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Abstract. A stationary Navier-Stokes-Brinkman model coupled to a system of advection-
diffusion equations serves as a model for so-called double-diffusive viscous flow in porous media
in which both heat and a solute within the fluid phase are subject to transport and diffusion. The
solvability analysis of these governing equations results as a combination of compactness arguments
and fixed-point theory. In addition an H(div)-conforming discretisation is formulated by a modifica-
tion of existing methods for Brinkman flows. The well-posedness of the discrete Galerkin formulation
is also discussed, and convergence properties are derived rigorously. Computational tests confirm the
predicted rates of error decay and illustrate the applicability of the methods for the simulation of
bacterial bioconvection and thermohaline circulation problems.
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1. Introduction.

1.1. Scope. Double-diffusive flows arise in the flow chemical pollutants in satu-
rated soil, subsurface drilling and petroleum extraction, crystal growth, chemical and
food processing [40], and other applications [8, 18, 19, 24, 30, 33, 35]. This class of
models originates in combining heat and mass transfer interacting with flow within
porous structures. One of its particularities is the formation of boundary layers due
to coupled thermal and compositional mechanisms [12]. This occurs (at least in the
case known as augmenting flows) since mass transfer increases the effect of buoyancy
due to heat transfer. The difference in the diffusivities of the two fluid components
then contributes to redirecting the flow away from the vertical density gradient [36].
Another characteristic phenomenon of double-diffusive flows [29, 33] is cross-diffusion,
where the flux of the solute is influenced by temperature gradients. This so-called
Soret effect usually co-exists with the reciprocal phenomenon, known as the Dufour
effect.

The governing equations are posed on a open and bounded spatial domain Ω ⊆ Rd,
d = 2 or d = 3, with boundary conditions imposed on the boundary Γ = ∂Ω that is
assumed to be Lipschitz. The model adopts the form of the incompressible Brinkman-
Navier-Stokes equations for the viscous flow of an incompressible Newtonian fluid in a
porous medium, where the velocity u and the pressure p are the unknowns, coupled to
a pair of advection-diffusion equations with cross-diffusion that describe the diffusion
of heat and solute. Specifically, we assume that a given species (e.g. salt) has a slight
solubility within this fluid, and that S denotes its concentration (i.e., weight of solute
per unit weight of solution), while T is temperature, and y := (T, S)T. The stationary
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behaviour of this system can in dimensionless form be expressed as follows:

K−1u + (u · ∇)u− div(ν(T )∇u) +∇p = F (y), divu = 0 in Ω,

− div(D∇y) + div(y · u) = 0 in Ω; y = yD, u = 0 on Γ,
(1.1)

where K(x) > 0 is the permeability tensor rescaled with viscosity, F (y) is a given
function modelling buoyancy, D is the 2× 2 constant matrix of the thermal conduc-
tivity and solutal diffusivity coefficients (possibly with cross-diffusion terms), and ν
is a temperature-dependent viscosity function. (Precise assumptions on the model
functions and problem data are stated in Section 2.)

It is the purpose of this work to propose a divergence-conforming finite element
method for the double diffusive problem, considering temperature dependent viscosity
and possible cross diffusion terms subject to the restriction of maintaining the coerciv-
ity of the diffusion operator. The formulation includes the Navier-Stokes/Brinkman
flow description, which makes this model suitable for the study of flow in saturated
porous media and interfaces between porous media and free flow. The numerical
scheme is based on H(div)-conforming Brezzi-Douglas-Marini (BDM) elements of or-
der k for the velocity, discontinuous elements of order k − 1 for the pressure, and
Lagrangian finite elements of order k for temperature and the concentration of a
solute. In particular this formulation produces exactly divergence-free velocity ap-
proximations, which are of particular importance in ensuring that solutions to the
flow equations remain locally conservative as well as energy stable (see e.g. [13]).

1.2. Related work. To put the paper further into the proper perspective, we
mention that in many heat and mass transfer processes, the Soret and Dufour effects
can be neglected as their contributions can be orders of magnitude smaller than
those described by terms arising from Fourier or Fick’s laws. However, these effects
can be significant when species are introduced at a surface in a fluid domain and
having different densities in comparison to the surrounding fluid. These mechanisms
are important as well in applications related to the transport of moisture in fibrous
insulations or grain storage insulations and the dispersion of contaminants through
water saturated soil, bio-chemical contaminants transport in environmental problems,
and underground disposal of nuclear waste and crystal growth processes [8].

With respect to the well-posedness of (1.1) (under suitable assumptions), we
first restrict the discussion to classical Boussinesq-type equations. The solvability of
the associated PDEs goes back to Lorca and Boldrini [27, 28]. These works include
existence, regularity, and conditions for uniqueness addressing both stationary and
non-stationary cases. These results hold for temperature-dependent viscosity and
thermal conductivity. Related to the context of our specific problem, the analysis of
solutions to double-diffusive problems has been addressed e.g. in [19, 26].

On the other hand, a diversity of numerical methods is available for classical
Boussinesq equations as well as for their generalisations to temperature-dependent
coefficients. We mention for instance the stabilised finite elements (using projection-
based techniques) proposed and rigorously analysed in [12], the mixed formulations
analysed in [2, 4, 5, 14], but also the stability of splitting schemes (for discontinuous
Galerkin, spectral, and vorticity-based finite element formulations) and some more
applicative examples have been explored in [1, 11, 24, 25, 30, 34, 35, 38]. Mixed-
primal and fully-mixed schemes using H(div)-conforming velocity approximations
have been studied in [31, 32]. Other contributions to this area include the finite
volume discretisations for thermal and solutal buoyancy within Darcy-Brinkman flows
introduced in [18], the error analysis for spectral methods applied to bioconvection
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in [15], or the vorticity-based Brinkman and nonlinear advection-reaction-diffusion
system analysed via fixed-point and compactness arguments in [6], that also includes
a mixed-primal scheme featuring divergence-free discrete velocities. Penalty Petrov-
Galerkin methods were used for the solution of double-diffusion convective problems
in [21]. In [36] the authors introduce least-squares schemes specifically tailored for
Rayleigh-Bénard convective flows, and the averaging finite element method has been
employed in [39] for solidification problems having the same structure as the models
we examine here.

1.3. Outline of the paper. The remainder of this paper is organised as follows.
In Section 2 we introduce some recurrent notation and definitions of functional spaces
(Section 2.1), specify the assumptions on the model coefficients and problem data and
state the problem in variational form (Section 2.2), and establish auxiliary properties
of the bilinear and trilinear forms involved (Section 2.3). Section 3, which follows
closely the analysis of [31], is devoted to the well-posedness analysis of the continuous
problem (1.1). The basic idea consists in utilising the correspondence of solutions
(u, p,y) of the variational formulation of (1.1) with solutions (u,y) of a problem in
which the pressure does not appear. The main results of Section 3 are Theorems 3.1
and 3.2, stating the existence and uniqueness, respectively, of a variational solution
of (1.1) under appropriate assumptions. The H(div)-conforming method for (1.1) is
then introduced and analysed in Section 4, which is at the core of this paper. Specif-
ically, in Section 4.1 the method is formulated (based upon an appropriate choice of
the underlying discrete spaces), and in Section 4.2 discrete stability properties of the
bilinear and trilinear forms at discrete level are provided. These properties allow us
then, in Section 4.3, to establish existence of a discrete solution. This follows from the
main result of that section, Theorem 4.1, which is based on a fixed-point argument.
Finally, in Section 4.4 we conduct an a priori error analysis, and in particular establish
orders of convergence (in terms of the meshsize) of the discrete solution to the con-
tinuous one. In Section 5 we present results of three different numerical tests, namely
an accuracy test for a two-dimensional manufactured solution that confirms that the
experimentally observed orders of convergence are consistent with those predicted in
Section 4.4 (Example 1, Section 5.1), an illustration of the Soret and Dufour effects in
a two-dimensional porous cavity setup that validates the method against benchmark
data from literature (Example 2, Section 5.2), and simulations of a non-stationary
problem in a three-dimensional domain describing bioconvection of oxytactic bacteria
that evaluates the extension of the proposed methods to nonlinear cross-diffusion and
reaction terms in the diffusion-advection equations.

2. The model problem.

2.1. Preliminaries. Let Ω be an open and bounded domain in Rd, d = 2, 3 with
Lipschitz boundary Γ = ∂Ω. We denote by Lp(Ω) and W r,p(Ω) the usual Lebesgue
and Sobolev spaces with respective norms ‖·‖Lp(Ω) and ‖·‖W r,p(Ω). If p = 2 we write
Hr(Ω) in place of W r,p(Ω), and denote the corresponding norm by ‖·‖r,Ω, (‖·‖0,Ω for
H0(Ω) = L2(Ω)). For r ≥ 0, we write the Hr-seminorm as |·|r,Ω and we denote by
(·, ·)Ω the usual dot product in L2(Ω). Spaces of vector-valued functions are denoted
in bold face, i.e. Hr(Ω) = [Hr(Ω)]

D
, and we use the vector-valued Hilbert spaces

H(div; Ω) :=
{
w ∈ L2(Ω) : divw ∈ L2(Ω)

}
,

H0(div; Ω) :=
{
w ∈H(div; Ω) : w · n∂Ω = 0 on ∂Ω

}
,

H0(div0; Ω) :=
{
w ∈H0(div; Ω) : divw = 0 in Ω

}
,
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were n∂Ω denotes the outward normal on ∂Ω; and we endow these spaces with the
norm ‖w‖2div,Ω := ‖w‖20,Ω + ‖divw‖20,Ω.

2.2. Assumptions and weak form of the governing equations. We assume
the data regularity yD = (TD, SD) ∈ [H1/2(Γ)]2, and Lipschitz continuity and uniform
boundedness of the kinematic (temperature dependent) viscosity, i.e.,

(2.1)
∣∣ν(T1)− ν(T2)

∣∣ ≤ γν |T1 − T2| and ν1 ≤ ν(T ) ≤ ν2,

where γν , ν1, ν2 are positive constants. Moreover, we assume Lipschitz continuity of
the function F (y) defining the buoyancy term, i.e. there exist γF , CF > 0 such that

(2.2)
∣∣F (y1)− F (y2)

∣∣ ≤ γF |y1 − y2| and
∣∣F (y)

∣∣ ≤ CF |y|.

The permeability tensor K ∈ [C(Ω)]d×d is assumed symmetric and uniformly positive
definite, hence its inverse satisfies vTK−1(x)v ≥ α1|v|2 for all v ∈ RD and x ∈ Ω,
for a constant α1 > 0. We also require D to be positive definite, i.e., sTDs ≥ α2|s|2
for all s ∈ R2, for a constant α2 > 0.

The variational formulation of problem (1.1) is obtained by testing against suit-
able functions and integrating by parts, and can be formulated as follows:

Find (u, p,y) ∈H1
0(Ω)× L2

0(Ω)× [H1(Ω)]2 satisfying y = yD on Γ and

a(y;u,v) + c(u;u,v) + b(v, p) = d(y,v) for all v ∈H1
0(Ω),

b(u, q) = 0 for all q ∈ L2
0(Ω),

ay(y, s) + cy(u;y, s) = 0 for all s ∈ [H1
0 (Ω)]2,

(2.3)

where the bilinear and trilinear forms are defined as

a(s;u,v) := (K−1u,v)Ω +
(
ν(s)∇u,∇v

)
Ω
, c(w;u,v) :=

(
(w · ∇)u,v

)
Ω
,

b(v, q) := (q,div v)Ω, d(s,v) :=
(
F (s),v

)
Ω
,

ay(y, s) := (D∇y,∇s)Ω, cy(v;y, s) :=
(
(v · ∇)y, s

)
Ω

for all u,v,w ∈H1(Ω), q ∈ L2(Ω), and y, s ∈ [H1(Ω)]2, where ν(s) is understood as
the kinematic viscosity depending only on the first component of the vector s.

2.3. Stability properties. First, note that due to (2.1)-(2.2), the following
continuity properties hold for all u,v,∈H1(Ω), q ∈ L2(Ω), and y, s ∈ [H1(Ω)]2:∣∣a(·,u,v)

∣∣ ≤ max
{
ν2, ‖K−1‖∞

}(
‖∇u‖0,Ω‖∇v‖0,Ω + ‖u‖0,Ω‖v‖0,Ω

)
(2.4a)

≤ Ca‖u‖1,Ω‖v‖1,Ω,∣∣ay(y, s)
∣∣ ≤ Ĉa‖y‖1,Ω‖s‖1,Ω,(2.4b) ∣∣b(v, q)∣∣ ≤ ‖v‖1,Ω‖q‖0,Ω,(2.4c) ∣∣d(y,v)
∣∣ ≤ CF ‖y‖1,Ω‖v‖1,Ω.(2.4d)

In addition, and due to the Lipschitz continuity of ν (stated in (2.1)) and Hölder’s
inequality, the following property holds for all y1,y2 ∈ [H1(Ω)]2 and u ∈W 1,∞(Ω):∣∣a(y1;u,v)− a(y2;u,v)

∣∣ ≤ γν‖u‖W 1,∞(Ω)‖y1 − y2‖1,Ω‖v‖1,Ω.(2.5)

On the other hand, standard Sobolev embeddings indicate that for r ≥ 1 if d = 2
or r ∈ [1, 6] if d = 3, there exists C∗r > 0 depending only upon |Ω| and r such
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that ‖w‖Lr(Ω) ≤ C∗r ‖w‖1,Ω for all w ∈ H1(Ω). Then taking u,v,w ∈ H1(Ω) and
y, s ∈ [H1(Ω)]2, and applying this inequality along with Hölder’s inequality with
1
r + 1

r∗ = 1
2 , gives the following bounds∣∣c(w;u,v)

∣∣ ≤ C∗rC∗r∗‖w‖1,Ω‖u‖1,Ω‖v‖1,Ω = Cv‖w‖1,Ω‖u‖1,Ω‖v‖1,Ω,∣∣cy(w;y, s)
∣∣ ≤ C∗6‖w‖1,Ω‖y‖1,Ω‖s‖[L3(Ω)]2 = C̄v‖w‖1,Ω‖y‖1,Ω‖s‖[L3(Ω)]2 ,(2.6) ∣∣cy(w;y, s)
∣∣ ≤ C∗6C∗3‖w‖1,Ω‖y‖1,Ω‖s‖1,Ω = Ĉv‖w‖1,Ω‖y‖1,Ω‖s‖1,Ω.

Next, Poincaré’s inequality together with the properties stated in Section 2.2
implies that the bilinear forms a(·; ·, ·) (for a fixed temperature), and ay(·, ·) are
coercive, that is

a(·;v,v) ≥ min{ν1, α1}
(
‖∇v‖20,Ω + ‖v‖20,Ω

)
≥ αa‖v‖21,Ω for all v ∈H1

0(Ω),(2.7a)

ay(s, s) ≥ α2|s|21,Ω ≥ α̂a‖s‖
2
1,Ω for all s ∈ [H1

0 (Ω)]2.(2.7b)

Using the definition and characterisation of the kernel X of b(·, ·), namely

X :=
{
v ∈H1

0(Ω) : b(v, q) = 0 ∀q ∈ L2
0(Ω)

}
=
{
v ∈H1

0(Ω) : div v = 0 in Ω
}
,

and using integration by parts we can readily observe that

c(w;v,v) = 0 and cy(w; s, s) = 0 for all w ∈X,v ∈H1(Ω), s ∈ [H1(Ω)]2.(2.8)

Remark 1. Note that (2.7a) together with (2.8) implies the H1
0(Ω)-ellipticity of

the bilinear form a(y, ·, ·)+c(w, ·, ·) : H1
0(Ω)×H1

0(Ω)→ R for any given y ∈ [H1(Ω)]2

and w ∈X.

Moreover, the bilinear form b(·, ·) satisfies an inf-sup condition:

sup
v∈H1

0(Ω)\{0}

b(v, q)

‖v‖1,Ω
≥ β‖q‖0,Ω for all q ∈ L2

0(Ω)

(see [37] for this well-known property). Finally, for u ∈W 1,∞(Ω) and s ∈ [W 1,∞(Ω)]2

there exists an embedding constant C∞ > 0 such that

(2.9) ‖u‖1,Ω ≤ C∞‖u‖W 1,∞(Ω) and ‖s‖1,Ω ≤ C∞‖s‖[W 1,∞(Ω)]2 .

3. Well-posedness analysis of the continuous problem.

Lemma 3.1. If (u, p,y) ∈ H1
0(Ω) × L2

0(Ω) × [H1(Ω)]2 solves (2.3), then u ∈ X
is a solution of the following reduced problem:

Find (u,y) ∈X × [H1(Ω)]2 such that y|Γ = yD and

a(y;u,v) + c(u;u,v)− d(y,v) = 0 for all v ∈X,

ay(y, s) + cy(u;y, s) = 0 for all s ∈ [H1
0 (Ω)]2.

(3.1)

Conversely, if (u, p,y) ∈ X × L2
0(Ω) × [H1(Ω)]2 is a solution of (3.1), then there

exists a pressure p ∈ L2
0(Ω) such that (u, p,y) is a solution of (2.3).

In order to deal with the non-homogeneous Dirichlet data appearing in the thermal
energy and concentration equation, we utilise a lifting argument adapted from [31].
We write y as y = y0 + y1, where y0 ∈ [H1

0 (Ω)]2 and y1 is such that

(3.2) y1 ∈ [H1(Ω)]2 with y1|Γ = yD.
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Lemma 3.2. If sD ∈ [H1/2(Γ)]2, then for any ε > 0 and 1 ≤ r ≤ 6 if d = 3 or any
r ≥ 1 if d = 2, there exists an extension s1 ∈ [H1(Ω)]2 of sD with ‖s1‖[Lr(Ω)]2 ≤ ε.

Proof. See the scalar counterpart of this result in [27, Lemma 4.1].

Lemma 3.3. Let (u,y) be a solution to (3.1). Then there exist positive constants
C̃u, C̃y such that ‖u‖1,Ω ≤ C̃u‖y1‖1,Ω and ‖y0‖1,Ω ≤ C̃y‖y1‖1,Ω.

Proof. If one takes v = u and s = y0 in (3.1), then we can assert that

a(y0 + y1;u,u) + c(u;u,u)− d(y,u) = 0,

ay(y0 + y1,y0) + cy(u;y0 + y1,y0) = 0.

Using Remark 1, conditions (2.2), (2.4d), and Hölder’s inequality, yields the estimate

αa‖u‖21,Ω ≤ CF

(
‖y0‖1,Ω + ‖y1‖1,Ω

)
‖u‖1,Ω.(3.3)

Similarly as above, from (2.7b), (2.8), (2.4b) and (2.6) we can derive the relation

α̂a‖y0‖
2
1,Ω ≤ Ĉa‖y1‖1,Ω‖y0‖1,Ω + C̄v‖u‖1,Ω‖y1‖[L3(Ω)]2‖y0‖1,Ω.(3.4)

Then, substituting (3.4) back into (3.3), we obtain

‖u‖1,Ω ≤
CF

αa

(
Ĉa + α̂a
α̂a

‖y1‖1,Ω +
C̄v
α̂a
‖u‖1,Ω‖y1‖[L3(Ω)]2

)
,

which in turn implies that

‖u‖1,Ω

(
1− C̄v

α̂a
‖y1‖[L3(Ω)]2

)
≤ CF (Ĉa + α̂a)

αaα̂a
(‖y1‖1,Ω).

In view of Lemma 3.2, we may assume that C̄v

α̂a
‖y1‖[L3(Ω)]2 ≤ 1/2. Then we have

‖u‖1,Ω ≤
2CF (Ĉa + α̂a)

αaα̂a
‖y1‖1,Ω.(3.5)

Inserting (3.5) into (3.4), we are then left with

|y0|1,Ω ≤
Ca
α̂a
‖y1‖1,Ω +

2C̄vCF (Ĉa + α̂a)

αaα̂a
‖y1‖[L3(Ω)]2‖y1‖1,Ω

≤
(
Ca
α̂a

+
CF (Ĉa + α̂a)

αa

)
‖y1‖1,Ω.

Theorem 3.1. Assume that the conditions of Section 2.2 hold. Then there is
a lifting y1 ∈ [H1(Ω)]2 of yD ∈ [H1/2(Γ)]2 satisfying (3.2) and such that problem
(3.1) has a solution (u,y = y0 + y1) ∈ H1

0(Ω) × [H1(Ω)]2. Furthermore, there exist
constants Cu, Cy > 0 only depending on the stability constants of Section 2.3 such
that ‖u‖1,Ω ≤ Cu‖y1‖1,Ω and ‖y0‖1,Ω ≤ Cy‖y1‖1,Ω.

Proof. The result follows as an adequate modification of the proof in [27, Section
4], after applying Lemma 3.3 and Brouwer’s fixed-point theorem.

Theorem 3.2. Let (u,y) ∈
[
X ∩W 1,∞(Ω)

]
× [W 1,∞(Ω)]2 be a solution of the

reduced problem (3.1), and assume that

(3.6) max
{
‖u‖W 1,∞(Ω), ‖y‖[W 1,∞(Ω)]2 , γF

}
≤M

for a sufficiently small constant M > 0. Then such solution is unique.
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Proof. Let (u,y), (ũ, ỹ) be two solutions of problem (3.1), both satisfying as-
sumption (3.6). Subtracting the corresponding variational formulations, we have

a(y,u,v)− a(ỹ, ũ,v) + c(u,u,v)− c(ũ, ũ,v)−
(
d(y,v)− d(ỹ,v)

)
= 0,(3.7a)

ay(y, s)− ay(ỹ, s) + cy(u;y, s)− cy(ũ; ỹ, s) = 0(3.7b)

for all v ∈X, s ∈ [H1
0 (Ω)]2. One next notices that in (3.7) one can write

a(y,u,v)− a(ỹ, ũ,v) = a(y,u− ũ,v) + a(y, ũ,v)− a(ỹ, ũ,v),

c(u,u,v)− c(ũ, ũ,v) = c(u,u− ũ,v) + c(u, ũ,v)− c(ũ, ũ,v),

cy(u;y, s)− cy(ũ; ỹ, s) = cy(u;y − ỹ, s) + cy(u; ỹ, s)− cy(ũ; ỹ, s),

and then we can choose as test function v = u− ũ ∈X, and exploit (2.8) to obtain

a(y,u− ũ,u− ũ) +
(
a(y, ũ,u− ũ)− a(ỹ, ũ,u− ũ)

)
+
(
c(u; ũ,u− ũ)− c(ũ; ũ,u− ũ)

)
−
(
d(y,u− ũ)− d(ỹ,u− ũ)

)
= 0.

Applying the coercivity of the bilinear form a(·, ·) in (2.7), we readily get

αa‖u− ũ‖21,Ω ≤
∣∣a(y, ũ,u− ũ)− a(ỹ, ũ,u− ũ)

∣∣
+
∣∣c(u; ũ,u− ũ)− c(ũ; ũ,u− ũ)

∣∣
+
∣∣d(y,u− ũ)− d(ỹ,u− ũ)

∣∣.(3.8)

Analogously, we can take s = y − ỹ ∈ [H1
0 (Ω)]2 in (3.7b), and employ the coercivity

of the form ay(·, ·, ·) in (2.7), to eventually obtain

α̂a‖y − ỹ‖21,Ω ≤
∣∣cy(u− ũ; ỹ,y − ỹ)

∣∣.
On the other hand, from relation (2.5) and assumption (3.6) it follows that

|a(y, ũ,u− ũ)− a(ỹ, ũ,u− ũ)| ≤ γνM‖y − ỹ‖1,Ω‖u− ũ‖1,Ω,(3.9)

and hence replacing (3.9) in (3.8) and taking into account the continuity of the forms
c(·; ·, ·) (stated in (2.6)) and the Lipschitz condition (2.2), we arrive at the bound

αa‖u− ũ‖21,Ω ≤ γνM‖y − ỹ‖1,Ω‖u− ũ‖1,Ω + Cv‖ũ‖1,Ω‖u− ũ‖21,Ω
+ γF ‖u− ũ‖1,Ω‖y − ỹ‖1,Ω.

Proceeding in a similar manner, we can also derive the estimate

α̂a‖y − ỹ‖21,Ω ≤ Ĉv‖u− ũ‖1,Ω‖ỹ‖1,Ω‖y − ỹ‖1,Ω.

Now employing (2.9) in combination with Young’s inequality, we have

αa‖u− ũ‖21,Ω ≤M
(
γν
2

+ CvC∞ +
1

2

)
‖u− ũ‖21,Ω +

M

2
(γν + 1)‖y − ỹ‖21,Ω,

α̂a‖y − ỹ‖21,Ω ≤
1

2
C̄vC∞M

(
‖u− ũ‖21,Ω + ‖y − ỹ‖21,Ω

)
.

Adding these inequalities and defining C̃ := (1 + γν + C̄vC∞)/2, we get(
αa −M(CvC∞ + C̃)

)
‖u− ũ‖21,Ω + (α̂a −MC̃)‖y − ỹ‖21,Ω ≤ 0.

Thus, uniqueness holds as long as M < min{αa/(CvC∞ + C̃), α̂a/C̃}.
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4. Finite element discretisation.

4.1. Formulation of the H(div)-conforming method. Let us consider a
family of regular partitions, denoted Th, of Ω into simplices K (triangles in 2D or
tetrahedra in 3D) of diameter hK . The meshsize will be denoted by h, and for any
interior facet e in Eh (the set of faces in Th), we will label K− and K+ the elements
adjacent to it, while he will stand for the length of edge in 2D (or maximum diameter
of the facet in 3D). Supposing that v, w are, respectively, smooth vector and scalar
fields defined over Th. Then, by (v±, w±) we will denote the traces of (v, w) on e being
the extensions from the interiors of the elements K+ and K−, respectively. Let n±e
denote the outward unit normal vector to e on K± (hence, n+ = −n−). We define the
average {{·}} and jump J·K operators as {{v}} := (v− + v+)/2, {{w}} := (w− + w+)/2,
JvK := (v− ·n−e +v+ ·n+

e ) and JwK := (w−n−e +w+n+
e ), whereas for boundary jumps

and averages we adopt the convention that {{v}} = v, JvK = v · n∂Ω and {{w}} = w,
JwK = wn∂Ω. In addition, we denote by ∇h the broken gradient operator.

For k ∈ N0 and a mesh Th on Ω, let us consider the discrete spaces (see e.g. [9])

V h :=
{
vh ∈H0(div; Ω) : vh|K ∈ [Pk(K)]D ∀K ∈ Th

}
,

Qh :=
{
qh ∈ L2

0(Ω) : qh|K ∈ Pk−1(K) ∀K ∈ Th
}
,

Mh :=
{
sh ∈ [C(Ω̄)]2 : sh|K ∈ [Pk(K)]2 ∀K ∈ Th

}
, Mh,0 :=Mh ∩ [H1

0 (Ω)]2,

which in particular satisfy divV h ⊂ Qh (cf. [23]). Here Pk(K) denotes the local
space spanned by polynomials of degree up to k and V h is the space of divergence-
conforming BDM elements. Associated with these finite-dimensional spaces, we state
the following Galerkin formulation for problem (1.1):

Find (uh, ph,yh) ∈ V h ×Qh ×Mh such that yh|Γ = yD
h

and for all (vh, qh, sh) ∈ V h ×Qh ×Mh,0,

ah(yh;uh,vh) + ch(uh;uh,vh) + b(vh, ph) = d(yh,vh),

b(uh, qh) = 0, ay(yh, sh) + cy(uh;yh, sh) = 0.

(4.1)

Here yD
h := IΓ yD and IΓ is the nodal interpolation operator defined in Section

4.4, the discrete versions of the trilinear forms a(·; ·, ·) and c(·; ·, ·) are defined using a
symmetric interior penalty and an upwind approach, respectively (see e.g. [7, 11, 23]):

ah(sh;uh,vh)

:=

∫
Ω

(
K−1uh · vh + ν(sh)∇huh : ∇hvh

)
−
∑
e∈Eh

∫
e

(
{{ν(sh)∇huh}} : JvhK− {{ν(sh)∇hvh}} : JuhK +

a0

he
ν(sh)JuhK : JvhK

)
,

ch(wh;uh,vh) :=

∫
Ω

(wh · ∇uh) · vh +
∑
K∈Th

∫
∂K\Γ

ŵup
h (uh) · vh,

where the fluxes are defined as ŵup
h (uh) := |{{wh}} · nK |(ueh − uh), and ueh is the

trace of u taken from within the exterior of K. As in the continuous case, we define
the discrete kernel of the bilinear form b(·, ·) as

Xh :=
{
vh ∈ V h : b(vh, qh) = 0 ∀qh ∈ Qh

}
=
{
vh ∈ V h : div vh = 0 in Ω

}
.
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4.2. Discrete stability properties. For sake of the subsequent analysis, we
introduce the following, parameter and mesh dependent broken norms

‖v‖2∗,Th :=
∑
K∈Th

‖∇v‖20,K +
∑
e∈Eh

1

he
‖JvK‖20,e,

‖v‖21,Th := σ‖v‖20,Ω + ν2‖v‖2∗,Th for all v ∈H1(Th),

‖v‖22,Th := ‖v‖21,Th +
∑
K∈Th

h2
K |v|

2
2,K for all v ∈H2(Th),

where σ = ‖K−1‖∞,Ω and ν2 is defined in (2.1). We also recall the broken version of
the well-known Sobolev embedding result (see e.g. [17, Lemma 6.2], [22, Prop. 4.5]
or [16, Th. 5.3]): for any r > 1 if d = 2 or 1 ≤ r ≤ 6, if d = 3 there exists a constant
Cemb > 0 such that

‖v‖Lr(Ω) ≤ Cemb‖v‖1,Th for all v ∈H1(Th).(4.2)

Moreover, we will use the broken space

C1(Th) :=
{
u ∈H1(Th) : u|K ∈ C1(K̄),K ∈ Th

}
,

equipped with an appropriate norm ‖u‖W 1,∞(Th) := maxK∈Th‖u‖W 1,∞(K). Finally,
we will also use an augmented H1-norm defined as

‖s‖1,Eh := ‖s‖21,Ω +
∑
e∈Eh

1

he
‖s‖20,e for all s ∈ [H1(Ω)]2.

Using these norms, and the local trace inequalities

‖v‖0,∂K ≤ C(h
−1/2
K ‖v‖0,K + h

1/2
K |v|1,K) for all v ∈H1(K),

‖p‖0,∂K ≤ Ch
−1/2
K ‖p‖0,K for all p ∈ Pk(K),

we can establish continuity of the trilinear and bilinear forms involved, stated in the
following lemma that can be proved following [31, Section 3.3.2] and [7, Section 4]:

Lemma 4.1. The following properties hold∣∣ah(·,u,v)
∣∣ ≤ C‖u‖2,Th‖v‖1,Th for all u ∈H2(Th), v ∈ V h,(4.3a) ∣∣ah(·,u,v)
∣∣ ≤ C̃a‖u‖1,Th‖v‖1,Th for all u,v ∈ V h,(4.3b) ∣∣b(v, q)∣∣ ≤ ‖v‖1,Th‖q‖0,Ω for all v ∈H1(Th), q ∈ L2

0(Ω),(4.3c)

and for all u,v,w ∈H1(Th) and s,y ∈ [H1(Ω)]2,∣∣d(y,v)
∣∣ ≤ CF ‖y‖1,Ω‖v‖1,Th ,(4.4a) ∣∣cy(w;y, s)
∣∣ ≤ C̃1‖w‖1,Th‖s‖1,Ω‖y‖1,Ω,(4.4b) ∣∣cy(w;y, s)
∣∣ ≤ C̃2‖w‖1,Th‖y‖[L3(Ω)]2‖∇s‖0,Ω,(4.4c) ∣∣ch(w;u,v)
∣∣ ≤ C̃v‖w‖1,Th‖u‖1,Th‖v‖1,Th .(4.4d)

Moreover, for s1, s2 ∈ [H1(Ω)]2, u ∈ C1(Th) and v ∈ V h, there holds

(4.5)
∣∣ah(s1;u,v)− ah(s2;u,v)

∣∣ ≤ C̃Lipγν‖s1 − s2‖1,Eh‖u‖W 1,∞(Th)‖v‖1,Th ,
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where the constant C̃Lip > 0 is independent of h (cf. [31, Lemma 3.3]). A related
result follows for ch(·; ·, ·) as in [31, Lemma 3.4]. Let w1,w2,u ∈H2(Th) and v ∈ Vh.
Then there exists C̃3 > 0 independently of h such that

(4.6)
∣∣ch(w1;u,v)− ch(w2;u,v)

∣∣ ≤ C̃3‖w1 −w2‖1,Th‖u‖1,Th‖v‖1,Th .

While the coercivity of the form ay(·, ·) in the discrete setting is readily implied
by (2.7), there also holds (cf. [23, Lemma 3.2])

(4.7) ah(·,v,v) ≥ α̃a‖v‖21,Th for all v ∈ V h,

provided that a0 > 0 is sufficiently large and independent of the meshsize.
Let w ∈H0(div0; Ω), then, according to [31] we can write

(4.8) ch(w;u,u) =
1

2

∑
e∈Eih

∫
e

|w · ne||JvK|2 ≥ 0 for all u ∈ V h,

as well as the following relation

(4.9) cy(w; sh, sh) = 0 for all sh ∈Mh,

which arises from integration by parts and holds at the discrete level since the pro-
duced discrete velocities are exactly divergence free. Finally, we recall from [23] the
following discrete inf-sup condition for b(·, ·), where β̃ is independent of h:

sup
vh∈V h\{0}

b(vh, qh)

‖vh‖1,Th
≥ β̃‖qh‖0,Ω for all qh ∈ Qh.(4.10)

4.3. Existence of discrete solutions. Due to the discrete stability properties
stated in the previous section, a discrete analogue of Lemma 3.1 holds.

Lemma 4.2. If (uh, ph,yh) ∈ V h×Qh×Mh is a solution of (4.1), then uh ∈Xh,
and (uh,yh) is a solution of the discrete reduced problem

ah(yh;uh,v) + ch(uh;uh,v)− d(yh,v) = 0,

ay(yh, s) + cy(uh;yh, s) = 0 for all (v, s) ∈Xh ×Mh,0.
(4.11)

Conversely, if (uh,yh) ∈Xh×Mh,0 is a solution of (4.11), then there exists a unique
pressure ph ∈ Qh such that (uh, ph,yh) is a solution to (4.1).

As in the continuous case, we also perform a boundary lifting of yh by setting
yh = yh,0 + yh,1 with yh,0 ∈Mh,0, and

yh,1 ∈Mh, yh,1|Γ = yD
h .(4.12)

Lemma 4.3. Let (uh,yh) be a solution of (4.11) with yh = yh,0 + yh,1 as in
(4.12). Assume that

(4.13) Cdep‖yh,1‖[L3(Ω)]2 ≤
1

2
, where Cdep =

C̃F C̃2

α̃aα̂a
.

Then there exist constants C̃u, C̃y > 0 only depending on the stability constants from
Section 4.2, such that

(4.14) ‖u‖1,Th ≤ C̃u‖yh,1‖1,Ω and ‖yh‖1,Ω ≤ C̃y‖yh,1‖1,Ω.
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Proof. We choose (v, s) = (uh,yh,0) in (4.11) and use (4.8)-(4.9) to obtain

ah(yh;uh,uh) = d(yh,uh), ay(yh,0,yh,0) + ay(yh,1,yh,0) = −cy(uh;yh,1,yh,0).

Invoking the coercivity of the forms ah(·; ·, ·) and ay(·, ·) in (4.7), (2.7b) and the
boundedness of cy(·; ·, ·), d(·, ·) stated in (4.4c), (4.4a), we have

α̃a‖uh‖1,Th ≤ C̃F

(
‖yh,0‖1,Ω + ‖yh,1‖1,Ω

)
,(4.15a)

α̂a‖yh,0‖1,Ω ≤ Ĉa‖yh,1‖1,Ω + C̃2‖yh,1‖[L3(Ω)]2‖u‖1,Th .(4.15b)

Substituting equation (4.15b) into (4.15a) then leads to

α̃a‖uh‖1,Th ≤ C̃F

(
‖yh,1‖1,Ω +

Ĉa
α̂a
‖yh,1‖1,Ω +

C̃2

α̂a
‖yh,1‖[L3(Ω)]2‖u‖1,Th

)
,

‖uh‖1,Th ≤ Cdep‖yh,1‖[L3(Ω)]2 +
CF

α̃a

(
1 +

Ĉa
α̂a

)
‖yh,1‖1,Ω ≤ C̃u‖yh,1‖1,Ω,

where C̃u = 2CF

α̃a
(1 + Ĉa

α̂a
). Finally, the definition of the discrete liftings and an appli-

cation of triangle inequality implies that

‖yh‖1,Ω ≤
Ĉa
α̂a
‖yh,1‖1,Ω +

C̃2

α̂a
‖yh,1‖[L3(Ω)]2‖uh‖1,Th + ‖yh,1‖1,Ω

≤ Ĉa + α̂a
α̂a

‖yh,1‖1,Ω +
C̃2

α̂a
‖yh,1‖[L3(Ω)]22CF

Ĉa + α̂a
α̃aα̂a

‖yh,1‖1,Ω

≤ 2
Ĉa + α̂a
α̂a

‖yh,1‖1,Ω ≤ C̃y‖yh,1‖1,Ω.

Theorem 4.1. Let yh,1 be a discrete lifting satisfying (4.13). Then there exists a
discrete solution (uh,yh) ∈Xh ×Mh to (4.11) satisfying the stability bound (4.14).

Proof. We shall make use of Brouwer’s fixed-point theorem in the following form:
Let K 6= ∅ be a convex subset of a finite dimensional normed space, and let L : K → K
be a continuous mapping. Then L has at least one fixed point in K. Let us then start
by defining the following finite-dimensional set, where C̃u is the constant from (4.14):

K1 =
{
wh ∈Xh : ‖wh‖1,Th ≤ C̃u‖yh,1‖1,Ω

}
,

Note that K1 is convex and compact. Next we define the mapping T : K1 → K1,
wh 7→ T (wh) = uh, where uh is the first component of the solution of the following
linearised version of problem (4.11):

Find (uh,yh) ∈Xh ×Mh such that for all (v, s) ∈Xh ×Mh,0:

ah(yh;uh,v) + ch(wh;uh,v)− d(yh,v) = 0,

ay(yh,0, s) + cy(wh;yh,0, s) = −ay(yh,1, s)− cy(wh;yh,1, s).

(4.16)

Clearly, we have the equivalence

T (uh) = uh ⇐⇒ (uh,yh) ∈Xh ×Mh satisfies (4.11),

and owing to Lemma 4.2, we also get

T (uh) = uh ⇐⇒ (uh,yh, ph) ∈ V h ×Mh ×Qh satisfies (4.1).
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In order to prove that the discrete fixed-point operator T is well-defined, we define
the following sets, where C̃u and C̃y are the constants from (4.14):

K :=
{

(wh,ϕh) ∈Xh ×Mh : ‖wh‖1,Th ≤ C̃u‖yh,1‖1,Ω, ‖ϕh‖1,Ω ≤ C̃y‖yh,1‖1,Ω
}
,

K2 :=
{
ϕh ∈Mh : ‖ϕh‖1,Ω ≤ C̃y‖yh,1‖1,Ω

}
,

and introduce the discrete operator R : K → K1, (wh,ϕh) 7→ R((wh,ϕh)) = uh,
where uh is the unique solution to the problem

Find uh ∈Xh such that for all v ∈Xh,

ah(ϕh;uh,v) + ch(wh;uh,v)− d(ϕh,v) = 0.
(4.17)

and similarly define the discrete map S : K1 → K2, wh 7→ S(wh) = yh, where
yh ∈Mh is the unique solution of the problem

Find yh ∈Mh such that for all s ∈Mh,0,

ay(yh,0, s) + cy(wh;yh,0, s) = −ay(yh,1, s)− cy(wh;yh,1).
(4.18)

Clearly, T can be rewritten as T (wh) = R(wh,S(wh)), so to prove its well-definite-
ness, it suffices to show that R and S are well-defined. We begin with operator R.
Since for any wh ∈Xh and ϕh ∈ [H1(Ω)]2 the bilinear form ah(ϕh; ·, ·) + ch(wh, ·, ·)
is V h-elliptic (thanks to (4.7) and (4.8)), existence and uniqueness follow from the
Lax-Milgram lemma. Moreover, selecting v = uh in (4.17), we can appeal to the
coercivity of ah(·; ·, ·), the positivity of ch(·; ·, ·) (4.8), condition (4.13), the bound for
d(·, ·) stated in (4.4a), and the bounds within the definition of K to deduce that

‖uh‖21,Th ≤
CF

α̃a
‖ϕh‖1,Ω‖uh‖1,Th ,

‖uh‖1,Th ≤
CF C̃y

α̃a
‖yh,1‖1,Ω ≤ 2CF

α̃a + Ĉa
α̃aα̂a

‖yh,1‖1,Ω ≤ C̃u‖yh,1‖1,Ω,

which implies that uh ∈ K1.
Analogously, for S we note that thanks to (2.7b) and (4.9), the bilinear form

ay(·, ·) + ch(wh, ·, ·) is Mh,0-elliptic, hence for a fixed discrete lifting yh,1, the homo-
geneous counterpart to the linear problem (4.18) has a unique solution. Proceeding
as done above for (4.16), we use once more the coercivity of ay(·, ·) (2.4b), (4.9),
condition (4.13), the bound (4.4c) for cy(·; ·, ·), and the definition of K1 to find that

‖yh,0‖
2
1,Ω ≤

C̃a
α̂a
‖yh,1‖1,Ω‖yh,0‖1,Ω +

C̃2

α̂a
‖yh,1‖[L3(Ω)]2‖wh‖1,Th‖yh,0‖1,0,

‖yh,0‖1,Ω ≤
Ĉa
α̂a
‖yh,1‖1,Ω +

C̃2

α̂a
‖yh,1‖[L3(Ω)]22CF

α̃a + Ĉa
α̃aα̂a

‖yh,1‖1,Ω

≤ 2
α̂a + Ĉa
α̂a

‖yh,1‖1,Ω.

We then employ triangle inequality to obtain

‖yh‖1,Ω ≤ 2
α̂a + Ĉa
α̂a

‖yh,1‖1,Ω + ‖yh,1‖1,Ω ≤ C̃y‖yh,1‖1,Ω,

hence establishing that yh ∈ K2.
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In order to apply Brouwer’s theorem, it remains to show that R and S are
continuous operators. Let us assume we are given (w,ϕ) ∈ K and a sequence
{(wl,ϕl)}l∈N ⊂ K such that ‖wl −w‖1,Th → 0 and ‖ϕl −ϕ‖1,Ω → 0 as l→∞.

From the definition of R (cf. (4.17)) the following relations can be derived:

ah(ϕl;ul,v) + ch(wl;ul,v)− d(ϕl,v) = 0,

ah(ϕ;u,v) + ch(w;u,v)− d(ϕ,v) = 0 for all v ∈Xh.

Subtracting these two systems from each other and rearranging terms yields

ah(ϕl;u− ul,v) + ch(wl;u− ul,v) = − ah(ϕ;u,v) + ah(ϕl;u,v)− ch(w;u,v)

+ ch(wl;u,v) + d(ϕl,v)− d(ϕ,v)

for all v ∈ Xh. We can take in particular v = u − ul, and exploit the coercivity of
ah(·; ·, ·), the fact that ch(·,u−ul,u−ul) > 0, the boundedness of ch(·; ·, ·) (4.4d) in
combination with the bounds for d(·, ·), as well as property (4.5), to eventually get

‖u− ul‖1,Th ≤
1

α̃a

(
C̃Lipγν‖ϕ−ϕl‖1,Eh‖u‖W 1,∞(Th)

+ C̃v‖w −wl‖1,Th‖u‖1,Th + γF ‖ϕ−ϕl‖1,Ω
)

≤ C
(
‖ϕ−ϕl‖1,Eh‖u‖W 1,∞(Th) + ‖w −wl‖1,Th‖u‖1,Th + ‖ϕ−ϕl‖1,Ω

)
,

and hence ‖u− ul‖1,Th → 0 as l→∞.
Next we consider the definition of S (4.18) and again we consider the relations

ay(yl, s) + cy(wl;yl, s) = 0, ay(y, s) + cy(w;y, s) = 0 for all s ∈Mh,0.

Subtracting the second system from the first leads to

ay(yl − y, s) + cy(wl;y − yl, s) = −cy(w;y, s)− cy(wl;y, s).

Now we take s = y − yl ∈ Mh,0 and immediately note that cy(wl;y − yl,y −
yl) = 0, thanks to (4.9). Using the coercivity of ay(·; ·, ·) in (2.4b) together with the
boundedness of cy(·; ·, ·), we have

‖y − yl‖
2
1,Ω ≤

C̃2

α̂a
‖w −wl‖1,Th‖y‖1,Ω‖y − yl‖1,Ω,

hence ‖y − yl‖1,Ω ≤ C‖w −wl‖1,Th‖y‖1,Ω and thus ‖y − yl‖1,Ω → 0 as l→∞.

4.4. A priori error analysis. Let us denote by Ih : [C(Ω̄)]2 → [Mh]2 the
classical nodal interpolation operator with respect to a unisolvent set of Lagrangian
interpolation nodes associated to the conforming spaceMh and by IΓ the restriction
of Ih to the boundary nodes. By ΠBDM

h u we denote the BDM projection of u, and
Πh p is the L2−projection of p onto Qh. Under adequate regularity assumptions, the
following approximation properties hold (see [10, 23]):

‖u−ΠBDM
h u‖2,Th ≤ C(

√
σhk+1 +

√
ν2h

k)‖u‖k+1,Ω,

‖y − Ih y‖1,Ω ≤ Ch
k‖y‖k+1,Ω, ‖p−Πh p‖0,Ω ≤ Ch

k‖p‖k,Ω.
(4.19)

The following preliminary trace result can be proven as in [31, Lemma 4.3].
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Lemma 4.4. Assume that yD ∈ [C(Γ̄)]2 and yD
h = IΓy

D. Then there is a lifting
yh,1 ∈Mh such that yh,1|Γ = yD

h and

‖yh,1‖1,Ω ≤ Clift‖yD
h ‖1/2,Γ,(4.20)

where the constant Clift > 0 is independent of the meshsize.

Remark 2. If one assumes that CdepCembClift‖yD
h ‖1/2,Γ ≤ 1/2 with CLip, Cemb,

and Cdep defined by (4.20), (4.2), and (4.13), respectively; then, by Theorem 3.1, there
exists a solution (uh,yh) to (3.1) with yh = yh,0 +yh,1 satisfying the stability bounds

‖uh‖1,Th ≤ C̃uClift‖yD
h ‖1/2,Γ and ‖yh‖1,Th ≤ C̃yClift‖yD

h ‖1/2,Γ.(4.21)

If we assume additional regularity of the exact solution y ∈ [H2(Ω)]2, then ‖yD
h ‖1/2,Γ

is bounded independently of h (cf. [31, Lemma 4.7 and Remarks 4.8 and 4.9]).

Theorem 4.2. Let us consider liftings satisfying (4.12), and let us assume the
data are sufficiently small (4.13). Let also (u, p,y), (uh, ph,yh) be the solutions of
(2.3) and (4.1), respectively. Assume the condition

max{‖u‖W 1,∞(Ω), ‖y‖[W 1,∞(Ω)]2 , γF } ≤ min(M,M̃),(4.22)

with M sufficiently small as specified in (3.6), and M̃ is bounded by the data of the
problem in a way that will be made explicit in the proof. Furthermore, suppose that
for k = 1, u ∈ C1(Ω̄)∩H2(Ω)∩X, p ∈ H1(Ω), and y ∈ [W 1,∞(Ω)]2∩ [H2(Ω)]2, and
that for k ≥ 2 there holds u ∈Hk+1(Ω)∩X, p ∈ Hk(Ω), and y ∈ [Hk+1(Ω)]2. Then
there exist constants C > 0 independent of the meshsize such that

‖u− uh‖2,Th + ‖y − yh‖1,Ω ≤ Ch
k
(
‖u‖k+1,Ω + ‖y‖k+1,Ω

)
,(4.23)

‖p− ph‖0,Ω ≤ Ch
k
(
‖p‖k,Ω + ‖u‖k+1,Ω + ‖y‖k+1,Ω

)
.(4.24)

Proof. An application of integration by parts together with the assumed velocity
regularity readily implies that the exact solution (u, p,y) satisfies:

(4.25) ah(y;u,vh) + ch(u;u,vh)− b(vh, p)− d(y,vh) = 0 for all vh ∈ V h

(see for example [23, Lemma 3.1]). We then write a discrete analogue of (4.25) and
subtract the result, leading to the following Galerkin orthogonality

ah(y;u,vh)− ah(yh;uh,vh) + ch(u;u,vh)− ch(uh;uh,vh)

−b(vh, p− ph)− d(y − yh,vh) = 0.
(4.26)

In addition, it is not difficult to verify that

b(u− uh, qh) = 0, ay(y − yh,ϕh) + cy(u,y,ϕh)− cy(uh,yh,ϕh) = 0(4.27)

for all (qh,ϕh) ∈ Qh ×Mh,0. Let us define the errors

eu := (u−ΠBDM
h u) + (ΠBDM

h u− uh) = êu + ẽu,

ep := (p−Πh p) + (Πh p− ph) = êp + ẽp,

ey := (y − Ih y) + (Ih y − yh) = êy + ẽy,
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so after testing (4.26) against vh = ẽu and rearranging terms we end up with

ah(yh, ẽu, ẽu) + ch(uh, ẽu, ẽu) = I0 + I1 + I2, where

I0 := d(y, ẽu)− d(yh, ẽu),

I1 := [ah(yh,u, ẽu)− ah(Ih y;u, ẽu)]

+ [ah(Ih y;u, ẽu)− ah(y;u, ẽu)]− ah(yh; êu, ẽu),

I2 := [ch(uh;u, ẽu)− ch(ΠBDM
h u;u, ẽu)]

+ [ch(ΠBDM
h u;u, ẽu)− ch(u;u, ẽu)]− ch(uh; êu, ẽu).

(4.28)

The rest of the proof will be devoted to finding appropriate bounds for these
terms. Starting with I0, we combine (2.2) and the triangular inequality to get

I0 ≤ γF ‖y − yh‖1,Ω‖ẽu‖1,Th ≤ γF
(
‖ẽy‖1,Ω + ‖êy‖1,Ω

)
‖ẽu‖1,Th .

Next, from (4.5), the continuity of ah, and the small data assumption in (4.22) we get

I1 ≤ C̃LipγνM̃
(
‖ẽy‖1,Ω‖ẽu‖1,Th + ‖êy‖1,Ω‖ẽu‖1,Th

)
+ C̃a‖êu‖1,Th‖ẽu‖1,Th .

Moreover, from (4.6), (4.4d), (2.9), (4.21), and again assumption (4.22), we obtain

I2 ≤ C̃3‖ẽu‖21,Th‖u‖1,Ω + C̃3‖êu‖1,Th‖u‖1,Th‖ẽu‖1,Th + C̃v‖uh‖1,Th‖êu‖1,Th‖ẽu‖1,Th
≤ C̃3C∞M̃

(
‖ẽu‖21,Th + ‖êu‖1,Th‖ẽu‖1,Th

)
+ C̃vC̃uClift‖yD

h ‖1/2,Γ‖êu‖1,Th‖ẽu‖1,Th .

Inserting the bounds on I0, I1 and I2 into (4.28), also using the coercivity of the
left-hand, thanks to (4.7)-(4.8); and applying Young’s inequality we arrive at

α̃a‖ẽu‖21,Th ≤
(
(1 + CLip)M̃‖êy‖1,Ω + (C̃a + C̃vC̃u‖yD

h ‖H1/2(Γ)

)
‖êu‖1,Th)‖ẽu‖1,Th

+

(
M̃

(
1 + C̃Lipγν

2
+ C̃3C∞

))
‖ẽu‖21,Th +

1 + C̃Lipγν
2

M̃‖ẽy‖21,Th .(4.29)

We handle (4.27) in a similar way and take ϕh = ẽy as test function. This leads to

ay(ẽy, ẽy) + cy(yh;yh, ẽy) = −ay(êy, ẽy)− cy(ẽu;y, ẽy)

− cy(êu;y, ẽy)− cy(uh; êy, ẽy).

In addition, on the left-hand side we use the coercivity of ay, properties (2.8), (4.4b),
(4.21), the embedding (2.9), as well as assumption (4.22) to get

α̂a‖ẽy‖21,Ω ≤ Ĉa‖êy‖1,Ω‖ẽy‖1,Ω + C̃1C∞M̃
(
‖ẽu‖1,Th‖ẽy‖1,Ω + ‖êu‖1,Th‖ẽy‖1,Ω

)
+ C̃1C̃vClift‖yD

h ‖1/2,Γ‖êy‖1,Ω‖ẽy‖1,Ω,

and after applying Young’s inequality and regrouping terms, we have

α̂a‖ẽy‖21,Ω ≤
(
(Ĉa + C̃1C̃uClift‖yD

h ‖1/2,Γ)‖êy‖1,Ω + C̃1C∞M̃‖êu‖1,Th
)
‖ẽy‖1,Ω

+
1

2
C̃1C∞M̃

(
‖ẽu‖21,Th + ‖ẽy‖21,Ω

)
.(4.30)

Adding (4.29) and (4.30) and defining Č := (1 + C̃Lipγν + C̃1C∞)/2 we obtain(
α̃a − M̃(Č + C̃3C∞)

)
‖ẽu‖21,Th + (α̂a − M̃Č)‖ẽy‖21,Ω
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≤ C
(
‖êy‖1,Ω + ‖êu‖1,Th

)(
‖ẽu‖1,Th + ‖ẽy‖1,Th

)
.

Hence, if we choose M̃ such that M̃ < min{α̃a/(Č + C̃3C∞), α̂a/Č} (note that this
constant depends only on the data of the problem), then we readily obtain ‖ẽu‖1,Th +
‖ẽy‖1,Ω ≤ C(‖êy‖1,Ω + ‖êu‖1,Th). Using now the approximation properties in (4.19),
we straightforwardly get (4.23).

For the pressure estimate we consider the discrete inf-sup condition (4.10) as well
as (4.3c). It follows that

‖ẽp‖0,Ω ≤
1

β̃
sup

vh∈V h\{0}

b(vh, ẽp)

‖vh‖1,Th
≤ 1

β̃
sup

vh∈V h\{0}

b(vh, ep)

‖vh‖1,Th
+

1

β̃
sup

vh∈V h\{0}

b(vh, êp)

‖vh‖1,Th

≤ 1

β̃
sup

vh∈V h\{0}

b(vh, ep)

‖vh‖1,Th
+

1

β̃
‖êp‖0,Ω.(4.31)

Now for any vh ∈ V h, (4.26) implies the bound b(vh, ep) ≤ I3 + I4 + I5, where

I3 =
∣∣d(y,vh)− d(yh,vh)

∣∣,
I4 =

∣∣ah(y;u,vh)− ah(yh;u,vh)
∣∣+
∣∣ah(yh, eu,vh)

∣∣,
I5 =

∣∣ch(u;u,vh)− ch(uh;u,vh)
∣∣+
∣∣ch(uh; eu,vh)

∣∣.
Hence we can use property (2.2) to deduce that I3 ≤ γF ‖ey‖1,Ω‖vh‖1,Th . From (4.5),
(4.3a), and assumption (4.22), it then follows that

I4 ≤ C̃Lipγν‖ey‖1,Ω‖u‖W 1,∞(Ω)‖vh‖1,Th + C‖eu‖2,Th‖vh‖1,Th ,

≤ C̃LipγνM̃‖ey‖1,Ω‖vh‖1,Th + C‖eu‖2,Th‖vh‖1,Th .

Now we use (4.6), (2.9), (4.21) and the bound in (4.4d) to get

I5 ≤ C̃3‖uh‖1,Th‖eu‖1,Th‖vh‖1,Th + C̃v‖u‖1,Th‖eu‖1,Th‖vh‖1,Th
≤ C̃3C∞M̃‖eu‖2,Th‖vh‖1,Th + C̃vC̃uClift‖yD

h ‖H1/2(Γ)‖eu‖2,Th‖vh‖1,Th .

The estimates for I3, I4 and I5 therefore yield∣∣b(vh, ep)∣∣ ≤ C(‖ey‖1,Ω + ‖eu‖2,Th
)
‖vh‖1,Th .(4.32)

Hence (4.24) follows by replacing (4.32) in (4.31) and using the approximation prop-
erties (4.19).

5. Numerical tests. The following set of examples provides numerical confir-
mation of the convergence rates anticipated in Theorem 4.2. We further validate the
proposed method by comparing our produced results against benchmark solutions
found in the literature, and we present one test oriented to applications inherent to
doubly-diffusive flows in porous media. The linearisation of the system of equations
associated with the assembled form of (4.1) is carried out by Newton’s method, setting
a relative tolerance of 1E-8 on the residuals. In turn, the solution of the resulting lin-
ear systems present at each Newton step is conducted using the bi-conjugate gradient
stabilised Krylov solver (BiCGStab). In the implementation of the method, the nor-
mal component of the velocity is fixed in the form of an essential boundary condition,
whereas its tangential component is incorporated as a natural boundary condition
and imposed à la Nitsche (see e.g. [20]). Moreover, the condition of zero mean value
for the pressure approximation is implemented using a real Lagrange multiplier. All
tests were implemented using the open-source finite element library FEniCS [3].
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k DoF eu rate ep rate eT rate eS rate ‖divuh‖∞,Ω

1 195 0.6798 – 1.5670 – 0.3498 – 0.2721 – 1.33E-15
707 0.3779 0.847 1.1370 0.563 0.1975 0.824 0.1385 0.974 4.88E-15

2691 0.1873 1.012 0.6614 0.787 0.1019 0.954 0.0696 0.992 9.77E-15
10499 0.0923 1.021 0.3485 0.925 0.0513 0.988 0.0348 0.998 2.13E-14
41475 0.0459 1.007 0.1771 0.977 0.0257 0.997 0.0174 0.999 4.62E-14

2 523 0.3258 1.657 1.7741 1.243 0.1221 1.101 0.0338 1.767 9.03E-14
1971 0.0847 1.943 0.6826 1.378 0.0326 1.905 0.0089 1.928 2.23E-13
7651 0.0179 2.237 0.2159 1.661 0.0083 1.968 0.0023 1.979 4.82E-13

30147 0.0038 2.238 0.0587 1.877 0.0021 1.991 0.0006 1.994 9.96E-13
119683 0.0008 2.108 0.0151 1.964 0.0005 1.998 0.0001 1.998 2.01E-12

Table 5.1
Example 1 (accuracy test): experimental errors and convergence rates for the approximate

solutions uh, ph, Th and Sh; and `∞-norm of the vector formed by the divergence of the discrete
velocity computed for each discretisation. Values are displayed for the first and second order schemes
for a flow regime with ν2 = σ = 1.

k DoF eu rate ep rate eT rate eS rate ‖divuh‖∞,Ω

1 195 2.1490 – 14.352 – 0.3498 – 0.2721 – 1.55E-15
707 1.2041 0.835 10.710 0.429 0.1975 0.824 0.1385 0.974 4.00E-15

2691 0.5958 1.015 6.3981 0.749 0.1019 0.954 0.0696 0.992 8.88E-15
10499 0.2925 1.026 3.4170 0.904 0.0513 0.988 0.0348 0.998 2.31E-14
41475 0.1453 1.010 1.7461 0.968 0.0257 0.997 0.0174 1.000 4.26E-14

2 523 1.0380 1.652 17.152 1.119 0.1221 1.101 0.0338 1.767 9.24E-14
1971 0.2688 1.949 6.7861 1.338 0.0326 1.905 0.0089 1.928 2.29E-13
7651 0.0568 2.241 2.1562 1.654 0.0083 1.968 0.0023 1.979 4.87E-13

30147 0.0121 2.239 0.5875 1.876 0.0021 1.991 0.0006 1.994 1.01E-12
119683 0.0028 2.108 0.1507 1.963 0.0005 1.998 0.0001 1.998 2.00E-12

Table 5.2
Example 1 (accuracy test): errors and convergence rates under a Stokes regime with ν2 =

10, σ = 0.

5.1. Example 1: accuracy test. In our first computational test we examine
the convergence of the Galerkin method (4.1), taking as computational domain the
square Ω = (−1, 1)2, and considering a sequence of uniformly refined meshes {Th,l}l
of mesh size hl = 2−l

√
2. We take a buoyancy term of the form F (y) = (T +NrS)g,

where Nr is the solutal to thermal buoyancy ratio; an choose an exponential form for
the viscosity ν(T ) = ν2 exp(−T ), g = (0, 1)T , K−1 = σI, D = 1000I, a0 =

√
σ10k.

Following the approach of manufactured solutions, we prescribe boundary data and
additional external forces and adequate source terms so that the closed-form solutions
to (1.1) are given by the smooth functions

u(x, y) =
(
sin(πx) cos(πy),− cos(πx) sin(πy)

)T
, p(x, y) = cos(πx) exp(y),

T (x, y) = 0.5 + 0.5 cos(xy), S(x, y) = 0.1 + 0.3 exp(xy).

Relative errors in their natural norms, along with the corresponding convergence
rates computed as

eu = ‖u− uh‖1,Th/‖u‖1,Th , ep = ‖p− ph‖0,Ω/‖p‖0,Ω, eT = ‖T − Th‖1,Ω/‖T‖1,Ω,

eS = ‖S − Sh‖1,Ω/‖S‖1,Ω, rate = log(e(·)/ẽ(·))[log(h/h̃)]−1,
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k DoF eu rate ep rate eT rate eS rate ‖divuh‖∞,Ω

1 195 5.3102 – 287.42 – 0.3498 – 0.2721 – 1.78E-15
707 1.6182 1.715 148.01 0.958 0.1975 0.825 0.1385 0.974 4.44E-15

2691 0.4303 1.911 72.992 1.021 0.1019 0.954 0.0696 0.993 1.07E-14
10499 0.1324 1.701 36.721 0.991 0.0514 0.988 0.0348 0.998 2.13E-14
41475 0.0516 1.359 18.472 0.992 0.0257 0.997 0.0174 1.000 4.26E-14

2 523 1.9250 2.483 270.41 2.175 0.1221 1.101 0.0338 1.767 9.49E-14
1971 0.5142 1.905 51.930 2.38 0.0326 1.905 0.0089 1.928 2.27E-13
7651 0.1364 1.914 11.504 2.175 0.0083 1.968 0.0023 1.979 4.94E-13

30147 0.0389 1.808 3.1610 1.863 0.0021 1.991 0.0006 1.994 9.99E-13
119683 0.0104 1.900 1.0190 1.633 0.0005 1.998 0.0001 1.998 2.03E-12

Table 5.3
Example 1 (accuracy test): errors and convergence rates for the approximate solutions for a

Darcy regime, with ν2 = 1, σ = 10000.

Ra 100 200 400 1000 2000

Nu Present Study 3.10 4.97 7.84 13.72 20.31
Ref. [12] 3.15 5.02 7.83 14.01 20.00
Ref. [18] 3.11 4.96 7.77 13.47 19.90

Sh Present Study 13.58 20.73 30.91 49.42 66.80
Ref. [12] 13.54 20.11 27.96 48.01 71.25
Ref. [18] 13.25 19.86 28.41 48.32 69.29

Table 5.4
Example 2 (porous cavity): (left) sketched domain with boundary conditions, (right) comparison

of average Nusselt and Sherwood numbers for N = 0, Le = 10 with thermal Rayleigh numbers on
Darcy’s regime.

where e, ẽ denote errors generated on two consecutive meshes of sizes h and h̃, respec-
tively; are listed in Table 5.1 for k = 1, 2, where the model constants are chosen as
stated above. We can observe that the total error is dominated by the pressure ap-
proximation, and that the discrete velocities are divergence free. The tabulated values
also indicate an optimal O(hk) convergence, consistently with the theoretical bounds
stated in Theorem 4.2. We also conduct two additional series of accuracy tests fo-
cusing on the cases where the viscosity and permeability coefficients scale differently,
changing from Stokes to Darcy regimes. These values are collected in Tables 5.2
and 5.3, respectively. Apart from an increase of the pressure error, we can see that
the experimental rates of convergence remain close to the optimal behaviour.

5.2. Example 2: Soret and Dufour effects in a porous cavity. Using the
following dimensionless variables: x = x∗/H, y = y∗/X,u = uH/ν, p = p∗H/ρν, T =
(T ∗−T0)/(T1−T0) and C = (C∗− c0)/(C1−C0) (where H is the cavity height and ν
the kinematic viscosity of the fluid), we can write the equations describing transport
phenomena in a square porous cavity with thermal and concentration diffusion in the
form (1.1). We set K = Da I, ν(T ) = 1 and F (y) = (GrT T + GrC C)g, where g =
(0,−1)T points in the direction of gravity, y = (T,C)T, and the diffusion coefficients
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Fig. 5.1. Example 2 (porous cavity): (left) velocity field, (middle) isotherms and (right) con-
centration contours for (top) Du = 0.1, (bottom) Du = 1.

are given by

D =

[
Rk/Pr Du

Sr 1/Sc

]
.

Here, Rk is the thermal conductivity ratio, GrT ,GrC are the thermal and solutal
Grashof numbers respectively, Da = κ/H2 is the Darcy number, Pr = ν/α the Prandtl
number, Sc = ν/DC the Schmidt number, and the ratio Le = Sc/Pr the Lewis number.

For a preliminary validation we conduct a series of computational tests using a
buoyancy ratio N := GrC/GrT = 0. The computational domain is the unit square
Ω := (0, 1)2, considering no-slip velocity conditions on Γ. Temperature and concen-
tration are kept at T0, C0 and T1, C1 at the right and left walls respectively, where
T0 < T1 and C0 < C1. Horizontal walls are adiabatic and impermeable, as depicted
in the left of Table 5.4. In this subsection we will use k = 2 and a mesh with 20000
elements. We compute Nusselt and Sherwood numbers and compare these outputs
against well-known benchmark data from [12] and [18]. The average values of Nu and
Sh values on the left vertical wall are, respectively

Nu =

∫ 1

0

∂T

∂x

∣∣∣∣
x=0

dy, Sh =

∫ 1

0

∂C

∂x

∣∣∣∣
x=0

dy.

For the values Rk = 1.0, Da = 10−7, Le = 10, Sr = 0, Du = 0, and Pr = 10, results
for different thermal Rayleigh values are computed and summarised at the right panel
of Table 5.4 along with the results from [12, 18]. For Ra ≤ 1000, the values of Nu
and Sh are within a relative error of 3%, for the last value Ra = 2000, within 6%.
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Fig. 5.2. Example 2 (porous cavity): (left) velocity field, (middle) isotherms and (right) con-
centration contours for (top) Sr = 0.1, (bottom) Sr = 1.

Keeping the remaining parameters fixed, we now set Ra = 100, Le = 0.8 and
N = 1. The effects of modifying the Dufour parameter can be visualised on the
velocity, thermal and concentration profiles portrayed in Figure 5.1, for Du ∈ {0.1, 1}.
The velocity field and isotherms are in qualitative agreement with those in [8, Fig. 2].
In Figure 5.2 we repeat the plots keeping Du = 0 and with Soret values of Sr ∈ {0.1, 1}.
As expected, the result is almost symmetric with an exchange of behaviour between
temperature and concentration. Moreover, in both cases an increment of Sr or Du
drives an increase of velocity in the recirculation patterns. Finally, in Figure 5.3
we fix Du = 0.5, Sr = 0.5 and test the effect of buoyancy by setting N = −5
and alternatively, N = 5. We can see the reversion of flow direction caused by the
difference in buoyancy of the species. Note that in the last case D is not positive
definite and solvability of the coupled problem cannot be guaranteed. Nevertheless,
convergence of the Newton iterations was observed for a broad range of parameters
(Sr,Pr ∈ [10−3, 103], N ∈ [1, 10], Da ∈ [10−7, 1], Ra ∈ [100, 2000]), except for values
of Soret number, Sr > 5 provided that N ≥ 0 and Du = 0.

5.3. Example 3: bioconvection of oxytactic bacteria. With the notation
y = (c1, c2)T the oxytactic bacteria bioconvection phenomenon (see [24, 25]), can be
modelled by (1.1), with diffusion, reaction, and remaining concentration-dependent
coefficients given by

D(y) =

[
D1 −αr(c2)c1
0.0 D2

]
, g(y) = βr(c2)

(
0
−1

)
, F (y) = γc1g
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Fig. 5.3. Example 2 (porous cavity): (left) velocity field, (middle) isotherms and (right) con-
centration contours for (top) N = −5, (bottom) N = 5.

g =

(
0
−1

)
, r(c2) =

1

2

(
1 +

c2 − c∗2√
(c2 − c∗2)2 + ε2

)
.

We consider a rectangular prism with square base [0, 1] × [0, 1] and height 0.75,
discretised into a tetrahedral mesh of 48000 cells. Fixing the parameters β = 0.1, D1 =
0.01, D2 = 0.2, γ = 5000, α = 0.25, Sc = 10−2, and µ = 2, we use a pseudo timestep,
using ∆t = 0.1 to compute intermediate state solutions, starting from a distribution of
bacteria packed in a ball of radius 0.2 and placed near the top of the vessel. Snapshots
(at advanced time) of the numerical solution are displayed in Figures 5.4 and 5.5.
We observe how the bacteria propagate downwards, producing recirculating zones as
indicated by the velocity field. The first snapshot shows that the oxygen concentration
has more variation on the top layers due to the competition between consumption of
the high bacterial concentration, recirculating flow, and diffusion. Later on, oxygen
concentration follows the flow direction, showing higher values downwards in the
centre of the recirculating zones. The pressure distributes from low on the top, to
high on the bottom, also decreasing its magnitude as the bacteria reaches the vessel’s
bottom.
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Fig. 5.4. Example 3 (bioconvection): patterns generated by the bacterial chemotaxis towards
oxygen concentration. Snapshots of the obtained solutions at times (top) t = 0.1, (middle) t = 0.3
and (bottom) t = 0.5.
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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