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Abstract

We introduce a hybrid numerical method for the approximation of linear poroelasticity equations,
representing the interaction between the non-viscous filtration flow of a fluid and the linear me-
chanical response of a porous medium. In the proposed formulation, the primary variables in
the system are the solid displacement, the fluid pressure, the fluid flux, and the total pressure.
A discontinuous finite volume method is designed for the approximation of solid displacement
using a dual mesh, whereas a mixed approach is employed to approximate fluid flux and the
two pressures. The resulting discrete problems exhibit a double saddle-point structure, and their
solvability and stability are established in terms of bounds that do not depend on the modulus of
dilation of the solid. We derive optimal error estimates in suitable norms, for all field variables;
and we exemplify the convergence and locking-free properties of this scheme through a series of
numerical tests.
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Locking-free approximations; Conservative schemes; Error estimates.
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1 Introduction

The linear poroelasticity equations constitute one of the simplest continuum models for fluid-structure
interaction. In the classical description of the consolidation problem by Biot (see the seminal paper [5]),
the filtration of a viscous fluid within the porous skeleton is described by Darcy’s law, whereas the
deformation of the solid material is governed by Hooke’s linear elasticity. Modern applications of this
classical framework include numerous problems in science and engineering, where notable examples
are logging technologies and the study of borehole instabilities, the behaviour of soils under tunnelling,
or in the process of CO2 sequestration; as well as biomedical investigations such as the characterisation
of biological soft tissue (e.g. arterial walls, skin, lungs, cardiac muscle, and articular cartilage).
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Due to the coupling of flow, transport, and conservation of linear momentum, obtaining analytical
solutions for poroelasticity equations is not trivial. One therefore has to rely on computational simula-
tions. However, the success in accurately replicating poroelasticity solutions using numerical methods
is often affected by the presence of three unphysical scenarios: spurious pressure modes, locking phe-
nomena (instabilities and polluted convergence of the solid displacement approximation), and loss of
mass. In view of remediating these shortcomings encountered in the solutions produced with classi-
cal methods and formulations, here we extend the three-field formulation proposed in [19, 25] (where
classical finite elements can be employed straightforwardly without the risk of producing the first two
spurious phenomena), and we further introduce a family of discontinuous finite volume (DFV) - mixed
finite element (MFE) schemes that aim at rectifying the third nonphysical situation.

With the exception of the finite volume (FV) discretisation of Biot’s system applied in [3,23], the
numerical solution of poroelasticity equations has been traditionally associated with finite element
(FE) methods. Some of these studies include stabilised conforming schemes for primal formulations
and least-squares FE methods [1,4,12,21,22,31,32,35] (see also the extensive review [20]); as well as
DG methods [9,28]. On the other hand, a few schemes that combine discontinuous Galerkin (or finite
volume, or weak Galerkin) discretisations and mixed methods solving also for the fluid flux, have been
proposed in [26,29,30,34]. Apart from reproducing accurately the mechanical equilibrium, guarantee-
ing the conservation of fluid mass is of substantial importance in most applications. Some dedicated
techniques are available, including for instance the stabilised method in [10]; and the reconstruction
of stress and fluid fluxes by a modified Arnold-Winther scheme, recently analysed in [27].

Here we also aim at developing stable and convergent schemes using similar techniques; but the
primary differences with respect to the contributions listed above is that we use a special blend of
DFV and MFE methods for the numerical approximation of the underlying coupled problem, recast in
terms of solid displacement, fluid flux, fluid pressure, and total pressure. FV schemes are a particular
class of Petrov-Galerkin methods that require to define trial and test spaces associated to primal and
dual partitions of the domain, respectively. Different types of dual meshes are employed when the
FV method is of conforming, non-nonconforming, or discontinuous type (see details and comparisons
in e.g. [8]), but in most cases they feature local conservativity as well as suitability for deriving
L2−error estimates. Moreover, schemes using DFV approximations preserve features of both DG and
general FV methods, including smaller support of dual elements (when compared with conforming
and non-conforming FV schemes) as well as appropriateness in handling discontinuous coefficients.

We have structured the contents of this paper as follows. Section 2 outlines the main ingredients of
the model problem and carry out its solvability and stability analysis. A family of DFV-MFE methods
is then introduced in Section 3, and the invertibility of the discrete solution operator is derived in
Section 4. The error analysis of the proposed schemes is addressed next in Section 5, and in Section 6
we provide a few numerical tests illustrating the properties of the proposed method.

2 The governing equations in a mixed-mixed structure

Preliminaries. From now on we will adopt the classical notation for Lebesgue and Sobolev spaces.
In addition by M and M we will denote the corresponding vectorial and tensorial counterparts of
the generic scalar functional space M. For instance, if Θ ⊆ Rd, d = 2, 3 is a domain, Λ ⊆ Rd is
a Lipschitz surface, and r ∈ R, we define Hr(Θ) := [Hr(Θ)]d and Hr(Λ) := [Hr(Λ)]d. By 0 we
will refer to the generic zero vector and we will denote by C and c, with or without subscripts,
bars, tildes or hats, generic constants independent of the discretisation parameters. We recall that
H(div; Θ) := {τ ∈ L2(Θ) : ∇ · τ ∈ L2(Θ)} associated with the norm

‖τ‖2div,Θ := ‖τ‖20,Θ + ‖∇ · τ‖20,Θ ,

is a Hilbert space.
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As a model problem we consider a homogeneous porous medium constituted by a mixture of
incompressible grains and interstitial fluid. The domain of interest Ω ⊂ Rd, d = 2, 3 is assumed
bounded and simply connected. For a given body force f and a given volumetric fluid source `, we will
concentrate the discussion on the following four-field mixed-mixed formulation of Biot’s consolidation
system: find the displacements of the porous skeleton, u, the total pore pressure of the fluid, p, the
fluid flux, σ, and the total fluid-structure pressure (or total volumetric stress), φ; satisfying

−div(2µε(u)− φI) = f in Ω, (2.1)

φ = p− λ divu in Ω, (2.2)

σ = −κ
η

(∇p− ρg) in Ω, (2.3)(
c0 +

α

λ

)
p− α

λ
φ+ divσ = ` in Ω, (2.4)

where ε(u) = 1
2 (∇u+∇uT ) is the tensor of infinitesimal strains, κ is the permeability of the porous

solid (assumed uniformly bounded 0 < κ1 ≤ κ(x) ≤ κ2 < ∞, for all x ∈ Ω), λ, µ are the Lamé
constants of the solid (moduli of dilation and shear, respectively), c0 > 0 is the constrained specific
storage coefficient, α > 0 is the Biot-Willis parameter, g is the gravity acceleration; and η > 0, ρ > 0
are the viscosity and density of the pore fluid. Equation (2.1) states conservation of momentum for
the mixture, (2.4) corresponds to the mass conservation of the fluid content, and (2.2)-(2.3) define the
new unknowns in the system in terms of the primal variables.

The boundary of Ω is assumed disjointly split into segments or surfaces where Dirichlet conditions
are to be considered for fluid pressure and solid displacements: ∂Ω = Γp ∪ Γu, Γp ∩ Γu = ∅. These
prescriptions are accompanied by zero normal total stress, and by zero normal fluid flux, respectively.
In summary, we endow the system (2.1)-(2.4) with the following boundary conditions

p = pΓ, (2µε(u)− φI)n = 0 on Γp, and u = 0, σ · n = 0 on Γu, (2.5)

where n is the exterior unit normal vector on ∂Ω and pΓ ∈ H
1/2
00 (Γp) := {v|Γp

: v ∈ H1
Γu

(Ω)}, with

H1
Γu

(Ω) := {v ∈ H1(Ω) : v|Γu = 0}. The space H
1/2
00 (Γp) is endowed with the norm

‖ξ‖1/2,00,Γp
:= inf{‖v‖1,Ω : v ∈ H1

Γu
(Ω) and v|Γp

= ξ}.

Weak formulation. We proceed to test equations (2.1)-(2.4) against appropriate functions and to
integrate by parts. This step leads to the following weak formulation of the coupled problem: find
u ∈ H, φ ∈ Q, σ ∈ Z, and p ∈ Q such that

as(u,v) + bs(v, φ) = F (v) ∀v ∈ H, (2.6)

bs(u, ψ)− cs(φ, ψ) + bsf (ψ, p) = 0 ∀ψ ∈ Q, (2.7)

af (σ, τ ) + bf (τ , p) = G(τ ) ∀τ ∈ Z, (2.8)

bsf (φ, q) + bf (σ, q)− cf (p, q) = H(q) ∀q ∈ Q, (2.9)

where the bilinear forms and linear functionals appearing in (2.6)–(2.9) (denoted with a subscript s
or f whenever the arguments are solely related to structure or to fluid variables, respectively) are
specified in the following way

as(u,v) := 2µ

∫
Ω

ε(u) : ε(v), bs(v, ψ) := −
∫

Ω

ψ div v, bsf (ψ, q) :=
1

λ

∫
Ω

ψq, cs(φ, ψ) :=
1

λ

∫
Ω

φψ,

af (σ, τ ) :=
η

κα

∫
Ω

σ · τ , bf (τ , q) := − 1

α

∫
Ω

q div τ , cf (p, q) :=

(
c0
α

+
1

λ

)∫
Ω

pq, (2.10)

F (v) :=

∫
Ω

f · v, G(τ ) :=
1

α

∫
Ω

ρg · τ − 1

α
〈τ · n, pΓ〉Γp

, H(q) := − 1

α

∫
Ω

` q,
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and the conditions in (2.5) imply that the functional spaces may be chosen as

H :=H1
Γu

(Ω) = {v ∈ H1(Ω) : v|Γu = 0}, Q := L2(Ω), Z := {τ ∈ H(div; Ω) : τ · n = 0 on Γu}.

Notice that the mixed character of the fluid conservation equation implies that the Dirichlet datum
for the fluid pressure appears in the linear functional G.

Properties of the involved forms. Thanks to the Cauchy-Schwarz inequality, it is readily seen
that all bilinear forms and linear functionals are uniformly bounded, that is

|as(u,v)| ≤ 2µCk,2‖u‖1,Ω‖v‖1,Ω, |af (σ, τ )| ≤ η

ακ1
‖σ‖div,Ω‖τ‖div,Ω,

|bs(v, ψ)| ≤ ‖v‖1,Ω‖ψ‖0,Ω, |bsf (ψ, q)| ≤ λ−1‖ψ‖0,Ω‖q‖0,Ω, |bf (τ , q)| ≤ ‖τ‖div,Ω‖q‖0,Ω,

|cs(φ, ψ)| ≤ λ−1‖φ‖0,Ω‖ψ‖0,Ω, |cf (p, q)| ≤
(c0
α

+
1

λ

)
‖p‖0,Ω‖q‖0,Ω,

(2.11)

and

|F (v)| ≤ ‖f‖0,Ω‖v‖1,Ω, |G(τ )| ≤ 1

α
(ρ‖g‖0,Ω + ‖pΓ‖1/2,00,Γp

)‖τ‖div,Ω, |H(q)| ≤ 1

α
‖`‖0,Ω‖q‖0,Ω,

(2.12)
for all u,v ∈ H, p, q, φ, ψ ∈ Q, σ, τ ∈ Z. Above, Ck,2 is one of the positive constants satisfying

Ck,1‖v‖21,Ω ≤ ‖ε(v)‖20,Ω ≤ Ck,2‖v‖21,Ω, ∀v ∈ H. (2.13)

Regarding the positivity of the forms as and af , we begin by using (2.13), to obtain

as(v,v) ≥ 2µCk,1‖v‖21,Ω, ∀v ∈ H. (2.14)

In turn, we define

Kf := {τ ∈ Z : bf (τ , q) = 0 ∀ q ∈ Q} = {τ ∈ Z : div τ = 0 in Ω} ,

and observe that the following inequality holds

af (τ , τ ) ≥ η

κ2α
‖τ‖2div,Ω, ∀ τ ∈ Z. (2.15)

Finally, we recall the following inf-sup conditions satisfied by the forms bs and bf (see e.g. [15]):

sup
v∈H\0

bs(v, ψ)

‖v‖1,Ω
≥ βs‖ψ‖0,Ω ∀ψ ∈ Q and sup

τ∈Z\0

bf (τ , q)

‖τ‖div,Ω
≥ α−1βf‖q‖0,Ω ∀ q ∈ Q, (2.16)

with βs, βf > 0 depending on |Ω|.

Analysis of the continuous problem. In what follows we establish the well-posedness and sta-
bility of our formulation. To that end we derive the continuous dependence result for (2.6)–(2.9) by
considering generic functionals at the corresponding right-hand side. Then, recalling that the prob-
lem is symmetric, the existence, uniqueness and stability of solution can be easily obtained from the
aforementioned result. In addition, we observe in advance that the discrete version of the following
theorem, whose proof can be obtained by following the same steps provided next, is crucial for the
derivation of the corresponding error estimate. Let us then define F1 ∈ H′, G1 ∈ Q′, F2 ∈ Z′ and
G2 ∈ Q′ and let (u, φ,σ, p) ∈ H×Q× Z×Q, be such that

as(u,v) + bs(v, φ) = F1(v) ∀v ∈ H, (2.17)

bs(u, ψ)− cs(φ, ψ) + bsf (ψ, p) = G1(ψ) ∀ψ ∈ Q, (2.18)
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af (σ, τ ) + bf (τ , p) = F2(τ ) ∀τ ∈ Z, (2.19)

bsf (φ, q) + bf (σ, q)− cf (p, q) = G2(q) ∀q ∈ Q. (2.20)

For the subsequent analysis we will appeal to preliminary results and definitions. We begin by ob-
serving that each τ in Z can be uniquely decomposed into the form

τ = τ 0 + τ⊥, with τ 0 ∈ Kf and τ⊥ ∈ K⊥f .

Then, we define F 0
2 ∈ K ′f and F⊥2 ∈ (K⊥f )′ be such that

F2(τ ) = F 0
2 (τ 0) + F⊥2 (τ⊥) ∀ τ = τ 0 + τ⊥ ∈ Z. (2.21)

Clearly

F2|Kf
(τ ) = F 0

2 (τ 0), F2|K⊥f (τ ) = F⊥2 (τ⊥), F 0
2 (τ⊥) = 0 and F⊥2 (τ 0) = 0. (2.22)

Similarly, we define
Ks := {v ∈ H : bs(v, ψ) = 0 ∀ψ ∈ Q} ,

and observe that each v in H can be uniquely decomposed into the form

v = v0 + v⊥, with v0 ∈ Ks and v⊥ ∈ K⊥s .

Let us now observe that from the inf-sup conditions (2.16), there holds

sup
(v,τ )∈(H×Z)\0

bs(v, ψ) + bf (τ , q)

‖v‖1,Ω + ‖τ‖div,Ω
≥ β(‖ψ‖0,Ω + ‖q‖0,Ω) ∀ψ, q ∈ Q, (2.23)

with β > 0 independent of λ. From (2.23) and [13, Lemma 2.1] it can be easily deduced that

sup
(ψ,q)∈(Q×Q)\0

bs(v
⊥, ψ) + bf (τ⊥, q)

‖ψ‖0,Ω + ‖q‖0,Ω
≥ β(‖v⊥‖1,Ω + ‖τ⊥‖div,Ω) ∀ (v⊥, τ⊥) ∈ K⊥s ×K⊥f . (2.24)

To conclude we define

C((φ, p), (ψ, q)) := cs(φ, ψ) + cf (p, q)− bsf (φ, q)− bsf (ψ, p)

=
1

λ

∫
Ω

(φ− p)(ψ − q) +
c0
α

∫
Ω

pq, ∀φ, ψ, p, q ∈ Q,

and notice that

|C((φ, p), (ψ, q))| ≤ C((φ, p), (φ, p)))1/2(C((ψ, q), (ψ, q)))1/2

=

(
1

λ
‖φ− p‖20,Ω +

c0
α
‖p‖20,Ω

)1/2(
1

λ
‖ψ − q‖20,Ω +

c0
α
‖q‖20,Ω

)1/2

,
(2.25)

for all φ, ψ, p, q ∈ Q, and

C((ψ, q), (ψ, q)) =
1

λ
‖ψ − q‖20,Ω +

c0
α
‖q‖20,Ω ≥

c0
α
‖q‖20,Ω. (2.26)

Theorem 2.1 Let (u, φ,σ, p) ∈ H × Q × Z × Q be such that the system (2.17)–(2.20) holds. Then,
there exists a constant C > 0, independent of λ, such that

‖u‖1,Ω + ‖φ‖0,Ω + ‖σ‖div,Ω + ‖p‖0,Ω ≤ C(‖F1‖H′ + ‖G1‖Q′ + ‖F2‖Z′ + ‖G2‖Q′).

5



Conservative DFV-MFE methods for four-field poroelasticity Kumar et al.

Proof. Proceeding similarly to the proof of [6, Theorem 4.3.1], we will perform three steps. Firstly,
we assume that G1 = 0 and F2 = 0 and bound the solution in terms of F1 and G2. Secondly, we
assume that F1 = 0, G2 = 0, G1 = 0 and derive an estimate for the solution in terms of F2. Finally,
we assume that F1 = 0, G2 = 0 and F2 = 0 and derive an estimate for the solution in terms of G1. In
this way, the desired stability will follow by linearity after adding the obtained estimates.

Step 1 (G1 = 0 and F2 = 0): Taking v = u in (2.17), ψ = φ in (2.18), τ = σ in (2.8) and q = p in
(2.20) and performing the operations (2.17) − (2.18) + (2.19) − (2.20), we obtain

as(u,u) + af (σ,σ) + C((φ, p), (φ, p)) = F1(u) +G2(p).

Then, applying (2.14),(2.26) and the boundedness of F1 and G2 in the identity above, we deduce that

2µCk,1‖u‖21,Ω +
c0
α
‖p‖20,Ω ≤ ‖F1‖H′‖u‖1,Ω + ‖G2‖Q′‖p‖0,Ω,

which implies that
‖u‖1,Ω + ‖p‖0,Ω ≤ C1(‖F1‖H′ + ‖G2‖Q′), (2.27)

with C1 > 0 independent of λ. Then from the first condition in (2.16) and (2.18) we observe that

βs‖φ‖0,Ω ≤ sup
v∈H\{0}

bs(v, φ)

‖v‖1,Ω
= sup
v∈H\{0}

F1(v)− as(u,v)

‖v‖1,Ω
,

which together to (2.27) and the continuity of as and F1, implies

‖φ‖0,Ω ≤ C2(‖F1‖H′ + ‖G2‖Q′), (2.28)

with C2 > 0 independent of λ.

Now, in order to bound ‖σ‖div,Ω, we let σ0 ∈ Kf and σ⊥ ∈ K⊥f , such that σ = σ0 + σ⊥. First,
from (2.19) with τ = σ0 and noticing that σ0 ∈ Kf , we have

af (σ0,σ0) = −af (σ⊥,σ0),

which jointly with (2.15) and the continuity of af (cf. (2.11)), gives

‖σ0‖div,Ω ≤
κ2

κ1
‖σ⊥‖div,Ω. (2.29)

In turn, combining the second condition in (2.16) with [13, Lemma 2.1] and (2.20), we obtain

α−1βf‖σ⊥‖div,Ω ≤ sup
q∈Q\0

bf (σ, q)

‖q‖0,Ω
= sup
q∈Q\0

G2(q)− bsf (φ, q)− cf (p, q)

‖q‖0,Ω
,

which together to the continuity of G2, bsf and cf (cf. (2.11)), estimates (2.27) and (2.28), yields

‖σ⊥‖div,Ω ≤ C
(

1

α
+

2

λ
+
C0

α

)
(‖F1‖H′ + ‖G2‖Q′), (2.30)

where 1
α + 2

λ + C0

α must be thought as a constant independent of λ if λ → ∞. Then, from (2.29),
(2.30) and the triangle inequality we easily deduce that

‖σ‖div,Ω ≤ C3(‖F1‖H′ + ‖G2‖Q′), (2.31)

with C3 > 0 independent of λ. We conclude the first step by observing that the aforementioned
estimate follows from (2.27) (2.28) and (2.31).

Step 2 (F1 = 0, G1 = 0 and G2 = 0): Now we proceed to bound the solution in terms of ‖F2‖Z′ . To

that end we recall the decomposition F2 = F 0
2 +F⊥2 from (2.21). Consequently we bound the solution,

6
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firstly in terms of ‖F⊥2 ‖(K⊥f )′ (assuming that F 0
2 = 0), and secondly in terms of ‖F 0

2 ‖K′f (assuming

that F⊥2 = 0). Hence, the desired estimate follows by linearity, adding both estimates.

Let σ0 ∈ Kf and σ⊥ ∈ K⊥f be such that σ = σ0 + σ⊥. Similarly, we let u0 ∈ Ks and u⊥ ∈ K⊥s
be such that u = u0 +u⊥. In turn, taking v = u in (2.17), ψ = φ in (2.18), τ = σ in (2.19) and q = p
in (2.20) and performing the operations (2.17) − (2.18) + (2.19) − (2.20), we observe that there holds

as(u,u) + af (σ,σ) + C((φ, p), (φ, p)) = F 0
2 (σ0) + F⊥2 (σ⊥), (2.32)

In addition, from (2.19) with τ = σ0 and (2.22) we notice that

af (σ0,σ0) + af (σ⊥,σ0) = F 0
2 (σ0). (2.33)

F 0
2 = 0: We begin by noticing that from (2.32) there holds

C((φ, p), (φ, p)) ≤ F⊥2 (σ⊥), (2.34)

and since F 0
2 = 0, from (2.33), and from the continuity and ellipticity of af , we have

‖σ0‖div,Ω ≤
κ2

κ1
‖σ⊥‖div,Ω. (2.35)

Moreover, summing up equations (2.18) and (2.20), we deduce that

bs(u
⊥, ψ) + bf (σ⊥, q) = C((φ, p), (ψ, q)) ∀ψ, q ∈ Q,

which together to (2.24), (2.25) and (2.34) implies

β‖σ⊥‖div,Ω ≤ sup
(ψ,q)∈(Q×Q)\0

bs(u
⊥, ψ) + bf (σ⊥, q)

‖ψ‖0,Ω + ‖q‖0,Ω
= sup

(ψ,q)∈(Q×Q)\0

C((φ, p), (ψ, q))

‖ψ‖0,Ω + ‖q‖0,Ω

≤
(

1

λ
‖φ− p‖20,Ω +

c0
α
‖p‖20,Ω

)1/2

sup
(ψ,q)∈(Q×Q)\0

(
1
λ‖ψ − q‖20,Ω + c0

α ‖q‖20,Ω
)1/2

‖ψ‖0,Ω + ‖q‖0,Ω

≤
(
F⊥2 (σ⊥)

)1/2
sup

(ψ,q)∈(Q×Q)\0

(
1
λ‖ψ − q‖20,Ω + c0

α ‖q‖20,Ω
)1/2

‖ψ‖0,Ω + ‖q‖0,Ω
.

(2.36)

Then, defining

Cc = sup
(ψ,q)∈(Q×Q)\0

(
1
λ‖ψ − q‖20,Ω + c0

α ‖q‖20,Ω
)1/2

‖ψ‖0,Ω + ‖q‖0,Ω
, (2.37)

which can be seen as a constant independent of λ if λ→∞, from (2.36) we obtain

‖σ⊥‖div,Ω ≤
C2
c

β2
‖F⊥2 ‖(K⊥f )′ . (2.38)

Hence, combining (2.32) and (2.38) together to (2.14) we can easily deduce that

‖u‖1,Ω + ‖p‖0,Ω ≤ C4‖F⊥2 ‖(K⊥f )′ , (2.39)

with C4 > 0 independent of λ. Moreover, from (2.35), (2.38) and the triangle inequality we also get

‖σ‖div,Ω ≤ ‖σ0‖div,Ω + ‖σ⊥‖div,Ω ≤
(

1 +
κ2

κ1

)
‖σ⊥‖div,Ω ≤ C5‖F⊥2 ‖(K⊥f )′ , (2.40)

with C5 > 0 independent of λ. Finally, using the inf-sup condition (2.16) and proceeding similarly as
for the derivation of (2.28), we can obtain

‖φ‖0,Ω ≤ C6‖F⊥2 ‖(K⊥f )′ (2.41)
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with C6 > 0 independent of λ. In this way from (2.39)-(2.41) we obtain the result for the case F 0
2 = 0.

F⊥2 = 0: First, from (2.32) and (2.33) we obtain, respectively

1

λ
‖φ− p‖20,Ω +

c0
α
‖p‖20,Ω ≤ F 0

2 (σ0), (2.42)

and

‖σ0‖div,Ω ≤
κ2

κ1
‖σ⊥‖div,Ω +

2κ2α

η
‖F 0

2 ‖K′f . (2.43)

Now, similarly as in (2.36), from the inf-sup condition (2.24), estimates (2.25) and (2.42), and recalling
the definition of the constant Cc in (2.37), we obtain

β‖σ⊥‖div,Ω ≤ Cc
(
F 0

2 (σ0)
)1/2 ≤ Cc‖F 0

2 ‖1/2K′f
‖σ0‖1/2div,Ω,

which, associated with (2.43) and Young’s inequality, yields

‖σ⊥‖div,Ω ≤ C‖F 0
2 ‖K′f + C̃‖F 0

2 ‖1/2K′f
‖σ⊥‖1/2div,Ω ≤ Ĉ‖F 0

2 ‖K′f +
1

2
‖σ⊥‖div,Ω,

and therefore
‖σ⊥‖div,Ω ≤ 2Ĉ‖F 0

2 ‖K′f , (2.44)

with Ĉ independent of λ. Notice that from the latter and estimate (2.43) it readily follows that

‖σ0‖div,Ω ≤ C̄‖F 0
2 ‖K′f . (2.45)

In this way, from (2.44), (2.45) and the triangle inequality, we can assert that

‖σ‖div,Ω ≤ C7‖F 0
2 ‖K′f , (2.46)

with C7 > 0 independent of λ. Moreover, from (2.14), (2.32) and (2.45) we can deduce that

‖u‖1,Ω + ‖p‖0,Ω ≤ C8‖F 0
2 ‖K′f , (2.47)

with C8 > 0 independent of λ, and to conclude, analogously to (2.28), from the inf-sup condition
(2.16), equation (2.18) and (2.47), we obtain

‖φ‖0,Ω ≤ C9‖F 0
2 ‖K′f , (2.48)

with C9 > 0 independent of λ. The desired estimate then follows from (2.46)-(2.48).

Step 3 (F1 = 0, G2 and F2 = 0): Once again we let σ0 ∈ Kf and σ⊥ ∈ K⊥f be such that σ = σ0 +σ⊥

and u0 ∈ Ks and u⊥ ∈ K⊥s satisfying u = u0 + u⊥, and observe that there holds

as(u,u) + af (σ,σ) + C((φ, p), (φ, p)) = G1(φ), (2.49)

and
bs(u

⊥, ψ) + bf (σ⊥, q)− C((φ, p), (ψ, q)) = G1(ψ) ∀ψ, q ∈ Q.

In particular, from the latter and the inf-sup condition (2.16) we obtain

β(‖u⊥‖1,Ω + ‖σ⊥‖div,Ω) ≤ sup
(ψ,q)∈(Q×Q)\0

bs(u
⊥, ψ) + bf (σ⊥, q)

‖ψ‖0,Ω + ‖q‖0,Ω

= sup
(ψ,q)∈(Q×Q)\0

G1(ψ) + C((φ, p), (ψ, q))

‖ψ‖0,Ω + ‖q‖0,Ω
,

8
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which together with (2.25), (2.49) and the continuity of G1, gives the bound

β(‖u⊥‖1,Ω + ‖σ⊥‖div,Ω) ≤ ‖G1‖Q′ + Cc{C((φ, p), (φ, p))}1/2

≤ ‖G1‖Q′ + Cc‖G1‖1/2Q′ ‖φ‖
1/2
0,Ω.

(2.50)

where Cc > 0 is the constant defined in (2.37). Now, from (2.17) with v = u0 and using the ellipticity
and continuity of as (cf. (2.14) and (2.11), respectively), it readily follows that

‖u0‖1,Ω ≤
Ck,2
Ck,1
‖u⊥‖1,Ω,

which implies

‖u‖1,Ω ≤
(

1 +
Ck,2
Ck,1

)
‖u⊥‖1,Ω. (2.51)

The latter, the inf-sup condition (2.16) and equation (2.17) yield

‖φ‖0,Ω ≤ β−1
s sup

v∈H\0

bs(v, φ)

‖v‖1,Ω
≤ β−1

s sup
v∈H\0

−as(u,v)

‖v‖1,Ω
≤ 2µβ−1

s Ck,2‖u‖1,Ω ≤ Ĉ1‖u⊥‖1,Ω, (2.52)

with Ĉ1 > 0 independent of λ. Then, combining (2.50) and (2.52) with Young’s inequality, we obtain

‖u⊥‖1,Ω ≤ Ĉ2‖G1‖Q′ .

Using this inequality, from (2.51) and (2.52), we easily get

‖u‖1,Ω ≤ Ĉ3‖G1‖Q′ and ‖φ‖0,Ω ≤ Ĉ4‖G1‖Q′ , (2.53)

with Ĉ3 > 0 and Ĉ4 > 0 independent of λ. In turn, similarly as in (2.29) we can assert that

‖σ0‖div,Ω ≤
κ2

κ1
‖σ⊥‖div,Ω,

and invoking (2.50) and (2.53) we can derive the bound

‖σ‖div,Ω ≤ Ĉ5‖G1‖Q′ , (2.54)

with Ĉ5 > 0 independent of λ. Finally, from the second inf-sup condition in (2.16), equation (2.19)
and estimate (2.54) there holds

‖p‖0,Ω ≤ Ĉ6‖G1‖Q′ . (2.55)

In this way, from (2.53), (2.54) and (2.55) we obtain the desired estimate, which concludes the proof.
�

As a consequence of Theorem 2.1 we can readily deduce the following result.

Theorem 2.2 There exists a unique (u, φ,σ, p) ∈ H×Q× Z×Q satisfying (2.6)–(2.9). Moreover,
there exists C > 0, independent of λ, such that

‖u‖1,Ω + ‖φ‖0,Ω + ‖σ‖div,Ω + ‖p‖0,Ω ≤ Cstab(‖f‖0,Ω + ‖g‖0,Ω + ‖`‖0,Ω + ‖pΓ‖1/2,00,Γp
).

Proof. By setting F1, F2 = 0 and G1, G2 = 0 in (2.17)–(2.20) from Theorem 2.1 we can readily
deduce the uniqueness of solution of problem (2.6)–(2.9). Furthermore, noticing that (2.6)–(2.9) is
a symmetric linear problem, the above also guarantees existence of solution, which completes the
solvability analysis. In turn, by setting F1 = F , G1 = 0, F2 = G and G2 = H, the continuous
dependence result is a direct consequence of Theorem 2.1 and (2.12), which concludes the proof. �
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3 Discontinuous finite volumes - mixed finite elements

Primal and dual meshes. The construction of DFV-MFE schemes can be straightforwardly carried
out for d = 2, 3; however, for sake of conciseness, we will restrict the presentation to the 2D case.
Let us then consider a family {Th}h>0 of regular, quasi-uniform partitions of Ω̄ into triangles T of
diameter hT , where h = max{hT : T ∈ Th} is the meshsize. We will refer to these triangulations as
primal meshes.

Let Eh denote the set of interior edges in the primal mesh and write Eh(T ) for its localisation to
the element T ∈ Th. Moreover, let e ∈ Eh be shared by two elements T1 and T2 in Th with outward
unit normal vectors n1 and n2, respectively. For a scalar q, we will write [[q]] := q|∂T1

− q|∂T2
and

{{q}} := 1
2 (q|∂T1 + q|∂T2) to denote its jump and average values on e, respectively. For a generic vector

r, its vector jump and vectorial average across edge e is denoted respectively, by [[r]] := r|∂T1 − r|∂T2

and {{r}} := 1
2 (r|∂T1

+ r|∂T2
).
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Figure 1: A compound of six elements in Th (a), and barycentric subdivision of a given T ∈ Th into
three control volumes T ∗j belonging to the dual mesh K∗h (b). The vertices of Th are labelled with Ai,
and the edges of primal elements are denoted ei.

In order to define DFV approximations for the solid displacements, we construct an auxiliary, dual
mesh. Starting from a given triangle T in the primal mesh Th, we proceed to divide it into three
sub-triangles by joining the barycentre B to the vertices of T . The dual mesh, denoted by K∗h, will
then consist of all these control volumes, T ∗, generated after barycentric subdivison. A sketch of the
subdivision in a given T and also a compound of six primal elements is presented in Figure 1.

Discrete trial and test spaces. Specifying the trial and test spaces will completely characterise
the DFV method. Let us introduce the trial space for the approximation of solid displacements as

Hh := {vh ∈ L2(Ω) : vh|T ∈ P1(T )2 ∀T ∈ Th},

whereas the corresponding test space will be associated to the dual mesh K∗h, and will be defined as

H∗h := {vh ∈ L2(Ω) : vh|∗T ∈ P0(T ∗)2 ∀T ∗ ∈ K∗h}.

Here Pk(T ) denotes the space of polynomials of degree less than or equal than k defined over the
element T . One readily notices that given the specific form of control volumes, the linear systems
arising from the discretisation of operators involving the solid displacement approximation will be
square. Moreover, we observe that the dual elements have support only in the primal triangle they
belong to (in contrast to conforming FVE schemes, where the control volumes have a support shared
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on the neighbouring triangles in the primal mesh). Such localisation property may turn the method
more amenable for parallelisation and eventual implementation of adaptive DFV schemes.

Next, let us define a space having higher regularity H(h) := Hh+[H2(Ω)∩H1
Γu

(Ω)], and introduce
a mapping that connects this modified trial space with the test space as follows

Rh : H(h) −→ H∗h, v|T∗ 7→ Rhv|T∗ :=
1

he

∫
e

v|T∗ , T ∗ ∈ K∗h,

where he denotes the length of the generic edge e of the primal element T that contains the control
volume T ∗ (see Figure 1(b)). We provide H(h) with the mesh-dependent norm |||·|||h, defined as

|||v|||2h := |v|21,h +
∑
e∈Eh

1

he

∫
e

[[v]]2,

which uses the broken H−semi-norm |v|21,h =
∑
T∈Th

|v|21,T .

On the other hand, we consider the finite dimensional space associated with the approximation
of the fluid flux and the fluid pressure as the mixed finite element constituted by the lowest order
Raviart-Thomas space and the space of piecewise constants defined over the primal mesh

Zh := {τh ∈ Z : τh|T ∈ RT 0(T ), ∀T ∈ Th, and τh · n = 0 on Γu},
Qh := {qh ∈ Q : qh|T is a constant, ∀T ∈ Th},

where RT 0 denotes the local Raviart-Thomas space of lowest order. The trial and test spaces for the
approximation of the total pressure will coincide with the ones used for the fluid pressure.

The conservative discrete formulation. Applying then a combined DFV-MFE discretisation, we
end up with the following formulation: Find (uh, φh,σh, ph) ∈ Hh ×Qh × Zh ×Qh such that

ahs (uh,vh) + bhs (vh, φh) = F (Rhvh) ∀vh ∈ Hh, (3.1)

b̃hs (uh, ψh)− cs(φh, ψh) + bsf (ψh, ph) = 0 ∀ψh ∈ Qh, (3.2)

af (σh, τh) + bf (τh, ph) = G(τh) ∀τh ∈ Zh, (3.3)

bsf (φh, qh) + bf (σh, qh)− cf (ph, qh) = H(qh) ∀qh ∈ Qh, (3.4)

where the three bilinear forms that are modified with respect to the ones specified in (2.10), are now
defined as follows

ahs (uh,vh) :=− 2µ
∑
T ∈Th

3∑
j=1

∫
Aj+1BAj

ε(uh)n ·Rhvh − 2µ
∑
e∈Eh

〈[[Rhvh]], {{ε(uh)n}}〉e

− 2θµ
∑

e∈Eh∪Γu

〈[[Rhuh]], {{ε(vh)n}}〉e +
∑

e∈Eh∪Γu

2µ
γu
he
〈[[Rhuh]], [[Rhvh]]〉e,

bhs (vh, ψh) :=
∑
T ∈Th

3∑
j=1

∫
Aj+1BAj

ψhRhvh · n+
∑
e∈Eh

〈{{ψhn}}, [[Rhvh]]〉e,

b̃hs (uh, ψh) :=−
∫

Ω

ψh divuh +
∑

e∈Eh∪Γu

〈{{ψhn}}, [[Rhuh]]〉e,

with A4 = A1 (see Figure 1(b)), and where γu > 0 and γφ > 0 are penalty parameters independent
of h (see e.g. the DFV formulations for Stokes equations proposed in [17, 33]). The symmetrisation
parameter θ ∈ {1, 0,−1} leads respectively to symmetric, incomplete, and non-symmetric interior
penalty DG formulations. We recall that for boundary edges we adopt the convention that {{r}} = r
and [[r]] = r, for a generic vector field r. We also note that the edge integrals on Γu are required only
if the Dirichlet boundary conditions for displacements are implemented using Nitsche’s approach.
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4 Solvability and stability of the discrete problem

Preliminaries. The unique solvability of the discrete problem (3.1)-(3.4) can be established by
proving that the sole feasible solution to the homogeneous counterpart of the system is the trivial one.
We start by collecting some useful results to be exploited in the sequel.

First, for any v ∈ H2(T ) and for any edge e ∈ Eh(T ) one has the trace inequality (cf. [2])

‖v‖20,e ≤ C
(
h−1
e ‖v‖20,T + he|v|21,T

)
. (4.1)

Secondly, the bilinear forms ahs (·, ·), b̃h1 (·, ·) and bh1 (·, ·) hold the following set of properties (continuity,
positivity, and suitable inf-sup conditions). There exist constants Ci > 0, β0 > 0 independent of the
meshsize h, such that

ahs (vh,wh) ≤ C1 |||vh|||h |||wh|||h ∀vh,wh ∈ H(h), (4.2)

ahs (vh,vh) ≥ C2 |||vh|||2h ∀vh ∈ Hh, (4.3)

bhs (vh, ψh) ≤ C3 |||vh|||h
[
‖ψh‖0,Ω +

(∑
T∈Th

h2
T |ψh|21,T

) 1
2
]
∀vh ∈ H(h), ψh ∈ Qh, (4.4)

sup
06=vh∈Hh

b̃hs (vh, ψh)

|||vh|||h
≥ β0 ‖ψh‖0,Ω ∀ψh ∈ Qh, (4.5)

bhs (vh, ψh) = b̃hs (vh, ψh) vh ∈ H(h), ψh ∈ Qh. (4.6)

For a proof of (4.2)-(4.3) we refer to [17, Lemma 4], whereas the bounds (4.4), (4.5), as well as the
equivalence (4.6) can be found respectively in [33, Lemmas 3.4, 4.1 & 3.2]. In particular, from (4.4)
and the inverse inequality |ψh|1,T ≤ Ch−1‖ψh‖0,T , for all φh ∈ Qh and for all T ∈ Th, with C > 0
independent of h (see for instance [11, Lemma 1.44]), it follows that

bhs (vh, ψh) ≤ C̃3 |||vh|||h ‖ψh‖0,Ω ∀vh ∈ H(h), ψh ∈ Qh. (4.7)

Let us now establish the stability properties of the forms af , bf and cf . We begin by recalling that,
since div Zh ⊆ Qh, the kernel of the bilinear form bf can be characterised as follows

Kh := {τh ∈ Zh : bf (τh, qh) = 0 ∀ qh ∈ Qh} = {τh ∈ Zh : div τh = 0 in Ω}.

Then, the Kh–ellipticity of the bilinear form af is straightforward

af (τh, τh) ≥ η

κα
‖τh‖2div,Ω ∀ τh ∈ Kh.

In turn, it is well–known that the bilinear form bf satisfies the following inf–sup condition

sup
τh∈Zh\{0}

bf (τh, qh)

‖τh‖div,Ω
≥ β̂‖qh‖0,Ω ∀ qh ∈ Qh,

with β̂ > 0 independent of h (see [13, Section 4.2]).

We point out that the continuity of the forms cs, bsf , af , bf , cf , as well as the functionals G and
H are inherited from the continuous case, preserving the exact same continuity constants.

Well-posedness of the discrete scheme. We proceed similarly to the continuous case, and establish
continuous dependence on data for (3.1)–(3.4) considering generic functionals, that is, we let Fh1 ∈ H′h,
Gh1 ∈ Q′h, Fh2 ∈ Z′h and Gh2 ∈ Q′h and bound uh ∈ Hh, φh ∈ Qh, σh ∈ Zh and ph ∈ Qh, satisfying

ahs (uh,vh) + bhs (vh, φh) = Fh1 (vh) ∀vh ∈ Hh, (4.8)
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b̃hs (uh, ψh)− cs(φh, ψh) + bsf (ψh, ph) = Gh1 (ψh) ∀ψh ∈ Qh, (4.9)

af (σh, τh) + bf (τh, ph) = Fh2 (τh) ∀τh ∈ Zh, (4.10)

bsf (φh, qh) + bf (σh, qh)− cf (ph, qh) = Gh2 (qh) ∀qh ∈ Qh, (4.11)

in terms of the aforementioned functionals Fh1 , Gh1 , Fh2 and Gh2 . This result is established next.

Theorem 4.1 Let (u, φ,σ, p) ∈ H × Q × Z × Q satisfy the system of equations (4.8)–(4.11). Then,

there exists a constant Ĉ > 0, independent of h and λ, such that

|||uh|||h + ‖φh‖0,Ω + ‖σh‖div,Ω + ‖ph‖0,Ω ≤ Ĉ(‖Fh1 ‖H′h + ‖Gh1‖Q′h + ‖Fh2 ‖Z′h + ‖Gh2‖Q′h). (4.12)

Proof. Employing the discrete version of the stability properties of the forms involved, and proceeding
analogously to the proof of Theorem 2.1, we can straightforwardly derive (4.12). �

Now we are in position of establishing the well-posedness and stability of (3.1)–(3.4).

Theorem 4.2 There exists a unique (uh, φh,σh, ph) ∈ Hh × Qh × Zh × Qh solution of the system

(3.1)–(3.4). Moreover, there exists a constant Ĉstab > 0, independent of λ, such that

|||uh|||h + ‖φh‖0,Ω + ‖σh‖div,Ω + ‖ph‖0,Ω ≤ Ĉstab(‖f‖0,Γ + ‖g‖0,Ω + ‖`‖0,Ω + ‖pΓ‖1/2,00,Γp
). (4.13)

Proof. By setting Fh1 = 0, Gh1 = 0, Fh2 = 0 and Gh2 = 0 in (4.8)–(4.11) from Theorem 4.1 it follows
that uh = 0, φh = 0, σh = 0 and ph = 0 which implies that that the only solution of the homogeneous
problem is the trivial solution. From the latter, and from the fact that for finite dimensional linear
problems existence and uniqueness of solution are equivalent, we readily obtain the well-posedness of
(3.1)–(3.4). Moreover, by setting Fh1 = FRh|Hh

, Gh1 = 0, Fh2 = G|Zh
and Gh2 = H|Qh

in (4.8)–(4.11)
from (4.12) we easily obtain (4.13), which concludes the proof. �

5 Error estimate

Preliminaries. Given k ≥ 0, on each primal element T ∈ Th, let ΛTk : L2(T ) → Pk(T ) denote
the orthogonal L2−projection operator, which satisfies the following approximation property (see, for
instance, [18]): For all s ∈ {0, . . . , k + 1}, there holds

|v − ΛTk v|m,T ≤ Chs−mT |v|s,T ∀v ∈ Hm(T ), ∀m ∈ {0, . . . , s}. (5.1)

We will also use a vector version of ΛTk , say ΛT
k : L2(T ) → Pk(T ), which is defined component-wise

by ΛTk . Then, we define the global operators Π1 : H(h)→ Hh and Λ0 : Q→ Qh by

(Π1v)|T := PT
1 v, (Λ0q)|T := ΛT0 q ∀T ∈ Th.

It is clear that operator Λ0 satisfies the approximation property

‖v − Λ0v‖0,Ω ≤ Ch|v|1,T ∀v ∈ H1(Ω). (5.2)

In turn, from inequality (4.1) we observe that operator Π1 satisfies∫
e

1

he
[[u−Π1u]]2 ≤ C(h−2

e |u−Π1u|20,T + |u−Π1u|21,T ). (5.3)

We can then utilise the definition of the norm |||·|||h together with estimates (5.1) with m = 1 and
s = 2, and (5.3), to obtain the bound

|||u−Π1u|||h ≤ Ch ‖u‖2,Ω . (5.4)
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Let us now recall the Raviart-Thomas interpolation operator Πdiv : H1(Ω) → Zh, which, given
τ ∈ H1(Ω), is characterised by the following identities:∫

e

(Πdiv(τ ) · n) r =

∫
e

(τ · n)r ∀ e ∈ Eh, ∀ r ∈ P0(e). (5.5)

As a consequence of (5.5), there holds

div(Πdiv(τ )) = Λ0(div τ ).

In addition, the operator Πdiv satisfies the following approximation properties (see for instance [13]):

‖τ −Πdiv(τ )‖0,T ≤ c1hT |τ |1,T ∀ T ∈ Th, (5.6)

for each τ ∈ H1(Ω), and

‖div(τ −Πdiv(τ ))‖0,T ≤ c2hT |div τ |1,T ∀ T ∈ Th, (5.7)

for each τ ∈ H1(Ω), such that div τ ∈ H1(Ω). Combining (5.6) and (5.7) it is clear that the following
global estimate holds

‖τ −Πdiv(τ )‖div,Ω ≤ Ch(|τ |1,Ω + |div τ |1,Ω), (5.8)

for each τ ∈ H1(Ω), such that div τ ∈ H1(Ω). After these preliminary steps we embark in proving
optimal error estimates.

Theorem 5.1 Let (u, φ,σ, p) and (uh, φh,σh, ph) be the solutions of (2.6)-(2.9) and (3.1)-(3.4),
respectively, and let us assume that u ∈ H2(Ω), σ ∈ H1(Ω), divσ ∈ H1(Ω), and φ, p ∈ H1(Ω). Then,
there exists a constant C > 0 independent of both h and λ, such that

|||u− uh|||h + ‖φ− φh‖0,Ω + ‖σ − σh‖div,Ω + ‖p− ph‖0,Ω
≤ Ch(‖u‖2,Ω + ‖φ‖1,Ω + ‖σ‖1,Ω + ‖divσ‖1,Ω + ‖p‖1,Ω).

Proof. Let (u, φ,σ, p) and (uh, φh,σh, ph) be the solutions of (2.6)-(2.9) and (3.1)-(3.4), respectively.
To simplify the subsequent analysis, we write eu := u − uh, eφ := φ − φh, eσ := σ − σh and
ep := p− ph. As usual, we shall then decompose these errors into

eu = ξu + χu, eφ = ξφ + χφ, eσ = ξσ + χσ and ep = ξp + χp, (5.9)

where

ξu := u−Π1(u), χu := Π1(u)− uh, ξφ := φ− Λ0(φ), χφ := Λ0(φ)− φh,

ξσ := σ −Πdiv(σ) χσ := Πdiv(σ)− σh ξp := p− Λ0(p), χp := Λ0(p)− ph.

Then, in what follows we prove that there exists C > 0, independent of h and λ, such that

|||χu|||h + ‖χφ‖0,Ω + ‖χσ‖div,Ω + ‖χp‖0,Ω ≤ C(|||ξu|||h + ‖ξφ‖0,Ω + ‖ξσ‖div,Ω + ‖ξp‖0,Ω),

thus the desired result can be easily obtained from the latter, the triangle inequality and estimates
(5.2), (5.4) and (5.8). We begin by noticing that since we assume u ∈ H2(Ω), then for all vh ∈ Hh

there hold ahs (u,vh) = as(u,vh) and bhs (u, ψh) = b̃hs (u, ψh) = bs(u, ψh). In this way, restricting
the test functions in (2.6)–(2.9) to the corresponding finite dimensional spaces, and subtracting the
resulting set of equations with (3.1)–(3.4), we easily obtain the Galerkin orthogonality property

ahs (eu,vh) + bhs (vh, eφ) = 0 ∀vh ∈ Hh,

b̃hs (eu, ψh)− cs(eφ, ψh) + bsf (ψh, ep) = 0 ∀ψh ∈ Qh,
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af (eσ, τh) + bf (τh, ep) = 0 ∀τh ∈ Zh,

bsf (eφ, qh) + bf (eσ, qh)− cf (ep, qh) = 0 ∀qh ∈ Qh,

which, together with the decompositions (5.9), implies that

ahs (χu,vh) + bhs (vh, χφ) = Fh1 (vh) ∀vh ∈ Hh,

b̃hs (χu, ψh)− cs(χφ, ψh) + bsf (ψh, χp) = Gh1 (ψh) ∀ψh ∈ Qh, (5.10)

af (χσ, τh) + bf (τh, χp) = Fh2 (τh) ∀τh ∈ Zh,

bsf (χφ, qh) + bf (χσ, qh)− cf (χp, qh) = Gh2 (qh) ∀qh ∈ Qh,

with

Fh1 (vh) := −ahs (ξu,vh)− bhs (vh, ξφ), Gh1 (ψh) := cs(ξφ, ψh)− b̃hs (ξu, ψh)− bsf (ψh, ξp),

Fh2 (τh) := −af (ξσ, τh)− bf (τh, ξp), Gh2 (qh) := cf (ξp, qh)− bsf (ξφ, qh)− bf (ξσ, qh).

Then, applying Theorem 4.1 to (5.10) we deduce that there exists C > 0, independent of λ and h,
such that

|||χu|||h + ‖χφ‖0,Ω + ‖χσ‖div,Ω + ‖χp‖0,Ω ≤ C(‖Fh1 ‖H′h + ‖Gh1‖Q′h + ‖Fh2 ‖Z′h + ‖Gh2‖Q′h). (5.11)

Now we proceed to bound the norms on the right-hand side of (5.11). We start by observing that
from the continuity of ahs and bhs (cf.(4.2) and (4.7), respectively), we obtain

‖Fh1 ‖H′h ≤ c1(|||ξu|||h + ‖ξφ‖0,Ω),

with c1 > 0 independent of λ and h. In turn, using again the continuity of bhs , together to the
continuity of cs and bsf (cf. (2.11)), it follows that

‖Gh1‖Q′h ≤ c2(λ−1‖ξφ‖0,Ω + λ−1‖ξp‖0,Ω + |||ξu|||h),

with c2 > 0 independent of λ and h. Next, to bound ‖Fh2 ‖Z′h we make us of the continuity of af and
bf (cf. (2.11)) to get

‖Fh2 ‖Z′h ≤ c3(‖ξσ‖div,Ω + ‖ξp‖0,Ω),

with c3 > 0 independent of λ and h. Finally, the continuity of cf , bsf and bf (cf. (2.11)) imply

‖Gh2‖Q′h ≤ c4(‖ξp‖0,Ω + λ−1‖ξφ‖0,Ω + ‖ξσ‖div,Ω), (5.12)

with c4 > 0 independent of λ and h. Therefore, from (5.11)–(5.12) we obtain that there exists C > 0,
independent of λ and h, such that

|||χu|||h+‖χφ‖0,Ω +‖χσ‖div,Ω +‖χp‖0,Ω ≤ C(|||ξu|||h+(1+2λ−1)‖ξφ‖0,Ω +‖ξσ‖div,Ω +(2+λ−1)‖ξp‖0,Ω),

which together to the fact that 1 + 2λ−1 and 2 + λ−1 can be seen as constants independent of λ if
λ→∞, concludes the proof. �

6 Numerical verification

We now provide a set of examples serving to illustrate convergence and locking-free properties of the
proposed method. In contrast with the computational implementation of conforming FVE schemes
(where only mass and source terms need to define matrix blocks that interact with the control volumes
in the dual meshes), our coupled DFV-MFE solver uses an explicit construction of the inter-mesh
projection map, as the associated interpolation matrix is used in the contributions due to strain and
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DoF h ‖u− uh‖0,Ω |||u− uh|||h ‖φ− φh‖0,Ω ‖σ − σh‖0,Ω ‖σ − σh‖div,Ω ‖p− ph‖0,Ω
error rate error rate error rate error rate error rate error rate

ν = 0.4

80 0.7810 0.0744 – 0.6926 – 3.6644 – 1.2167 – 2.3256 – 0.3773 –
177 0.5207 0.0619 0.45 0.5504 0.57 2.2433 0.69 0.9013 0.74 1.6331 0.87 0.2476 1.04
485 0.3124 0.0331 1.22 0.4091 0.58 1.1622 0.84 0.5755 0.88 0.9954 0.97 0.1456 1.04
1557 0.1736 0.0133 1.55 0.2559 0.79 0.5785 0.94 0.3296 0.94 0.5581 0.98 0.0799 1.02
5525 0.0919 0.0042 1.80 0.1409 0.94 0.3190 0.75 0.1767 0.98 0.2967 0.99 0.0421 1.01
20757 0.0473 0.0012 1.95 0.0734 0.98 0.1665 0.94 0.0914 0.99 0.1531 0.99 0.0217 1.00
80405 0.0240 0.0003 1.98 0.0374 0.99 0.0842 1.00 0.0465 0.99 0.0778 1.00 0.0110 1.00
316437 0.0121 0.0001 1.99 0.0189 1.00 0.0422 1.00 0.0234 1.00 0.0392 1.00 0.0055 1.00

ν = 0.495

80 0.7810 0.0834 – 0.6878 – 5.3694 – 1.2179 – 2.3261 – 0.3774 –
177 0.5207 0.0832 0.42 0.5843 0.50 2.4471 0.90 0.9020 0.75 1.6322 0.87 0.2479 1.03
485 0.3124 0.0466 1.53 0.4534 0.59 1.6185 0.64 0.5756 0.87 0.9938 0.97 0.1456 1.04
1557 0.1736 0.0191 1.61 0.2892 0.76 1.0467 0.65 0.3296 0.94 0.5568 0.98 0.0799 1.02
5525 0.0919 0.0062 1.77 0.1606 0.92 0.6353 0.79 0.1767 0.98 0.2959 0.99 0.0421 1.01
20757 0.0473 0.0017 1.96 0.0836 0.98 0.3675 0.83 0.0914 0.99 0.1526 0.99 0.0217 1.00
80405 0.0240 0.0004 2.05 0.0424 1.00 0.1955 0.93 0.0465 0.99 0.0775 1.00 0.0110 1.00
316437 0.0121 0.0001 1.94 0.0213 1.00 0.1051 0.95 0.0234 0.99 0.0391 1.00 0.0055 1.00

ν = 0.49999

80 0.7810 0.1243 – 0.6877 – 6.9456 – 1.2180 – 2.3262 – 0.3774 –
177 0.5207 0.0855 0.33 0.5884 0.39 4.8192 0.84 0.9021 0.74 1.6323 0.87 0.2479 1.03
485 0.3124 0.0480 1.12 0.4584 0.48 2.7653 0.93 0.5756 0.88 0.9938 0.97 0.1456 1.04
1557 0.1736 0.0198 1.51 0.2928 0.76 1.7567 0.92 0.3296 0.95 0.5568 0.98 0.0799 1.02
5525 0.0919 0.0065 1.74 0.1630 0.92 0.9291 0.75 0.1767 0.98 0.2959 0.99 0.0421 1.00
20757 0.0473 0.0019 1.91 0.0851 0.98 0.4892 0.86 0.0914 0.99 0.1526 0.99 0.0217 1.00
80405 0.0240 0.0005 2.01 0.0433 0.99 0.2657 0.86 0.0465 0.99 0.0775 1.00 0.0110 1.00
316437 0.0121 0.0001 2.01 0.0218 1.00 0.1632 0.74 0.0234 1.00 0.0391 1.00 0.0055 1.00

Table 1: Test 1. Error history for the DFV-MFE scheme (3.1)-(3.4) approximating the four-field
poroelasticity equations for different value of the elasticity parameters.

the off-diagonal bilinear forms bh1 (·, ·) and b̃h1 (·, ·). All operations involving matrix assembly and the
solution of linear systems using distributed Krylov solvers, were performed with an in-house code
based on the libraries Trilinos (www.trilinos.org) and OpenMPI (www.open-mpi.org), and primal
meshes were generated with GMSH [14].

Example 1: convergence test and locking. In order to experimentally confirm the error estimates
derived in Theorem 5.1 we consider a rectangular domain Ω = (0, 3/2)× (0, 1), where the boundaries
are split as Γu = {(x, y) : x = 0 or y = 1} and Γp = {(x, y) : x = 3/2 or y = 0}. We employ the
approach of manufactured solutions and propose the following closed form solutions to (2.1)-(2.4)

u =

(
−16x2(x− 1)2y(y − 1)(2y − 1) + x2

2Eλ

16y2(y − 1)2x(x− 1)(2x− 1) + y2

2Eλ

)
, p = x3 − y4, φ = p− λ divu, σ = −κ

η
(∇p− ρg).

These smooth functions are used to construct a body force f , a fluid source `, the non-homogeneous
Dirichlet pressure pΓ, and a non-homogeneous normal stress defined on Γp. The non-dimensional
model and discretisation parameters adopted in this test are chosen as follows: η = c0 = κ0 = 0.001,
α = ρ = θ = 1, κ(x) = κ0[1 + κ0 sin2(πx) cos2(πy)], g = (0,−1)T , γu = 1000, and γφ = 0.1. The
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0.11 0.220.00 0.33

U Magnitude

(a)

0.00 0.68 1.35-0.98 1.72

.

(b)

1.31 2.61 3.920.00 5.23

.

(c)

-0.31 0.36 1.04-0.99 1.71

.

(d)

Figure 2: Test 1. Approximate displacement magnitude (a), total pressure (b), fluid flux (c), and
fluid pressure (c); computed for µ = 33.44, λ = 3311.04, on a mesh with 33282 primal elements.

Young modulus is E = 100, whereas for the Poisson ratio we will consider three cases assigning ν = 0.4
(giving µ = 35.71, λ = 42.857) ν = 0.495 (with µ = 33.44, λ = 3311.04), and ν = 0.4999 (implying
µ = 33.333, λ = 1.666e4).

On a sequence of uniformly refined meshes we produce approximate solutions using the proposed
DFV-MFE method, and in Table 1 we collect errors computed in the norms suggested by the analysis
of Section 5, together with convergence rates calculated as

rate = log

(
e(·)
ê(·)

)
[log(h/ĥ)]−1,

where e, ê stand for errors generated by methods defined on meshes with meshsizes h, ĥ, respectively.
We can see that the error decay provides verification of the overall first order approximation anticipated
by our theoretical results, holding irrespectively of the value of λ. The converged solutions for the
intermediate value of the Poisson ratio, are displayed in Figure 2. The linear solves were performed
using the BiCGStab method.

Example 2: surface footing. We next address the numerical solution of a partial compression
problem in 3D. One seeks to determine the deformation as well as the undrained response of the fluid
(flux and pressure distribution) of a porous material when subject to a distributed boundary load of
magnitude 10000. The computational domain occupied by the porous medium is a box whose left,
right, back and front faces are defined by x = −100, x = 100, y = 100, y = −100, while the top and
bottom surfaces are defined by the parameterisation

t 7→ z(x, y, t) = 12 cos(0.01[x+ πy]) cos2(0.01[πx+ y]) +
1

4
t+

1

12
(0.01y − 1), t ∈ [−100, 100],

(see e.g. [16]). Its boundary is separated into ΩΓu and ΩΓp
. The former contains portions of the

boundary corresponding to the faces y = −100, y = 100 and x = 100, where we will prescribe zero
displacements u = 0 and zero normal fluid flux σ · n = 0. On the remainder of ∂Ω we set zero fluid
pressure pΓ = 0, and assume a non-homogeneous total normal stress

hΓ =

{
(10000, 0, 0)T if x = −100 and − 50 ≤ y ≤ 50,

0 otherwise,

imposed according to the condition (2µε(u)−φI) = hΓ, on ΩΓp
. In addition we consider a null source

f = 0, a constant fluid source ` = 0.01, the gravity force g = (0, 0,−9.8)T , Young and Poisson elastic
moduli E = 30000, ν = 0.475, storage and Biot-Willis coefficients c0 = 0.001, α = 0.1, permeability
of the porous matrix κ = 0.0001, fluid viscosity η = 0.01, and fluid density ρ = 500. The primal mesh
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(a) (b)

(c) (d)

Figure 3: Test 2. Deformation and filtration response of a porous block subjected to a normal
boundary force at one end. Displacement magnitude (a), total pressure distribution (b), fluid flux (c),
and fluid pressure (d).

contains 49152 tetrahedral elements and we take the penalisation parameters γu = 100, γφ = 1e− 5,
together with the symmetric version of the interior penalty method (i.e. θ = 1).

The obtained approximate solutions are depicted in Figure 3, and rendered on the deformed
domain. We also show the undeformed skeleton mesh in each panel. For this test (as well as for
test 4 below) we have used a GMRES solver with a tolerance of 1e-6, and preconditioned by an ILU
factorisation.

Example 3: loading of a cylindrical shell. For this test we study a transient problem where (2.4)
adopts the form

∂

∂t

[(
c0 +

α

λ

)
p− α

λ
φ

]
+ divσ = ` in Ω× (0, Tfinal), (6.1)

where t ∈ (0, T ) denotes the time variable and Tfinal > 0 is a given final time. As in [1] we consider
a 2D domain (a ring of external radius 1 and internal radius 0.5) representing the cross-section of a
cylindrical shell made of a deformable porous material. The outer circle will be considered as Γu so
we impose the domain to be clamped and the normal flux of the fluid pressure is zero. On the inner
circle, Γp, we impose a fixed fluid pressure pΓ = 1 and an effective solid stress

[2µε(u) + λ(divu)I]n = −(cos(θ), sin(θ))T ,

where θ is the second polar coordinate. This implies that the total traction load to impose at Γp
is −(cos(θ), sin(θ)) − pΓ. We assume the absence of gravitational forces, g = 0, and we take a zero
specific storage c0 = 0. Such a configuration is of particular importance as low values of the specific
storage have been reported to induce volumetric locking. As we will observe below, the proposed
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-0.10 0.27 0.63-0.46 1.00

.

(a)

0.24 0.48 0.720.04 1.00

.

(b)

0.25 0.50 0.750.00 1.00

.

(c)

Figure 4: Test 3. Transient loading of a cylindrical shell. Elevation plots according to the fluid
pressure computed with: a primal conforming piecewise linear approximation of solid displacement
and pressure (a), adding a model stabilisation −β∆

[
∂
∂tp
]

with β = h2/(4λ + 8µ) (b), and with the
proposed mixed-mixed formulation (c).

mixed-mixed formulation seems to completely remove any issues associated to c0 = 0. The remaining
model parameters take on the following values E = 10000, ν = 0.2, α = 1, κ = 1e−7, η = 1e−3. The
primal mesh contains 37084 triangular elements, and the time discretisation of the problem follows a
classical backward Euler scheme with a fixed timestep ∆t = 1e − 6. The stabilisation constants are
set as γu = 10, γφ = 0.1 and again we adopt a symmetric interior penalty method.

The model and methods in [1] suggest to incorporate a stabilisation term −β∆
[
∂
∂tp
]

on the left
hand side of (6.1), with β > 0 depending on the Lamé constants and the meshsize. We perform a
comparison against a conforming discretisation of the Biot consolidation problem formulated solely in
terms of solid displacement and fluid pressure, using piecewise linear and continuous Lagrange finite
elements for u and p, and incorporating β = h2/(4λ + 8µ). We observe that such a stabilisation
(targeted to eliminate oscillations near the inner boundary Γp) generates a marked smoothing of the
fluid pressure profile, which is not necessarily consistent with the expected physical behaviour. We
also mention that this stabilisation is actually not required in our mixed-mixed method, due to the
conservative character of the scheme and its suitability for handling discontinuities and high gradients.
The obtained results are displayed in Figure 4.

Example 4: two-layered porous material. We now simulate the drainage behaviour of a porous
region composed of two layers with different material properties determined by the discontinuous
Lamé moduli of dilation and shear, and the solid permeability

λ = µ =

{
1e4 in Ωbot,

1 in Ωtop,
, κ =

{
0.1 in Ωbot,

1e− 4 in Ωtop,

where Ω = (0, 1)3 = Ωbot ∪Ωtop with the two subdomains being separated by the plane z = 0.5. The
solid matrix in the upper domain is softer and less permeable than the material occupying the bottom
layer (see a similar test performed in [24]). The constants dictating the hydromechanical coupling
(that is, the specific storage and Biot-Willis parameter) are specified as c0 = 0.009, α = 1, and the
remaining data are η = 1, γu = 100, γφ = 0.01.

As in Example 2 above, the onset of motion and flow is induced by applying a normal surface load
on a part of the boundary. We now use a load of magnitude 5 applied on a disk of centre (1/4, 1/4, 1)
and radius 0.2, lying on the top lid. The remainder of the top face, together with the whole bottom
square and the faces x = 0 and y = 0 constitute Γp (where the fluid pressure is set to zero and the
fluid content is free to drain), whereas we assume that the two remaining lateral walls, defined by
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-4.0e-03 -2.0e-03 0.0e+00-5.7e-03 2.3e-03

.

(d)
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. Y

(e)
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. Z

(f)

1.0 2.0 3.0-0.1 3.9

.
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. Y
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-2.6 -1.3 0.0-3.8 1.4

. Z

(j)

0.99 1.97 2.96-0.15 3.79

.

(k)

Figure 5: Test 4. Deformation and filtration response of a two-layered medium. Sketch of the domain
configuration and boundary conditions (a), displacement magnitude (b), fluid flux (c); and snapshots
of each scalar field on the slice x = 0.25 (d-k).

x = 1 and y = 1, are completely rigid and impermeable (on this boundary part, Γu, we impose zero
displacements and zero normal fluid flux). The domain configuration and the boundary labels are
sketched in Figure 6. We took a uniform mesh having 345’600 tetrahedral elements in the primal
mesh, resulting in a linear system of 5’538’560 unknowns.

Snapshots of the solutions computed using the proposed DFV-MFE scheme are shown in Figure 5,
exhibiting a qualitative agreement with the results from [24]. In particular, the produced approxima-
tions do not present spurious oscillations in the computed total and fluid pressures, nor unphysically
small displacements. We can also observe that the pressure distributions form an interior boundary
layer, but these high gradients do not pollute the numerical approximation.

20



Conservative DFV-MFE methods for four-field poroelasticity Kumar et al.

Summary and concluding remarks. We have introduced a new mixed-mixed formulation for
linear elasticity using the total pressure and the fluid flux as additional mixed variables. The proposed
discretisation consisted on a combined discontinuous finite volume scheme for the displacement of the
solid skeleton, and a mixed finite element method approximating the remaining fields. The method
features conservativity, absence of spurious pressure oscillations, and locking free properties. We
have derived theoretical error estimates and have confirmed them experimentally through a series of
numerical tests in 2D and 3D.

As extensions of this work we foresee the development of suitable preconditioners and high-order
discretisations for displacements and total pressure. A further step would be to derive a posteriori
error estimates, focusing on the zones of fluid singularities and stress concentration [27]. We would
also like to investigate fractures and energy conservation aspects as recently addressed in [7], as well
as the generalisation of our theoretical and computational framework (presently confined to the linear
case) to the study of interface problems in the regime of finite strains. We finally mention that large
scale problems will require the design of suitable preconditioners, for which we can appeal to the
recent developments in e.g. [19].
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