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Abstract

We propose and analyze a high order unfitted hybridizable discontinuous Galerkin method
to numerically solve Oseen equations in a domain Ω having a curved boundary. The domain is
approximated by a polyhedral computational domain not necessarily fitting Ω. The boundary
condition is transferred to the computational domain through line integrals over the approximation
of the gradient of the velocity and a suitable decomposition of the pressure in the computational
domain is employed to obtain an approximation of the pressure having zero-mean in the domain Ω.
Under assumptions related to the distance between the computational boundary and the boundary
of Ω, we provide stability estimates of the solution that will lead us to the well-posedness of the
scheme and also to the error estimates. In particular, we prove that the approximations of the
pressure, velocity and its gradient are of order hk+1, where h is the meshsize and k the polynomial
degree of the local discrete spaces. We provide numerical experiments validating the theory and also
showing the performance of the method when applied to the steady–state incompressible Navier-
Stokes equations.

Key words: Oseen equations, curved domains, hybridizable discontinuous Galerkin method, unfitted
methods, Navier-Stokes equations
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1 Introduction

Let Ω ⊂ Rd be a region not necessarily polygonal (d = 2) or polyhedral (d = 3) with boundary Γ := ∂Ω
compact, Lipschitz and piecewise C2. Denoting by u the velocity of the fluid, p the pressure, ν > 0 a
constant viscosity, β the convective velocity, f ∈ [L2(Ω)]d and g ∈ [L2(Γ)]d satisfying

∫
Γ g · n = 0 (n

is the outward unit normal to Ω), the incompressible Oseen equations are:

L−∇u = 0 in Ω, (1.1a)

−ν∇ · L + (β · ∇)u+∇p = f in Ω, (1.1b)

∇ · u = 0 in Ω, (1.1c)

u = g on Γ, (1.1d)∫
Ω
p = 0, (1.1e)
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The convective velocity is assumed to satisfy β ∈ [W 1,∞(Ω)]d and to be divergence free. The motivation
to solve (1.1) arises from the steady–state incompressible Navier–Stokes equations, where the term
(u · ∇)u appears instead of (β · ∇)u. In fact, the solution of the Navier–Stokes equations can be
obtained by using Picard’s iteration that consists of solving (1.1) with β as the velocity obtained in
the previous iteration.

We consider a hybridizable discontinuous Galerkin method (HDG) to approximate the solution of
(1.1). Since in this case the domain Ω is not necessarily polyhedral, we approximate Ω by a polyhe-
dral computational domain where the boundary data g is properly transferred to the computational
boundary. We follow the approach proposed by [14] and analysed in [13] that consists of integrating
the extrapolated discrete gradient along transferring paths connecting the computational boundary
and Γ. This technique, combined with a high order method in the computational domain, allows us
to obtain a high order approximation of the boundary data in the computational domain which leads
to a high order accuracy of the discrete solution. In the context of HDG methods, one of the first
ideas based on this transferring technique was introduced by [12] for the one-dimensional case and
then extended to higher dimensions for pure diffusion ([13, 14]), convection-diffusion [15] equations
and interface problems [29]. Recently, [30] analysed this approach applied to Stokes problem. Mixed
methods for diffusion problems have also been successfully combined with this transferring technique
[25].

Methods for non–polyhedral domains can be classified as fitted or unfitted. In fitted methods
[1, 4, 5, 19, 21], the discretization of the domain resolves the boundary. In general, one of the main
advantages of fitted methods is that the prescribed data at the boundary can be easily imposed.
However, the construction of the meshes might be difficult, especially in complicated geometries. On
the other hand, the attractive feature of unfitted methods [3, 17, 18, 20, 23, 24, 26, 27, 28, 31] is
that the mesh is not adjusted to the domain and even Cartesian grids can be considered. However, it
is not straightforward to develop a high order unfitted method, mainly because of imposition of the
boundary data away from the true boundary. For a more detailed discussion related to fitted and
unfitted methods we refer to [14, 30]. It is relevant to mention that the field of developing methods
to handle curved boundaries has been quite active recently. In fact, extrapolation and boundary
correction techniques can be found in the shifted boundary method [22] and in the cut finite element
method [8], among others. In addition, hybrid high-order (HHO) methods have been developed in
curved meshes [2] and in polygonal unfitted meshes [7].

Our aim is to develop methods that combine the flexibility of the mesh construction of unfitted
methods with the high order accuracy of fitted methods. To that end, we combine the analysis in [9]
for HDG methods applied to the Ossen problem in polyhedral domains with the transferring technique
analysed in [30].

The rest of the paper is organized as follows. In Section 2, we first recall preliminaries and notation
originally presented in [30]. We introduce the method in Section 3 and provide stability estimates
leading to the well-posedness of the scheme. In Section 4 the error estimates are stated and their profs
are presented in Section 5. Section 6 shows numerical experiments validating the theory and it also
includes an application to the steady–state incompressible Navier–Stokes equations through Picard’s
iteration.
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2 Preliminaries

2.1 Computational domain

The computational domain and transferring paths are constructed exactly as in [30]. In order to make
this manuscript self–contained, we now present the notation originally introduced there.

Given h > 0, we denote by Dh an open polyhedral computational domain, with boundary Γh. Dh
is partitioned by a triangulation Th, of meshsize h, with no hanging nodes and made of simplices K
uniformly shape-regular, that is,

(D.1) there exists γ > 0, independent of h, such that hK ≤ γρK ,

where ρK is the radius of the largest ball contained in K and hK is the diameter of K. We assume

(D.2) max
K∈Th

hK ≤ h and

(D.3) Dh ⊂ Ω.

This last assumption is for the sake of simplicity of the analysis, however the method can be still
considered if Dh ∪ Ωc 6= ∅.

Given a simplex K, nK corresponds to its outward unit normal, writing n instead of nK when
there is no confusion. Similarly, for a face e, we write n instead of ne to refer to its normal vector.
The set of faces and boundary faces of Th are denoted by Eh and E∂h, respectively, and we define the
non-meshed region Dch := Ω \ Dh.

2.2 Transferring paths and extrapolation regions

We consider the idea in [14] to transfer the boundary data g from Γ to Γh through transferring paths
as follows. Let e ∈ E∂h with normal unit vector n. For each x ∈ e, we set x̄ ∈ Γ as the closest
intersection between Γ and the ray of tangent vector n starting at x. We name transferring path to
the segment σn(x) that joins x and x̄. Its length, l(x) := |x̄− x|, is assumed to satisfy

(D.4) l(x) . h and we suppose that

(D.5) the intersection of the ray {x+ ηn : η > 0} and Γ is unique.

Now, let e ∈ E∂h and Ke the elements where it belongs. We define the extrapolation region as follows

Ke
ext := {x+ sn : 0 ≤ s ≤ l(x), x ∈ e}.

Thus, given a polynomial G defined on the element Ke, we can extrapolate it to Ke
ext. We will refer

this as local extrapolation.

We denote by H⊥e the largest distance of a point in Ke
ext to the plane determined by e and set h⊥e

as the distance between e and the vertex of Ke opposite to e, as Fig. 1 shows. The ratio re := H⊥e /h
⊥
e

indicates how far is Γh from Γ relative to the meshsize. In fact, if the domain is polyhedral and the
mesh fits its boundary, this ratio would be zero. We define

R = max
e∈E∂

h

re. (2.1)
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Figure 1: A two-dimensional example, obtained from [30], of Ke
ext and the distances H⊥e and h⊥e .

Figure obtained from [30].

2.3 Norms and inner products

Given an element K and a non-negative integer r, Pr(K) denotes the space of polynomials of total
degree at most r, and set Pr(K) := [Pr(K)]d and Pr(K) := [Pr(K)]d×d. Given a region D ⊂ Rd,
we denote by (·, ·)D and 〈·, ·〉∂D the L2(D) and L2(∂D) inner products, respectively. The L2-norms
over D and ∂D will be denoted by ‖ · ‖D and ‖ · ‖∂D. Vector-valued functions are boldfaced, Tensor-
valued functions are written in Roman letters and we define (·, ·)Th

:=
∑

K∈Th
(·, ·)K and 〈η, ζ〉∂Th

:=∑
K∈Th

〈η, ζ〉∂K . We use the standard notation for Sobolev spaces and their associated norms and
seminorms. In addition, we consdier the following norms

‖ζ‖Dc
h,h
⊥ :=

∑
e∈E∂

h

h⊥e ‖ζ‖2Ke
ext


1/2

, ‖ζ‖∂Th,α :=

 ∑
K∈Th

〈α∂Kζ, ζ〉∂K


1/2

,

‖ζ‖Γh,α :=

∑
e∈E∂

h

αe‖ζ‖2e


1/2

, and ‖ζ‖h :=

 ∑
K∈Th

hK〈ζ, ζ〉∂K


1/2

,

where e ∈ Eh, αe := α|e and α∂K := α|∂K , being α a piecewise positive function on Eh or ∂Th, resp.

2.4 Auxiliary estimates

Let e ∈ E∂h, a point x lying on e and a tensor-valued function G. We define

δG(x) :=
1

l(x)

∫ l(x)

0

(
G(x+ sn)−G(x)

)
n ds. (2.2)

From Lemma 5.2 of [13], it can be inferred that

‖l1/2δG‖e ≤ 3−1/2r3/2
e CeextC

e
inv‖G‖Ke ∀G ∈ Pr(K), (2.3)

where

Ceext :=
1
√
re

sup
G∈Pk(Ke)\{0}

‖G‖Ke
ext

‖G‖Ke
(2.4)

and

Ceinv := h⊥e sup
G∈Pk(Ke)\{0}

‖∂nG‖e
‖G‖Ke

. (2.5)
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The constants Ceext and Ceinv depend on the polynomial degree and shape-regularity constant, but they
are independent of h (Lemma A.2 in [13]).

If ϕ is a scalar, vector or tensor-valued polynomial in Ke, then there exists (Lemma 1.46 in [16])
Cetr > 0, independent of h, such that

‖ϕ‖e ≤ Cetrh−1/2
e ‖ϕ‖Ke , (2.6)

On the other hand, for K ∈ Th, let β0 ∈ P0(K) be the function such that

〈(β − β0) · n, 1〉F = 0, for all faces F of K

Observe that β0 exists since ∇ · β = 0. Indeed, it corresponds to the lowest order Raviart–Thomas
projection of β. In addition, δβ := β − β0 satisfies [6]

‖δβ‖K ≤ ChK‖∇β‖K , ∀K ∈ Th. (2.7)

We end this section mentioning that, from now on, we suppose Assumptions (D) hold, even if we
do not refer to them explicitly. In addition, to avoid proliferation of constants, we will write a . b
instead of a ≤ Cb, where C is a positive constant independent of h.

2.5 Dual problem

In order to estimate the L2-norm of the error of the velocity, we assume regularity of the solution of
the problem: For any given θ ∈ L2(Ω), let (Φ,φ, φ) be the solution of

Φ−∇φ = 0 in Ω, (2.8a)

−ν∇ · Φ−∇ · (φ⊗ β)−∇φ = θ in Ω, (2.8b)

−∇ · φ = 0 in Ω, (2.8c)

φ = 0 on ∂Ω. (2.8d)

Assumption B
ν‖Φ‖H1(Ω) + ν‖φ‖H2(Ω) + ‖φ‖H1(Ω) ≤ C‖θ‖Ω. (2.9)

3 The HDG method

First of all, we explain how to construct an approximation of the boundary data at Γh, based on
integrating the gradient of the velocity. Let e ∈ E∂h with outward normal unit vector n. Given x ∈ e
and its corresponding transferring segment σn, we integrate component-wise L = ∇u along σn(x) to
obtain

g̃(x) = g(x̄)−
∫ l(x)

0
L(x+ ns)n ds, (3.1)

where g̃ is the trace of u at e and u(x̄) = g(x̄). This expression suggests the following approximation
g̃h of g̃:

g̃h(x) := g(x̄)−
∫ l(x)

0
Lh(x+ ns )n ds, (3.2)

where Lh is the local extrapolation of the HDG approximation of L introduced in Section 2.2.
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We follow the same treatment of the pressure introduced in [30], which consists of decomposing

p = pDh +p̃, where pDh :=
1

|Dh|

∫
Dh

p and p̃ ∈ L2
0(Dh) :=

{
q ∈ L2(Dh) :

∫
Dh

q = 0

}
. In Dh, we consider

the HDG method proposed in [9] but with the approximation of the boundary data (3.2). That is, we
seek an approximation (Lh,uh, p̃h, ûh) of the solution (L,u, p̃,u|Eh

) in the space Gh×V h×Ph×Mh

given by

Gh = {G ∈ L2(Th) : G|K ∈ Pk(K) ∀K ∈ Th}, (3.3a)

V h = {v ∈ L2(Th) : v|K ∈ Pk(K) ∀K ∈ Th}, (3.3b)

Ph = {q ∈ L2(Th) : q|K ∈ Pk(K) ∀K ∈ Th}, (3.3c)

Mh = {µ ∈ L2(Eh) : µ|e ∈ Pk(e) ∀e ∈ Eh}, (3.3d)

such that

(Lh,G)Th
+ (uh,∇ ·G)Th

− 〈ûh,Gn〉∂Th
= 0, (3.4a)

(νLh,∇v)Th
− (uh ⊗ β,∇v)Th

− (p̃h,∇ · v)Th
(3.4b)

−〈νL̂hn− p̂hn− ̂(uh ⊗ β)n,v〉∂Th
= (f ,v)Th

,

−(uh,∇q)Th
+ 〈ûh · n, q〉∂Th

= 0, (3.4c)

〈ûh,µ〉Γh
= 〈g̃h,µ〉Γh

, (3.4d)

〈νL̂hn− p̂hn− ̂(uh ⊗ β)n,µ〉∂Th\Γh
= 0, (3.4e)

(p̃h, 1)Dh
= 0, (3.4f)

for all (G,v, q,µ) ∈ Gh × V h × Ph ×Mh, where

νL̂hn− p̂hn− ̂(uh ⊗ β)n = νLhn− p̃hn− (ûh ⊗ β)n− S(uh − ûh) on ∂Th, (3.4g)

S = ντ I and τ is a non-negative piecewise constant stabilization parameter defined on ∂Th satisfying

τν − 1

2
(β · n) > cτ on ∂K, (3.5)

for all K ∈ Th for some positive constant cτ . Note that this assumption is equivalent to Sβ :=(
S− 1

2(β · n)I
)∣∣
∂K

being positive definite. For the sake of simplicity, we assume τ to be constant on
∂Th.

3.1 Stability estimate

In this section we establish a stability estimate for the HDG method (3.4) that will lead us to show
well-posedness of this scheme and also to the corresponding error estimates.

Given Fs ∈ L2(Dh), we consider the following problem: Find (Ls,us, ps, ûs) in the space Gh×V h×
Ph ×Mh such that

(Ls,G)Th
+ (us,∇ ·G)Th

− 〈ûs,Gn〉∂Th
= −(Fs,G)Th

, (3.6a)

(νLs,∇v)Th
− (us ⊗ β,∇v)Th

− (ps,∇ · v)Th
(3.6b)

−〈νL̂hn− p̂hn− ̂(us ⊗ β)n,v〉∂Th
= 0,

−(us,∇q)Th
+ 〈ûs · n, q〉∂Th

= 0, (3.6c)

〈ûs,µ〉Γh
= 〈gs,µ〉Γh

, (3.6d)

〈νL̂sn− p̂sn− ̂(us ⊗ β)n,µ〉∂Th\Γh
= 0, (3.6e)

(ps, 1)Dh
= 0, (3.6f)
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for all (G,v, q,µ) ∈ Gh × V h × Ph ×Mh, where

νL̂sn− p̂sn− ̂(us ⊗ β)n = νLsn− psn− (ûs ⊗ β)n− S(us − ûs) on ∂Th (3.6g)

and

gs(x) := −
∫ l(x)

0
(Ls + Fs)(x+ nt )n dt. (3.6h)

We now state the main theorem of this section. The proof follows from a lengthy series of estimates
and, in order to prioritize clarity of exposition, we postpone it to Section 5. To that end, we introduce
further assumptions.

Assumption A For each e ∈ E∂h,

(A.1) r3
e(C

e
ext)

2(Ceinv)
2 ≤ 1/8,

(A.2) ν−1reh
⊥
e

(
ντ − 1

2
(β · n)

)
≤ 1/8,

(A.3) (Cetr)
2reγ ≤ 1/6.

Let ∂n(Fsn) be the directional derivative of each component of Fsn. We define the quantity:

ΘFs :=
{

8R2‖∂n(Fsn)‖2Dc
h,(h

⊥)2 + 24R‖Fsn‖2Γh,h⊥
+ 4‖Fs‖2Dh

}1/2
, (3.7)

where we recall that R has been defined in (2.1).

Theorem 3.1. Let φh ∈ V h an arbitrary function and H(R, h) := h1/2 + R2h3/2 + Rh1/2 + R1/2 +
R3/2h+R. If Assumptions A hold, then,

‖Ls‖Dh
+ ν−1/2〈Sβ(us − ûs),us − ûs〉1/2∂Th

+ ‖gs‖Γh,l−1 . ΘFs + ‖us‖Dh
, (3.8)

‖ps‖Dh
. ‖us‖Dh

+ ΘFs . (3.9)

Moreover, if R holds, then there exists h0 > 0 such that

‖us‖Dh
.
(
‖Fs‖Dh

+ ΘFs

)
hmin{k,1} + h1/2H(R, h)ΘFs (3.10)

+ sup
θ∈L2(Ω)\{0}

ν(Fs,∇φh)Dh

‖θ‖Ω
+ sup
φ∈H2(Ω)\{0}

|〈Fsn,PM (φ)〉|
‖φ‖H2(Ω)

, (3.11)

for all h < h0.

Here,

3.2 Well-posedness

Theorem 3.2. Let Assumptions B and A hold. The scheme (3.4) is well–posed.

Proof. We observe that (Lh,uh, p̃h, ûh) of (3.4) with f = 0 and g = 0 satisfies (3.6) with Fs = 0.
Then, by Theorem 3.1 we conclude that Lh = 0, uh = 0, ûh = 0 and p̃h = 0.

7



4 Error estimates

Theorem 4.1. Suppose that Assumptions A hold, τ is of order one and k ≥ 1. If (L,u, p̃) ∈ Hk+1(Ω)×
Hk+1(Ω)×Hk+1(Ω), then there exists h0 > 0 such that, for all h < h0,

‖L− Lh‖Dh
+ ‖g̃ − g̃h‖Γh,l−1 + ν−1‖p̃− p̃h‖Dh

. CL,g,ph
k+1.

Moreover, if Assumption B holds, then ‖u− uh‖Dh
. Cuh

k+1 and

‖PMu− ûh‖∂Th,h + ‖u− u∗h‖Dh
.

{
Cû,u∗h

k+3/2, if R is of order 1,

C̃û,u∗h
k+2, if R is of order h.

Here, PM is the L2− projection onto the space of piecewise polynomials of degree k on Eh, denoted
by Mh. In addition, CL,g,p, Cu, Cû,u∗ and C̃û,u∗ are positive constants depending on the regularity
of the exact solutions L, u and p̃, the parameters τ and ν, the convective veclocity β, and on positive
powers of h, and u∗h is an element-by-element postprocessing of uh computed as follows. For each
element K ∈ Th, we seek u∗h ∈ P0

k+1(K) := {w ∈ Pk+1(K) :
∫
K w = 0} such that

(∇u∗h,∇wh)K = (Lh,∇wh)K ∀wh ∈ P0
k+1(K), (4.1a)∫

K
u∗h =

∫
K
uh. (4.1b)

The first two estimates in Theorem 4.1 imply that the L2−norm of the errors in L, u and p̃ are of
order hk+1 if the solution is smooth enough and if τ is chosen of order one, for instance. The same
conclusion was obtained for the case of a polyhedral domain [9]. In addition, the third estimate shows
that the error in the numerical trace ûh and the postprocessed velocity u∗h is of order hk+3/2, which
is half a power less than the error obtained in the case of a polyhedral domain [9]. However, our
numerical experiments show an experimental order of hk+2 for these two variables, which suggests
that our analysis might not be sharp. The same behavior has been observed for the Poisson’s equation
[13] and Stokes problem in curved domains [30].

5 Proofs

In this section we prove the error estimates stated in previous sections. We begin by the stability
analysis where we employ energy and duality arguments.

5.1 Proof of Theorem 3.1

Step 1: A first energy estimate

Lemma 5.1. Let Ts :=

〈
νLsn− psn−

1

2
(ûs ⊗ β)n− S(us − ûs), ûs

〉
Γh

. It holds,

ν‖Ls‖2Dh
+ 〈Sβ(us − ûs),us − ûs〉∂Th

= −(Fs, νLs)Th
+ TL,h.

Proof. Taking G = νLs, v = us and q = ps in (5.15a), (5.15b) and (5.15c), respectively, adding up
the resulting equations, canceling and rearranging terms,

ν‖Ls‖2Dh
− 〈ûs, νLsn− psn〉∂Th

+ (∇ · (us ⊗ β),us)Th
(5.1)

−
〈(

(us − ûs)⊗ β
)
n− S(us − ûs),us

〉
∂Th

= −(Fs, νLs)Th
.
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Thanks to (5.15e) with µ = ûs, we deduce that

〈νLsn− psn, ûs〉∂Th
= 〈νLsn− psn− (ûs ⊗ β)n− S(us − ûs), ûs〉Γh

+ 〈(ûs ⊗ β)n+ S(us − ûs), ûs〉∂Th
. (5.2)

On the other hand, since ∇·β = 0, we have (∇· (us⊗β),us)Th
=
(
(∇us)β,us

)
Th

= (∇us,us⊗β)Th

and integrating by parts the last term we conclude that

(∇ · (us ⊗ β),us)Th
=

1

2
〈(us ⊗ β)n,us〉∂Th

. (5.3)

Using (5.2) and (5.3), we rewrite (5.1) as

−(Fs, νLs)Th
= ν‖Ls‖2Dh

− 〈νLsn− psn− (ûs ⊗ β)n− S(us − ûs), ûs〉Γh

−〈(ûs ⊗ β)n+ S(us − ûs), ûs〉∂Th
+

1

2
〈(us ⊗ β)n,us〉∂Th

−
〈(

(us − ûs)⊗ β
)
n− S(us − ûs),us

〉
∂Th

,

or equivalently, rearranging terms,

−(Fs, νLs)Th
=ν‖Ls‖2Dh

− 1

2
〈(us ⊗ β)n,us〉∂Th

+ 〈(ûs ⊗ β)n− S(us − ûs),us − ûs〉∂Th

− 〈νLsn− psn− (ûs ⊗ β)n− S(us − ûs), ûs〉Γh
.

Finally, since (β · n) is continuous on E0
h and ûs is single valued on E0

h, we have

−1

2
〈(us ⊗ β)n,us〉∂Th

+ 〈(ûs ⊗ β)n− S(us − ûs),us − ûs〉∂Th

= −1

2
〈(ûs ⊗ β)n, ûs〉∂Th

+ 〈Sβ(us − ûs),us − ûs〉∂Th

= −1

2
〈(ûs ⊗ β)n, ûs〉Γh

+ 〈Sβ(us − ûs),us − ûs〉∂Th
.

which concludes the proof.

Lemma 5.2. Suppose Assumptions A hold. Then,

‖Ls‖2Dh
+ ν−1〈Sβ(us − ûs),us − ûs〉∂Th

+ ‖gs‖2Γh,l−1

≤ Θ2
Fs

+ 24ν−2‖ps‖2Γh,l
+ ν−2‖β‖2L∞(Ω)‖us‖

2
Dh
.

Proof. Proceeding exactly as in Lemma 5.1 of [13], it is not difficult to see that we can decompose
gs(x) = −l(x)

{
δFs + Fsn + δLs + Lsn

}
(x), which yields Lsn = −gs(x)/l − δFs − Fsn − δLs . Hence,

we rewrite TL,h as

Ts =

〈
−ν {gs(x)/l + δFs + Fsn+ δLs} − psn−

1

2
(ûs ⊗ β)n− S(us − ûs), ûs

〉
Γh

.

Observe now that

−
〈

1

2
(ûs ⊗ β)n+ S(us − ûs), ûs

〉
Γh

= −
〈

1

2
(us ⊗ β)n+ Sβ(us − ûs), ûs

〉
Γh

.

9



Then, since ûs = PMgs on Γh, we can decompose Ts =
∑7

i=1 Tis, where

T1
s = −ν〈gs/l, gs〉Γh

, T2
s = −ν〈gs, δFs〉Γh

,
T3
s = −ν〈gs,Fsn〉Γh

, T4
s = −ν〈gs, δLs〉Γh

,
T5
s = −〈gs, psn〉Γh

, T6
s = −〈gs, Sβ(us − ûs)〉Γh

,

T7
s = −1

2
〈gs, (us ⊗ β)n〉Γh

.

Applying the Cauchy-Schwarz inequality to each term we obtain

Ts ≤ − ν‖gs‖2Γh,l−1 + ν‖gs‖Γh,l−1

{
‖δFs‖Γh,l + ‖Fsn‖Γh,l + ‖δLs‖Γh,l

+ ν−1‖ps‖Γh,l + ν−1‖Sβ(us − ûs)‖Γh,l +
1

2
ν−1‖(us ⊗ β)n‖Γh,l

}
.

We conclude the proof recalling the estimate in Lemma 5.2 of [13]

‖l1/2δFs‖e ≤ 3−
1
2 re‖h⊥e ∂n(Fsn)‖Ke

ext
, (5.4)

gathering the result stated in Lemma 5.1, inequality (5.4), (2.3) with G = Ls, Young’s inequality,
definition (3.7), inequality (2.6), Assumptions A and noticing that ‖Lsn‖2Γh,l

≤ R‖Lsn‖2Γh,h⊥
.

Step 2: Estimate for the pressure

At this point, it is convenient to consider auxiliary constants defined in [9]. We denote by P :
H1(Th)→ V h any projection such that

(Pw −w,v)K = 0, ∀ v ∈ Pk−1(K), (5.5)

for all K ∈ Th. We define

H1
p = C max

{
ν, ‖β0‖L∞(Ω) sup

w∈H1
0(Dh)\{0}

‖Pw‖Th

‖w‖H1(Dh)

,

h|β|W 1,∞(Ω) sup
w∈H1

0(Dh)\{0}

‖Pw‖Dh

‖w‖H1(Dh)

}
,

H2
p = C|β|W 1,∞(Ω) max

{
h sup
w∈H1

0(Dh)\{0}

‖∇Pw‖Th

‖w‖H1(Dh)

, sup
w∈H1

0(Dh)\{0}

‖Pw‖Th

‖w‖H1(Dh)

}
,

H3
p = sup

w∈H1
0(Dh)\{0}

‖Pw − PMw‖∂Th,τ

‖w‖H1(Dh)

,

and Cτ,ν,β = ν1/2τ−1/2
{
τ1/2ν1/2 + ‖β‖1/2L∞(Ω)

(
1 + c

−1/2
τ ‖β‖1/2L∞(Ω)

)}
.

To estimate the term involving the pressure, we assume that, for each e ∈ E∂h,

(A.4) 2
√

6κν−1
(
3H1

p + Cτ,ν,βH
3
p

)
Cetrr

1/2
e γ1/2 < 1/2, where κ > 0 is defined below.

Lemma 5.3. If Assumptions A and (A.4) hold, then

‖ps‖Dh
≤ κ

{
ν−1‖β‖L∞(Ω)

(
3H1

p + Cτ,ν,βH
3
p

)
+ 2H2

p

}
‖us‖Dh

+κ
(
5H1

p + Cτ,ν,βH
3
p

)
ΘFs .
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Proof. We adapt the proof of Proposition 3.4 in [10]to our setting. Since ps ∈ L2
0(Dh), there exists

κ > 0 such that

‖ps‖Dh
≤ κ sup

w∈H1
0(Dh)\{0}

(ps,∇ ·w)Dh

‖w‖H1(Dh)

. (5.6)

We can write the numerator as

(ps,∇ ·w)Dh
= (ν,Ls),∇w)Th

− (us ⊗ δβ,∇Pw)Th

+(Fs + Ls,Pw ⊗ β0)Th
+ 〈ûs, (Pw ⊗ δβ)n〉∂Th

+〈S(us − ûs),Pw − PMw〉∂Th
.

The result follows by applying the Cauchy-Schwarz inequality, the trace inequality (2.6), Lemma 5.2
and Assumption (A.4).

Step 3: A duality argument

We proceed to obtain estimates for the velocity by carrying out a duality argument. First we need to
define some terms that will appear in the estimates below. For any arbitrary φh ∈ V h, define

HL := νmax

{
sup

θ∈L2(Ω)\{0}

‖Π∗Φ− Φ‖Th

‖θ‖Ω
, sup
θ∈L2(Ω)\{0}

‖∇(φh − φ)‖Th

‖θ‖Ω

}
, (5.7)

Hβ := ‖δβ‖L∞(Ω) sup
θ∈L2(Ω)\{0}

‖∇φh‖Th

‖θ‖Ω
, (5.8)

where Π∗ is a suitable projection defined in A.

Propositions 3.6 and 3.7 in [9] state that if tr(L) = 0, then

HL ≤ CνCHL
hmin{k,1} and Hβ ≤ Ch|β|W 1,∞(Ω), (5.9)

where CHL
is of order O(1) if h is small enough.

Step 1: Estimate of the velocity

Lemma 5.4. Let φh be an arbitrary element of V h. Then (us,θ)Th
= T + Tφ + Tu, where

T :=
(
Fs + Ls, νΠ∗Φ− νΦ

)
Th
−
(
νFs,∇(φh − φ)

)
Th
,

Tφ := ν
(
Fs,∇φh

)
Th
, and

Tu := 〈νLsn− psn− S(us − ûs),φ〉Γh
− 〈ûs, νΦn+ φn〉Γh

− 〈(ûs ⊗ β)n,φ〉Γh
.

Proof. Proceeding as in the proof of Lemma 3.4 of [9], we can write (us,θ)Th
= T + Tφ + Λ, where

Λ :=− (ν∇ · Ls,φ−Π ∗φ)Th
+ 〈νLsn,φ−Π ∗φ〉∂Th

− 〈ûs, νΠ∗Φn〉∂Th

+ 〈νLsn− psn− (ûs ⊗ β)n− S(us − ûs),Π ∗φ〉∂Th
− (∇ps,Π ∗φ− φ)Th

+ 〈psn,Π ∗φ− φ〉∂Th
− (us,∇Π ∗φ)Th

− 〈us, ν(Φ−Π∗Φ)n+ (φ−Π ∗φ)n+
(
(φ−Π ∗u)⊗ β

)
n〉∂Th

.

Using (5.15e) with µ = PMφ, we have that

〈νLsn− psn− (ûs ⊗β)n− S(us − ûs),PMφ〉∂Th
= 〈νLsn− psn− (ûs ⊗β)n− S(us − ûs),PMφ〉Γh

.
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Then, adding and subtracting this term, we obtain

Λ =− (ν∇ · Ls,φ−Π ∗φ)Th
+ 〈νLsn,φ−Π ∗φ〉∂Th

− 〈ûs, νΠ∗Φn〉∂Th

+ 〈νLsn− psn− (ûs ⊗ β)n− S(us − ûs),Π ∗φ− PMφ〉∂Th

− (∇ps,Π ∗φ− φ)Th
+ 〈psn,Π ∗φ− φ〉∂Th

− (us,∇Π ∗φ)Th

− 〈us, ν(Φ−Π∗Φ)n+ (φ−Π ∗φ)n+
(
(φ−Π ∗u)⊗ β

)
n〉∂Th

+ 〈νLsn− psn− (ûs ⊗ β)n− S(us − ûs),PMφ〉Γh
.

Using the definition of the projections Π∗h (cf. (A.1)) and PM , the equations (3.6) and rearranging
terms, we rewrite Λ as

Λ =− 〈us − ûs, ν(Φ−Π∗Φ)n+
(
(φ−Π ∗φ)⊗ β

)
n− S(φ−Π ∗φ)〉∂Th

− 〈ûs,Π ∗φn〉∂Th
− 〈us, (φ−Πφ)n〉∂Th

− 〈ûs, νΦn+ (β · n)(φ− PMφ)〉∂Th

+ 〈νLsn− psn− (ûs ⊗ β)n− S(us − ûs),PMφ〉Γh
.

Since ûs is single valued on E0
h and νΦn+ (β · n)(φ− PMφ) is continuous on E0

h, then

〈ûs, νΦn+ (β · n)(φ− PMφ)〉∂Th
= 〈ûs, νΦn+ (β · n)(φ− PMφ)〉Γh

.

Analogously, 〈ûs, φn〉∂Th
= 〈ûs, φn〉Γh

. Adding and subtracting this term, we rewrite Λ as

Λ =− 〈us − ûs, ν(Φ−Π∗Φ)n+ (φ−Π ∗φ)n+
(
(φ−Π ∗φ)⊗ β

)
n− S(φ−Π ∗φ)〉∂Th

+ 〈νLsn− psn− (ûs ⊗ β)n− S(us − ûs),PMφ〉Γh
− 〈ûs, νΦn〉Γh

− 〈ûs, (β · n)(φ− PMφ)〉Γh
.

The first term of the right hand side vanishes thanks to (A.1d) with µ = us − ûs. Then, rearranging
terms, we have

Λ = 〈νLsn− psn− S(us − ûs),φ〉Γh
− 〈ûs, νΦn〉Γh

− 〈ûs, φn〉Γh
− 〈(β · n)ûs,φ〉Γh

,

which completes the proof.

Step 2: A new expression for Tu

Lemma 5.5. We have that Tu =

13∑
i=1

Tiu, where

T1
u = −ν〈gs/l,φ+ l∇φn〉Γh

, T2
u = ν〈gs,∇φn− PM (∇φn)〉Γh

,

T3
u = −ν〈δFs ,φ〉Γh

, T4
u = −ν〈Fsn,φ− PMφ〉Γh

,T5
u = −ν〈Fsn,PMφ〉Γh

,

T8
u = −ν〈δLs ,φ〉Γh

, T9
u = −〈psn,φ〉Γh

,

T10
u = −〈Sβ(us − ûs),φ〉Γh

, T11
u = −〈gs,PM (φn)〉Γh

,

T12
u = −1

2

〈(
ûs ⊗ β

)
n,φ

〉
Γh
, T13

u = −1

2

〈(
us ⊗ β

)
n,φ

〉
Γh
.

Proof. Let us begin by noting that we can rewrite Tu as follows:

Tu =〈νLsn− psn− Sβ(us − ûs),φ〉Γh
− 〈ûs, νΦn〉Γh

− 〈ûs, φn〉Γh

− 1

2
〈(β · n)us,φ〉Γh

− 1

2
〈(β · n)ûs,φ〉Γh
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We use now that ûs = PM (gs) on ∂Th and the fact that Lsn = −(gs)/l − δFs − Fsn − δLs (as we
already saw in the proof of Lemma 5.2), to obtain

Tu =− ν〈gs/l,φ〉Γh
− ν〈δFs ,φ〉Γh

− ν〈Fsn,φ〉Γh
− ν〈δLs ,φ〉Γh

− 〈psn,φ〉Γh
− 〈Sβ(us − ûs),φ〉Γh

− 〈gs, νPM (Φn)〉Γh
(5.10)

− 〈gs,PM (φn)〉Γh
− 1

2
〈(β · n)us,φ〉Γh

− 1

2
〈(β · n)ûs,φ〉Γh

.

We can group the first and seventh terms. In addition, adding and subtracting l∇φn, and using
(2.8a), we have

−ν〈gs/l,φ + lPM (Φn)〉Γh
= −ν〈gs/l,φ+ l∇φn− l∇φn+ lPM (Φn)〉Γh

= −ν〈gs/l,φ+ l∇φn〉Γh
+ ν

〈
gs,∇φn− PM

(
∇φn

)〉
Γh
.

On the other hand, we can write ν〈Fsn,φ〉Γh
= ν〈Fsn,φ − PMφ〉Γh

+ ν〈Fsn,PMφ〉Γh
. Finally,

replacing these two expressions in (5.10), we obtain

Tu =− ν〈gs/l,φ+ l∇φn〉Γh
+ ν

〈
gs,∇φn− PM

(
∇φn

)〉
Γh
− ν〈δFs ,φ〉Γh

− ν〈Fsn,φ− PMφ〉Γh
− 〈Fsn,PMφ〉Γh

− ν〈δLs ,φ〉Γh
− 〈psn,φ〉Γh

− 〈Sβ(us − ûs),φ〉Γh

− 〈gs,PM (φn)〉Γh
− 1

2
〈(β · n)us,φ〉Γh

− 1

2
〈(β · n)ûs,φ〉Γh

,

which completes the proof.

Lemma 5.6. If Assumptions B, A and (A.4) hold, then

|T | .
(
‖Fs‖Dh

+ ΘFs + ‖us‖Dh

)
HL‖θ‖Ω and

|Tu| . h1/2H(R, h) (ΘFs + ‖us‖Dh
) ‖θ‖Ω + sup

φ∈H2(Ω)\{0}

|〈Fsn,PM (φ)〉|
‖φ‖H2(Ω)

‖θ‖Ω.

Proof. By the Cauchy-Schwarz inequality, the definition of HL in (5.7) and (3.8), we have

|T | .
(
‖Fs‖Dh

+ ‖Ls‖Dh

)
HL‖θ‖Ω .

(
‖Fs‖Dh

+ ΘFs + ‖us‖Dh

)
HL‖θ‖Ω.

By Lemma 5.5, we know that Tu,h =

13∑
i=1

Tiu,h. We first apply the Cauchy-Schwarz inequality to

each term Tiu,h. The first estimate follows from estimate in (5.4), Lemma A1, Assumption A, estimates
(3.9) and (3.8).

Step 4: Proof of Theorem 3.1

Proof. Observe that ‖ps‖Γh,l . ‖ps‖Dh
. Then, from the estimate of Lemma 5.3 we obtain (3.9).

Combining these expressions, from Lemma 5.2 we deduce (3.8). In addition, by taking θ = us in Dh
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and zero otherwise in Lemmas 5.4 and 5.6; and recalling (5.9), we have

‖us‖Dh
.
(
‖Fs‖Dh

+ ΘFs + ‖us‖Dh

)
HL + h1/2H(R, h) (ΘFs + ‖us‖Dh

)

+ sup
θ∈L2(Ω)\{0}

ν(Fs,∇φh)Dh

‖θ‖Ω
+ sup
φ∈H2(Ω)\{0}

|〈Fsn,PM (φ)〉|
‖φ‖H2(Ω)

.
(
‖Fs‖Dh

+ ΘFs + ‖us‖Dh

)
hmin{k,1} + h1/2H(R, h) (ΘFs + ‖us‖Dh

)

+ sup
θ∈L2(Ω)\{0}

ν(Fs,∇φh)Dh

‖θ‖Ω
+ sup
φ∈H2(Ω)\{0}

|〈Fsn,PM (φ)〉|
‖φ‖H2(Ω)

,

which implies the result for h small enough.

5.2 Proof of Theorem 4.1

We first introduce the projection defined in [9] which will be used in our analysis. If (L,u, p̃) ∈
H1(Th) ×H1(Th) × H1(Th), we take its projection Πh(L,u, p̃) := (ΠL,Πu,Π p̃) as the element of
Gh × V h × Ph defined as follows. On an arbitrary element K of the triangulation Th, the values of
the projected function on the simplex K are determined by requiring that

(νΠL,G)K − (Πu⊗ β,G)K = (νL,G)K − (u⊗ β,G)K , (5.11a)

(Πu,v)K = (u,v)K , (5.11b)

(Π p̃, q)K = (p̃, q)K , (5.11c)

〈νΠLn−Π p̃n− (PMu⊗ β)n−Πu,µ〉e = 〈νLn− p̃n− (u⊗ β)n− Su,µ〉e, (5.11d)

for all (G,v, q,µ) ∈ Pk−1(K)×Pk−1(K)×Pk−1(K)×Pk(e) and for all faces e of the simplex K. Thus,
we define the projection of the errors EL := ΠL−Lh, ε

u := Πu−uh, εp := Π p̃− p̃h, εû := PMu− ûh;
and the interpolation errors IL := L−ΠL, Iu := u−Πu, IuM := u−PMu, Ip := p̃−Π p̃. If τ satisfies
(3.5), (L,u, p̃)|K ∈ Hk+1(K) ×Hk+1(K) × Hk+1(K) on each element K ∈ Th and tr(L) = 0, it is
known (Theorem 2.3 in [9]) that the above defined projection satisfies the following properties:

‖Ip‖K .hk+1
K |p̃|Hk+1(K), (5.12a)

‖Iu‖K .(τν + hK)hk+1
K |u|Hk+1(K) + hk+1

K |∇ · (νL− p̃I)|Hk(K), (5.12b)

ν‖IL‖K .νhk+1
K |L|Hk+1(K) + (τν + hK)hk+1

K |u|Hk+1(K) + ‖Ip‖K (5.12c)

+
(
τν + (1 + ν)hK

)
‖Iu‖K .

Moreover, by a standard scaling argument and the fact that h⊥e ≤ hK , we obtain

‖ILn‖e,h⊥e . ‖IL‖K , ‖Iu‖e,h⊥e . ‖Iu‖K , and ‖Ip‖e,h⊥e . ‖Ip‖K . (5.13)

If (L,u, p̃) ∈ Hk+1(Ω) × Hk+1(Ω) × Hk+1(Ω), according to (3.7), Lemma 3.8 in [13] and the
approximation properties (5.12) of Πh, we have

ΘIL . Creg
1 hk+1, (5.14)

where Creg
1 = |L|Hk+1(Ω) + ν−1|p̃|Hk+1(Ω) +

(
τ + (ν−1 + 1)h

)
|νL− p̃I|Hk+1(Ω)

+
(
τν + (1 + ν)h+ 1

)
(τ + ν−1h)|u|Hk+1(Ω).
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Step 1: The projection of the errors

Lemma 5.7. The projection of the errors satisfy

(EL,G)Th
+ (εu,∇ ·G)Th

− 〈εû,Gn〉∂Th
=− (IL,G)Th

, (5.15a)

−(ν∇ · EL,v)Th
+ (∇ · (εu ⊗ β),v)Th

+ (∇εp,v)Th
(5.15b)

−
〈(

(εu − εû)⊗ β
)
n− S(εu − εû),v

〉
∂Th

=0,

−(εu,∇q)Th
+ 〈εû, qn〉∂Th

=0, (5.15c)

〈εû,µ〉Γh
=〈g̃ − g̃h,µ〉Γh

, (5.15d)

〈νELn− εpn− (εû ⊗ β)n− S(εu − εû),µ〉∂Th\Γh
=0, (5.15e)

(εp, 1)Dh
=0, (5.15f)

for all (G,v, q,µ) ∈ Gh × V h × Ph ×Mh.

Proof. Observe that if we insert (3.4g) in (3.4b) and (3.4e), we obtain

(Lh,G)Th
+ (uh,∇ ·G)Th

− 〈ûh,Gn〉∂Th
= 0,

(νLh,∇v)Th
− (uh ⊗ β,∇v)Th

− (p̃h,∇ · v)Th

−〈νLhn− p̃hn− (ûh ⊗ β)n− S(uh − ûh),v〉∂Th
= (f ,v)Th

,

−(uh,∇q)Th
+ 〈ûh · n, q〉∂Th

= 0,

〈ûh,µ〉Γh
= 〈g̃h,µ〉Γh

,

〈νLhn− p̃hn− (ûh ⊗ β)n− S(uh − ûh),µ〉∂Th\Γh
= 0,

(p̃h, 1)Dh
= 0,

for all (G,v, q,µ) ∈ Gh × V h × Ph ×Mh. On the other hand, using the projection (5.11a)-(5.11d),
the exact solution satisfies

(L,G)Th
+ (Πu,∇ ·G)Th

− 〈PMu,Gn〉∂Th
= 0,

(νΠL,∇v)Th
− (Πu⊗ β,∇v)Th

− (Π p̃,∇ · v)Th

−〈νΠLn−Π p̃n− (PMu⊗ β)n− S(Πu− PMu),v〉∂Th
= (f ,v)Th

,

−(Πu,∇q)Th
+ 〈PMu · n, q〉∂T = 0,

〈PMu,µ〉Γh
= 〈g̃,µ〉Γh

,

〈νΠLn−Π p̃n− (PMu⊗ β)n− S(Πu− PMu),µ〉∂Th\Γh
= 0,

(p̃, 1)Dh
= 0,

for all (G,v, q,µ) ∈ Gh × V h × Ph ×Mh. Subtracting both groups of equations we have

(L− Lh,G)Th
+ (εu,∇ ·G)Th

− 〈εû,Gn〉∂Th
= 0,

(νEL,∇v)Th
− (εu ⊗ β,∇v)Th

− (εp,∇ · v)Th

−〈νELn− εpn− (εû ⊗ β)n− S(εu − εû),v〉∂Th
= (f ,v)Th

,

−(εu,∇q)Th
+ 〈εû · n, q〉∂T = 0,

〈εû,µ〉Γh
= 〈g̃ − g̃h,µ〉Γh

,

〈νELn− εpn− (εû ⊗ β)n− S(εu − εû),µ〉∂Th\Γh
= 0,

(εp, 1)Dh
= 0,
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for all (G,v, q,µ) ∈ Gh × V h × Ph ×Mh. Integrating by parts the first three terms of the second
equation, cancelling and rearranging terms, we rewrite that equation as

−(ν∇ · EL,v)Th
+ (∇ · (εu ⊗ β),v)Th

+ (∇εp,v)Th

−
〈(

(εu − εû)⊗ β
)
n− S(εu − εû),v

〉
∂Th

= (f ,v)Th
,

which ends the proof.

We observe that EL, εu, εp and εû satisfy (3.6) with Fs = IL. Then, by Theorem 3.1 we conclude
that

‖EL‖Dh
+ ν−1/2〈Sβ(εu − εû), εu − εû〉1/2∂Th

+ ‖gs‖Γh,l−1 . ΘIL + ‖εu‖Dh
.

Moreover, if the regularity assumption B hold, there exists h0 > 0 such that

‖εu‖Dh
.

(
‖IL‖Dh

+ ΘIL,

)
hmin{k,1} + h1/2H(R, h)ΘIL

+ sup
θ∈L2(Ω)\{0}

ν(IL,∇φh)Dh

‖θ‖Dh

+ sup
φ∈H2(Ω)\{0}

|〈ILn,PM (φ)〉|
‖φ‖H2(Ω)

,

for all h < h0.

By (5.11a), recalling that δβ := β − β0 with β0 ∈ P0(K), using the properties of the projector
(5.11b) and noticing that ∇φh ∈ Pk−1(K), on each element K, we obtain

ν(IL,∇φh)Dh
= (Iu ⊗ β,∇φh)Dh

= (Iu ⊗ δβ,∇φh)Dh
≤ Hβ‖Iu‖Dh

,

where for the last inequality we used the definition of Hβ given in (5.8). Moreover, by (5.11d), we
have

|〈ILn,PM (φ)〉| = 〈Ipn,PMφ〉Γh
+ ν〈τIu,PMφ〉Γh

+
〈(
Iu ⊗ β

)
n,PMφ

〉
Γh
.

Then, we by the Cauchy-Schwarz inequality, estimate in (5.4), Lemma A1, Assumption A, the fact
that ‖Ipn‖Γh,l2 ≤ Rh

1/2‖Ipn‖Γh,h⊥ , the interpolation properties (5.13) and estimates (3.9) and (3.8),
we obtain

|〈ILn,PM (φ)〉| .
{
ν−1Rh1/2‖Ip‖Dh

+ νRh‖β‖L∞(Ω)‖Iu‖L2(Γh)

}
‖φ‖H2(Ω)

Then,

‖εu‖Dh
.
(
‖IL‖Dh

+ ΘIL

)
hmin{k,1} + h1/2H(R, h)ΘIL +Hβ‖Iu‖Dh

+
{
ν−1Rh1/2‖Ip‖Dh

+ νRh‖β‖L∞(Ω)‖Iu‖L2(Γh)

}
.

Thus, we have obtained the following result:

Lemma 5.8. If Assumptions A hold, then there exists h0 > 0 such that for all h < h0,

‖EL‖Dh
+ ν−1/2〈Sβ(εu − εû), εu − εû〉1/2∂Th

+ ‖gs‖Γh,l−1 . ΘIL + ‖εu‖Dh
,

‖εp‖Dh
. ‖εu‖Dh

+ ΘIL .
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Moreover, if the regularity assumption B hold, then there exists h0 > 0 such that

‖εu‖Dh
.
(
‖IL‖Dh

+ ΘIL

)
hmin{k,1} + h1/2H(R, h)ΘIL +Hβ‖Iu‖Dh

+
{
ν−1Rh1/2‖Ip‖Dh

+ νRh‖β‖L∞(Ω)‖Iu‖L2(Γh)

}
,

for all h < h0.

This lemma implies that ‖εu‖Dh
. hk+3/2 if the solution is smooth enough and if τ and R are of

order one, since the interpolation errors are of order hk+1. In the case of a polyhedral domain where
Γh fits Γ, we would have R = 0, g̃ = g̃h. As a consequence, H(R, h) = h1/2 and the estimate in
Lemma 5.6 would read ‖εu‖Dh

. h
(
ΘIL + ‖Iu‖Dh

)
. Hence, ‖εu‖Dh

would be of order hk+2, which
agrees with the estimate stated in Theorem 2.6 in [9] for the polyhedral case.

Step 2: Conclusion of the proof of Theorem 4.1

First of all, adding and subtracting ΠL and Π p̃, using the triangle inequality, estimates (3.9) and
(3.8), and recalling the definition of ΘIL in (3.7), we get

‖L− Lh‖Dh
+ ‖g̃ − g̃h‖Γh,l−1 + ν−1‖p̃− p̃h‖Dh

. ΘIL + ‖εu‖Dh
+ ν−1‖Ip‖Dh

.

Moreover, if Assumption B holds, by adding and subtracting Πu, using triangle inequality and Lemma
5.8, we obtain

‖u− uh‖Dh
. h1/2Hεu(R, h)ΘIL + ν−1Rh1/2‖Ip‖Dh

+ (τRh1/2 + h+ 1)‖Iu‖Dh
+ νRh‖β‖L∞(Ω)‖IuM‖L2(Γh).

Lemma 3.7 in [10] states that ‖εû‖h . h‖IL‖Dh
+h‖EL‖Dh

+‖εu‖Dh
. This, together with the definition

of ΘIL , estimate (3.8) and Lemma 5.8, implies

‖PMu− ûh‖h . h1/2
{

(h1/2 + (1 + h)Hεu(R, h)
}

ΘIL + h1/2(1 + h)ν−1R‖Ip‖Dh

+ h1/2(1 + h)
{

(τR+ h1/2)‖Iu‖Dh
+ νRh1/2‖β‖L∞(Ω)‖IuM‖L2(Γh)

}
.

The error estimate ‖u − u∗h‖Dh
≤ ‖εu‖Dh

+ Ch‖L − Lh‖Dh
+ Chk+2|L|Hk+1(Ω) can be found in [11]

and, from Lemma 5.8, it follows that

‖u− u∗h‖Dh
. h1/2H(R, h)ΘIL + h1/2

{
ν−1R‖Ip‖Dh

+ (τR+ h1/2)‖Iu‖Dh

}
+ h1/2

{
h1/2

(
νR‖β‖L∞(Ω)‖IuM‖L2(Γh) + ‖L− Lh‖Dh

+ h|L|Hk+1(Ω)

)}
.

Hence, since τ is of order one, we observe that if R is of order one, then Hεu(R, h) is also of order
one, whereas if R is of order h, Hεu(R, h) is of order h1/2. The estimates of Theorem 4.1 follow from
the fact that ΘIL and the interpolation errors are of order hk+1.

6 Numerical results

In this section we present two-dimensional numerical experiments to validate the theoretical orders of
convergence of the approximations provided by the HDG method. In order to satisfy (3.5), in all our ex-

periments we choose τ =
1

2ν
max
x∈Th

β(x)·n+1. We compute the errors ep := ‖p−ph‖Ω, eu := ‖u−uh‖Ω,
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eL := ‖L − Lh‖Ω, eû :=

 ∑
K∈Dh

hK‖PMu− ûh‖∂K


1/2

and eu∗ :=
{
‖u− u∗h‖2Dh

+ ‖u− uh‖2Dc
h

}1/2

and, in addition, for each variable, we calculate the experimental order of convergence e.o.c. =

−2
log
(
eT1/eT2

)
log(NT1/NT2)

, where eT1 and eT2 are the errors associated to the corresponding variable considering

two consecutive meshes with NT1 and NT2 elements, respectively.

6.1 Example 1: dist(Γh,Γ) of order h2

In this example, we consider the circular domain Ω = {(x, y) ∈ R2 : x2 + y2 < 0.752}. The compu-
tational boundary Γh is constructed by interpolating ∂Ω by a piecewise linear function and Dh is the
domain enclosed by Γh. In this case Assumptions D and A are satisfied for h small enough since re is
of order h. The source term f and boundary data g are such that the exact solution is

p(x, y) = sin(x2 + y2) +
cos(0.752)− 1

0.752
, u(x, y) =

[
sin(x) sin(y)
cos(x) cos(y)

]
,

the convective velocity is chosen to be β(x, y) = (1, 1) and ν = 1. In this case, since we are interpolating
the curved boundary with a piecewise linear computational boundary, Theorem 4.1 predicts that the
error are of order hk+1 for the pressure, the velocity and its gradient, whereas the numerical trace
and postprocessed velocity are predicted to converge with order hk+2. In Table 1 we present the
experimental rates of convergence, showing an agreement with the theory.

k N ep order eu order eL order eû order eu∗ order
1 60 2.94e-02 − 3.66e-03 − 2.97e-02 − 6.95e-03 − 1.95e-03 −

129 9.48e-03 2.96 1.35e-03 2.60 1.32e-02 2.11 1.78e-03 3.55 4.83e-04 3.65
234 4.43e-03 2.55 7.09e-04 2.17 7.46e-03 1.92 7.21e-04 3.04 1.91e-04 3.12
485 2.27e-03 1.83 3.54e-04 1.91 3.85e-03 1.81 2.64e-04 2.75 7.10e-05 2.71
918 1.15e-03 2.12 1.75e-04 2.21 1.95e-03 2.13 9.52e-05 3.20 2.53e-05 3.24
1764 5.69e-04 2.17 8.85e-05 2.08 1.01e-03 2.00 3.53e-05 3.04 9.47e-06 3.01
3546 2.82e-04 2.01 4.46e-05 1.96 5.21e-04 1.91 1.33e-05 2.80 3.60e-06 2.77
7089 1.44e-04 1.93 2.24e-05 1.99 2.63e-04 1.97 4.79e-06 2.94 1.32e-06 2.90
14291 7.20e-05 1.98 1.11e-05 1.99 1.33e-04 1.96 1.72e-06 2.93 4.72e-07 2.93

2 60 6.99e-04 − 1.23e-04 − 8.35e-04 − 1.20e-04 − 4.77e-05 −
129 1.51e-04 4.00 2.61e-05 4.05 1.90e-04 3.87 1.41e-05 5.59 6.62e-06 5.16
234 4.79e-05 3.87 9.32e-06 3.46 7.05e-05 3.33 3.71e-06 4.49 1.87e-06 4.25
485 1.47e-05 3.23 2.94e-06 3.16 2.27e-05 3.11 8.56e-07 4.02 4.30e-07 4.03
918 5.31e-06 3.20 1.09e-06 3.11 8.36e-06 3.12 2.34e-07 4.06 1.20e-07 4.01
1764 2.00e-06 2.98 4.15e-07 2.96 3.16e-06 2.98 6.46e-08 3.94 3.34e-08 3.91
3546 7.40e-07 2.85 1.51e-07 2.90 1.17e-06 2.84 1.80e-08 3.66 9.15e-09 3.71
7089 2.55e-07 3.08 5.25e-08 3.05 4.08e-07 3.05 4.46e-09 4.03 2.25e-09 4.05
14291 9.16e-08 2.92 1.88e-08 2.93 1.47e-07 2.91 1.19e-09 3.76 5.89e-10 3.82

3 60 6.42e-05 − 6.71e-06 − 5.12e-05 − 5.65e-06 − 2.06e-06 −
129 8.83e-06 5.18 1.01e-06 4.95 7.58e-06 4.99 5.17e-07 6.25 2.03e-07 6.06
234 1.87e-06 5.21 2.77e-07 4.34 1.94e-06 4.57 9.09e-08 5.84 3.94e-08 5.50
485 3.97e-07 4.26 7.19e-08 3.70 4.84e-07 3.81 1.64e-08 4.69 7.74e-09 4.47
918 1.06e-07 4.15 1.76e-08 4.42 1.20e-07 4.38 2.96e-09 5.38 1.33e-09 5.51
1764 2.79e-08 4.07 4.37e-09 4.26 3.04e-08 4.20 5.35e-10 5.23 2.35e-10 5.32
3546 7.65e-09 3.71 1.15e-09 3.83 8.17e-09 3.76 1.10e-10 4.53 4.62e-11 4.66
7089 1.88e-09 4.05 2.91e-10 3.96 2.07e-09 3.96 1.96e-11 4.98 8.42e-12 4.92
14291 4.87e-10 3.85 7.29e-11 3.95 5.28e-10 3.90 3.65e-12 4.80 1.53e-12 4.87

Table 1: History of convergence of Example 1.
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6.2 Example 2: dist(Γh,Γ) of order h

In this example we consider Ω :=
{

(x, y) ∈ R2
+ : 1.4 <

√
x2 + y2 < 2

}
and the exact solution

p(x, y) = ex
2+y2 − (e22 − e1.42)/(22 − 1.42), u(x, y) =

[
sin(3x)ey

−3 cos(3x)ey

]
.

The convective velocity β and the viscosity ν are chosen as in Example 1. The computational domain

Figure 2: Domain Ω and computational domain of Example 2. Figure obtained from [30].

Dh, as we see in Fig. 2, is constructed in such a way that re = 1 for all e ∈ Γh\{(x, y) : x = 0 ∨ y = 0}.
In this case Assumptions D are satisfied and also (A.2) for h small enough. However, it is not possible
to ensure that (A.1), (A.3) and (A.4) hold true. If they are, according to Theorem 4.1, the predicted
orders of convergence for this example are hk+1 for the pressure, the velocity and its gradient, and
hk+3/2 for the numerical trace and the postprocessed velocity. Actually, in Table 2 we observe this
optimal behavior experimentally.

k N ep order eu order eL order eû order eu∗ order
1 180 2.30e+00 − 8.38e-02 − 2.09e+00 − 1.71e-01 − 4.73e-02 −

868 4.32e-01 2.12 1.21e-02 2.46 2.93e-01 2.50 2.44e-02 2.47 7.18e-03 2.40
3780 9.72e-02 2.03 2.44e-03 2.18 7.27e-02 1.89 3.73e-03 2.56 1.11e-03 2.54
15748 2.25e-02 2.05 5.46e-04 2.09 1.81e-02 1.95 5.28e-04 2.74 1.58e-04 2.72
64260 5.28e-03 2.06 1.31e-04 2.03 4.47e-03 1.99 7.16e-05 2.84 2.17e-05 2.83

2 180 2.04e-01 − 5.96e-03 − 1.04e-01 − 1.27e-02 − 3.80e-03 −
868 2.19e-02 2.84 4.63e-04 3.25 1.30e-02 2.65 1.06e-03 3.16 3.18e-04 3.15
3780 2.33e-03 3.05 3.90e-05 3.36 1.55e-03 2.89 7.81e-05 3.54 2.35e-05 3.54
15748 2.54e-04 3.11 3.83e-06 3.25 1.84e-04 2.99 5.40e-06 3.74 1.64e-06 3.73
64260 2.82e-05 3.13 4.31e-07 3.11 2.18e-05 3.03 3.60e-07 3.85 1.10e-07 3.84

3 180 4.70e-02 − 1.77e-03 − 4.78e-02 − 3.19e-03 − 9.42e-04 −
868 1.28e-03 4.59 1.97e-05 5.72 6.15e-04 5.53 5.45e-05 5.17 1.63e-05 5.16
3780 6.86e-05 3.97 7.13e-07 4.51 3.78e-05 3.79 2.02e-06 4.48 6.06e-07 4.48
15748 3.75e-06 4.08 2.72e-08 4.58 2.33e-06 3.91 7.04e-08 4.70 2.13e-08 4.69

Table 2: History of convergence of Example 2.

6.3 Example 3: Other choice of transferring paths

In this last set of examples, we explore the capabilities of the method in a more general setting where
some of the assumption are not necessarily satisfied. We consider a kidney-shaped domain whose
boundary satisfies the equation

(2[(x+ 0.5)2 + y2]− x− 0.5)2 − [(x+ 0.5)2 + y2] + 0.1 = 0
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and a triangulation of a background domain B such that Ω ⊂ B. We set Dh as the union of all the
elements inside Ω, as it is shown in Fig. 3 (most-left). In this case, the family of transferring paths
is constructed by the procedure in Section 2.4.1 of [14]. We point out that now the tangent vector
associated to a transferring path is not, in general, normal to a boundary edge. An example is depicted
in Fig. 3. In this case, instead of (3.2), for x in a boundary vertex e, we set

g̃h(x) := g(x̄)−
∫ l(x)

0
Lh(x+ t(x)s )t(x) ds, (6.1)

where t(x) is the unit vector joining x and x̄.

Figure 3: Left: Example of a domain Ω (kidney-shaped), background domain (square) and polygonal
subdomain (gray). Middle: transferring paths (segments with starting and ending points marked
with ◦) associated to boundary vertices. Right: transferring paths associated to two points on each
boundary edge. Figure obtained from [30].

In all the simulations the source term f and boundary data g are such that the exact solution is

p(x, y) = sin(x2 + y2)− cΩ and u(x, y) =

[
sin(x) sin(y)
cos(x) cos(y)

]
,

where cΩ :=
1

|Ω|

∫
Ω

sin(x2 + y2) dx dy was computed numerically considering a extremely fine triangu-

lation that fits the domain.

The results of this experiment, with ν = 1, are displayed in Table 3. We observe that when k = 2,
the results seem to oscillate. This behavior was also observed in the case of Stokes problem [30]. On
the other hand, the orders of convergence of the pressure, velocity and its gradient are k + 1, and
around k + 3/2 for the numerical trace and postprocessed velocity.

6.4 Example 4: Application to the the steady–state incompressible Navier–Stokes
equations.

In this example, which is not covered by the error estimates of our work, we explore the performance
of the method in solving the steady–state incompressible Navier–Stokes equations written as the first
order system (1.1), where the second equation is replaced by −ν∇ · L +∇ · (u ⊗ u) +∇p = f in Ω.
To that end, we carry out an iterative process. For a fixed mesh, we solve first a Stokes problem and
compute the postprocessed velocity, that we denote by u∗,0h . Then, for n = 0, 1, 2, . . ., we solve the

Oseen equations, using β := u∗,nh , and compute the postprocessed velocity, denoted by u∗,n+1
h , until

the relative error satisfies
‖u∗,n+1

h − u∗,nh ‖
‖u∗,nh ‖

< tol, where tol is a prescribed value. Once that precision
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k N ep order eu order eL order eu∗ order eû order
1 28 5.79e-02 − 1.06e-03 − 1.83e-02 − 3.03e-03 − 7.88e-04 −

154 9.50e-03 2.12 2.00e-04 1.96 4.30e-03 1.70 5.68e-04 1.97 1.52e-04 1.93
712 1.48e-03 2.43 6.93e-05 1.38 1.22e-03 1.65 6.95e-05 2.74 2.28e-05 2.47
3054 2.72e-04 2.33 1.53e-05 2.07 2.91e-04 1.97 8.30e-06 2.92 2.79e-06 2.89
12579 4.49e-05 2.54 3.61e-06 2.04 6.36e-05 2.15 9.19e-07 3.11 3.08e-07 3.11
50877 1.04e-05 2.09 8.86e-07 2.01 1.54e-05 2.03 1.23e-07 2.88 4.09e-08 2.89

2 28 3.72e-03 − 1.20e-04 − 1.47e-03 − 1.62e-04 − 5.09e-05 −
154 3.79e-04 2.68 1.22e-05 2.69 1.82e-04 2.45 2.67e-05 2.11 8.59e-06 2.09
712 3.73e-05 3.03 7.57e-07 3.63 2.28e-05 2.71 1.66e-06 3.63 5.35e-07 3.63
3054 2.98e-05 0.31 2.72e-07 1.41 1.86e-05 0.28 5.98e-07 1.40 1.91e-07 1.41
12579 1.19e-07 7.80 2.93e-09 6.40 1.12e-07 7.23 2.54e-09 7.71 8.09e-10 7.72
50877 1.19e-08 3.30 3.38e-10 3.09 1.13e-08 3.28 1.47e-10 4.08 4.68e-11 4.08

3 28 6.34e-02 − 2.30e-03 − 2.63e-02 − 3.63e-03 − 1.21e-03 −
154 4.01e-05 8.64 1.04e-06 9.04 2.18e-05 8.32 1.98e-06 8.82 6.46e-07 8.84
712 1.32e-06 4.46 2.12e-08 5.09 7.91e-07 4.33 4.45e-08 4.96 1.44e-08 4.97
3054 4.00e-08 4.81 3.72e-10 5.55 2.48e-08 4.75 7.48e-10 5.61 2.39e-10 5.63
12579 1.93e-09 4.28 1.35e-11 4.69 1.33e-09 4.14 2.85e-11 4.62 8.90e-12 4.65
50877 1.49e-10 3.67 8.47e-13 3.96 7.67e-11 4.08 1.99e-12 3.81 6.37e-13 3.77

Table 3: History of convergence of Example 3.

is achieved, we move to the next mesh.

We consider the circular domain Ω = {(x, y) ∈ R2 : x2 +y2 < 0.752}, and the computational domain
is constructed by interpolating ∂Ω by a piecewise linear function, as we did in Example 1. Note that,
according to the error estimates stated in Theorem 4.1, the orders of convergence of the velocity
and postprocessed velocity when solving Oseen equations are hk+1 and hk+2, resp. This implies that
‖∇ · u∗h‖Dh

converges to zero more quickly than ‖∇ · uh‖Dh
, even though neither ∇ · u∗h nor ∇ · u∗h

are exactly zero. This is why we use β = u∗,nh in the n–th iteration. The orders of convergence are
displayed in Table 4. We observe that the results are the optimal for the pressure, velocity and its
gradient. Additionally, the expected order hk+2 for the numerical trace and postprocessed velocity is
also attained.
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A

Lemma A1. Suppose that the elliptic regularity inequality (2.9) holds. Then

ν‖φ− PMφ‖Γh,(h⊥)−1 . h‖θ‖Ω, ν‖∇φn− PM (∇φn)‖Γh,l . hR‖θ‖Ω,

ν‖φ+ l∇φn‖Γh,l−3 . ‖θ‖Ω, ν‖φ‖Γh,l−2 . ‖θ‖Ω, ‖φn‖Γh,l . h1/2R1/2‖θ‖Ω.

Proof. Lemma 11 in [30].
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k N it ep order eu order eL order eû order e∗u order
1 60 5 9.96e-03 − 3.55e-03 − 1.02e-02 − 2.30e-03 − 6.53e-04 −

129 4 3.42e-03 2.79 1.46e-03 2.32 4.13e-03 2.37 5.70e-04 3.65 1.49e-04 3.87
234 4 1.65e-03 2.44 7.99e-04 2.03 2.20e-03 2.11 2.23e-04 3.16 5.61e-05 3.27
485 4 8.27e-04 1.90 3.98e-04 1.91 1.11e-03 1.88 8.05e-05 2.79 2.05e-05 2.77
918 3 4.08e-04 2.21 2.02e-04 2.13 5.51e-04 2.20 2.83e-05 3.27 7.19e-06 3.28
1764 3 2.06e-04 2.09 1.03e-04 2.05 2.83e-04 2.05 1.04e-05 3.08 2.65e-06 3.06
3546 3 1.02e-04 2.02 5.20e-05 1.96 1.43e-04 1.95 3.80e-06 2.87 9.73e-07 2.86
7089 2 5.13e-05 1.98 2.61e-05 1.99 7.19e-05 1.98 1.36e-06 2.96 3.54e-07 2.92

2 60 4 4.27e-04 − 1.23e-04 − 4.21e-04 − 5.81e-05 − 1.92e-05 −
129 3 1.01e-04 3.77 3.13e-05 3.57 9.66e-05 3.85 8.04e-06 5.17 2.71e-06 5.11
234 3 3.36e-05 3.68 1.13e-05 3.41 3.57e-05 3.34 2.02e-06 4.65 7.36e-07 4.38
485 3 9.89e-06 3.36 3.73e-06 3.05 1.16e-05 3.09 4.30e-07 4.24 1.69e-07 4.03
918 2 3.67e-06 3.11 1.40e-06 3.08 4.14e-06 3.22 1.16e-07 4.11 4.50e-08 4.15
1764 2 1.37e-06 3.03 5.32e-07 2.96 1.50e-06 3.10 3.10e-08 4.04 1.20e-08 4.05
3546 2 5.22e-07 2.75 1.97e-07 2.85 5.59e-07 2.83 8.85e-09 3.59 3.31e-09 3.68
7089 2 1.78e-07 3.10 6.88e-08 3.03 1.94e-07 3.05 2.15e-09 4.09 8.11e-10 4.06

3 60 3 5.75e-05 − 9.39e-06 − 4.00e-05 − 5.15e-06 − 1.34e-06 −
129 2 7.94e-06 5.17 1.52e-06 4.76 5.25e-06 5.31 4.69e-07 6.26 1.19e-07 6.34
234 2 1.70e-06 5.18 3.98e-07 4.50 1.08e-06 5.30 6.82e-08 6.48 1.65e-08 6.63
485 2 3.39e-07 4.42 9.40e-08 3.96 2.15e-07 4.44 9.89e-09 5.30 2.49e-09 5.18
918 1 9.24e-08 4.08 2.47e-08 4.19 5.66e-08 4.19 1.98e-09 5.05 4.69e-10 5.24
1764 1 2.52e-08 3.98 6.54e-09 4.07 1.50e-08 4.06 3.88e-10 4.99 8.96e-11 5.07
3546 1 6.96e-09 3.68 1.75e-09 3.78 4.19e-09 3.66 8.12e-11 4.48 1.83e-11 4.55
7089 1 1.69e-09 4.09 4.33e-10 4.02 1.02e-09 4.08 1.39e-11 5.10 3.20e-12 5.04

Table 4: History of convergence of Example 4. Circular domain.

Additionally, for any elementK ∈ Th, we introduce the projection Π∗h(Φ,φ, φ) = (Π∗Φ,Π ∗φ,Π ∗φ) ∈
Pk(K)× P k(K)× Pk(K) such that

ν(Π∗Φ,G)K + (Π ∗φ⊗ β,G)K = ν(Φ,G)K + (φ⊗ β,G)K , (A.1a)

(Π ∗φ,v)K = (φ,v)K , (A.1b)

(Π ∗φ, q)K = (φ, q)K , (A.1c)

〈νΠ∗Φn+ Π ∗φn+ (Π ∗φ⊗ β)n− SΠ ∗φ,µ〉e = 〈νΦn+ φn+ (φ⊗ β)n− Sφ,µ〉e, (A.1d)

for all (G,v, q,µ) ∈ Pk−1(K)×Pk−1(K)×Pk−1(K)×Pk(e) and for all the faces e of K. If τ satisfies
(3.5), then

‖Π ∗φ− φ‖K . Chk+1
K |φ|k+1,K , (A.2a)

‖Π ∗φ− φ‖K . (τν + 1 + hK)hk+1
K |φ|k+1,K (A.2b)

+hk+1
K |∇ · (νΦ + φI)|k,K ,

ν‖Π∗Φ− Φ‖K . νhk+1
K |Φ|k+1,K + (τν + hK)hk+1

K |φ|k+1,K

+(τν + (1 + ν) + hK)‖Π ∗φ− φ‖K (A.2c)

+‖Π ∗φ− φ‖K .

For a proof we refer to Theorem 2.5 in [9].
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