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HYBRID ESSENTIALLY NON-OSCILLATORY SCHEMES FOR HYPERBOLIC

CONSERVATION LAWS

RAIMUND BÜRGERA AND DAVID ZORÍOB,∗

Abstract. A novel family of high-order shock-capturing schemes is defined by combining high-
order and low-order (first-order) reconstructions of numerical fluxes through a single non-linear,
scale-independent and non-dimensional weight. This weight is designed to attain the desired or-
der of accuracy near smooth data and to reduce the scheme to first order near discontinuities,
and involves a tuning parameter that introduces a degree of tolerance towards high gradients. The
resulting hybrid essentially non-oscillatory (HENO) reconstruction is easy to implement on unstruc-
tured meshes and is computationally cheap, especially on uniform meshes, in which the number of
operations grows linearly with respect to the order. Numerical experiments for solving hyperbolic
conservation laws with discontinuous solutions in one and two space dimensions illustrate that if the
tuning parameter of HENO reconstructions is chosen properly, then a scheme of this type attains
similar or even better results than weighted essentially non-oscillatory (WENO) schemes of the
same formal order of accuracy, but does so at a lower computational cost.

1. Introduction

1.1. Scope. High-order shock-capturing schemes are widely used to approximate discontinuous
solutions of hyperbolic conservation laws. One of the most successful techniques to achieve such
goal are the well-known weighted essentially non-oscillatory (WENO) reconstruction techniques
[9] to obtain high-order approximations of numerical fluxes, for instance in the context of finite
difference [11,12] and finite volume schemes [5].

These techniques are based on the construction of nonlinear weights in such a way that the
oscillatory behaviour near discontinuities is avoided. These oscillations are caused by the usage of
high-order polynomials near data with abrupt changes. Such weights have been redesigned in the
literature, most notably by Jiang and Shu [8] who redesigned the non-linear weights in such a way
that the optimal order of accuracy was achieved on smooth zones. Later improvements of the order
of accuracy near critical points and of the resolution near discontinuities include [3, 6, 15,16].

It is the purpose of the present work to introduce a simplification of traditional WENO methods.
While these methods employ multiple weights conveniently designed to obtain an optimal-order con-
vex combination of interpolation polynomials near smooth zones and an essentially non-oscillatory
behaviour near discontinuities, we herein define one single weight that directly acts as a “switch”
between the optimal-order reconstruction polynomial and a low-order (first-order) reconstruction.
The resulting method will be addressed as “Hybrid Essentially Non-Oscillatory (HENO) method.”
This contribution is partly motivated by a comment by Borges et al. [3], where the authors in-
troduce WENO-Z schemes and in their conclusion state [3, p. 3210]: “Our analysis also indicated
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2 BÜRGER AND ZORÍO

that the improvements obtained by the mapped WENO over the classical scheme when solving
problems with shocks are not due to its superior accuracy at critical points of the solutions, but to
the larger weights it assigns to stencils with discontinuities. Similarly, the new WENO scheme as-
signs even larger weights to discontinuous stencils, obtaining solutions that are sometimes sharper,
although its rate of convergence at critical points is intermediary between those schemes.” We
herein take to an extreme this consideration and design a weight with a tuning parameter allowing
reconstructions with optimal order almost everywhere, in the sense that this weight will favour the
low-order reconstruction near sharp discontinuities only; moreover, we will show that in that case it
is sufficient to limit the scheme to first order to achieve desirable results, as long as the high-order
reconstructions are predominant near smooth zones or smeared discontinuities.

1.2. Outline of this paper. The remainder of the paper is organized as follows. In Section 2 the
HENO approach is presented. Although we focus on numerical experiments with finite-difference
methods for hyperbolic conservation laws on Cartesian grids, we introduce in Section 2.1 arbitrary
(non-uniform) grids, and present in Section 2.2 the general HENO approach for arbitrary grids and
any type of reconstruction (both from cell averages and from point values), since this generality
does not lead to any additional difficulty. Section 2.2 also contains the main theoretical result,
Theorem 2.1 and its proof, which states the accuracy properties of the HENO reconstruction that
for data taken from a sufficiently smooth function. The corresponding algorithm is summarized in
Section 2.3. In Section 2.4 we outline the HENO reconstruction for a uniform grid, for which some
of the terms appearing in the general non-uniform case can be simplified. Section 3 is devoted to
a series of numerical experiments in which HENO schemes are compared in terms of accuracy and
efficiency with some common WENO methods in the context of hyperbolic conservation laws. In
Example 1 (Section 3.1) the HENO reconstruction is applied to a linear advection equation with
known exact smooth solution to verify that the observed order of accuracy is consistent with the
theoretical analysis. Section 3.2 presents results for the Shu-Osher problem of the one-dimensional
(1D) Euler equations of gas dynamics (Example 2), including a study of the effect of the variation
of the HENO design parameter and a comparison between third- and fifth-order HENO and WENO
schemes. In Section 3.3 we consider the Sod shock tube problem for the 1D Euler equations of
gas dynamics (Example 3), with a focus on comparison between third- and fifth-order HENO and
WENO schemes. Section 3.4 presents similar results for the Lax shock tube problem for the 1D
Euler equations of gas dynamics (Example 4). Sections 3.5 and 3.6 (Examples 5 and 6) are devoted
to the 2D Euler equations of gas dynamics. Results are presented for the scenarios of Double Mach
reflection and of a Riemann problem. Finally, conclusions are collected in Section 4.

2. Hybrid Essentially Non-Oscillatory (HENO) reconstructions

2.1. Preliminaries. Consider a stencil of R cells, obtained by the interfaces

xi−1/2,h = z + ci−1/2h, z, ci−1/2 ∈ R, ci−1/2 < cj−1/2 if i < j, 0 ≤ i ≤ R. (2.1)

within a not necessarily equidistant grid on R.
Let ci := 1

2(ci−1/2 + ci+1/2), and denote by xi,h := z + cih, 0 ≤ i ≤ R − 1, the corresponding
cell centers. Let f : D → R be function with [x−1/2,h, xR−1/2,h] ⊆ D, and we wish to apply the
reconstruction either to point values

fi,h := f(xi,h), 0 ≤ i ≤ R− 1, (2.2)
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or to cell averages

fi,h :=
1

xi+1/2,h − xi−1/2,h

∫ xi+1/2,h

xi−1/2,h

f(x) dx, 0 ≤ i ≤ R− 1. (2.3)

We denote by pR the unique interpolating polynomial of degree at most R− 1 that satisfies either

pR(xi,h) = fi,h, 0 ≤ i ≤ R− 1 (2.4)

for reconstructions from point values (2.2) or

1

xi+1/2,h − xi−1/2,h

∫ xi+1/2,h

xi−1/2,h

pR(x) dx = fi,h, 0 ≤ i ≤ R− 1 (2.5)

for reconstructions from cell averages (2.3). If we wish to approximate f at a given point x∗ ∈ D,
then if f ∈ CR, then there holds pR(x∗) = f(x∗) +O(hR) as h→ 0.

2.2. General HENO approach. We define a non-linear and data-dependent weight to hybridize
the reconstruction, keeping the high order near smooth zones and turning to first order near dis-
continuities. To this end, we define terms that measure smoothness. Let

r = b(R− 1)/2c, s = R− 1− 2r. (2.6)

We then define the two one-sided smoothness indicators

IL
R :=

r−1∑
i=0

(
fi+1,h − fi,h
ci+1 − ci

)2

and IR
R :=

R−2∑
i=r+s

(
fi+1,h − fi,h
ci+1 − ci

)2

(2.7)

that correspond to the left and the right part of the stencil, respectively. Now, the square of the
undivided difference of maximum order is defined by

τR :=
(
f [x0,h, . . . , xR−1,h]

)2
, (2.8)

which is obtained inductively through the recurrence

f [xi,h] = fi,h,

f [xi,h, . . . , xj,h] =
f [xi+1,h, . . . , xj,h]− f [xi,h, . . . , xj−1,h]

cj − ci
.

(2.9)

The weight with hybridization parameter λ ∈ [0, 1] is then given by

ωλ :=
λ(IL

RI
R
R + ε)

λIL
RI

R
R + (1− λ)(IL

R + IR
R)τR + ε

, (2.10)

where ε > 0 is a small quantity to prevent divisions by zero if the data is constant or nearly
constant. (In our numerical experiments we will take ε = 10−100.)

The low-order reconstruction consists in taking the closest value of the data from the stencil with
respect to the extrapolation point. Namely, we choose fi0,h, where

i0 := argmin
0≤i≤R−1

|xi,h − x∗|. (2.11)

The HENO reconstruction is then defined by

qR(x∗) := ωλpR(x∗) + (1− ωλ)fi0,h. (2.12)
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Remark 2.1. The parameter λ is a term which polarizes the weight ωλ towards zero as λ → 0+

(and thus, polarizing qR(x∗) towards fi0,h) and polarizes the weight ωλ towards one as λ → 1−

(therefore, polarizing qR(x∗) towards pR(x∗)). The limiting case λ = 0 leads to ωλ = 0 regardless
of the data, and thus qR(x∗) = fi0,h. On the other hand, if λ = 1, then ωλ = 1 regardless of the
data, and hence qR(x∗) = pR(x∗).

Definition 2.1. Let κ ∈ N, f ∈ Cκ+1 and z ∈ R. We say that z is a critical point of order κ of f
if f (s)(z) = 0 for 1 ≤ s ≤ κ and f (κ+1)(z) 6= 0.

The accuracy properties are next analyzed.

Theorem 2.1. For any λ ∈ [0, 1], there holds 0 ≤ ωλ ≤ 1.
Furthermore, if f ∈ CR with a critical point of order κ at z, then for 0 < λ ≤ 1 there holds

qR(x∗) =

{
f(x∗) +O(hR) if κ < R− 2− β,

f(x∗) +O(hκ+1) if κ ≥ R− 2− β,

where β = 1 if R = 4 and β = 0 otherwise. On the other hand, if a discontinuity crosses the data
of the stencil from which f is sampled and 0 ≤ λ < 1, then qR(x∗) = f(x∗) +O(h).

Proof. Clearly, there holds

0 ≤ ωλ =
λ(IL

RI
R
R + ε)

λIL
RI

R
R + (1− λ)(IL

R + IR
R)τR + ε

≤
λIL

RI
R
R + λε

λIL
RI

R
R + ε

≤ 1.

For simplicity, we now drop the role of ε.
Let us first assume that the stencil is smooth. Then for 3 ≤ R ≤ 4, the one-sided smoothness

indicators (2.7) are given by IL
R = (f1,h − f0,h)2 and IR

R = (fR−1,h − fR−2,h)2. For κ = 0, there hold
IL
R = O(h2) and IR

R = O(h2) as h→ 0. Consequently,

ωλ =
λIL

RI
R
R

λIL
RI

R
R + (1− λ)(IL

R + IR
R)τR

=
1

1 +
1− λ
λ

IL
R + IR

R

IL
RI

R
R

τR

(2.13)

implies that

ωλ =
1

1 +
1− λ
λ

O(h2) +O(h2)

O(h2)O(h2)
O(h2R−2)

=
1

1 +
1− λ
λ
O(h2R−4)

= 1−O(h2R−4),

and therefore

qR(x∗) = ωλpR(x∗) + (1− ωλ)fi0,h = ωλ
(
f(x∗) +O(hR)

)
+ (1− ωλ)

(
f(x∗) +O(h)

)
= f(x∗) + ωλO(hR) + (1− ωλ)O(h) = f(x∗) +

(
1−O(h2R−4)

)
O(hR) +O(h2R−4)O(h)

= f(x∗) +O(hR) +O(h2R−3) = f(x∗) +O(hR),

where the last equality holds since 2R− 3 ≥ R for R ≥ 3.
Let us now assume R > 4 with κ < R− 2. Then, by the arguments of [2, Lemma 3], there hold

IL
R = O(h2κ+2) and IR

R = O(h2κ+2), hence from (2.13) we now get

ωλ =
1

1 +
1− λ
λ

O(h2κ+2) +O(h2κ+2)

O(h2κ+2)O(h2κ+2)
O(h2R−2)

=
1

1 +
1− λ
λ
O(h2R−2κ−4)

= 1−O(h2R−2κ−4).
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Therefore,

qR(x∗) = ωλpR(x∗) + (1− ωλ)fi0,h = ωλ
(
f(x∗) +O(hR)

)
+ (1− ωλ)

(
f(x∗) +O(hκ+1)

)
= f(x∗) + ωλO(hR) + (1− ωλ)O(hκ+1)

= f(x∗) +
(
1−O(h2R−2κ−4)

)
O(hR) +O(h2R−2κ−4)O(hκ+1)

= f(x∗) +O(hR) +O(h2R−κ−3) = f(x∗) +O(hR),

where the last equality holds since by assumption κ < R− 2, and thus 2R− κ− 3 ≥ R.
The final case for the assumption of smoothness concerns the case κ ≥ R− 2 and κ ≥ R− 3 for

R = 4. In this case, the weight ωλ does not necessarily converge to 1, and thus the only result that
can be concluded is

qR(x∗) = ωλpR(x∗) + (1− ωλ)fi0,h

= ωλ
(
f(x∗) +O(hmax{R,κ+1})

)
+ (1− ωλ)

(
f(x∗) +O(hκ+1)

)
= f(x∗) + ωλO(hmax{R,κ+1}) + (1− ωλ)O(hκ+1) = f(x∗) +O(hκ+1).

Finally, let us assume that a discontinuity crosses the data. Then, since the one-sided smoothness
indicators are computed on non-overlapping zones, one has either IL

R = O(1) and IR
R = O(h2) (if the

discontinuity crosses the first half of the stencil) or IL
R = O(h2) and IR

R = O(1) (if the discontinuity
crosses the second half side of the stencil). In both cases, there hold IL

R + IR
R = O(1), τR = O(1)

and IL
RI

R
R = O(h2). Therefore (2.13) now implies that

ωλ =
1

1 +
1− λ
λ

O(1)O(1)

O(h2)

=
1

1 +
1− λ
λ
O(h−2)

= 1−O(h2),

hence

qR(x∗) = ωλpR(x∗) + (1− ωλ)fi0,h = O(h2)O(1) +
(
1−O(h2)

)(
f(x∗) +O(h)

)
= f(x∗) +O(h).

This concludes the proof. �

Remark 2.2. Theorem 2.1 implies that the cases in which the accuracy of the hybrid scheme drops
below the optimal accuracy order, R, are κ = R−2 for R 6= 4, in which the accuracy drops to order
R− 1, and 1 ≤ κ ≤ 2 for R = 4, where the accuracy drops to order 2 and 3, respectively.

2.3. Summary of the algorithm. The steps of the HENO reconstruction algorithm are summa-
rized below.

Input: nodes xi−1/2,h given by (2.1), nodal values fi,h given either as point values (2.2) or cell
averages (2.3), reconstruction point x∗, hybridization parameter λ ∈ [0, 1], and ε > 0.

(1) Compute the reconstruction polynomial pR associated to the whole data from the stencil,
and evaluate it at x∗. The polynomial pR is supposed to satisfy either (2.4) for reconstruc-
tions from point values or (2.5) for reconstructions from cell averages.

(2) Find the nodal value fi0,h corresponding to the node closest to x∗, where the index i0
satisfies (2.11).

(3) Compute the left and right smoothness indicators IL
R and IR

R given by (2.6) and (2.7).
(4) Compute the square of the undivided difference of maximum order τR defined by (2.8)

and (2.9).
(5) Obtain the weight ωλ with hybridization parameter λ from (2.10).
(6) Compute the hybrid reconstruction qR(x∗) from (2.12).

Output: HENO reconstruction: qR(x∗).



6 BÜRGER AND ZORÍO

2.4. HENO reconstruction on uniform meshes with 2r−1 nodes. We assume that the grid
is now composed of 2r − 1 nodes of the form xi,h = z + (c + i)h, −r + 1 ≤ i ≤ r − 1, with c ∈ R.
These nodes represent cell centers. If we assume, for instance, right-biased reconstructions at the
cell interface x1/2, then i0 = 0, i.e., we can choose as the closest node the central one, that is x0,h,
with the corresponding nodal value f0,h. Then p2r−1(x1/2) can be computed as a linear combination
of fi,h with constant coefficients in both cases of reconstruction from point values and cell averages,
as we describe next in the algorithm steps.

Input: nodal values fi,h, −r + 1 ≤ i ≤ r − 1, hybridization parameter λ ∈ [0, 1], and ε > 0.

(1) Compute p2r−1(x1/2), which can be written as

p2r−1(x1/2) =
r−1∑

i=−r+1

αifi,h, where αi :=
(−1)i−1r

24r−3(2i− 1)

(
2r

r

)(
2r − 2

i+ r − 1

)
fi,h,

in the case of reconstructions from point values and

αi :=


−
(

2r − 1

r − 1

)−1 r∑
j=−i+1

(−1)j

j

(
2r − 1

r − 1 + j

)
for i ≤ 0,

−
(

2r − 1

r − 1

)−1 r−1∑
j=i

(−1)j

j

(
2r − 1

r − 1− j

)
for i > 0

in the case of reconstructions from cell averages [1, Proposition 1].
(2) Compute the left and right smoothness indicators

IL
2r−1 =

0∑
i=−r+1

(fi+1,h − fi,h)2, IR
2r−1 =

r−1∑
i=0

(fi+1,h − fi,h)2.

(3) Compute the square of the undivided difference of maximum order. We here obtain

τ2r−1 =

(
r−1∑

i=−r+1

(−1)i−r+1

(
2r − 2

i+ r − 1

)
fi,h

)2

.

(4) Obtain the weight ωλ with hybridization parameter λ. Here we get

ωλ =
λ(IL

2r−1I
R
2r−1 + ε)

λIL
2r−1I

R
2r−1 + (1− λ)(IL

2r−1 + IR
2r−1)τ2r−1 + ε

.

(5) Compute the hybrid reconstruction q2r−1(x1/2) = ωλp2r−1(x1/2) + (1− ωλ)f0,h.

Output: HENO reconstruction: q2r−1(x1/2).

3. Numerical experiments

The hybrid scheme combines a low order scheme, based on first-order reconstructions (case
λ = 0), with a linear high-order scheme, based on reconstructions of order 2r − 1 (case λ = 1).
As it has been shown when 0 < λ < 1, the resulting scheme is formally speaking a high-order
one (because λ > 0), while having non-oscillatory properties near discontinuities (because λ < 1).
However, it is expected that the closer to zero λ is chosen, the less sharp the numerical solution will
become, while the closer to one λ is chosen, the sharper its resolution will become. Nonetheless,
one must be careful in the latter case, since the closer the parameter λ is to 1, the greater is the risk
of appearance of osillations near discontinuities. Despite that consideration, we will see that the
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JS-WENO5 YC-WENO5 HENO5, λ = 0
‖ · ‖1 ‖ · ‖∞ ‖ · ‖1 ‖ · ‖∞ ‖ · ‖1 ‖ · ‖∞

N Err. O Err. O Err. O Err. O Err. O Err. O
20 3.56e-04 — 6.85e-04 — 3.27e-05 — 5.16e-05 — 1.25e-01 — 1.94e-01 —
40 1.09e-05 5.03 2.37e-06 4.86 1.01e-06 5.01 1.60e-06 5.01 6.98e-02 0.84 1.09e-01 0.83
80 3.31e-07 5.04 7.02e-08 5.08 3.15e-08 5.01 4.94e-08 5.01 3.70e-02 0.92 5.80e-02 0.91
160 1.03e-08 5.00 2.21e-09 4.99 9.79e-10 5.01 1.54e-09 5.01 1.90e-02 0.96 2.99e-02 0.96
320 3.22e-10 5.00 6.65e-11 5.06 3.05e-11 5.00 4.79e-11 5.00 9.67e-03 0.98 1.52e-02 0.98
640 1.01e-11 5.00 2.02e-12 5.04 9.53e-13 5.00 1.50e-12 5.00 4.87e-03 0.99 7.65e-03 0.99

HENO5, λ = 0.5 HENO5, λ = 0.9 HENO5, λ = 1
‖ · ‖1 ‖ · ‖∞ ‖ · ‖1 ‖ · ‖∞ ‖ · ‖1 ‖ · ‖∞

N Err. O Err. O Err. O Err. O Err. O Err. O
20 1.12e-03 — 2.41e-03 — 1.27e-04 — 3.90e-04 — 3.27e-05 — 5.16e-05 —
40 2.06e-05 5.76 9.42e-05 4.68 2.17e-06 5.88 1.15e-05 5.09 1.01e-06 5.01 1.60e-06 5.02
80 2.95e-07 6.13 2.55e-06 5.21 4.57e-08 5.57 3.14e-07 5.19 3.15e-08 5.01 4.94e-08 5.01
160 4.49e-09 6.04 6.45e-08 5.30 1.13e-09 5.33 8.46e-09 5.21 9.79e-10 5.01 1.54e-09 5.01
320 7.77e-11 5.85 1.70e-09 5.25 3.20e-11 5.15 2.31e-10 5.20 3.05e-11 5.00 4.79e-11 5.00
640 1.56e-12 5.64 4.41e-11 5.27 9.66e-13 5.05 6.22e-12 5.21 9.53e-13 5.00 1.50e-12 5.00

Table 1. Example 1 (linear advection equation): fifth-order schemes.

optimal parameters of λ seem to be values very close to 1, in which the essentially non-oscillatory
properties are still attained while acting like a genuine scheme of order 2r − 1.

In fact, we will see that these optimal values of λ are valid for any experiment for a scheme of
fixed order, and therefore once it is properly tuned, there is no need to tune it again for different
problems. Moreover, we will also see that that a HENO scheme of order r attains similar results
than a WENO scheme of order 2r − 1, having thus a heavy impact in terms of computational
efficiency. In these cases, the error will be computed in density using the L1-norm, ‖ · ‖1, through
reference solutions computed on a fine mesh.

In all the numerical experiments we denote N = `/h, where ` is length of the domain interval.

3.1. Example 1: linear advection equation. We consider first the linear advection equation
ut + ux = 0 with a smooth initial condition u0(x) = 0.25 + 0.5 sin(πx) such that the periodic exact
solution is given by u(x, t) = 0.25 + 0.5 sin(π(x − t)). We simulate up to final time T = 1 and
compare the results obtained by the fifth-order JS-WENO and YC-WENO schemes with those
obtained by the HENO reconstruction with several values of the hybridization parameter, namely
λ ∈ {0, 0.5, 0.9, 1}, where we recall that λ = 0 and λ = 1 correspond to the first-order scheme
and the formal fifth-order scheme, respectively. In this example, the fifth-order approximate Lax-
Wendroff scheme [17] is used for the time discretization. For Example 1, the results, shown in
Table 1, are consistent with the theoretical result (see Section 2.2) stating that for 0 < λ ≤ 1 the
resulting scheme has order 2r − 1, while the accuracy drops to first order when λ = 0.

3.2. Example 2: 1D Euler equations of gas dynamics, Shu-Osher problem. The 1D
Euler equations of gas dynamics are given by ut + f(u)x = 0 for u = (ρ, ρv,E)T and f(u) =
(ρv, p+ρv2, v(E+p))T, where ρ is the density, v is the velocity, E is the specific energy and p is the
pressure of the gas. The partial differential equations are complemented by the equation of state

p = (γ − 1)

(
E − 1

2
ρv2

)
,
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Figure 1. Example 2a (Shu-Osher problem, 1D Euler equations of gas dynamics):
(a) numerical solution with N = 400 at T = 1.8 produced by third-order HENO
schemes with several values of λ, (b) corresponding weights ωλ, (c) weights ωλ cor-
responding to fifth-order HENO schemes for the same scenarios (numerical solution
not shown here).

where γ is the adiabatic constant that will be taken as γ = 1.4. The spatial domain is Ω := (−5, 5),
and the initial condition is

(ρ, v, p)(x, 0) =


(

27

7
,
4
√

35

9
,
31

3

)
if x ≤ −4,(

1 +
1

5
sin(5x), 0, 1

)
if x > −4,

stipulates the interaction of a Mach 3 shock with a sine wave and is complemented with left inflow
and right outflow boundary conditions. We run the simulation until T = 1.8 and compare the
schemes with a reference solution computed with a resolution of N = 16000. In this example and
the remaining ones we will use a third order Runge-Kutta TVD for the time discretization, with a
Donat-Marquina flux splitting formula for spatial reconstructions [4].

Example 2a: third-order HENO schemes with several values of λ. We start with a test involving
third-order HENO-schemes with several values of λ, and with a resolution of N = 400 points. The
numerical solutions and an efficiency plot provided in Figures 1 and 2 and 3 (a), respectively. These
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Figure 2. Example 2a (Shu-Osher problem, 1D Euler equations of gas dynamics):
enlarged views of parts of the numerical solution of Figure 1 (a).

results indicate that HENO schemes allow values of λ very close to one. In fact, the overshoot near
the shock seems to appear in the transition between λ = 0.99 and λ = 0.999 (since it does not
appear for λ = 0.99 but can be clearly appreciated for λ = 0.999). On the other hand, there
is a clear relationship between the efficiency of the schemes and the (prudential) closeness of the
parameter λ to one. In addition, we depict the values of the weights ωλ for different λ values both
for HENO3 and HENO5 schemes in Figures 1 (b) and (c), respectively. The results show that the
weights are close to one on smooth zones, drops to values close to zero near singularities (yielding
the non-oscillatory behaviour), as well as a remarkable accuracy loss near critical points (κ = 1) in
the case of HENO3 schemes, while being kept by HENO5 in the same regions, which is consistent
with the results drawn in Theorem 2.1.

Example 2b: Comparison between third- and fifth-order HENO and WENO schemes. We now fix
λ = 0.995 for both third- and fifth-order HENO schemes and compare the results produced by
both schemes with those generated by the corresponding four WENO schemes resulting from the
combination of third and fifth order with the Jiang-Shu and Yamaleev-Carpenter weight design.
The numerical results are depicted in Figure 4, and the efficiency (numerical error versus CPU
time) is plotted in Figure 3 (b). The results show that with our parameter choice, the third-order
HENO schemes have better resolution and, in fact, efficiency, than their corresponding WENO
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Figure 3. Examples 2a and 2b (Shu-Osher problem, 1D Euler equations of gas
dynamics): efficiency (for approximation of the solution at T = 1.8) of the schemes
(a) of Example 2a, (b) of Example 2b.

counterparts. Moreover, they are more efficient than fifth-order JS-WENO scheme and even fifth-
order YC-WENO scheme on fine resolutions. Furthermore, we can observe that the fifth-order
HENO scheme is clearly the most efficient among all the schemes.

3.3. Example 3: 1D Euler equations of gas dynamics, Sod shock tube problem. We
continue with 1D Euler equations of gas dynamics on Ω = (0, 1) with the initial condition

(ρ, v, p)(x, 0) =

{
(1, 0, 1) if x ≤ 0.5,

(0.125, 0, 0.1) if x > 0.5,

and left and right Dirichlet boundary conditions corresponding to the shock tube problem proposed
by Sod [13]. We run the simulation until T = 0.1 with a resolution of N = 200 points and compare
the third- and fifth-order HENO schemes (with λ = 0.9925 and λ = 0.995, respectively) with
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Figure 4. Example 2b (Shu-Osher problem, 1D Euler equations of gas dynamics):
(a) numerical solution with N = 400 at T = 1.8 produced by several WENO and
HENO schemes, (b), (c), (d): enlarged views.

their corresponding JS-WENO and YC-WENO counterparts. The numerical results are depicted
in Figures 5 (a) to (d). An efficiency comparison is presented in Figure 5 (d). It appears that
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Figure 5. Example 3 (Sod shock tube problem, 1D Euler equations of gas dynam-
ics): (a) numerical solution with N = 200 at T = 0.1 produced by several WENO
and HENO schemes, (b), (c), (d): enlarged views, (e) efficiency plot.

in this case the schemes with less numerical viscosity (YC-WENO5 and HENO5, the latter with
λ = 0.995) suffer from overshooting at the left of the contact, which aggravates as such numerical
viscosity decreases. Thus, HENO5 is the scheme that presente more overshooting. As for the
efficiency, we can observe that HENO schemes of both third- and fifth-order accuracy are slightly
more efficient than all the WENO schemes used in this simulation.
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Figure 6. Example 4 (Lax shock tube problem, 1D Euler equations of gas dynam-
ics): (a) numerical solution with N = 200 at T = 0.16 produced by several WENO
and HENO schemes, (b), (c), (d): enlarged views, (e) efficiency plot.

3.4. Example 4: 1D Euler equations of gas dynamics, Lax shock tube problem. Again
for the 1D Euler equations of gas dynamics on Ω = (0, 1), we now consider the initial condition

(ρ, v, p)(x, 0) =

{
(0.445, 0.69887, 3.5277) if x ≤ 0.5,

(0.5, 0, 0.571) if x > 0.5,



14 BÜRGER AND ZORÍO

Order/Scheme JS-WENO YC-WENO HENO
3 5.11 5.17 5.08
5 6.59 6.80 5.76
7 8.86 8.63 6.40
9 10.68 10.74 7.04

Table 2. Example 5 (Double Mach reflection, 2D Euler equations of gas dynamics):
average CPU cost per iteration (seconds).

and left and right Dirichlet boundary conditions. We run a simulation until T = 0.16 and with a
resolution of N = 200 points and perform the same comparisons than the previous example, using
the same parameters λ for the HENO schemes. The numerical results are shown in Figures 6 (a)
to (d) and the efficiency comparison is depicted in Figure 6 (e). We gain observe an overshoot
to the right of the contact discontinuity, howeever this is less pronounced than in Example 3. It
is again the scheme with smaller numerical viscosity, HENO5, for which the overshoot starts to
become appreciable. This overshoot is reduced if the parameter λ is reduced accordingly. As
for the efficiency plot, the results are similar as the previous example, except the fact that now
YC-WENO5 is slightly more efficient than HENO3 with the chosen parameters.

3.5. Example 5: 2D Euler equations of gas dynamics, Double Mach reflection. The
two-dimensional Euler equations for inviscid gas dynamics are given by

ut + f1(u)x + f2(u)y = 0,

with

u =


ρ
ρvx

ρvy

E

 , f1(u) =


ρvx

p+ ρ(vx)2

ρvxvy

vx(E + p)

 , f2(u) =


ρvy

ρvxvy

p+ ρ(vy)2

vy(E + p)

 .

Here ρ is the density, (vx, vy) is the velocity, E is the specific energy, and p is the pressure that is
given by the equation of state

p = (γ − 1)

(
E − 1

2
ρ((vx)2 + (vy)2)

)
,

where the adiabatic constant is again chosen as γ = 1.4. This experiment uses these equations to
model a vertical right-going Mach 10 shock colliding with an equilateral triangle. By symmetry,
this is equivalent to a collision with a ramp with a slope of 30◦ with respect to the horizontal line.
For sake of simplicity, we consider the equivalent problem in a rectangle, consisting in a rotated
shock, whose vertical angle is 30◦. The domain is the rectangle Ω = [0, 4] × [0, 1], whose initial
conditions are

(ρ, vx, vy, E)(x, y, 0) =

{
c1 = (ρ1, v

x
1 , v

y
1 , E1) if y ≤ 1/4 + tan(π/6)x,

c2 = (ρ2, v
x
2 , v

y
2 , E2) if y > 1/4 + tan(π/6)x,

c1 =
(
8, 8.25 cos(π/6),−8.25 sin(π/6), 563.5

)
, c2 = (1.4, 0, 0, 2.5).

We impose inflow boundary conditions, with value c1, at the left side, {0}× [0, 1], outflow boundary
conditions both at [0, 1/4] × {0} and {4} × [0, 1], reflecting boundary conditions at (1/4, 4] × {0}
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Figure 7. Example 5 (Double Mach reflection, 2D Euler equations of gas dynamics).

and inflow boundary conditions at the upper side, [0, 4]×{1}, which mimics the shock at its actual
traveling speed:

(ρ, vx, vy, E)(x, 1, t) =

{
c1 if x ≤ 1/4 + (1 + 20t)/

√
3,

c2 if x > 1/4 + (1 + 20t)/
√

3.

(Further details about this problem can be found in [14].) We run simulations until T = 0.2 at
a resolution of 2048 × 2048 grid points with the same schemes as the 1D examples, using in this
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Order/Scheme JS-WENO YC-WENO HENO
3 24.35 23.69 24.12
5 30.25 30.39 26.89
7 40.12 38.72 30.08
9 46.88 47.49 32.38

Table 3. Example 6 (Riemann problem, 2D Euler equations of gas dynamics):
average CPU cost per iteration (seconds).

case a parameter of λ = 0.99 for HENO3 and λ = 0.9975 for HENO5. The results are shown in
Figure 7 and the computational cost associated to one time iteration is shown in Table 2 for all the
combinations of schemes from orders 3 to 9. The results show that HENO3 scheme with λ = 0.99
has a similar resolution than a JS-WENO5 scheme, moreover with a lower computational cost. It
is not possible to run simulations with significantly higher λ values (for instance, λ = 0.9925), since
in this case this choice leads to negative physical quantities, yielding a blow-up of the simulation.
As for the HENO5 scheme with λ = 0.9975, it can be observed that its resolution is slightly higher
than YC-WENO5 and with less computational cost. We also see in the last two rows of the Table
2 that the benefits in terms of the lower computational costs of HENO schemes comparated to
WENO schemes is even more remarkable for higher-order schemes. This is consistent with the fact
that HENO schemes on uniform meshes have a linear increase of the computational cost as the
order increases, whereas WENO schemes have a cubic increase of computational cost as the order
increases.

3.6. Example 6: 2D Euler equations of gas dynamics, Riemann. Finally, we solve numeri-
cally a Riemann problem for the 2D Euler equations on the domain (0, 1)2. Riemann problems for
2D Euler equations were first studied in [10]. The initial data is taken from [7, Sect. 3, Config. 3]:

u(x, y, 0) =
(
ρ(x, y, 0), ρ(x, y, 0)vx(x, y, 0), ρ(x, y, 0)vy(x, y, 0), E(x, y, 0)

)T
and 

ρ(x, y, 0)
vx(x, y, 0)
vy(x, y, 0)
p(x, y, 0)


T

=


(1.5, 0, 0, 1.5) for x > 0.5, y > 0.5,

(0.5323, 1.206, 0, 0.3) for x ≤ 0.5, y > 0.5,

(0.138, 1.206, 1.206, 0.029) for x ≤ 0.5, y ≤ 0.5,

(0.5323, 0, 1.206, 0.3) for x > 0.5, y ≤ 0.5,

with the same equation of state as in the previous test. The simulation is run until T = 0.3 at
a resolution of 2048 × 2048 grid points using the same combination of schemes as in the previous
example, where λ = 0.9975 is used for HENO3 scheme and λ = 0.9995 for HENO5 scheme, since
in this case the problem allows schemes with much less numerical viscosity than the previous one.
The results are depicted in Figure 8 and a comparison of the numerical cost of each time iteration
is shown in Table 3

From the numerical results we can conclude that again HENO3 with the chosen parameter has a
similar resolution than JS-WENO5 while having a lower computational cost. As for HENO5 scheme
with the selected parameter, which is very close to 1, its low numerical viscosity yields a result with
a much higher resolution than even YC-WENO5, using in turn a lower amount of computational
time. We also observe again that for higher order schemes the increase of the computational cost
in HENO schemes is much slower than in the case of WENO schemes.
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Figure 8. Example 6 (Riemann problem, 2D Euler equations of gas dynamics).

4. Conclusions

In this paper we have presented a novel high-order reconstruction method that can be used as an
alternative interpolator competitive with WENO methods. The main benefits of our proposal are
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the following ones. First, we have efficiency on uniform meshes, with linear cost with respect to the
order, in contrast with the cubic cost with respect to the order of the traditional WENO schemes.
In second place, ease of implementation on non-uniform meshes, with quadratic cost with respect
to the order, the same as the classical interpolation algorithm without detection of discontinuities
on non-uniform meshes. In third place, the reconstruction point x∗ can be placed anywhere without
affecting the discontinuity detection; therefore, this reconstruction algorithm can be applied in other
contexts, such as high-order extrapolation for numerical boundary conditions to generate values
into ghost cells. In fourth place, the amount of numerical viscosity can be controlled continuously
through the parameter λ. In fifth place, if λ is properly tuned, the results are better than the WENO
schemes of the corresponding order, yielding a scheme with genuine (2r − 1)-th order. Finally, the
reconstruction algorithm is a hybridization of a first-order and a (2r − 1)-th order interpolation.
This yields ultimately also a global hybrid numerical scheme, which is first-order accurate for λ = 0,
(2r − 1)-th order shock-capturing scheme for 0 < λ < 1 and a pure (2r − 1)-th order scheme for
λ = 1. Of course, one of the main shortcomings of this proposal consists in the need to properly
tune the hybridization parameter in order to obtain results competitive and/or better than those
obtained with the best WENO schemes. However, we have seen in the numerical experiments that
for both third and fifth order schemes it suffices with setting the parameter around the value 0.99
in order to obtain good results while keeping the non-oscillatory behaviour.

The numerical results obtained also show that in general the order recovery near sharp discon-
tinuities is not actually relevant, since we have obtained results of a similar or even better quality
than WENO schemes, with order recovery of order r near discontinuities, by just combining a high
(2r − 1) order reconstruction with a low (first) order reconstruction acting when a discontinuity
crosses the stencil. In fact, the results show that it suffices to make the weight ωλ take values as
favorable as possible to the high order reconstructions, while allowing it to drop the order near
sharp discontinuities, yielding a scheme with low numerical viscosity.

In a future work, we encompass performing a deeper analysis involving optimal λ choices as well
as suitable redesigns of ωλ in order to attain formally the optimal accuracy regardless of the order
of a critical point.
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