemma once again to get

‖u‖20,Ω +

∫ t

0

∥∥2µ(θ)0.5

Re0.5 ε(u)
∥∥2

0,Ω
ds ≤ exp((1− 2A)t)

(
‖u0‖20,Ω +

∫ t

0
A2

1‖θ0‖20,Ω
)
.

Enthalpy-based flows. The following two lemmas will be employed to show the stability and
uniqueness analysis of (3.2).

Lemma 3.1 For d = 2, there holds

‖v‖24,Ω ≤ 21/2 ‖v‖0,Ω |v|1,Ω ∀v ∈ H1(Ω).

Lemma 3.2 There holds

‖ε(v)‖20,Ω ≥
1

2
|v|21,Ω ∀v ∈ H1

0(Ω).

We now establish the stability analysis of problem (3.4).

Theorem 3.3 Assume that κ0 > k1s2. Then, for any solution of (3.4) and for any t ∈ (0, tf ],

there exists a constant C̃ depending on µ1,Re, η1, Cf , κ0, κ1, s2, C,Pr,Ω, tf and cp (positive constant
provided by Poincare’s inequality), such that

‖u‖L2(0,t;H1
0(Ω)) + ‖θ‖L2(0,t;H1

D(Ω)) ≤ C̃|k|
{
‖s0‖0,Ω + ‖θ0‖0,Ω

}
. (3.6)

Proof. Let (u, θ) be the solution of (3.4). Taking v = u in the first equation of (3.4) and applying
(2.4), (2.5) and (2.6), we obtain that

1

2
∂t ‖u‖20,Ω +

2µ1

Re
‖ε(u)‖20,Ω + η1 ‖u‖20,Ω ≤ Cf |k| ‖θ‖0,Ω ‖u‖0,Ω .

Next, applying Young’s inequality with constant ε = η1
Cf |k| , we find that

1

2
∂t ‖u‖20,Ω +

2µ1

Re
‖ε(u)‖20,Ω +

η1

2
‖u‖20,Ω ≤

C2
f |k|2

2η1
‖θ‖20,Ω .
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By using lemma 3.2, we deduce that

1

2
∂t ‖u‖20,Ω + α1 ‖u‖21,Ω ≤

C2
f |k|2

2η1
‖θ‖20,Ω ,

where α1 := min
{ µ1

Re ,
η1
2

}
. Now, integrating this equation between 0 and t yields

‖u‖20,Ω + ‖u‖2L2(0,t;H1
0(Ω)) ≤ C1|k|2 ‖θ‖2L2(0,t;H1

D(Ω)) , (3.7)

where C1 is a constant depending on Cf , µ1, η1,Re,Ω and tf . Similarly, we take ψ = θ+ s in the third
row of (3.2), and apply (2.7) and (2.8) to obtain

1

2
∂t ‖θ + s‖20,Ω +

κ0

CPr
|θ|21,Ω ≤

κ1s2

CPr
|θ|21,Ω.

Now, we integrate between 0 and t to obtain

‖θ + s‖20,Ω + ‖θ‖2L2(0,t;H1
D(Ω)) ≤ C2

{
‖s0‖20,Ω + ‖θ0‖20,Ω

}
, (3.8)

where s0 := s(θ0) and C2 is a constant depending on cp, C,Pr, κ0, κ1, s2,Ω and tf . Finally, we derive
the result (3.6) from (3.7) and (3.8). �

Theorem 3.4 Assume that the data θ0 ∈ L2(Ω). Then, problem (3.2) has a solution (u, p, θ) ∈
L2(0, tf ; H1

0(Ω))× L2(0, tf ; L2
0(Ω))× L2(0, tf ; H1

D(Ω)).

Proof. It follows from an argument based on Galerkin’s method and assumptions (2.4)-(2.7). For more
details see [2, Theorem 2.3]. �

The following result establishes the uniqueness of problem (3.2).

Theorem 3.5 Let d = 2. If the problem (3.2) admits a solution (u, θ, p) ∈ Lp(0, tf ;W 1,r(Ω))
×L2(0, tf ; H1

0(Ω))×L2(0, tf ; L2
0(Ω)), with p ≥ 4 and r ≥ 4, and Ls1 < 1/2, then this solution is unique.

Proof. Let (u1, p1, θ1) and (u2, p2, θ2) be two solutions of (3.2). With the aim to prove uniqueness, we
denote u = u1−u2, p = p1−p2 and θ = θ1−θ2. Now, from the third equation in (3.2), by adding and
substracting c3(u2, θ1 + s(θ1), ψ), with ψ = θ+ s(θ1)− s(θ2) and applying Cauchy-Schwarz inequality,
we obtain that

1

2
∂t‖θ + s(θ1)− s(θ2)‖20,Ω +

1

CPr
κ0|θ|21,Ω

≤ κ1Ls2
CPr

|θ|1,Ω‖θ‖0,Ω + |θ1 + s(θ1)|1,Ω‖u‖4,Ω‖θ + s(θ1)− s(θ2)‖4,Ω.

Next, using Lemma 3.1 and Young’s inequality with constant ε3, we deduce that

1

2
∂t‖θ + s(θ1)− s(θ2)‖20,Ω +

1

CPr
κ0|θ|21,Ω

≤ κ1Ls2
CPr

{
1

2ε3
|θ|21,Ω +

ε3

2
‖θ‖20,Ω

}
+

1√
2
|θ1 + s(θ1)|1,Ω‖u‖0,Ω|u|1,Ω

+
1√
2
|θ + s(θ1)− s(θ2)|1,Ω‖θ + s(θ1)− s(θ2)‖0,Ω|θ1 + s(θ1)|1,Ω.
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Finally, by applying again Young’s inequality with constants ε4 and ε5, we get

1

2
∂t‖θ + s(θ1)− s(θ2)‖20,Ω +

1

CPr
κ0|θ|21,Ω

≤ κ1Ls2
CPr

{
1

2ε3
|θ|21,Ω +

ε3

2
‖θ‖20,Ω

}
+

1√
2

{
1

2
ε4|u|21,Ω +

1

2ε4
|θ1 + s(θ1)|21,Ω‖u‖20,Ω

}
+

1√
2

{
ε5

(
|θ|21,Ω + L2

s2‖θ‖
2
0,Ω

)
+

(L2
s1 + 1)

ε5
‖θ‖20,Ω|θ1 + s(θ1)|21,Ω

}
.

(3.9)

Analogously, from the first equation in (3.2), adding and substracting the terms c1(u2,u1,v), (η(θ2)u1,v)
and 2

Re(µ(θ2)ε(u1), ε(v)), with v = u, and applying Cauchy-Schwarz inequality, we find that

1

2
∂t‖u‖20,Ω +

2µ1

Re
‖ε(u)‖20,Ω + η1‖u‖20,Ω

≤ ‖u‖24,Ω|u|1,Ω +
2

Re
|((µ(θ1)− µ(θ2))ε(u1), ε(u))|+ Lη‖u1‖0,Ω‖θ‖4,Ω‖u‖4,Ω + Lf |k|‖θ‖0,Ω‖u‖0,Ω.

(3.10)

Thus, on the left hand side of (3.10), we apply Korn inequality, while on the right hand side, for the
first, third and fourth term, we apply Young’s inequality with constants ε6, ε7 and ε8 to obtain

1

2
∂t‖u‖20,Ω + α3‖u‖21,Ω

≤ 1

2
ε6|u|21,Ω +

1

2ε6
‖u‖20,Ω|u1|21,Ω +

2

Re
|((µ(θ1)− µ(θ2))ε(u1), ε(u))|

+
1√
2
Lη‖u1‖0,Ω

{
1

2
ε7‖θ‖20,Ω +

1

2ε7
|θ|21,Ω

}
+

1√
2
Lη‖u1‖0,Ω

{
1

2ε8
|u|21,Ω +

1

2
ε8‖u‖20,Ω

}
+

1

2
Lf |k|

{
‖θ‖20,Ω + ‖u‖20,Ω

}
,

(3.11)

where α3 := min
{ µ1

Re , η1

}
. Now, since the exact solution u1 ∈ Lp(0, tf ,W

1,r(Ω)), r ≥ 4, p ≥ 4, using
Hölder’s and Young’s inequalities with constants r, r∗ := 2r

r−2 and ε9, ε10, respectively, to the last term
of (3.11), we deduce that

2

Re
|((µ(θ1)− µ(θ2))ε(u1) : ε(u))| ≤ 2Lµ

Re

{
ε9

2
‖u1‖1,r,Ω‖u‖21,Ω +

1

2ε9
‖u1‖1,r,Ω‖θ‖2r∗,Ω

}
≤ Lµε9

Re
‖u1‖1,r,Ω‖u‖21,Ω +

Lµ
ε9Re

‖u1‖1,r,Ω
{

1√
2ε10

‖θ‖20,Ω +
ε10√

2
|θ|21,Ω

}
.

(3.12)

Now, choosing the parameters as

ε3 =
2κ1Ls2
κ0

, ε4 =
α3√

2
, ε5 =

κ0

2
√

2CPr
, ε6 =

α3

2
, ε7 =

√
2CPrLη ‖u1‖0,Ω

κ0
,

ε8 =

√
2Lη ‖u1‖0,Ω

α3
, ε9 =

α3Re

4Lµ‖u1‖1,r,Ω
, ε10 =

κ0ε9Re

2
√

2CPrLµ‖u1‖1,r,Ω
,

we obtain from (3.9), (3.11) and (3.12) that

1

2
∂t
(
‖θ + s(θ1)− s(θ2)‖20,Ω + ‖u‖20,Ω

)
≤ C

(
|θ1 + s(θ1)|21,Ω + ‖u1‖41,r,Ω + ‖u1‖20,Ω + 1

) (
‖u‖20,Ω + ‖θ‖20,Ω

)
.

9
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Integrating between 0 and t on the last inequality, and then, adding on both sides the term (|θ|, |s(θ1)−
s(θ2)|), and using the assumption given in the theorem statement, we get

‖θ‖20,Ω + ‖u‖20,Ω ≤ Ĉ
∫ t

0

(
|θ1 + s(θ1)|21,Ω + ‖u1‖41,r,Ω + ‖u1‖20,Ω + 1

) (
‖u‖20,Ω + ‖θ‖20,Ω

)
.

Finally, by applying Gronwall’s lemma, we obtain u = 0 and θ = 0. Moreover, from the relation

(div v, p) = 0 ∀v ∈ H1
0(Ω),

we deduce p = 0, concluding the proof. �

4 Two families of finite element schemes

Let {Th}h>0 be a shape-regular family of partitions of the region Ω̄, by triangles (or tetrahedrons in
3D) K of diameter hK , with overall meshsize h := max{hK : K ∈ Th}. In what follows, given an
integer k ≥ 1 and a subset S of Rd, Pk(S) will denote the space of polynomial functions defined locally
in S and being of total degree ≤ k.

4.1 A conforming method in primal formulation

The spatial discretisation will be based on the finite element method. Accordingly, we define the
following finite-dimensional spaces for the approximation of velocity, pressure, and temperature re-
spectively:

Vh := {vh ∈ H1(Ω) : vh|K ∈ [Pk+1(K)]d ∀K ∈ Th, and vh = 0 on ∂Ω},

Qh := {qh ∈ L2(Ω) : qh|K ∈ Pk(K) ∀K ∈ Th, and

∫
Ω
qh = 0}, (4.1)

Zh := {ψh ∈ H1(Ω) : ψh|K ∈ Pk+1(K) ∀K ∈ Th, and ψh = 0 on ΓθD},

for k ≥ 1, which satisfy the discrete inf-sup condition: There exists a constant C∗ ≥ 0 independent of
h such that

sup
vh∈Vh\0

b(vh, qh)

‖vh‖1,Ω
≥ C∗ ‖qh‖0,Ω ∀ qh ∈ Qh. (4.2)

Then the semi-discrete Galerkin method associated with (3.2) reads: For all t ∈ (0, tf ], find (uh, ph, θh) ∈
Vh ×Qh × Zh such that

(∂tuh,vh) + c1(uh;uh,vh) + aθh1 (uh,vh) + (η(θh)uh,vh) + b(vh, ph) = (f(θh)k,vh) ∀vh ∈ Vh,

b(uh, qh) = 0 ∀qh ∈ Qh,

(∂t[θh + sh], ψh) + c3(uh; θh + sh, ψh) + a3(θh, ψh) = 0 ∀ψh ∈ Zh
(4.3)

A fully discrete method will be obtained after applying the method of lines. Regarding the time
discretisation of (4.3), and in view of the overall second order space discretisation expected when
choosing k = 1, we here employ a fully implicit second-order backward differentiation formula (BDF2).
This choice provides unconditional stability and permits to take sufficiently large timesteps to reach
approximate steady state solutions, should they exist. Let 0 = t0 < t1 < · · · tN = tf be a uniform
partition of the time interval into equi-spaced subintervals of size ∆t, then the method reads: starting

10
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from the initial values u0
h, θ

0
h,u

1
h, θ

1
h taken as interpolates of the initial data onto Vh and Zh, solve for

n = 1, . . . the nonlinear system

3

2∆t
(un+1

h ,vh) + c1(un+1
h ;un+1

h ,vh) +
1

2
(divun+1

h un+1
h ,vh) + a

θn+1
h

1 (un+1
h ,vh)

+ (η(θn+1
h )un+1

h ,vh) + b(vh, p
n+1
h )− (f(θn+1

h )k,vh) =
1

∆t
(2unh −

1

2
un−1
h ,vh) ∀vh ∈ Vh,

b(un+1
h , qh) = 0 ∀qh ∈ Qh,

3

2∆t
(θn+1
h + sn+1

h , ψh) + c3(un+1
h ; θn+1

h + sn+1
h , ψh) +

1

2
(divun+1

h (θn+1
h + sn+1

h ), ψh)

+ a3(θn+1
h , ψh) =

1

∆t
(2[θnh + snh]− 1

2
[θn−1
h + sn−1

h ], ψh) ∀ψh ∈ Zh,

(4.4)

and for n = 0 one applies a first order backward Euler method. The main advantage to introduce the
additional terms (see [1], for instance) arise from the following stability relations

c1(uh;vh,vh)+
1

2
(divuh vh,vh) = c3(uh;ψh, ψh)+

1

2
(divuh ψh, ψh) = 0 ∀uh,vh ∈ Vh, ∀ψh ∈ Zh.

In much the same way as the continuous case, we define V∗h = {vh ∈ Vh; b(vh, qh) = 0 ∀ qh ∈ Qh}
and thanks to the inf-sup condition (4.2), consider the following equivalent problem (see [39], Lemma
3.1): Find (un+1

h , θn+1
h ) ∈ V∗h × Zh such that

3

2∆t
(un+1

h ,vh) + c1(un+1
h ;un+1

h ,vh) +
1

2
(divun+1

h un+1
h ,vh) + a

θn+1
h

1 (un+1
h ,vh)

+ (η(θn+1
h )un+1

h ,vh)− (f(θn+1
h )k,vh) =

1

∆t
(2unh −

1

2
un−1
h ,vh) ∀vh ∈ V∗h,

3

2∆t
(θn+1
h + sn+1

h , ψh) + c3(un+1
h ; θn+1

h + sn+1
h , ψh) +

1

2
(divun+1

h (θn+1
h + sn+1

h ), ψh)

+ a3(θn+1
h , ψh) =

1

∆t
(2[θnh + snh]− 1

2
[θn−1
h + sn−1

h ], ψh) ∀ψh ∈ Zh.

(4.5)

In what follows, we establish the stability result for (4.4), for which the following algebraic identity
will be essential: for any real numbers an+1, an and an−1, we have

2(3an+1 − 4an + an−1, an+1) = |an+1|2 + |2an+1 − an|2 + |Λan|2 − |an|2 − |2an − an−1|2, (4.6)

where Λan = an+1 − 2an + an−1.

Theorem 4.1 Let (un+1
h , θn+1

h ) ∈ Vh × Zh be a solution of (4.4). Assume that κ0 > 2k1s2. Then,

‖un+1
h ‖20,Ω + ‖2un+1

h − unh‖20,Ω +
n∑

m=1

‖Λumh ‖20,Ω +
n∑

m=1

∆t ‖um+1
h ‖21,Ω

≤ C1

(
‖θ1
h + s1

h‖20,Ω + ‖2(θ1
h + s1

h)− (θ0
h + s0

h)‖20,Ω + ‖u1
h‖20,Ω + ‖2u1

h − u0
h‖20,Ω

) (4.7)

and

‖θn+1
h + sn+1

h ‖20,Ω + ‖2(θn+1
h + sn+1

h )− (θnh + snh)‖20,Ω +
n∑

m=1

‖Λ(θmh + smh )‖20,Ω +
n∑

m=1

∆t |θm+1
h |21,Ω

≤ C2

(
‖θ1
h + s1

h‖20,Ω + ‖2(θ1
h + s1

h)− (θ0
h + s0

h)‖20,Ω
)
.

(4.8)

where C1 and C2 are constants independent on h and ∆t.
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Proof. For (4.8), we take ψh = 4(θn+1
h + sn+1

h ) in the third equation of (4.4) and use the relation (4.6)
to deduce

‖θn+1
h + sn+1

h ‖20,Ω + ‖2(θn+1
h + sn+1

h )− (θnh + snh)‖20,Ω + ‖Λ(θnh + snh)‖20,Ω +
4κ0

CPr
∆t |θn+1

h |21,Ω

≤ 4s2κ1

CPr
∆t |θn+1

h |21,Ω + ‖θnh + snh‖20,Ω + ‖2(θnh + snh)− (θn−1
h + sn−1

h )‖20,Ω.

Thus, summing this inequality over n, we obtain

‖θn+1
h + sn+1

h ‖20,Ω + ‖2(θn+1
h + sn+1

h )− (θnh + snh)‖20,Ω +
n∑

m=1

‖Λ(θmh + smh )‖20,Ω

+
4(κ0 − 2κ1s2)

CPr

n∑
m=1

∆t |θm+1
h |21,Ω ≤ ‖θ1

h + s1
h‖20,Ω + ‖2(θ1

h + s1
h)− (θ0

h − s0
h)‖20,Ω.

(4.9)

Similarly, taking vh = 4un+1
h in the first equation of (4.4) and applying (4.6), we find that

‖un+1
h ‖20,Ω + ‖2un+1

h − unh‖20,Ω + ‖Λunh‖20,Ω +
8µ1

Re
∆t ‖ε(un+1

h )‖20,Ω + 4 η1∆t ‖un+1
h ‖20,Ω

≤ ‖unh‖20,Ω + ‖2unh − un−1
h ‖20,Ω + 4Cf |k|∆t‖θn+1

h ‖0,Ω‖un+1
h ‖0,Ω.

Applying Young’s inequality with constant ε = η1
Cf |k| and then, Korn’s Lemma, we obtain that

‖un+1
h ‖20,Ω + ‖2un+1

h − unh‖20,Ω + ‖Λunh‖20,Ω + min

{
4µ1

Re
, 2η1

}
∆t ‖un+1

h ‖21,Ω

≤ ‖unh‖20,Ω + ‖2unh − un−1
h ‖20,Ω +

2C2
f |k|2

η1
∆t|θn+1

h |21,Ω.

Summing over n and using the estimate (4.9), we finally deduce that

‖un+1
h ‖20,Ω + ‖2un+1

h − unh‖20,Ω +
n∑

m=1

‖Λumh ‖20,Ω + min

{
4µ1

Re
, 2η1

} n∑
m=1

∆t ‖um+1
h ‖21,Ω

≤
2C2

f |k|2

η1

n∑
m=1

∆t|θm+1
h |21,Ω + ‖u1

h‖20,Ω + ‖2u1
h − u0

h‖20,Ω.
(4.10)

Finally, from bounds (4.10) and (4.9) we obtain the results (4.7) and (4.8). �

We now establish the existence of the solution of (4.4).

Theorem 4.2 Assume that the data satisfy

2k1s2 < κ0 and 4C2
f |k|2 + 9s2

1 <
2

CPr
κ0cp min

{ µ1

Re
, η1

}
. (4.11)

Then, problem (4.5) admits at least a solution (un+1
h , θn+1

h , pn+1
h ) ∈ Vh × Zh ×Qh.

Proof. We proceed analogously as in [22, Thm. 3.2]. For notational convenience, we introduce the
following constants

Cu = C1

(
‖θ1
h + s1

h‖0,Ω + ‖2(θ1
h + s1

h)− (θ0
h + s0

h)‖0,Ω + ‖u1
h‖0,Ω + ‖2u1

h − u0
h‖0,Ω

)
,

Cθ = C2

(
‖θ1
h + s1

h‖0,Ω + ‖2(θ1
h + s1

h)− (θ0
h + s0

h)‖0,Ω
)
.
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Now, proceeding by induction on n ≥ 2, we define a mapping Φ from V∗h × Zh into itself by

(Φ(un+1
h , θn+1

h ), (vh, ψh)) =
1

2∆t
(3un+1

h − 4unh + un−1
h ,vh) + c1(un+1

h ;un+1
h ,vh) +

1

2
(divun+1

h un+1
h ,vh)

+ a
θn+1
h

1 (un+1
h ,vh) + (η(θn+1

h )un+1
h ,vh)− (f(θn+1

h )k,vh) + c3(un+1
h ; θn+1

h + sn+1
h , ψh) + a3(θn+1

h , ψh)

+
1

2∆t
(3(θn+1

h + sn+1
h )− 4(θnh + snh) + (θn−1

h + sn−1
h ), ψh) +

1

2
(divun+1

h (θn+1
h + sn+1

h ), ψh).

(4.12)

We can note that this mapping is well defined and continuous on V∗h × Zh. In order to use Brouwer’s
fixed-point theorem, we take (vh, ψh) = (un+1

h , θn+1
h ) in (4.12), apply (4.7)-(4.8) and denote C3 :=

min{ µ1Re , η1} to get

(Φ(un+1
h , θn+1

h ), (un+1
h , θn+1

h )) ≥ C3‖un+1
h ‖21,Ω −

1

2∆t
‖4unh − un−1

h ‖0,Ω‖un+1
h ‖1,Ω − Cf |k|‖θn+1

h ‖0,Ω×

‖un+1
h ‖1,Ω +

κ0

CPr
|θn+1
h |21,Ω − s1‖un+1

h ‖0,Ω|θn+1
h |1,Ω −

1

2
s1‖un+1

h ‖1,Ω‖θn+1
h ‖0,Ω

− 3s1|Ω|1/2‖θn+1
h ‖0,Ω −

1

2∆t
‖4(θnh + snh)− (θn−1

h + sn−1
h )‖0,Ω‖θn+1

h ‖0,Ω

≥ C3‖un+1
h ‖21,Ω +

κ0cp
CPr
‖θn+1
h ‖1,Ω −

1

2∆t
Ĉ1Cu‖un+1

h ‖1,Ω −
(

1

2∆t
Ĉ2Cθ − 3s1|Ω|1/2

)
‖θn+1
h ‖1,Ω

−
Cf |k|ε1

2
‖θn+1
h ‖21,Ω −

Cf |k|
2ε1

‖un+1
h ‖21,Ω −

3s1ε2

4
‖θn+1
h ‖21,Ω −

3s1

4ε2
‖un+1

h ‖21,Ω.

Now, taking ε1 =
2Cf |k|
C3

, ε2 = 3s1
C3

, applying the second inequality given in (4.11), and recalling that

(α+ β) ≥
√

2(α2 + β2)1/2 ∀α, β ∈ R, we obtain

(Φ(un+1
h , θn+1

h ), (un+1
h , θn+1

h )) ≥ C̃1

(
‖un+1

h ‖21,Ω + ‖θn+1
h ‖21,Ω

)
− C̃2

(
‖un+1

h ‖21,Ω + ‖θn+1
h ‖21,Ω

)1/2
,

where C̃1 = 1
2 min

{
C3,

κ0cp
CPr

}
and C̃2 = max

{
1

2∆t Ĉ1Cu,
1

2∆t Ĉ2Cθ − 3s1|Ω|1/2
}

. So, the right hand

side is nonnegative on the sphere of radius r := C̃2

C̃1
. Consequently, applying Brouwer’s fixed-point

theorem, we get the existence of a solution (un+1
h , θn+1h) of Φ(un+1

h , θn+1
h ) = 0, concluding the proof.

�

It is important to remark here that the existence of solution of system (4.4) could be obtained di-
rectly from an application of Brouwer fixed-point theorem. In fact, now we define the auxiliary problem
(Φ̃(un+1

h , θn+1
h , pn+1

h ), (vh, ψh, qh)) := (Φ(un+1
h , θn+1

h ), (un+1
h , θn+1

h )) + b(vh, p
n+1
h )− b(un+1

h , qh), which
is continuous from Vh×Zh×Qh into itself. Thus, when one take vh = un+1

h , ψh = θn+1
h and qh = pn+1

h ,
the additional term disappears and the proof would be exactly the same. The following result asserts
the unique solvability of (4.4).

Theorem 4.3 Assume that ∆t sufficiently small and that Ls1 < 1/2. Then the scheme defined in
(4.4) has a unique solution.

Proof. It follows analogously to the proof of Theorem 3.5. For more details see [3, Thm. 5.3]. �

4.2 A mixed-primal finite element method

Numerical methods based on mixed-primal variational formulations have the advantage that important
physical variables (as pseudostress and vorticity) can be approximated directly. Before stating the
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corresponding Galerkin scheme, we proceed to derive a mixed-primal weak formulation for the model
problem. In order to simplify the exposition of this section we will restrict to the stationary counterpart
of (2.1)-(2.3), in this case written as follows

u · ∇u − Re−1 div[µ(θ)ε(u)] + ∇p+ η(θ)u = f(θ)k,

div u = 0, (4.13)

−CPr−1 div(κ∇θ) + u · ∇θ + u · ∇s(θ) = 0,

and associated with Dirichlet boundary conditions u = uD and θ = 0 on Γ. Here the velocity datum
uD ∈ H1/2(Γ) verifies the compatibility condition

∫
Γ uD · ν = 0, where ν denotes the unit outward

normal on Γ. Proceeding as in [5], we introduce the strain rate tensor as an auxiliary unknown

t := ε(u) = ∇u− γ ∈ L2
tr(Ω),

where γ = ω(u) ∈ L2
skew(Ω) is the skew-symmetric part of the velocity gradient ∇u and the involved

functional spaces are

L2
skew(Ω) :=

{
η ∈ L2(Ω) : η + ηt = 0

}
, L2

tr(Ω) :=
{
s ∈ L2(Ω) : s = st and tr(s) = 0

}
.

Also the total stress (or pseudostress tensor, including diffusive, convective, and pressure contributions)
is regarded as a new unknown

σ := Re−1 µ(θ)t− (u⊗ u)− p I, (4.14)

which implies that the second equation in (4.13) together with (4.14) are equivalent to the relations

Re−1 µ(θ) t − (u⊗ u)d = σd, and p = − 1

n
tr(σ + u⊗ u) in Ω.

Consequently, we arrive at the following coupled system without pressure

Re−1 µ(θ) t − (u⊗ u)d = σd in Ω, (4.15)

t + γ = ∇u in Ω, (4.16)

η(θ)u − divσ = f(θ)k in Ω, (4.17)

−CPr−1 div(κ∇θ) + u · ∇θ + u · ∇s(θ) = 0 in Ω, (4.18)

u = uD and θ = 0 on Γ, (4.19)∫
Ω

tr(σ + u⊗ u) = 0. (4.20)

Note that the incompressibility constraint is implicitly present in (4.15), and the pressure being in
L2

0(Ω) is guaranteed by the equivalent statement in (4.20).

A weak form for this problem is obtained after testing (4.15)-(4.16) against suitable functions and
imposing the symmetry of σ; multiplying (4.17) by τ ∈ H(div; Ω), integrating by parts and using the
velocity boundary condition in (4.19); and taking a similar weak formulation for the energy equation
as in (3.2), appropriately modified to incorporate the temperature boundary data in (4.19). That is,
the temperature trial and test space will be

H1
0(Ω) :=

{
ψ ∈ H1(Ω) : ψ = 0 on Γ

}
.
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Moreover, the specific structure of the problem and the orthogonal decomposition H(div; Ω) =
H0(div; Ω)⊕ RI, allows us to look for stresses in the space

H0(div; Ω) :=
{
ζ ∈ H(div; Ω) :

∫
Ω

tr(ζ) = 0
}
.

The weak formulation then reads: Find (t,σ,u,γ, θ) ∈ L2
tr(Ω)×H0(div; Ω)×H1(Ω)×L2

skew(Ω)×H1
0(Ω)

such that

Re−1

∫
Ω
µ(θ)t : s −

∫
Ω

(u⊗ u)d : s −
∫

Ω
σd : s = 0 ∀ s ∈ L2

tr(Ω),∫
Ω
t : τ d +

∫
Ω
γ : τ +

∫
Ω
u · div τ = 〈τν,uD〉Γ ∀ τ ∈ H0(div; Ω) ,

−
∫

Ω
v · divσ −

∫
Ω
σ : η +

∫
Ω
η(θ)u · v =

∫
Ω
f(θ)k · v ∀ (v,η) ∈ L2(Ω)× L2

skew(Ω),

CPr−1

∫
κ∇θ · ∇ψ = −

∫
Ω
ψu · ∇(θ + s(θ)) ∀ ψ ∈ H1

0(Ω).

A further inspection of this formulation eventually reveals the lack of sufficient regularity (in particular
for velocity and stress), which suggests the use of augmentation techniques in the spirit of e.g. [4]. We
therefore incorporate residual, Galerkin-type terms in weak form

κ1

∫
Ω

{
σd + (u⊗ u)d + Re−1µ(θ)t

}
: τ d = 0 ∀ τ ∈ H0(div; Ω) ,

κ2

∫
Ω
{divσ − η(θ)u} · divτ = −κ2

∫
Ω
f(θ)k · divτ ∀ τ ∈ H0(div; Ω) ,

κ3

∫
Ω
{ε(u) − t} · ε(v) = 0 ∀v ∈ H1(Ω) ,

κ4

∫
Ω
{γ − ω(u)} : η = 0 ∀η ∈ L2

skew(Ω),

where κi, i ∈ {1, 2, 3, 4} are positive parameters. Denoting H := L2
tr(Ω) × H0(div; Ω) × H1(Ω) ×

L2
skew(Ω), ~t := (t,σ,u,γ), and ~s := (s, τ ,v,η), we arrive at the following augmented mixed-primal

formulation of the initial coupled problem (4.13): Find (~t, θ) ∈ H ×H1
0(Ω) such that

Aθ(~t,~s) + Bu(~t,~s) = Fθ(~s) + FD(~s) ∀ ~s ∈ H,
a(θ, ψ) = Gu,θ(ψ) ∀ψ ∈ H1

0(Ω),
(4.21)

where, given an arbitrary (w, φ) ∈ H1(Ω)×H1
0(Ω), the forms Aφ, Bw, a, and the fuctionals Fφ, FD,

and Gw,φ are defined as

Aφ(~t,~s) := Re−1

∫
µ(φ)t :

{
s− κ1τ

d
}

+

∫
Ω
t :
{
τ d − κ3ε(u)

}
−
∫

Ω
σd :

{
s− κ1τ

d
}

+

∫
Ω
u · div τ −

∫
Ω
v · divσ +

∫
Ω
γ : τ −

∫
Ω
σ : η +

∫
Ω
η(φ)u ·

{
v − κ2 div τ

}
− κ4

∫
Ω
ω(u) : η + κ2

∫
Ω

divσ · div τ + κ3

∫
Ω
ε(u) : ε(v) + κ4

∫
Ω
γ : η,

Bw(~t,~s) :=

∫
Ω

(u⊗w)d :
{
κ1τ

d − s
}
, a(θ, ψ) := CPr−1

∫
Ω
κ∇θ · ∇ψ,

Fφ(~s) :=

∫
Γ
f(φ)k ·

{
v − κ2div τ

}
, FD(~s) := 〈τν,uD〉Γ, Gw,φ(ψ) := −

∫
Ω
ψw · ∇(φ+ s(φ)),
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for all ~t,~s ∈ H, θ, ψ ∈ H1
0(Ω).

The solvability of (4.21) can be established by invoking a fixed-point approach between a mixed
formulation for the momentum and mass equations and a primal formulation for the energy equation;
which can be carried out following [4, 5, 15]. In contrast with those works, the solvability analysis of
the Navier-Stokes equations can be done in our case by applying a further fixed-point iteration that
relies on existence results for Brinkman equations, and we require four residual terms and the use of
Korn’s inequality. Since θ lives in H1

0(Ω), we can then apply a similar treatment as in [6, 28]. These
steps go beyond the scope of the paper and will be addressed in a forthcoming contribution.

The Galerkin scheme and specific finite element subspaces. For each K ∈ Th let us recall the
definition of the local Raviart-Thomas space of order k as RTk(K) := Pk(K)d ⊕ Pk(K)x , where
x is a generic vector in R. Then, we consider finite-dimensional subspaces Hth ⊂ L2

tr(Ω), Hσh ⊂
H0(div; Ω), Hu

h ⊂ H1
0(Ω), Hγh ⊂ L2

skew(Ω), Hθ
h ⊂ H1

0(Ω) defined as

Hth :=
{
sh ∈ L2

tr(Ω) : sh

∣∣∣
K
∈ Pk(K) ∀ K ∈ Th

}
,

Hσh :=
{
τ h ∈ H0(div; Ω) : ct τ h|K ∈ RTk(K) ∀ c ∈ Rd , ∀K ∈ Th

}
,

Hu
h :=

{
vh ∈ C(Ω) : vh|K ∈ Pk+1(K)d ∀K ∈ Th

}
,

Hγh :=
{
ηh ∈ L2

skew(Ω) : ηh|K ∈ Pk(K)d×d ∀ K ∈ Th
}
,

Hθ
h :=

{
ψh ∈ C(Ω) ∩H1

0(Ω) : ψh|K ∈ Pk+1(K) ∀K ∈ Th
}
.

Denoting Hh := Hth × Hσh ×Hu
h × Hγh , ~th := (th,σh,uh,γh), and ~sh := (sh, τ h,vh,ηh), a Galerkin

scheme reads: Find (~th, θh) ∈ Hh ×Hθ
h such that

Aθh(~th,~sh) + Buh
(~th,~sh) = Fθh(~sh) + FD(~sh) ∀ ~sh ∈ Hh,

a(θh, ψh) = Guh,θh(ψh) ∀ψh ∈ Hθ
h.

(4.22)

The well-posedness of (4.22) will be also based on a suitable adaptation of the continuous analysis of
(4.21) to the present context (see, e.g. [5, 15]).

4.3 Consistent linearisation

Problem (4.4) entails solving a set of nonlinear equations at each timestep. For this we will employ
Newton Raphson’s method, which features quadratic convergence provided the initial guess is suffi-
ciently close to the zone of attraction. For a generic nonlinear problem F(w) = 0, one produces a
sequence {wk}k converging quadratically to w, through the iterates

DF(wk)[δw] = −F(wk) where δw = wk+1 −wk, w0 = (unh, p
n
h, θ

n
h),

where DF(v)[δv] denotes the Gâteaux derivative of the functional F along the direction δv. Then at
each Newton step k we solve the linear problem

3

2∆t
(δuh,vh) + c1(δuh;ukh,vh) + c1(ukh; δuh,vh) +

2

Re

(
µ′(θkh)δθhε(u

k
h), ε(vh)

)
+

2

Re

(
µ(θkh)ε(δuh), ε(vh)

)
+ (η′(θkh)δθhu

k
h,vh) + (η(θh)δuh,vh) + b(vh, δph)− (f ′(θkh)δθhk,vh)

=
1

∆t
(2unh −

1

2
un−1
h ,vh) +

(
R1
h(ukh, p

k
h, θ

k
h),vh) ∀vh ∈ Vh,
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b(δuh, qh)− γ(δph, qh) = (R2
h(ukh, p

k
h, θ

k
h), qh) ∀qh ∈ Qh,

3

2∆t
(δθh + s′(θh)δθh, ψh) + c3(δuh; θkh + s(θkh), ψh) + c3(ukh; δθh + s′(θkh)δθh, ψh) + a3(δθh, ψh)

=
1

∆t
(2[θnh + snh]− 1

2
[θn−1
h + sn−1

h ], ψh) + (R3
h(ukh, p

k
h, θ

k
h), ψh) ∀ψh ∈ Zh.

where the terms Rih stand for the Newton residuals associated to the momentum, mass, and energy-
enthalpy equations.

One readily notes that as we increase the Rayleigh number, the coupling between the Navier-Stokes
and the temperature equation becomes stronger. This makes the radius of convergence for the Newton
method smaller (see e.g. [25]). As the new initial guess in the time-dependent method is the solution
at the previous timestep, this condition reflects on a restriction on the timestep, independently of the
CFL condition.

5 Numerical verification

We stress that the zero-mean condition enforcing the uniqueness of the pressure (for the schemes based
on the primal finite element formulation from Section 4.1) is implemented using a pressure penalisation
approach. All nonlinear systems undergo a Newton linearisation with fixed residual tolerance of 1E-6.
In addition, the resulting linear solves are performed with the direct method SuperLU.

5.1 Experimental convergence for the semidiscrete and fully discrete methods

For our first example we produce the error history associated with the finite element approxima-
tion. Let us consider the following closed-form solutions to the stationary Boussinesq equations with
enthalpy, defined on the unit square domain Ω = (0, 1)2:

u(x, y) =

(
sin(πx)2 sin(πy)2 cos(πy)
−1

3 sin(2πx) sin(πy)3

)
, p(x, y) = 10(x4− y4), θ(x, y) = 1 + sin(πx) cos(πy). (5.1)

These functions are smooth and they are used to generate non-homogeneous forcing and source terms.
The vertical walls constitute ΓθD and the bottom and top lids of the domain conform ΓθN . The
temperature-dependent viscosity, porosity, buoyancy, and enthalpy functions are taken as

η(θ) := 2 + tanh(
1

2
− θ), µ(θ) := exp(−θ), f(θ) :=

Ra

Pr Re2 θ, s(θ) := 1 + tanh(1− θ), (5.2)

respectively, and the remaining parameters specifying this steady-state version of (2.1)-(2.3) are Re =
10, Ra = 100, Pr = 0.71, γ =1E-6. We then construct a sequence of successively refined meshes
for Ω and proceed to compute errors between approximate and exact solutions, together with local
convergence rates. The outcome of this error study is depicted in Table 1, which shows optimal
convergence O(hk+1) for velocity, pressure, and temperature in their natural norms.

The error associated to the time discretisation is assessed by considering the original transient
problem, with enthalpy, and employing the following exact solutions (proposed in [22] for the study of
the Boussinesq approximation without enthalpy), defined on the three-dimensional domain Ω = (0, 1)3:

u(x, y, z, t) =

 x2 + xy − z2 + yz
−2xy − 1

2y
2 + 2yz − 2xz

z2 + y2 − x2 + 3xy

 sin(t), p(x, y, z, t) = [x− y + 3z − 3/2] sin(t),
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DoF h ‖u− uh‖1 rate ‖p− ph‖ rate ‖θ − θh‖1 rate it

k = 1

84 0.7071 4.4051 – 0.6275 – 0.3791 – 5
268 0.3536 0.8306 2.407 0.1468 2.096 0.1027 1.884 4
948 0.1768 0.1334 2.638 0.0357 2.038 0.02654 1.953 4
3556 0.0884 0.0239 2.478 0.0088 2.013 0.0067 1.983 4
13764 0.0442 0.0051 2.226 0.0022 2.004 0.0017 1.993 4
54148 0.0221 0.0012 2.074 0.0006 2.001 0.0004 1.997 5
214788 0.0110 0.0003 2.015 0.0001 1.999 0.0001 1.999 4

k = 2

172 0.7071 0.8695 – 0.102 – 0.0994 – 4
588 0.3536 0.1741 2.320 0.0145 2.813 0.0130 2.931 5
2164 0.1768 0.0253 2.779 0.0019 2.873 0.0016 2.991 5
8292 0.0884 0.0034 2.907 0.0003 2.928 0.0002 3.000 5
32452 0.0442 0.0004 2.954 3.38e-5 2.949 2.56e-5 3.001 5
128388 0.0221 6.16e-5 2.824 6.36e-6 2.961 3.21e-6 2.997 5
510724 0.0110 1.43e-5 2.983 1.51e-6 2.984 8.01e-7 2.997 4

Table 1: Error history (errors on a sequence of successively refined grids, experimental convergence
rates, and Newton iteration count at each refinement level) associated to the spatial discretisation
using the finite element spaces (4.1) with k = 1 and k = 2.

θ(x, y, z, t) = 2 + [x2 + y2 + z2 + 1] sin(t).

The regularity of these solutions implies that the spatial finite element discretisation using a method
with k = 1 will be machine-precision accurate, and so the total error will practically coincide with
the time discretisation error. The temperature-dependent functions are taken as in (5.2). We proceed
to discretise the time interval into a sequence of successively refined grids and compute accumulative
errors, defined for a generic field scalar or vector field v as E(v) := [∆t

∑N
n=1 |vnh − v(tn)|2]1/2, up to

the adimensional final time tf = 1. The error history is displayed in Table 2, showing a second order
convergence, consistent with the BDF2 algorithm employed.

∆t E(u) rate E(p) rate E(θ) rate avg(it)

1 0.1355 – 1.2943 – 0.2627 – 5
0.25 0.0176 1.938 0.1640 1.925 0.0329 1.890 4.2
0.0613 0.0023 1.990 0.0251 1.934 0.0041 1.958 4.2
0.0151 0.0003 1.983 0.0032 1.962 0.0005 1.947 4.2

Table 2: Time discretisation errors produced with a BDF2 method on different timestep resolutions,
convergence rates, and average number of Newton iterations.

We also generate the error history associated with the mixed-primal discretisation discussed in
Section 4.2. The closed-form solutions are those in (5.1) and the model parameters and temperature-
dependent functions are as in the first example above; while the stabilisation constants needed for
the augmented formulation take the values κ1 = κ2 = µ1µ

−2
2 , κ3 = µ1/2, κ4 = µ1/4 (and where the

constants µ1, µ2 are the bounds for the viscosity introduced in (2.5)). The problem in this case is
solved in terms of strain rate, total stress (including viscous and convective contributions), velocity,
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vorticity tensor, and temperature; and each individual error is measured in its natural norm. The error
decay and the corresponding convergence rates are reported in Table 3, which confirms an optimal
convergence rate. The Newton iteration count is similar to the one observed in Table 1.

DoF h ‖t−th‖ rate ‖σ−σh‖div rate ‖u−uh‖1 rate ‖γ−γh‖ rate ‖θ−θh‖1 rate it

83 0.7071 1.2330 – 1.2681 – 1.5671 – 1.2547 – 1.5651 – 3
283 0.3536 0.6253 0.826 0.7302 0.796 1.0193 0.633 0.7187 0.803 0.8465 0.886 4
1043 0.1768 0.3402 0.904 0.4056 0.847 0.5788 0.803 0.3641 0.895 0.4328 0.967 4
4003 0.0884 0.1764 0.927 0.2003 0.934 0.3077 0.911 0.1842 0.954 0.2177 0.991 4
15683 0.0442 0.0831 0.954 0.1401 0.929 0.1623 0.925 0.0917 1.022 0.1090 0.997 4
62083 0.0221 0.0462 0.960 0.0892 0.972 0.0958 0.946 0.0483 0.972 0.0548 0.998 4
247043 0.0111 0.0247 0.985 0.0426 0.977 0.0521 0.951 0.0258 0.931 0.0274 0.994 4
985603 0.0055 0.0124 0.992 0.0225 0.985 0.0311 0.954 0.0123 1.003 0.0139 0.978 4

Table 3: Error history (errors on a sequence of successively refined grids, experimental convergence
rates, and Newton iteration count at each refinement level) associated to the spatial discretisation
using the mixed-primal formulation from Section 4.2, using a lowest-order scheme with k = 0.

5.2 Benchmark test: natural convection of air

We further validate the numerical method against a well-documented benchmark, the natural convec-
tion of air in a differentially heated square cavity Ω = (0, 1)2. In this problem we do not have the
enthalpy terms, we do not consider the temperature-dependent drag contribution, and the viscosity
and conduction coefficients are constant. Therefore the scaling of the equations is as follows

∂tu+ u · ∇u− Pr ∆u+∇p+ η(θ)u = Ra Pr θk,

divu = 0 in Ω× (0, tf ],

∂tθ + u · ∇θ −∆θ = 0,

where k = (0, 1)T , and the only non-dimensional parameters and their values are Ra =1E5 and
Pr = 0.71. We use a constant timestep of ∆t = 0.001 and employ a rather coarse mesh with meshsize
h =

√
2/64. The initial conditions on the domain interior are u(0) = 0 and θ(0) = 0.5, and we

prescribe θ = 1 on the left and θ = 0 on the right walls of the cavity (also for the initial datum). The
upper and lower plates constitute the boundary ΓθN , where we set zero-flux boundary conditions for
temperature (representing insulated walls); and on all four sides of the container we impose no-slip
velocities u = 0.

The simulation is run until the final, dimensionless time tf = 0.5, using a Taylor-Hood finite
element family for the approximation of velocity and pressure (i.e., k = 1), and the pressure penalty
parameter takes the value γ =1E-7. The flow is driven by the difference of temperature and examples
of velocity, pressure and temperature distribution at the final time are depicted in Figure 5.1(a-c).
We observe well-defined temperature profiles and the expected recirculation velocity patterns. A
more quantitative study is done by extracting the approximate solutions for temperature and vertical
velocity on the horizontal midlines at y = 0.5 and plotting them against properly rotated published
benchmark values from [48] (which were generated using the method of discrete singular convolution).
A reasonably close match is confirmed by looking at Figure 5.1(d,e), where we emphasise that our
results come from coarse mesh computations.

We carry out further comparisons based on the average Nusselt number on the hot wall of the

19



Numerical solution of phase change natural convection

0.0

22.7

68.1
.

45.4

(a)

2.5e+04

.

1.1e+04

-1.6e+04

-2.7e+03

(b)

0.67

.

0.00

1.00

0.33

(c)

(d) (e)

Figure 5.1: Velocity, pressure, and temperature profiles for the 2D differentially heated cavity (a,b,c
respectively) and comparisons to the benchmark data in [48] (d and e).

cavity, that is, at x = 0. The value is here defined as

Nu = |
∫
M

Pr Reu1θ − ∂xθ|, (5.3)

where M denotes the hot wall, and it encodes the rate of heat transfer along M (including the total
flux, even the part coming from advection). We also record the maximum and minimum velocities
and temperatures attained on the symmetry lines x = 0.5 and y = 0.5. The computed values are
collected in Table 4, where we also include reference values from the literature (see also [7, 35]).
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Ra Nu max(|û1,h|) max(|û2,h|) x∞ y∞

Computed 103 1.105 0.133 0.137 0.177 0.815
Reference value 103 1.117 0.136 0.138 0.178 0.813
Computed 104 2.002 0.188 0.239 0.117 0.820
Reference value 104 2.054 0.192 0.234 0.119 0.823
Computed 105 4.430 0.161 0.258 0.068 0.851
Reference value 105 4.337 0.153 0.261 0.066 0.855

Table 4: Average Nusselt number (5.3) and maximum velocities on the midplanes attained at (0.5, y∞)
and (x∞, 0.5), computed for different values of the Rayleigh number and compared with respect to
reference values from [21].

6 Examples using phase-change models

6.1 Simulating the melting of N-octadecane

We now consider the melting of a solid phase change material (N-octadecane) contained in a square
box and subject to heating on the left side of the domain. The problem set up is taken from [20], where
the boundary conditions are as above (no-slip velocities on the whole boundary, the temperature has
zero flux on the top and bottom walls, and high and low temperatures are maintained on the left and
right walls, respectively). The low temperature imposed on the right wall θC = −0.01 is lower than
the phase change temperature θ = 0, in order to allow the phase change to occur. We here employ a
structured mesh of 100000 elements.

We first consider an enthalpy-viscosity model. The model parameters are as follows Ra = 3.27E5,
Pr= 56.2, Re= 1, κ = 1, Ste= 0.045, high temperature on the left wall θH = 1, and size of the mushy
region δθ = 0.1. We then use (2.11) with sl = 0, ss = [Ste]−1, and we also employ the regularised
viscosity specification (2.13) with the constants µl = 1, µs = 108, Mµ = 50, and θf = 0. These values
give a constitutive relationship for the phase change that can also be recovered from (2.9) using the
phase change function φ together with the viscosity µ(φ) = µs + (µl − ss)φ. In that case, the jump is
sufficiently large so that the mushy region acts as a solid near the melting point. Notice that in [20]
the convection of enthalpy (the last term in the LHS of (2.3)) is neglected. This term is zero almost
everywhere, except within the mushy region. So if this region is relatively large, then the term will
have an important effect in the generated flow patterns.

Secondly, we use an enthalpy-porosity model having a very similar jump behaviour. We focus on
the regularised permeability field (2.10) and setting the parameter values to ηs = 108, Mη = 50,
θf = 0. Again, this can be regularised alternatively using the phase change function φ and putting
η(φ) = ηs(1− φ) (see also [43]).

In Figure 6.1 we present snapshots of the numerical solutions obtained using an enthalpy-viscosity
model (and setting constant drag), and an enthalpy-porosity model (using constant viscosity). After
an initial stage where the dynamics of the system are dictated predominantly by heat conduction, the
convective effects in the mixture start to dominate and the layer that determines the phase change
moves on to the right on the top of the cavity. We can observe that even if the jump definitions are
qualitatively similar, substantial differences appear in terms of the pressure profiles in the solid region.
The velocity patterns are also different (the porosity-based model permits recirculation even in the
solid), but this can be straightforwardly remediated by taking a larger value for ηs. Secondly, we also
observe that the the phase change boundary is more advanced using the enthalpy-porosity model, and
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Figure 6.1: Example 3. Comparison between the melting of N-octadecane using enthalpy-viscosity
(a,b,c) and enthalpy-porosity models (d,e,f).

this is more pronounced at the top of the container. In the next set of tests we will address these
differences in further detail.

6.2 Changing the size of the mushy region and the jump nonlinearity

In view to investigate the differences between porosity and viscosity based models, we recall that
enthalpy-viscosity models can be very sensitive to dynamic viscosity effects, thermal conductivity
variations, and the size of the mushy region (see [8]). On the other hand, the enthalpy-porosity model
for the melting of gallium, and studied in [43] is sufficiently accurate for a specific mushy region
size. We then proceed to vary the size of the mushy region in an adequate manner to conciliate
enthalpy-viscosity and enthalpy-porosity models.

We start with different values for Mµ in the enthalpy-viscosity model, and we observe that with large
mushy regions one can mimic the results obtained using enthalpy-porosity models. However, smaller
mushy regions in enthalpy-viscosity models do not necessarily imply a higher irregularity in the model
coefficients, as their counterpart in enthalpy-porosity models need to impose a larger jump in order to
prevent unwanted flow in the solid region. The results of mushy region variations in enthalpy-viscosity
models are collected in Figure 6.2(a).

A second investigation is done by modifying the degree of nonlinearity in the Brinkman term.
Setting the parameters ξ = 107.4, m = 10−2.6 in the specification of the enthalpy-porosity model (2.9)
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(a) (b)

Figure 6.2: Example 4: Contour plots of the phase change depending on the size of the mushy region
on enthalpy-viscosity models (a), or on the nonlinearity of the regularisation in enthalpy-porosity
models (b).

imply that the permeability η is regularised over the desired mushy region, with a constant larger
than 108 reducing the flow in the solid region. We recall that ξ is related to the material morphology,
and in the context of the study of melting N-octadecane, one could choose a more appropriate value.
Also, the phase change function φ could be regularised around some artificial melting temperature
with a different choice of mushy region δθ. A closer inspection of the model coefficients reveals that
the present form is equivalent to (2.10) with a mushy region of size Mη = 150 (which is a large value,
especially considering that enthalpy-porosity models require less regularisation than enthalpy-viscosity
models).

Making the link with variable viscosity we recall that in the model by Brinkman one has (2.12).
We use the value n = 2.5, and choose m = 10−8 to produce a jump of order 108. Plotting then η it is
clear that the phase change function φ requires a different parametrisation in order to get the jump
over the required mushy region. We then choose φ = 1

2 [tanh(50(x− 0.074)) + 1], and stress that this
model is based on the theory of suspended particles and how the packing density affects viscosity.

Again, using (2.12) and varying n, one can mimic the effects of (2.9). Comparisons of the melting
fronts produced with these two last family of models are displayed in Figure 6.2(b), whereas a sample
of the numerical solutions choosing n = 5 (and having the following regularisation of the phase change
function φ = 1

2 [tanh(50(θ − 0.0366)) + 1]), and a locally refined mesh are portrayed in Figure 6.3.

6.3 Flow patterns in a local element

We next turn to the simulation of buoyancy-driven flow within a mesoscopic subdomain (or local
element) lying on the boundary layer between liquid and solid. In line with the observations made
above, the solid phase can be regarded as a porous medium filled with solid particles. It is expected
that these obstacles will generate a drag as the one encoded in the macroscopic form (2.9). In a local
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Figure 6.3: Example 4. Velocity components, pressure, temperature, and adapted mesh at t = 160,
using a porosity-viscosity model with n = 5.

element of diameter 0.01, we create a so-called blockage arrangement of randomly distributed particles
of varying sizes with mean dm = 0.0002 and a 1% variance. The boundary conditions for the flow
are different than in the macroscopic case. We impose a slip velocity u = (0, 0.01)T on the left wall
and no-slip velocities elsewhere. A drag force is imposed on the fluid as passes through the array of
particles. The velocity is reduced on a very small interval, but flow is allowed through the permeable
field. These observations suggest why a viscosity-based formulation would require a much smaller
mushy region in order to produce the same melting front as in porosity-based models. For instance,
for the form (2.12) one should consider nano particles that melt at the melting temperature of the
material, and have the same properties as the liquid, therefore their only effect on the fluid would be
an increased viscosity. This behaviour is achieved by simply by not being fluid and by colliding with
each other. This phenomenon amounts to impose a moving permeable field, eventually leading to the
formation of a larger mushy region. In summary, in enthalpy-porosity models the particles are fixed
and the drag force hinders the flow, whereas for enthalpy-viscosity models, the holes are allowed to
move and the amount of fluid present is reduced. An example is given in Figure 6.4, and a somewhat
similar study can be found in [30].

Concluding remarks. We have addressed the modelling of phase change in Boussinesq models within
porous media. A finite element method has been proposed for its numerical approximation, and we
have established stability of the continuous and discrete equations. We have tested the performance
of the method using a classical benchmark for air convection, where the scaled viscosity is one, there

24



Numerical solution of phase change natural convection

3.3e-03

6.6e-03

5.3e-09

9.9e-03
.

(a)

-2.07

2.575

-6.71

7.22
p

(b)

Figure 6.4: Example 5. Velocity and pressure profiles on a local element.

is no porosity, and no enthalpy terms. Secondly, we have simulated the melting of a material, where
the phase change is incorporated in two alternative ways: either using viscosity or porosity as main
effects producing the interface movement. Extensions of this work include the derivation of error
estimates, the generalisation of the enthalpy-viscosity and enthalpy-porosity models to include nonlocal
contributions and performing further comparisons with alternative models, such as those based on the
error function and reviewed in [19,37]. We would also like to extend the applicability of the methods
proposed here, in the study of large scale models including the thermal evolution of magma/ocean
interfaces [46], or ice-shelf melting [47]. A preliminary test is given in Figure 6.5 where we have
implemented an enthalpy-porosity model to simulate the flow of the antarctic circumpolar current
and the ice-shelf melting around Antarctica, using an unstructured mesh consisting of 20500 elements
and the transient version of the mixed-primal finite element scheme described in Section 4.2. For
a relatively large mushy region we can observe a stabilisation of the recirculation patterns and a
concentration of the temperature gradients towards the phase change layer.
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Ruiz-Baier: A new mixed finite element method for the n-dimensional Boussinesq
problem with temperature-dependent viscosity

2018-19 Antonio Baeza, Raimund Bürger, Maŕıa Carmen Mart́ı, Pep Mulet,
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