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Abstract

The aim of this paper is to propose and analyze a numerical method to solve transient eddy current
problems formulated in terms of the magnetic field intensity. Space discretization is based on
Nédélec edge elements, while a backward Euler scheme is used for time discretization; the curl-free
constraint in the dielectric domain is imposed by means of a penalty strategy. Convergence of
the penalized problem as the penalty parameter goes to zero is proved for the continuous and the
discrete problems, for the latter uniformly in the discretization parameters. Optimal order error
estimates for the convergence of the discrete penalized problem with respect to the penalty and the
discretization parameters are also proved. Finally, some numerical tests are reported to assess the
performance of this approach.

Keywords: Eddy current problems, transient electromagnetic problems, edge finite elements,
penalty formulation.
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1. Introduction

In this paper, we analyze a finite element method to solve a three-dimensional transient eddy
current problem in a bounded domain that contains conductors and dielectrics, when the source
current density is known in a part of the domain. This situation arises in many practical appli-
cations in which the current density is known for instance in a coil and the main interest is the5

computation of the induced currents in some neighboring conducting pieces. This problem has
been extensively studied in the literature, specially in the harmonic regime; see, for instance, the
complete monograph [4], which deals with this situation in quite general topological frameworks
and provides the mathematical and numerical analysis for a wide variety of formulations combin-
ing vector fields and/or potentials. The present paper is devoted to analyze this problem in the10

time-dependent case by using a variational formulation based only on the magnetic field H and
introducing a penalty approach to deal with the Ampére’s law in the non conducting regions.
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Let us remark that the eddy current approximation consists of neglecting the term corresponding
to the electric displacement in Ampére’s law and, consequently, a distinctive feature of this model
is that it is needed to deal with an algebraic constraint on the curl of the magnetic field in the
dielectric domain; namely, H must satisfy

curlH = J
S
, (1.1)

JS being the known current density whose support is contained in the dielectric domain.
The two most popular options in the literature to deal with this constraint are either to impose

it in a weak form by using a Lagrange multiplier [3] (and consequently adding unknowns to the15

system) or to introduce a scalar potential in the dielectric domain [2, 11]. The last option is
clearly less expensive, but it requires two additional steps: first, to determine a particular vector

potential Ĥ such that curl Ĥ = J
S

and, secondly, to deal with the constraint curl(H − Ĥ) = 0
by introducing a multivalued scalar potential. From the numerical point of view, the first option
leads to a discrete mixed problem that can be quite expensive, because it involves several vector20

fields as unknowns. In its turn, the scalar potential alternative requires an efficient way to deal
with the multivalued potential, which is not trivial at all in general topological configurations with
non-simply connected dielectric domains [1, 2]. (See also [11] for an alternative approach based on
graph techniques.)

To overcome these difficulties, the penalty approach is an alternative that has been also used25

in fluid dynamics and solid mechanics to deal with incompressibility conditions (see, for instance,
[17] and references therein). In the eddy current context, it is based on relaxing the constraint
(1.1), which can be interpreted as assuming that the dielectric is not a perfect insulator but a fake
conductor ; namely, a material with a very low conductivity. This approach has been already used in
electrical engineering to approximate either magnetostatic [6, 7] or eddy current problems [12, 18].30

We also refer the reader to [8], where a similar approach is used in an axisymmetric framework to
avoid introducing additional unknowns in the dielectric domain. More recently, it was shown in
[10] that this penalty approach is an interesting technique to deal with eddy current problems that
involve moving conductors, because, in spite of the fact that the conducting domain changes over
the time, it is possible to design an efficient numerical scheme without the need of re-meshing.35

The main goal of this paper is the convergence analysis of the proposed penalty scheme in the
context of the fully-discrete approximation of transient eddy current problems. Similar analyses
have been performed in the case of Navier-Stokes equations in [17] only for a time discretization
and in [14] for a fully-discrete scheme. Although our analysis has been inspired by these references,
the road taken to perform it is not the same. Our road consists of combining optimal order error40

estimates of a fully-discrete scheme with respect to the discretization parameters and convergence
of the penalty fully-discrete scheme as the penalty parameter goes to zero, the latter uniformly in
the discretization parameters. Moreover, in order to obtain an optimal order error estimate in terms
of the penalty parameter under appropriate assumptions, we resort again to [17] and adapt to our
discrete problem arguments proposed in that reference for the analysis of the penalized continuous45

Navier-Stokes equations.
The outline of the paper is as follows. In Section 2, we introduce the time-dependent eddy current

problem in a bounded domain with essential homogeneous boundary conditions and derive a weak
formulation in terms of the magnetic field, which is proved to be well posed. Next, in Section 3, we
introduce a mixed formulation to impose the Ampére’s law in a weak form. This is the starting point50

from which we derive the penalty approach that we propose for the continuous model. Proofs of its
well-posedness and convergence of the solution of the penalized problem to that of the original one
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as the penalty parameter ε goes to zero are postponed to an appendix. In Section 4, we introduce
full discretizations of the mixed and the penalized problems by means of backward Euler schemes
for time discretization, while the magnetic field and the Lagrange multiplier are approximated by55

Nédélec edge elements and curls of Nédélec elements, respectively. Section 5 is devoted to analyze
the convergence of the solution of the discrete mixed problem as the discretization parameters
goes to zero. Let us remark that although this is just an intermediate result in our analysis, it is
interesting by itself and its convergence analysis had not been previously performed in the time-
dependent case. In Section 6, we prove a preliminary result of convergence, which states that60

the solution of the penalized problem converges to that of the mixed problem with suboptimal
rate O(

√
ε) as ε tends to zero, uniformly in the discretization parameters. This is improved in

Theorem 6 from Section 7 (which is the main result of this paper), where we prove an optimal rate
of convergence O(ε) in the case of vanishing initial data and a smooth source current. Finally, in
Section 8, we report some numerical results obtained with a MATLAB code that implements the65

penalty technique, which allows us to illustrate the above mentioned convergence results.
Throughout this paper, we use classical Sobolev as well as other well known spaces like, for

instance, H0(curl;ω) := {G ∈ H(curl;ω) : G× n = 0 on ∂ω}, Hγ(div0;ω) := {F ∈ H(div;ω) :
divF = 0 in ω and F · n = 0 on γ}, etc., for any domain ω and any connected component γ of
∂ω. Here and thereafter, we use boldface letters to denote vector fields and variables as well as70

vector-valued operators. Finally, C will denote strictly positive generic constants, not necessarily
the same at each occurrence.

2. A magnetic field formulation

Let us consider a coil, which occupies a three-dimensional domain Ω
S

and carries a given time-
dependent current density JS. This current creates a varying electromagnetic field in the whole75

space, which in turn induces an eddy current in a neighboring conducting piece that occupies
another domain Ω

C
(the conducting domain). Let Ω be a simply connected bounded domain with

a Lipschitz continuous connected boundary Γ that contains the coil and the conducting piece. We
are interested in computing the eddy currents in the conducting piece over time. We assume that
Ω̄

S
∪ Ω̄

C
⊂ Ω and Ω̄

S
∩ Ω̄

C
= ∅. We denote Ω

D
:= Ω \ Ω̄

C
(the dielectric domain) and notice that80

Ω̄
S
⊂ Ω

D
, so that J

S
|Ω

C
= 0 (see Figure 1).

Figure 1: Sketch of the domain.
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The time-dependent eddy current equations read as follows:

∂t(µH) + curlE = 0 in (0, T )× Ω, (2.1a)

curlH = σE + J
S

in [0, T ]× Ω, (2.1b)

div(µH) = 0 in [0, T ]× Ω, (2.1c)

where E(t,x) is the electric field, H(t,x) the magnetic field, µ(x) the magnetic permeability and
σ(x) the electric conductivity. The source current J

S
is a given data, that we assume satisfies

J
S
∈ H1(0, T ; H0(div0; Ω

S
)). This implies that its extension by zero belongs to H1(0, T ; H0(div0; Ω))

too. On the other hand, we assume that the coefficients µ and σ are time-independent and that
there exist positive constants µ, µ, σ and σ such that

0 < µ ≤ µ(x) ≤ µ, x ∈ Ω,

0 < σ ≤ σ(x) ≤ σ, x ∈ Ω
C

and σ = 0 in Ω
D
.

These equations must be completed with suitable boundary and initial conditions that guarantee
the well-posedness of the problem. A similar problem but defined in the whole space R3 has been
dealt with in [15] by using the magnetic field as the main unknown. In our case, we restrict our
analysis to a bounded domain Ω and consider the following homogeneous boundary condition:

H × n = 0 in [0, T ]× Γ. (2.2)

Let us remark that the modeling error arisen from imposing this approximate boundary condition
is negligible, provided the domain Ω is chosen with its boundary sufficiently far from Ω

S
and Ω

C
.

Finally, we must add an appropriate initial condition

H(0,x) = H0(x), x ∈ Ω. (2.3)

When the electromagnetic setting is turned on at the initial time t = 0, the natural initial data is
H0 = 0, whereas J

S
(0) = 0, too. Although this is the most usual case in the applications, almost

all the results of this paper remain true for a more general initial data H0 satisfying

H0 ∈ H0(curl; Ω) : curlH0 = J
S
(0) in Ω

D
and div(µH0) = 0 in Ω. (2.4)

The first constraint is a compatibility condition among the problem data H0 and J
S
; it means

that Equation (2.1b) holds true in Ω
D

at the initial time. The second constraint means that85

Equation (2.1c) holds true at the initial time. Note that by virtue of (2.1a), this constraint is
actually equivalent to (2.1c).

For the sake of generality, for most of the paper we will consider as initial data an arbitrary H0

satisfying (2.4). We will assume H0 = 0 only when it will be actually needed. In such a case, we
will also report what holds for a more general H0.90

To derive a first weak formulation of this problem, we introduce the following space:

Y := {G ∈ H0(curl; Ω) : curlG = 0 in Ω
D
} .

By testing (2.1a) with G ∈ Y , integrating by parts and using (2.1b) to eliminate E in terms of
curlH in Ω

C
, we arrive at the following.
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Problem 1. Find H ∈ L2(0, T ; H0(curl; Ω)) ∩H1(0, T ; L2(Ω)3) such that

curlH = J
S

in [0, T ]× Ω
D
, (2.5a)∫

Ω

µ∂tH ·G+

∫
Ω

C

1

σ
curlH · curlG = 0 ∀G ∈ Y , a.e. in [0, T ], (2.5b)

H(0) = H0 in Ω. (2.5c)

Theorem 1. Problem 1 has a unique solution H. Furthermore, H ∈ L∞(0, T ; H0(curl; Ω)) and
there exists C > 0 independent of H0 and J

S
such that

‖H‖2L∞(0,T ;H(curl;Ω)) + ‖∂tH‖2L2(0,T ;L2(Ω)3) ≤ C
{
‖H0‖2H(curl;Ω) + ‖J

S
‖2H1(0,T ;L2(Ω

S
)3)

}
. (2.6)

Proof. The proof follows similar lines to those in [9, Section 3.2]. The first step is to build Ĥ ∈
H1(0, T ; H0(curl; Ω)) such that curl Ĥ = J

S
. To define it, we use that J

S
∈ H1(0, T ; H0(div0; Ω)).

Then, since Ω is simply connected, for almost all t ∈ [0, T ] there exists a unique divergence-free
vector potential Q(t) ∈ H0(curl; Ω) such that (see [13, Theorem I.3.6])

curlQ(t) = ∂tJS
(t) in Ω (2.7)

and there exists C > 0 such that ‖Q(t)‖H(curl;Ω) ≤ C ‖∂tJS
(t)‖L2(Ω

S
)3 On the other hand, since

JS(0) ∈ H0(div0; Ω) too, there also exists a unique divergence-free vector potential R ∈ H0(curl; Ω)
such that

curlR = J
S
(0) in Ω (2.8)

and ‖R‖H(curl;Ω) ≤ C ‖JS
(0)‖L2(Ω

S
)3 . Then, we define

Ĥ(t) := R+

∫ t

0

Q(s) ds, (2.9)

so that ∂tĤ(t) = Q(t) in the sense of distributions in (0, T ) (see [19, Remark 131(b)], for in-

stance). Hence,
∫ T

0

∥∥∂tĤ(t)
∥∥2

H(curl;Ω)
dt =

∫ T
0
‖Q(t)‖2H(curl;Ω) dt ≤ C

∫ T
0
‖∂tJS

(t)‖2L2(Ω
S
)3 dt. On

the other hand, straightforward computations allow us to bound
∫ T

0

∥∥Ĥ(t)
∥∥2

H(curl;Ω)
dt too, so that

we conclude that Ĥ ∈ H1(0, T ; H0(curl; Ω)) and∥∥Ĥ∥∥2

H1(0,T ;H(curl;Ω))
≤ C ‖J

S
‖2H1(0,T ;L2(Ω

S
)3) . (2.10)

Furthermore, from (2.9), (2.8), (2.7) and [19, Theorems 111 & 127] we have that

curl Ĥ(t) = curlR+

∫ t

0

curlQ(s) ds = J
S
(t) in [0, T ]× Ω. (2.11)

Next, we define HY as the closure of Y in L2(Ω)3. It is shown in [9, Lemma 3.2] that HY ={
G ∈ L2(Ω)3 : curlG = 0 in Ω

D

}
. Then, by writingH = H̃+Ĥ, it is easy to check that Problem 1

is equivalent to finding H̃ ∈ L2(0, T ;Y) ∩H1(0, T ;HY) such that∫
Ω

µ∂tH̃ ·G+

∫
Ω

C

1

σ
curl H̃ · curlG = −

∫
Ω

µ∂tĤ ·G ∀G ∈ Y ,

H̃(0) = H0 − Ĥ0.
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By applying similar techniques to those used in the proof of [9, Corollary A.2], we are able to prove

that this problem has a unique solution H̃, that this solution belongs to L∞(0, T ;Y) and that there
exists C > 0 independent of H0 and JS such that∥∥H̃∥∥2

L∞(0,T ;Y)
+
∥∥∂tH̃∥∥2

L2(0,T ;HY )
≤ C

{
‖H0‖2H(curl;Ω) + ‖J

S
‖2H1(0,T ;L2(Ω

S
)3)

}
.

It is clear that H = H̃ + Ĥ is a solution to Problem 1. Moreover, H ∈ L∞(0, T ; H0(curl; Ω))
and, as a consequence of the previous inequality and (2.10), we derive (2.6). Since the problem is
linear, the uniqueness of the solution is an immediate consequence of this estimate.95

3. Mixed and penalty approaches

To solve Problem 1, it is necessary to impose somehow the constraint (2.5a). A possible way
of doing it is by means of a Lagrange multiplier in the dielectric domain, which leads to a mixed
problem (see [3] and [15] for further details in the harmonic and time-domain regimes, respectively).
To derive this mixed formulation, we test (2.1a) with G ∈ H0(curl; Ω), integrate by parts and use100

again (2.1b) to substitute E in terms of curlH in Ω
C
. The resulting equation combined with a

weak form of (2.1b) in Ω
D

yield the following.

Problem 2. Find H ∈ L2(0, T ; H0(curl; Ω)) ∩ H1(0, T ; L2(Ω)3) and E ∈ L2(0, T ; HΓ(div0; Ω
D
))

such that∫
Ω

µ∂tH ·G+

∫
Ω

C

1

σ
curlH · curlG+

∫
Ω

D

curlG ·E = 0 ∀G ∈ H0(curl; Ω), a.e. in [0, T ],∫
Ω

D

curlH · F =

∫
Ω

S

J
S
· F ∀F ∈ HΓ(div0; Ω

D
), a.e. in [0, T ],

H(0) = H0.

The choice of the space HΓ(div0; ΩD) for the Lagrange multiplier is justified by the following
result, in which we prove that Problem 2 is actually equivalent to Problem 1.

Theorem 2. Let H be the solution to Problem 1. Then, there exists E ∈ L2(0, T ; HΓ(div0; ΩD))
such that (H,E) is the unique solution of Problem 2. Moreover, there exists C > 0 independent of
H0 and J

S
such that

‖E‖2L2(0,T ;L2(Ω
D

)3) ≤ C
{
‖H0‖2H(curl;Ω) + ‖J

S
‖2H1(0,T ;L2(Ω

S
)3)

}
. (3.1)

Proof. It is easy to check that the following inf-sup condition holds true (see (4.8) in the proof of
Theorem 4.3 from [3]):

sup
G∈H0(curl;Ω)

∫
Ω

D
curlG · F

‖G‖H(curl;Ω)

≥ β ‖F ‖L2(Ω
D

)3 ∀F ∈ HΓ(div0; Ω
D
). (3.2)

Then, let H be the solution of Problem 1. By virtue of (2.5b) and the above inf-sup condition, we
are in a position to use [13, Lemma I.4.1(ii)] to derive that for almost all t ∈ [0, T ] there exists a
unique E(t) ∈ HΓ(div0; Ω

D
) such that∫

Ω
D

curlG ·E(t) = −
∫

Ω

µ∂tH(t) ·G−
∫

Ω
C

1

σ
curlH(t) · curlG ∀G ∈ H0(curl; Ω). (3.3)
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On the other hand, since curlH|Ω
D

and JS|ΩD
both belong to HΓ(div0; ΩD), equation (2.5a) is105

clearly equivalent to the second equation from Problem 2. Consequently, (H,E) is a solution to
Problem 2.

Furthermore, from (3.2) and (3.3), it is immediate to check that there exists C > 0 such that

‖E(t)‖L2(Ω
D

)3 ≤ C
{
‖∂tH(t)‖L2(Ω)3 + ‖curlH(t)‖L2(Ω

C
)3

}
, which combined with (2.6) yield (3.1).

There only remains to prove that this problem has at most one solution. To do this, let (H̆, Ĕ)
be a solution of Problem 2 with data JS = 0 and H0 = 0. We only have to prove that (H̆, Ĕ)
vanishes. With this aim, for each t ∈ [0, T ], we take G = H̆(t) and F = Ĕ(t) in Problem 2.
Subtracting the resulting equations we obtain∫

Ω

µ∂tH̆(t) · H̆(t) +

∫
Ω

C

1

σ

∣∣ curl H̆(t)
∣∣2 = 0.

Then, using that
∫

Ω
µ∂tH̆(t) · H̆(t) = 1

2
d
dt

∥∥µ1/2H̆(t)
∥∥2

L2(Ω)3 , we have that

1

2

∥∥µ1/2H̆(t)
∥∥2

L2(Ω)3 +

∫ t

0

[∫
Ω

C

1

σ

∣∣ curl H̆(s)
∣∣2] ds =

1

2

∥∥µ1/2H̆(0)
∥∥2

L2(Ω)3 = 0 ∀t ∈ [0, T ].

Then, it follows that H̆ = 0. Finally, from (3.2) and (3.3) we derive that Ĕ = 0, too.110

The finite element discretization of Problem 2 looks expensive, since it involves two vector fields:
H in the whole domain Ω and E in the dielectric domain. Moreover, it is not simple to find a
basis of the finite element subspace used to discretize the space HΓ(div0; ΩD) where the Lagrange
multiplier of Problem 2 lies. To avoid these drawbacks, we will introduce an alternative penalty
technique to relax the constraint (2.5a). It consists of assuming that the dielectric is not a perfect
insulator but a fake conductor ; namely, a material with a very low conductivity ε > 0. In such a
case, instead of (2.5a), the solution (Hε,Eε) of this penalty approach has to satisfy

curlHε = εEε + J
S

in Ω
D
.

Therefore, for each ε > 0, the same steps that lead to Problem 2 but using now the above equation
to substitute Eε in terms of Hε and J

S
in Ω

D
, yield the following penalized form of problem

(2.1)–(2.3).

Problem 3. Find Hε ∈ L2(0, T ; H0(curl; Ω)) ∩H1(0, T ; L2(Ω)3) such that∫
Ω

µ∂tHε ·G+

∫
Ω

C

1

σ
curlHε · curlG+

1

ε

∫
Ω

D

curlHε · curlG =
1

ε

∫
Ω

S

J
S
· curlG

∀G ∈ H0(curl; Ω),
Hε(0) = H0.

This problem has a unique solution Hε, which is bounded independently of the penalty param-
eter ε. We will prove this fact in an appendix, as well as the convergence of the solution of the115

penalized Problem 3 to that of the mixed Problem 2 with a suboptimal rate O(
√
ε). In principle,

one could try to adapt the techniques from [17] to our problem in order to improve this and obtain
an optimal rate O(ε). However, we will not try to do it, since we will not need this optimal rate
for the forthcoming analysis.

In fact, in the following sections, we will prove an optimal rate O(ε) for the respective discretiza-120

tions of problems 3 and 2. Therefore, we will only use Problem 3 to derive the discrete penalty
scheme. This is the reason why we postpone to an appendix the above mentioned proofs.
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4. Discretization

The aim of this section is to introduce a full discretization of Problem 3 in order to numerically
solve Problem 1. To prove the convergence of the proposed method, we will use as an intermediate125

step a discretization of Problem 2, which will be introduced in this section, too.
From now on, we assume that Ω, Ω

S
and Ω

C
(and hence Ω

D
) are polyhedral. We consider a

regular family of tetrahedral meshes Th of Ω, such that each element K ∈ Th is contained either
in Ω̄S, or in Ω̄C , or in Ω̄ \ (ΩS∪ ΩC) (h stands, as usual, for the corresponding mesh-size). We
employ edge finite elements to approximate the magnetic field; more precisely, elements from the
lowest-order Nédélec space

N h(Ω) := {Gh ∈ H(curl; Ω) : Gh|K ∈N (K) ∀K ∈ Th} ,

where
N (K) :=

{
Gh ∈ P3

1 : Gh(x) = a× x+ b, a,b ∈ R3, x ∈ K
}
.

We also introduce the subspace

N 0
h(Ω) := {Gh ∈N h(Ω) : Gh × n = 0 on Γ} ⊂ H0(curl; Ω).

For any r > 0, let Hr(curl; Ω) :=
{
G ∈ Hr(Ω)3 : curlG ∈ Hr(Ω)3

}
. We recall that the Nédélec

interpolant INh G ∈N h(Ω) is well defined for all G ∈ Hr(curl; Ω) provided r > 1
2 , and there exists

a constant C > 0 independent of G and h, such that
∥∥INh G∥∥H(curl;Ω)

≤ C ‖G‖Hr(curl;Ω) (see [5]).

Moreover, if G ∈ H0(curl; Ω), then INh G ∈N 0
h(Ω).130

For the subsequent analysis we will need some additional regularity of the solution to Problem 1.
In particular, from now on, we assume that the magnetic field satisfies H ∈ H1(0, T ; Hr(curl; Ω))
for some fixed r ∈

(
1
2 , 1
]
. Notice that this assumption implies that H(t) ∈ Hr(curl; Ω) for all

t ∈ [0, T ], so that its Nédélec interpolant INh H(t) is well defined. In particular, INh H0 is well
defined and we use it as the initial data of the discrete problem.135

For time discretization, we use a backward Euler scheme on a uniform partition of [0, T ]: tm :=
m∆t, m = 0, . . . ,M , with time-step ∆t := T

M . Thus, a fully-discrete approximation of Problem 3
reads as follows:

Problem 4. Let H0
h,ε := INh H0. For m = 1, . . . ,M , find Hm

h,ε ∈N 0
h(Ω) such that

∫
Ω

µ
Hm

h,ε −H
m−1
h,ε

∆t
·Gh +

∫
Ω

C

1

σ
curlHm

h,ε · curlGh +
1

ε

∫
Ω

D

curlHm
h,ε · curlGh

=
1

ε

∫
Ω

S

J
S
(tm) · curlGh ∀Gh ∈N 0

h(Ω).

Note that the existence and uniqueness of solution Hm
h,ε at each time step m = 1, . . . ,M follows

immediately from the Lax-Milgram Lemma.140

The main goal of this paper is to prove that the solution of Problem 4 converges to that of
Problem 1 as ε, h and ∆t go to zero and to obtain error estimates with respect to these parameters.
For this analysis, we will use a full discretization of Problem 2 in which the Lagrange multiplier is
sought in the space curl(N Γ

h(ΩD)), where

N Γ
h(ΩD) :=

{
Gh|Ω

D
: Gh ∈N 0

h(Ω)
}

= {Gh ∈N h(ΩD) : Gh × n = 0 on Γ} .

8



A full discretization of Problem 2 based on these finite element spaces and a backward Euler scheme
reads as follows:

Problem 5. Let H0
h := INh H0. For m = 1, . . . ,M , find Hm

h ∈ N 0
h(Ω) and Em

h ∈ curl(N Γ
h(Ω

D
))

such that∫
Ω

µ
Hm

h −H
m−1
h

∆t
·Gh +

∫
Ω

C

1

σ
curlHm

h · curlGh +

∫
Ω

D

curlGh ·Em
h = 0 ∀Gh ∈N 0

h(Ω),∫
Ω

D

curlHm
h · F h =

∫
Ω

S

J
S
(tm) · F h ∀F h ∈ curl(N Γ

h(Ω
D
)).

To prove that this problem has a unique solution, we resort to the classical theory of mixed
problems. In fact, first, by proceeding as in the proof of Theorem 5.2 from [3] (cf. (5.3) in this
reference), we derive the following discrete inf-sup condition:

sup
Gh∈N 0

h(Ω)

∫
Ω

D
curlGh · F h

‖Gh‖H(curl;Ω)

≥ β∗ ‖F h‖L2(Ω
D

)3 ∀F h ∈ curl(N Γ
h(Ω

D
)) (4.1)

with a constant β∗ > 0 independent of h. Secondly, it is easy to check that the discrete kernel is in
this case

Yh :=
{
Gh ∈N 0

h(Ω) : curlGh = 0 in Ω
D

}
⊂ Y .

Then, the ellipticity in the discrete kernel follows immediately. Hence, applying [13, Theorem II.1.1],
for instance, we derive the existence and uniqueness of solution for each m = 1, . . . ,M .

Our next goal is to establish appropriate a priori estimates for the solutions to Problems 4 and145

5. We begin with the latter.

Lemma 1. Let H0
h and (Hk

h,E
k
h), k = 1, . . . ,M , be the solution to Problem 5. Then, there exists

a constant C > 0 independent of h, ∆t, JS and H0 such that

max
1≤k≤M

∥∥Hk
h

∥∥2

H(curl;Ω)
+ ∆t

M∑
k=1

∥∥∥∥∥Hk
h −H

k−1
h

∆t

∥∥∥∥∥
2

L2(Ω)3

+ ∆t

M∑
k=1

∥∥Ek
h

∥∥2

L2(Ω
D

)3

≤ C
{
‖H0‖2Hr(curl;Ω) + ‖J

S
‖2H1(0,T ;L2(Ω

S
)3)

}
.

Proof. The first step is to build Ĥh ∈ H1(0, T ;N 0
h(Ω)) such that∫

Ω
D

curl Ĥh(t) · F h =

∫
Ω

S

JS(t) · F h ∀F h ∈ curl(N Γ
h(ΩD)), t ∈ [0, T ]. (4.2)

To do this, we proceed as in the proof of Theorem 1, but we use now the discrete inf-sup condition

(4.1) and Lemma I.4.1(iii) from [13] to derive that there exists a unique Qh(t) ∈ Y
⊥N0

h
(Ω)

h such that∫
Ω

D

curlQh(t) · F h =

∫
Ω

S

∂tJS(t) · F h ∀F h ∈ curl(N Γ
h(ΩD)), a.e. t ∈ [0, T ],

9



and ‖Qh(t)‖H(curl;Ω) ≤ C ‖∂tJS(t)‖L2(Ω
S
)3 . Proceeding analogously, we also derive that there exists

a unique Rh ∈ Y
⊥N0

h
(Ω)

h such that∫
Ω

D

curlRh · F h =

∫
Ω

S

JS(0) · F h ∀F h ∈ curl(N Γ
h(ΩD)) (4.3)

and ‖Rh‖H(curl;Ω) ≤ C ‖J
S
(0)‖L2(Ω

S
)3 . Then, we define Ĥh(t) := Rh +

∫ t
0
Qh(s) ds and, by re-

peating the same arguments used in the proof of Theorem 1, we are able to show that Ĥh ∈
H1(0, T ; H0(curl; Ω)) satisfies (4.2) and∥∥Ĥh

∥∥
H1(0,T ;H(curl;Ω))

≤ C ‖J
S
‖H1(0,T ;L2(Ω

S
)3) . (4.4)

Now, if we write Hk
h = H̃

k

h + Ĥ
k

h, where Ĥ
k

h := Ĥh(tk), Problem 5 is equivalent to find

H̃
0

h := INh H0 − Ĥ
0

h and, for k = 1, . . . ,M , H̃
k

h ∈N 0
h(Ω) and Ek

h ∈ curl(N Γ
h(Ω

D
)) such that

∫
Ω

µ
H̃

k

h − H̃
k−1

h

∆t
·Gh +

∫
Ω

C

1

σ
curl H̃

k

h · curlGh +

∫
Ω

D

curlGh ·Ek
h

= −
∫

Ω

µ
Ĥ

k

h − Ĥ
k−1

h

∆t
·Gh −

∫
Ω

C

1

σ
curl Ĥ

k

h · curlGh ∀Gh ∈N 0
h(Ω), (4.5a)∫

Ω
D

curl H̃
k

h · F h = 0 ∀F h ∈ curl(N Γ
h(Ω

D
)), (4.5b)

where we have used (4.2) to derive (4.5b).

By taking Gh = H̃
k

h in (4.5a), using (4.5b), the inequality 2 (p− q) p ≥ p2 − q2 and Young’s
inequality, we obtain∫

Ω

µ
∣∣H̃k

h

∣∣2 − ∫
Ω

µ
∣∣H̃k−1

h

∣∣2 +
∆t

σ

∥∥ curl H̃
k

h

∥∥2

L2(Ω
C

)3

≤ ∆t

2T

∫
Ω

µ
∣∣H̃k

h

∣∣2 + C∆t

∥∥ curl Ĥ
k

h

∥∥2

L2(Ω
C

)3 +

∥∥∥∥∥∥Ĥ
k

h − Ĥ
k−1

h

∆t

∥∥∥∥∥∥
2

L2(Ω)3

 .

Summing up from k = 1 to m (m ≤M), using

∆t

M∑
k=1

∥∥∥∥∥∥Ĥ
k

h − Ĥ
k−1

h

∆t

∥∥∥∥∥∥
2

L2(Ω)3

≤ C
∥∥Ĥh

∥∥2

H1(0,T ;H(curl;Ω))
, (4.6)

as well as the estimate (4.4) and the discrete Gronwall’s inequality, yield

∥∥H̃m

h

∥∥2

L2(Ω)3 + ∆t

m∑
k=1

∥∥ curl H̃
k

h

∥∥2

L2(Ω
C

)3 ≤ C
{∥∥INh H0

∥∥2

L2(Ω)3 + ‖JS‖
2
H1(0,T ;L2(Ω

S
)3)

}
. (4.7)
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On the other hand, by taking Gh =
H̃

k

h−H̃
k−1

h

∆t in (4.5a) and using

∫
Ω

C

1

σ
curl H̃

k

h · curl

H̃k

h − H̃
k−1

h

∆t

 ≥ 1

2∆t

∫
Ω

C

1

σ

∣∣ curl H̃
k

h

∣∣2 − 1

2∆t

∫
Ω

C

1

σ

∣∣ curl H̃
k−1

h

∣∣2
and

∫
Ω

C

1

σ
curl Ĥ

k

h · curl

H̃k

h − H̃
k−1

h

∆t

 =
1

∆t

∫
Ω

C

1

σ
curl Ĥ

k

h · curl H̃
k

h

− 1

∆t

∫
Ω

C

1

σ
curl Ĥ

k−1

h · curl H̃
k−1

h −
∫

Ω
C

1

σ
curl

Ĥk

h − Ĥ
k−1

h

∆t

 · curl H̃
k−1

h ,

together with (4.5b) and Young’s inequality, we obtain

∆t

∫
Ω

µ

∣∣∣∣∣∣H̃
k

h − H̃
k−1

h

∆t

∣∣∣∣∣∣
2

+

∫
Ω

C

1

σ

∣∣ curl H̃
k

h

∣∣2 − ∫
Ω

C

1

σ

∣∣ curl H̃
k−1

h

∣∣2
≤ −2

{∫
Ω

C

1

σ
curl Ĥ

k

h · curl H̃
k

h −
∫

Ω
C

1

σ
curl Ĥ

k−1

h · curl H̃
k−1

h

}

+ C∆t


∥∥∥∥∥∥Ĥ

k

h − Ĥ
k−1

h

∆t

∥∥∥∥∥∥
2

H(curl;Ω)

+
∥∥ curl H̃

k−1

h

∥∥2

L2(Ω
C

)3

 .

Summing up from k = 1 to m (m ≤M) leads to

∆t

m∑
k=1

∥∥∥∥∥∥H̃
k

h − H̃
k−1

h

∆t

∥∥∥∥∥∥
2

L2(Ω)3

+
∥∥ curl H̃

m

h

∥∥2

L2(Ω
C

)3

≤ C

∥∥ curl H̃
0

h

∥∥2

L2(Ω
C

)3 +
∥∥ curl Ĥ

0

h

∥∥2

L2(Ω
C

)3 +
∥∥ curl Ĥ

m

h

∥∥2

L2(Ω
C

)3

+ ∆t

m∑
k=1


∥∥∥∥∥∥Ĥ

k

h − Ĥ
k−1

h

∆t

∥∥∥∥∥∥
2

H(curl;Ω)

+
∥∥ curl H̃

k−1

h

∥∥2

L2(Ω
C

)3


 .

Using the estimates (4.6), (4.4) and (4.7), and the fact that curl H̃
m

h = 0 in ΩD (cf. (4.5b), we
obtain for all m = 1, . . . ,M ,

∆t

m∑
k=1

∥∥∥∥∥∥H̃
k

h − H̃
k−1

h

∆t

∥∥∥∥∥∥
2

L2(Ω)3

+
∥∥ curl H̃

m

h

∥∥2

L2(Ω)3 ≤ C
{∥∥INh H0

∥∥2

H(curl;Ω)
+ ‖J

S
‖2H1(0,T ;L2(Ω

S
)3)

}
.
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Finally, since Hk
h = H̃

k

h+Ĥ
k

h, thanks to the above estimate, (4.7), (4.6) and (4.4), we conclude
that

max
1≤k≤M

∥∥Hk
h

∥∥2

H(curl;Ω)
+ ∆t

M∑
k=1

∥∥∥∥∥Hk
h −H

k−1
h

∆t

∥∥∥∥∥
2

L2(Ω)3

≤ C
{∥∥INh H0

∥∥2

H(curl;Ω)
+ ‖JS‖

2
H1(0,T ;L2(Ω

S
)3)

}
.

There remains to estimate the terms involving the Lagrange multipliers Ek
h. To do this, note

that as a consequence of the inf-sup condition (4.1) and the first equation of Problem 5 we have

β∗
∥∥Ek

h

∥∥
L2(Ω

D
)3 ≤ sup

Gh∈N 0
h(Ω)

∫
Ω

D
curlGh ·Ek

h

‖Gh‖H(curl;Ω)

≤ C


∥∥∥∥∥Hk

h −H
k−1
h

∆t

∥∥∥∥∥
2

L2(Ω)3

+
∥∥ curlHk

h

∥∥2

L2(Ω
C

)3


1/2

.

Then, the last two inequalities yield

∆t

M∑
k=1

∥∥Ek
h

∥∥2

L2(Ω
D

)3 ≤ C
{∥∥INh H0

∥∥2

H(curl;Ω)
+ ‖J

S
‖2H1(0,T ;L2(Ω

S
)3)

}
,

which allows us to conclude the proof.

Regarding Problem 4, the following result establishes an a priori estimate of its solution.

Lemma 2. Let Hk
h,ε, k = 0, . . . ,M , be the solution to Problem 4. Then, there exists a constant

C > 0 independent of ε, h, ∆t, JS and H0 such that

max
1≤k≤M

∥∥Hk
h,ε

∥∥2

L2(Ω)3 + ∆t

M∑
k=1

∥∥ curlHk
h,ε

∥∥2

L2(Ω
C

)3 ≤ C
{
‖H0‖2Hr(curl;Ω) + ‖J

S
‖2H1(0,T ;L2(Ω

S
)3)

}
,

∆t

M∑
k=1

∥∥ curlHk
h,ε

∥∥2

L2(Ω
D

)3 ≤ Cε
{
‖H0‖2Hr(curl;Ω) + ‖J

S
‖2H1(0,T ;L2(Ω

S
)3)

}
and

max
1≤k≤M

∥∥ curlHk
h,ε

∥∥2

L2(Ω)3 + ∆t

M∑
k=1

∥∥∥∥∥H
k
h,ε −H

k−1
h,ε

∆t

∥∥∥∥∥
2

L2(Ω)3

≤ C
{
‖H0‖2Hr(curl;Ω) + ‖J

S
‖2H1(0,T ;L2(Ω

S
)3) +

1

ε

∫
Ω

∣∣curl(INh H0 −H0)
∣∣2} .

Proof. We just give a sketch of the proof since it is very close to that of the previous lemma. Let

Ĥh ∈ H1(0, T ;N 0
h(Ω)) be as in that proof, so that (4.2) and (4.4) hold true. We write Hk

h,ε =

H̃
k

h,ε+Ĥ
k

h, where Ĥ
k

h := Ĥh(tk) again. Then, Problem 4 is equivalent to find H̃
0

h,ε := INh H0−Ĥ
0

h

and, for k = 1, . . . ,M , H̃
k

h,ε ∈N 0
h(Ω) such that

∫
Ω

µ
H̃

k

h,ε − H̃
k−1

h,ε

∆t
·Gh +

∫
Ω

C

1

σ
curl H̃

k

h,ε · curlGh +
1

ε

∫
Ω

D

curl H̃
k

h,ε · curlGh

= −
∫

Ω

µ
Ĥ

k

h − Ĥ
k−1

h

∆t
·Gh −

∫
Ω

C

1

σ
curl Ĥ

k

h · curlGh ∀Gh ∈N 0
h(Ω).
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By testing with Gh = H̃
k

h,ε, using the inequality 2 (p− q) p ≥ p2 − q2 and Young’s inequality,
summing up from k = 1 to m (m ≤M) and using estimates (4.6), (4.4) and the discrete Gronwall’s
inequality, we obtain

∥∥H̃m

h,ε

∥∥2

L2(Ω)3 + ∆t

m∑
k=1

∥∥ curl H̃
k

h,ε

∥∥2

L2(Ω
C

)3 +
∆t

ε

m∑
k=1

∥∥ curl H̃
k

h,ε

∥∥2

L2(Ω
D

)3

≤ C
{∥∥INh H0

∥∥2

L2(Ω)3 + ‖J
S
‖2H1(0,T ;L2(Ω

S
)3)

}
,

which together with (4.4) lead to the first two estimates of the lemma.150

On the other hand, by taking Gh =
H̃

k

h,ε−H̃
k−1

h,ε

∆t , similar arguments to those used in the proof
of Lemma 1 allow us to show that

∆t

m∑
k=1

∥∥∥∥∥∥H̃
k

h,ε − H̃
k−1

h,ε

∆t

∥∥∥∥∥∥
2

L2(Ω)3

+
∥∥ curl H̃

m

h,ε

∥∥2

L2(Ω)3

≤ C
{∥∥INh H0

∥∥2

H(curl;Ω)
+ ‖J

S
‖2H1(0,T ;L2(Ω

S
)3) +

1

ε

∫
Ω

∣∣ curl H̃
0

h,ε

∣∣2} .
Since H0

h,ε = H̃
0

h,ε + Ĥ
0

h, by using the definition of Ĥh, (4.3) and (2.4), the last term reads∫
Ω

∣∣ curl H̃
0

h,ε

∣∣2 =

∫
Ω

[
curl(INh H0)− curl Ĥh(0)

]
· curl H̃

0

h,ε

=

∫
Ω

[
curl(INh H0)− J

S
(0)
]
· curl H̃

0

h,ε =

∫
Ω

curl(INh H0 −H0) · curl H̃
0

h,ε.

Thus, the last estimate of the lemma follows from the above equations, (4.6) and (4.4).

Let us remark that the last estimate from this lemma is not independent of the penalty parameter

ε, because of the term 1
ε

∫
Ω

∣∣curl(INh H0 −H0)
∣∣2. However, this term vanishes for a vanishing initial

data H(0) = 0.

5. Error estimates for the discretization of the mixed problem155

The next step is to obtain error estimates for the solution of Problem 5 as an approximation
to that of Problem 2. This result will be used in this paper as an intermediate step of the error
analysis for the numerical solution of the penalized problem, although it has an interest by itself.

Let H be the first component of the solution to Problem 2. We proceed as in the proof

of Lemma 1, but using curl
(
H − INh H

)
instead of J

S
. Thus, instead of Ĥh, we have Zh ∈

H1(0, T ;N 0
h(Ω)) which satisfies the analogues to (4.2) and (4.4), namely,∫

Ω
D

curlZh(t) · F h =

∫
Ω

D

curl
(
H(t)− INh H(t)

)
· F h ∀F h ∈ curl(N Γ

h(Ω
D
)), t ∈ [0, T ]

and
‖Zh‖H1(0,T ;H(curl;Ω)) ≤ C

∥∥curl
(
H − INh H

)∥∥
H1(0,T ;L2(Ω

D
)3)
.
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Then, we define H̊h(t) := Zh(t) + INh H(t), so that∫
Ω

D

curl H̊h(t) · F h =

∫
Ω

D

curlH(t) · F h =

∫
Ω

S

J
S
(t) · F h ∀F h ∈ curl(N Γ

h(Ω
D
)) (5.1)

for almost all t ∈ [0, T ], where we have used the second equation from Problem 2 for the last
equality. Moreover, by using classical error estimates for the Nédélec interpolant (see, for instance,
[16, Theorem 5.41]), we have that∥∥H − H̊h

∥∥
H1(0,T ;H(curl;Ω))

≤ Chr ‖H‖H1(0,T ;Hr(curl;Ω)) . (5.2)

Next, provided H ∈ C1(0, T ; L2(Ω)3), we write

∂tH(tk)− H
k
h −H

k−1
h

∆t
=
ρkh − ρ

k−1
h

∆t
+
δkh − δ

k−1
h

∆t
− τ k, (5.3)

where

ρkh := H(tk)− H̊h(tk), δkh := H̊h(tk)−Hk
h and τ k :=

H(tk)−H(tk−1)

∆t
− ∂tH(tk).

Notice that by virtue of (5.1) and the second equation from Problem 5, δkh ∈ Yh, k = 1, . . . ,M .
Moreover, we have the following auxiliary result.160

Lemma 3. Let H be the first component of the solution to Problem 2 and Hk
h, k = 0, . . . ,M , that

to Problem 5. If H ∈ H1(0, T ; Hr(curl; Ω)) ∩ C1(0, T ; L2(Ω)3) with r ∈
(

1
2 , 1
]
, then there exists a

constant C > 0 independent of h and ∆t such that

max
1≤k≤M

∥∥δkh∥∥2

H(curl;Ω)
+ ∆t

M∑
k=1

∥∥∥∥∥δkh − δk−1
h

∆t

∥∥∥∥∥
2

L2(Ω)3

≤ C

∥∥δ0
h

∥∥2

H(curl;Ω)
+ max

1≤k≤M

∥∥curlρkh
∥∥2

L2(Ω
C

)3

+∆t

M∑
k=1

∥∥τ k∥∥2

L2(Ω)3 + ∆t

M∑
k=1

∥∥∥∥∥ρkh − ρk−1
h

∆t

∥∥∥∥∥
2

H(curl;Ω)

 .

Proof. By testing the first equations of Problem 2 and Problem 5 with Gh ∈ Yh, a straightforward
computation allows us to show that∫

Ω

µ
δkh − δ

k−1
h

∆t
·Gh +

∫
Ω

C

1

σ
curl δkh · curlGh

=

∫
Ω

µτ k ·Gh −
∫

Ω

µ
ρkh − ρ

k−1
h

∆t
·Gh −

∫
Ω

C

1

σ
curlρkh · curlGh ∀Gh ∈ Yh. (5.4)

14



By taking Gh = δkh, using classical inequalities, summing up from k = 1 to m (m ≤M) and using
the discrete Gronwall’s inequality lead to

‖δmh ‖
2
L2(Ω)3 + ∆t

m∑
k=1

∥∥ curl δkh
∥∥2

L2(Ω
C

)3

≤ C

∥∥δ0
h

∥∥2

L2(Ω)3 + ∆t

m∑
k=1

∥∥τ k∥∥2

L2(Ω)3 +
∥∥curlρkh

∥∥2

L2(Ω
C

)3 +

∥∥∥∥∥ρkh − ρk−1
h

∆t

∥∥∥∥∥
2

L2(Ω)3

 . (5.5)

On the other hand, by taking Gh =
δkh−δ

k−1
h

∆t in (5.4), similar arguments and the fact that

∫
Ω

C

1

σ
curlρkh · curl

δkh − δ
k−1
h

∆t
= −

∫
Ω

C

1

σ
curl

(
ρkh − ρ

k−1
h

∆t

)
· curl δk−1

h

+
1

∆t

{∫
Ω

C

1

σ
curlρkh · curl δkh −

∫
Ω

C

1

σ
curlρk−1

h · curl δk−1
h

}

lead to

∆t

∫
Ω

µ

∣∣∣∣∣δkh − δk−1
h

∆t

∣∣∣∣∣
2

+

∫
Ω

C

1

σ

∣∣ curl δkh
∣∣2 − ∫

Ω
C

1

σ

∣∣ curl δk−1
h

∣∣2
≤ −2

{∫
Ω

C

1

σ
curlρkh · curl δkh −

∫
Ω

C

1

σ
curlρk−1

h · curl δk−1
h

}

+ C∆t

∥∥τ k∥∥2

L2(Ω)3 +

∥∥∥∥∥ρkh − ρk−1
h

∆t

∥∥∥∥∥
2

H(curl;Ω)

+
∥∥ curl δk−1

h

∥∥2

L2(Ω
C

)3

 .

Summing up from k = 1 to m (m ≤ M) and using (5.5) to estimate ∆t
∑m
k=2

∥∥ curl δk−1
h

∥∥2

L2(Ω)3 ,

we obtain

∆t

m∑
k=1

∥∥∥∥∥δkh − δk−1
h

∆t

∥∥∥∥∥
2

L2(Ω)3

+ ‖curl δmh ‖
2
L2(Ω

C
)3

≤ C

∆t

m∑
k=1

∥∥τ k∥∥2

L2(Ω)3 +

∥∥∥∥∥ρkh − ρk−1
h

∆t

∥∥∥∥∥
2

H(curl;Ω)

+
∥∥curlρkh

∥∥2

L2(Ω
C

)3


+
∥∥curl δ0

h

∥∥2

L2(Ω
C

)3 + ‖curlρmh ‖
2
L2(Ω

C
)3 +

∥∥curlρ0
h

∥∥2

L2(Ω
C

)3

 .

Thus, the result follows by combining the above inequality with (5.5) and the fact that δkh ∈ Yh.

Now, we are in a position to prove the following error estimate.
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Theorem 3. Let H be the first component of the solution to Problem 2 and Hk
h, k = 0, . . . ,M ,

that to Problem 5. If H ∈ H1(0, T ; Hr(curl; Ω))∩H2(0, T ; L2(Ω)3) with r ∈
(

1
2 , 1
]
, then there exists

a constant C > 0 independent of h and ∆t such that

max
1≤k≤M

∥∥H(tk)−Hk
h

∥∥2

H(curl;Ω)
+ ∆t

M∑
k=1

∥∥∥∥∥∂tH(tk)− H
k
h −H

k−1
h

∆t

∥∥∥∥∥
2

L2(Ω)3

≤ C
{

(∆t)
2 ‖H‖2H2(0,T ;L2(Ω)3) + h2r ‖H‖2H1(0,T ;Hr(curl;Ω))

}
.

Proof. A Taylor expansion allows us to show that

M∑
k=1

∥∥τ k∥∥2

L2(Ω)3 =

M∑
k=1

∥∥∥∥∥ 1

∆t

∫ tk

tk−1

(tk−1 − t) ∂ttH(t) dt

∥∥∥∥∥
2

L2(Ω)3

≤ ∆t

∫ T

0

‖∂ttH(t)‖2L2(Ω)3 dt.

Moreover, from the definition of ρkh and (5.2), we write

∆t

M∑
k=1

∥∥∥∥∥ρkh − ρk−1
h

∆t

∥∥∥∥∥
2

H(curl;Ω)

≤
∫ T

0

∥∥∂t(H(t)− H̊h(t)
)∥∥2

H(curl;Ω)
dt ≤ Ch2r ‖H‖2H1(0,T ;Hr(curl;Ω))

and from the definitions of δ0
h and ρ0

h, (5.2) and the error estimate for the Nédélec interpolant,∥∥δ0
h

∥∥2

H(curl;Ω)
≤
{∥∥ρ0

h

∥∥
H(curl;Ω)

+
∥∥H0 − INh H0

∥∥
H(curl;Ω)

}2

≤ Ch2r ‖H‖2H1(0,T ;Hr(curl;Ω)) .

Since H(tk)−Hk
h = δkh+ρkh, the result follows from the previous lemma, (5.2), (5.3) and the above

estimates.

Let us remark that although in our analysis this result is just an intermediate step, as claimed165

above it is interesting by itself since it yields an optimal order error estimate for the magnetic field
computed by solving Problem 5 as an approximation of the solution to Problem 1.

6. Error estimates for the penalized problem

Now, we return to the convergence analysis of the penalty fully-discrete scheme. Taking into
account Theorem 3, it is enough to show that the solution of Problem 4 converges to that of170

Problem 5 as ε→ 0, uniformly in the discretization parameters h and ∆t. This is established in the
following lemma by means of an error estimate in terms of the penalty parameter ε. This estimate
is not of optimal order. In fact, in the next section, we will improve it in the case of vanishing
initial data.

Lemma 4. Let (Hk
h,E

k
h), k = 1, . . . ,M , be the solution to Problem 5 and Hk

h,ε, k = 1, . . . ,M ,

that to Problem 4. Let Ek
h,ε := 1

ε

(
curlHk

h,ε − curlHk
h

)
|Ω

D
. Then, there exists C > 0 independent

of ε, h, ∆t, JS and H0 such that

max
1≤k≤M

∥∥Hk
h,ε −H

k
h

∥∥2

L2(Ω)3 + ∆t

M∑
k=1

∥∥ curl
(
Hk

h,ε −H
k
h

)∥∥2

L2(Ω)3 + ε∆t

M∑
k=1

∥∥Ek
h,ε −E

k
h

∥∥2

L2(Ω
D

)3

≤ Cε
{
‖H0‖2Hr(curl;Ω) + ‖J

S
‖2H1(0,T ;L2(Ω

S
)3)

}
.

16



Proof. First, note that Hk
h,ε ∈N 0

h(Ω) and Ek
h,ε ∈ curl(N Γ

h(ΩD)), k = 1, . . . ,M , satisfy∫
Ω

µ
Hk

h,ε −H
k−1
h,ε

∆t
·Gh +

∫
Ω

C

1

σ
curlHk

h,ε · curlGh +

∫
Ω

D

curlGh ·Ek
h,ε = 0

∀Gh ∈N 0
h(Ω), (6.1a)∫

Ω
D

curlHk
h,ε · F h − ε

∫
Ω

D

Ek
h,ε · F h =

∫
Ω

S

J
S
(tk) · F h ∀F h ∈ curl(N Γ

h(Ω
D
)), (6.1b)

H0
h,ε = INh H0. (6.1c)

We denote ukh := Hk
h,ε −H

k
h, k = 0, . . . ,M , and vkh := Ek

h,ε −E
k
h, k = 1, . . . ,M . By subtracting

(6.1a)–(6.1c) from the corresponding equations of Problem 5, we obtain∫
Ω

µ
ukh − u

k−1
h

∆t
·Gh +

∫
Ω

C

1

σ
curlukh · curlGh +

∫
Ω

D

curlGh · vkh = 0 ∀Gh ∈N 0
h(Ω),

(6.2a)∫
Ω

D

curlukh · F h − ε
∫

Ω
D

vkh · F h = ε

∫
Ω

D

Ek
h · F h ∀F h ∈ curl(N Γ

h(Ω
D
)), (6.2b)

u0
h = 0. (6.2c)

By taking Gh = ukh and F h = vkh in (6.2a) and (6.2b), respectively, subtracting the resulting
expressions, using classical inequalities, summing from k = 1 to m (m ≤ M), using a discrete
Gronwall’s inequality and the fact that u0

h = 0, we obtain

‖umh ‖
2
L2(Ω)3 + ∆t

m∑
k=1

∥∥curlukh
∥∥2

L2(Ω
C

)3 + ε∆t

m∑
k=1

∥∥vkh∥∥2

L2(Ω
D

)3 ≤ Cε∆t
m∑
k=1

∥∥Ek
h

∥∥2

L2(Ω
D

)3 .

There only remains to estimate ∆t
∑m
k=1

∥∥curlukh
∥∥2

L2(Ω
D

)3 . With this end, we note first that it

is easy to check that curlukh = ε
(
vkh +Ek

h

)
in ΩD. Then,

∥∥curlukh
∥∥2

L2(Ω
D

)3 ≤ 2ε2
{∥∥vkh∥∥2

L2(Ω
D

)3 +∥∥Ek
h

∥∥2

L2(Ω
D

)3

}
. Hence, from the previous estimate we obtain

∆t

m∑
k=1

∥∥curlukh
∥∥2

L2(Ω
D

)3 ≤ Cε2∆t

m∑
k=1

∥∥Ek
h

∥∥2

L2(Ω
D

)3 .

Then, from the last two inequalities, we have that

‖umh ‖
2
L2(Ω)3 + ∆t

m∑
k=1

∥∥curlukh
∥∥2

L2(Ω)3 + ε∆t

m∑
k=1

∥∥vkh∥∥2

L2(Ω
D

)3

≤ Cε∆t
m∑
k=1

∥∥Ek
h

∥∥2

L2(Ω
D

)3 ≤ Cε
{
‖H0‖2Hr(curl;Ω) + ‖JS‖

2
H1(0,T ;L2(Ω

S
)3)

}
,

where we have used Lemma 1 for the last inequality. Thus, the theorem follows from the fact that175

ukh := Hk
h,ε −H

k
h and vkh := Ek

h,ε −E
k
h.
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Now we are in a position to derive the convergence of the solution of the fully-discrete penalty
scheme (Problem 4) to that of the continuous problem (Problem 1), as the discretization and penalty
parameters h, ∆t and ε go to zero.

Theorem 4. Let H be the solution to Problem 1 and Hk
h,ε, k = 1, . . . ,M , that to Problem 4. If

H ∈ H1(0, T ; Hr(curl; Ω)) ∩ H2(0, T ; L2(Ω)3) with r ∈
(

1
2 , 1
]
, then there exists a constant C > 0

independent of h, ∆t and ε such that

max
1≤k≤M

∥∥H(tk)−Hk
h,ε

∥∥2

L2(Ω)3 + ∆t

M∑
k=1

∥∥ curl
(
H(tk)−Hk

h,ε

)∥∥2

L2(Ω)3

≤ C
{

(∆t)
2 ‖H‖2H2(0,T ;L2(Ω)3) +

(
h2r + ε

)
‖H‖2H1(0,T ;Hr(curl;Ω))

}
.

Proof. It follows immediately by combining the estimates from the previous lemma with those from180

Theorem 3 and using Theorem 1 and the fact that JS = curlH in ΩD.

This theorem provides an error estimate that is of optimal order in the discretization parameters,
O(hr+∆t), but not in the penalty one, O(

√
ε). In the following section, we will derive an improved

error estimate O(ε) valid in the case of a vanishing initial data and a smoother source term J
S
∈

H2(0, T ; L2(Ω
S
)3).185

7. Improved error estimates

First, we prove an O(ε) estimate for the penalty error of the discrete problem in `2(0, T ; L2(Ω)3).

Lemma 5. Let (Hk
h,E

k
h), k = 1, . . . ,M , be the solution to Problem 5 and Hk

h,ε, k = 1, . . . ,M ,
that to Problem 4. If H0 = 0, then there exists a positive constant C independent of ε, h, ∆t and
J

S
such that

∆t

M∑
k=1

∥∥Hk
h,ε −H

k
h

∥∥2

L2(Ω)3 ≤ Cε2 ‖J
S
‖2H1(0,T ;L2(Ω

S
)3) .

Proof. First, note that as a consequence of the inf-sup condition (4.1) and (6.1a) we have

β∗
∥∥Ek

h,ε

∥∥
L2(Ω

D
)3 ≤ sup

Gh∈N 0
h(Ω)

∫
Ω

D
curlGh ·Ek

h,ε

‖Gh‖H(curl;Ω)

≤ C


∥∥∥∥∥H

k
h,ε −H

k−1
h,ε

∆t

∥∥∥∥∥
2

L2(Ω)3

+
∥∥ curlHk

h,ε

∥∥2

L2(Ω
C

)3


1/2

.

Thus, as a consequence of Lemma 2 and the fact that for H0 = 0, INh H0 = 0, too, we have

∆t

M∑
k=1

∥∥Ek
h,ε

∥∥2

L2(Ω
D

)3 ≤ C ‖JS
‖2H1(0,T ;L2(Ω

S
)3) . (7.1)
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Secondly, we use a duality argument. In what follows, we will use the notation introduced in the
proof of Lemma 4. In particular, let ukh := Hk

h,ε −H
k
h, k = 0, . . . ,M , and consider the following

problem: Find wk
h ∈N 0

h(Ω) and ykh ∈ curl(N Γ
h(Ω

D
)), k = M, . . . , 1, such that∫

Ω

µ
wk
h −w

k−1
h

∆t
·Gh −

∫
Ω

C

1

σ
curlwk−1

h · curlGh +

∫
Ω

D

curlGh · yk−1
h =

∫
Ω

ukh ·Gh

∀Gh ∈N 0
h(Ω), (7.2a)∫

Ω
D

curlwk−1
h · F h = 0 ∀F h ∈ curl(N Γ

h(Ω
D
)), (7.2b)

wM
h = 0. (7.2c)

It is easy to prove that there exists a unique solution (wk
h, z

k
h), k = M, . . . , 1, and that there exists

a constant C > 0, independent of h and ∆t, such that

max
1≤k≤M

∥∥wk−1
h

∥∥2

H(curl;Ω)
+ ∆t

M∑
k=1

∥∥∥∥∥wk
h −w

k−1
h

∆t

∥∥∥∥∥
2

L2(Ω)3

+ ∆t

M∑
k=1

∥∥yk−1
h

∥∥2

L2(Ω
D

)3

≤ C∆t

M∑
k=1

∥∥ukh∥∥2

L2(Ω)3 (7.3)

Now, by taking Gh = ukh in (7.2a), we obtain

∥∥ukh∥∥2

L2(Ω)3 =

∫
Ω

µ
wk
h −w

k−1
h

∆t
· ukh −

∫
Ω

C

1

σ
curlwk−1

h · curlukh +

∫
Ω

D

curlukh · yk−1
h

and summing up from k = 1 to M ,

M∑
k=1

∥∥ukh∥∥2

L2(Ω)3

=

M∑
k=1

{
−
∫

Ω

µ
ukh − u

k−1
h

∆t
·wk−1

h −
∫

Ω
C

1

σ
curlwk−1

h · curlukh +

∫
Ω

D

curlukh · yk−1
h

}
.

On the other hand, by taking Gh = wk−1
h and F h = yk−1

h in (6.2a) and (6.2b), respectively,
subtracting the resulting expressions and replacing in the above equation, we obtain

M∑
k=1

∥∥ukh∥∥2

L2(Ω)3 =

M∑
k=1

{∫
Ω

D

curlwk−1
h · vkh + ε

∫
Ω

D

vkh · yk−1
h + ε

∫
Ω

D

Ek
h · yk−1

h

}
.

Since vkh := Ek
h,ε − E

k
h ∈ curl(N Γ

h(ΩD)), from (7.2b) the first term on the right-hand side above

vanishes. Moreover, since vkh +Ek
h = Ek

h,ε, we have that

M∑
k=1

∥∥ukh∥∥2

L2(Ω)3 = ε

M∑
k=1

∫
Ω

D

Ek
h,ε · yk−1

h ≤ Cε

{
M∑
k=1

∥∥Ek
h,ε

∥∥2

L2(Ω
D

)3

} 1
2
{

M∑
k=1

∥∥yk−1
h

∥∥2

L2(Ω
D

)3

} 1
2

.
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Hence, using (7.1) and (7.3),

∆t

M∑
k=1

∥∥ukh∥∥2

L2(Ω)3 ≤ Cε

{
∆t

M∑
k=1

∥∥ukh∥∥2

L2(Ω)3

} 1
2

‖JS‖H1(0,T ;L2(Ω
S
)3) .

Thus, the lemma follows from the fact that ukh := Hk
h,ε −H

k
h.

Our next goal is to obtain O(ε) estimates in `∞(0, T ; L2(Ω)3) and `2(0, T ; H(curl; Ω)) for√
tk(Hk

h,ε −H
k
h). With this aim, we will use the following auxiliary estimates.190

Lemma 6. Let (Hk
h,E

k
h), k = 1, . . . ,M , be the solution to Problem 5 with H0 = 0 and JS ∈

H2(0, T ; L2(ΩS)
3). Then, there exists a constant C > 0 independent of h and ∆t such that

∆t

M−1∑
k=1

∥∥∥∥∥ tk+1E
k+1
h − tkEk

h

∆t

∥∥∥∥∥
2

L2(Ω
D

)3

≤ C ‖J
S
‖2H2(0,T ;L2(Ω

S
)3) .

Proof. First, we take m = k + 1 and multiply by tk+1 in Problem 5. Then, we take m = k and
multiply by tk in Problem 5. By subtracting the resulting expressions and dividing by ∆t, we obtain∫

Ω

µ

∆t

(
tk+1

Hk+1
h −Hk

h

∆t
− tk

Hk
h −H

k−1
h

∆t

)
·Gh +

∫
Ω

C

1

σ
curl

(
tk+1H

k+1
h − tkHk

h

∆t

)
· curlGh

+

∫
Ω

D

curlGh ·

(
tk+1E

k+1
h − tkEk

h

∆t

)
= 0 ∀Gh ∈N 0

h(Ω),

∫
Ω

D

curl

(
tk+1H

k+1
h − tkHk

h

∆t

)
· F h =

∫
Ω

S

tk+1JS(tk+1)− tkJS(tk)

∆t
· F h ∀F h ∈ curl(N Γ

h(Ω
D
)).

Consequently, pkh :=
tk+1H

k+1
h − tkHk

h

∆t
, k = 0, . . . ,M − 1, and qkh :=

tk+1E
k+1
h − tkEk

h

∆t
, k =

1, . . . ,M−1, are the solution of the following problem: Find pmh ∈N 0
h(Ω) and qmh ∈ curl(N Γ

h(Ω
D
)),

m = 1, . . . ,M − 1, such that∫
Ω

µ
pmh − p

m−1
h

∆t
·Gh +

∫
Ω

C

1

σ
curlpmh · curlGh +

∫
Ω

D

curlGh · qmh =

∫
Ω

µ
Hm

h −H
m−1
h

∆t
·Gh

∀Gh ∈N 0
h(Ω),∫

Ω
D

curlpmh · F h =

∫
Ω

D

tm+1JS
(tm+1)− tmJS

(tm)

∆t
· F h ∀F h ∈ curl(N Γ

h(Ω
D
)),

p0
h = H1

h.

Notice that, this problem is similar to Problem 5. Therefore, it has a unique solution (pkh, q
k
h), for

all k = 1, . . . ,M − 1. Now, to prove the a priori estimate, we proceed as was done in the proof of
Lemma 1 to derive (4.2)–(4.4) and obtain that there exists a unique p̂h ∈ H1(0, T ∗;N 0

h(Ω)) with
T ∗ := T −∆t such that∫

Ω
D

curl p̂h(t) · F h =

∫
Ω

S

(t+ ∆t)J
S
(t+ ∆t)− tJ

S
(t)

∆t
· F h ∀F h ∈ curl(N Γ

h(Ω
D
)), t ∈ [0, T ∗]
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and there exists a constant C > 0, independent of h, such that

‖p̂h‖H1(0,T∗;H(curl;Ω)) ≤ C
∥∥∥∥ (t+ ∆t)J

S
(t+ ∆t)− tJ

S
(t)

∆t

∥∥∥∥2

H1(0,T∗;L2(Ω
S
)3)

.

Moreover, by using classical computations we obtain

‖p̂h‖H1(0,T∗;H(curl;Ω)) ≤ C ‖JS‖
2
H2(0,T ;L2(Ω

S
)3) ,

where C is independent of ∆t, too. Then, following the steps of the proof of Lemma 1 and using
the above estimate, we are able to prove that

max
1≤k≤M−1

∥∥pkh∥∥2

L2(Ω)3 + ∆t

M−1∑
k=1

∥∥∥∥∥pkh − pk−1
h

∆t

∥∥∥∥∥
2

L2(Ω)3

+ ∆t

M−1∑
k=1

∥∥qkh∥∥2

L2(Ω
D

)3

≤ C

∥∥H1
h

∥∥2

H(curl;Ω)
+ ‖J

S
‖2H2(0,T ;L2(Ω

S
)3) + ∆t

M−1∑
k=1

∥∥∥∥∥Hk
h −H

k−1
h

∆t

∥∥∥∥∥
2

L2(Ω)3

 .

Thus, using the a priori estimates of Lemma 1 and the fact that qkh :=
tk+1E

k+1
h − tkEk

h

∆t
, we

conclude the proof.

Lemma 7. Let (Hk
h,E

k
h), k = 1, . . . ,M , be the solution to Problem 5 with H0 = 0 and JS ∈

H2(0, T ; L2(ΩS)
3) with JS(0) = 0, too. Then, there exists a constant C > 0 independent of h and

∆t such that

max
1≤k≤M

tk
∥∥Ek

h

∥∥2

L2(Ω
D

)3 ≤ C ‖JS‖
2
H2(0,T ;L2(Ω

S
)3) .

Proof. First, note that by taking m = k and m = k − 1 in Problem 5, subtracting the resulting
expressions and dividing by ∆t, we obtain∫

Ω

µ

∆t

(
Hk

h −H
k−1
h

∆t
− H

k−1
h −Hk−2

h

∆t

)
·Gh +

∫
Ω

C

1

σ
curl

(
Hk

h −H
k−1
h

∆t

)
· curlGh

+

∫
Ω

D

curlGh ·

(
Ek
h −E

k−1
h

∆t

)
= 0 ∀Gh ∈N 0

h(Ω),

∫
Ω

D

curl

(
Hk

h −H
k−1
h

∆t

)
· F h =

∫
Ω

S

J
S
(tk)− J

S
(tk−1)

∆t
· F h ∀F h ∈ curl(N Γ

h(ΩD)).

Consequently, zkh :=
Hk

h −H
k−1
h

∆t
, k = 1, . . . ,M , and rkh :=

Ek
h −E

k−1
h

∆t
, k = 2, . . . ,M , are the

solution of the following problem: Find zkh ∈ N 0
h(Ω) and rkh ∈ curl(N Γ

h(ΩD)), k = 2, . . . ,M , such
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that ∫
Ω

µ
zkh − z

k−1
h

∆t
·Gh +

∫
Ω

C

1

σ
curl zkh · curlGh +

∫
Ω

D

curlGh · rkh = 0 ∀Gh ∈N 0
h(Ω),∫

Ω
D

curl zkh · F h =

∫
Ω

D

JS(tk)− JS(tk−1)

∆t
· F h ∀F h ∈ curl(N Γ

h(ΩD)),

z1
h =

H1
h

∆t
.

Notice that this problem is similar to Problem 5. Therefore, it has a unique solution (zkh, r
k
h),

k = 2, . . . ,M . Then, by proceeding as in the proof of Lemma 1, we derive the analogues to
(4.2)–(4.4). In particular, we obtain that there exists a unique ẑh ∈ H1(∆t, T ;N 0

h(Ω)) such that∫
Ω

D

curl ẑh(t) · F h =

∫
Ω

S

J
S
(t)− J

S
(t−∆t)

∆t
· F h ∀F h ∈ curl(N Γ

h(ΩD)), t ∈ [∆t, T ]

and that there exists a constant C > 0, independent of h and ∆t, such that

‖ẑh‖2H1(∆t,T ;H(curl;Ω)) ≤ C
∥∥∥∥JS

(t)− J
S
(t−∆t)

∆t

∥∥∥∥2

H1(∆t,T ;L2(Ω
S
)3)

≤ C ‖J
S
‖2H2(0,T ;L2(Ω

S
)3) . (7.4)

Now, if we write zkh = z̃kh + ẑkh with ẑkh := ẑh(tk), the problem above is equivalent to finding

z̃1
h :=

H1
h

∆t − ẑ
1
h and, for k = 2, . . . ,M , z̃kh ∈N 0

h(Ω) and rkh ∈ curl(N Γ
h(Ω

D
)) such that∫

Ω

µ
z̃kh − z̃

k−1
h

∆t
·Gh +

∫
Ω

C

1

σ
curl z̃kh · curlGh +

∫
Ω

D

curlGh · rkh

= −
∫

Ω

µ
ẑkh − ẑ

k−1
h

∆t
·Gh −

∫
Ω

C

1

σ
curl ẑkh · curlGh ∀Gh ∈N 0

h(Ω), (7.5a)∫
Ω

D

curl z̃kh · F h = 0 ∀F h ∈ curl(N Γ
h(ΩD)). (7.5b)

By taking Gh = tkz̃
k
h in (7.5a), using (7.5b), the inequality 2 (p− q) p ≥ p2 − q2 and Young’s

inequality, we write

1

2∆t

∫
Ω

µ tk

(∣∣z̃kh∣∣2 − ∣∣z̃k−1
h

∣∣2)+
tk
σ

∥∥ curl z̃kh
∥∥2

L2(Ω
C

)3

≤ 1

4T

∫
Ω

µ tk
∣∣z̃kh∣∣2 + T

∫
Ω

µ tk

∣∣∣∣∣ ẑkh − ẑk−1
h

∆t

∣∣∣∣∣
2

+
tk
2σ

∥∥ curl z̃kh
∥∥2

L2(Ω
C

)3 +
tk σ

2σ2

∥∥ curl ẑkh
∥∥2

L2(Ω
C

)3 .

Thus, multiplying by 2∆t, summing up from k = 2 to m (m ≤M) and using the fact that

1

2∆t

∫
Ω

µ tk

(∣∣z̃kh∣∣2 − ∣∣z̃k−1
h

∣∣2) =
1

2∆t

(∫
Ω

µ tk
∣∣z̃kh∣∣2 − ∫

Ω

µ tk−1

∣∣z̃k−1
h

∣∣2)− 1

2

∫
Ω

µ
∣∣z̃kh∣∣2,

22



we obtain∫
Ω

µ tm
∣∣z̃mh ∣∣2 +

1

σ
∆t

m∑
k=2

tk
∥∥ curl z̃kh

∥∥2

L2(Ω
C

)3

≤ 1

2T
∆t

m∑
k=2

∫
Ω

µ tk
∣∣z̃kh∣∣2 + 2T 2 µ∆t

m∑
k=2

∥∥∥∥∥ ẑkh − ẑk−1
h

∆t

∥∥∥∥∥
2

L2(Ω)3

+ µ∆t

m∑
k=1

∥∥z̃kh∥∥2

L2(Ω)3 +
T σ

σ2
∆t

m∑
k=2

∥∥ curl ẑkh
∥∥2

L2(Ω
C

)3 .

Now, taking into account that z̃kh = zkh − ẑ
k
h =

Hk
h −H

k−1
h

∆t
− ẑh(tk) and ‖ẑh(tk)‖2H(curl;Ω) ≤

C‖ẑh‖2H1(∆t,T ;H(curl;Ω)), from Lemma 1 and (7.4), we have

∆t

m∑
k=1

∥∥z̃kh∥∥2

L2(Ω)3 ≤ 2∆t

m∑
k=1

∥∥∥∥∥Hk
h −H

k−1
h

∆t

∥∥∥∥∥
2

L2(Ω)3

+ 2∆t

m∑
k=1

∥∥ẑkh∥∥2

L2(Ω)3 ≤ C ‖JS
‖2H2(0,T ;L2(Ω

S
)3) .

Then, replacing this estimate in the above inequality and using the discrete Gronwall’s inequality,
(7.4) and the fact that

∆t

M∑
k=2

∥∥∥∥∥ ẑkh − ẑk−1
h

∆t

∥∥∥∥∥
2

L2(Ω)3

≤ C ‖ẑh‖2H1(∆t,T ;H(curl;Ω))

lead to

max
2≤k≤M

tk
∥∥z̃kh∥∥2

L2(Ω)3 + ∆t

M∑
k=2

tk
∥∥ curl z̃kh

∥∥2

L2(Ω
C

)3 ≤ C ‖JS
‖2H2(0,T ;L2(Ω

S
)3) .

Therefore, using again that ‖ẑh(tk)‖2H(curl;Ω) ≤ C ‖ẑh‖
2
H1(∆t,T ;H(curl;Ω)) and (7.4),

max
2≤k≤M

tk
∥∥zkh∥∥2

L2(Ω)3 + ∆t

M∑
k=2

tk
∥∥ curl zkh

∥∥2

L2(Ω
C

)3 ≤ C ‖JS
‖2H2(0,T ;L2(Ω

S
)3) .

Hence, since zkh :=
Hk

h −H
k−1
h

∆t
, we have proved that

max
2≤k≤M

tk

∥∥∥∥∥Hk
h −H

k−1
h

∆t

∥∥∥∥∥
2

L2(Ω)3

≤ C ‖JS‖
2
H2(0,T ;L2(Ω

S
)3) .

There remains to prove an analogous estimate for k = 1. With this end, we proceed as follows.
First we use Lemma 1 and the fact that H0

h = H0 = 0 to write

t1

∥∥∥∥H1
h −H

0
h

∆t

∥∥∥∥2

L2(Ω)3

=
1

∆t

∥∥H1
h

∥∥2

L2(Ω)3 ≤ C
1

∆t
‖J

S
‖2H1(0,t1;L2(Ω

S
)3) .
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Then, standard computations allow us to show that

‖JS‖
2
L2(0,t1;L2(Ω

S
)3) ≤ 2∆t

(
‖JS(0)‖2L2(Ω

S
)3 + ∆t ‖∂tJS

‖2L2(0,t1;L2(Ω
S
)3)

)
≤ 2∆t2 ‖∂tJS

‖2L2(0,t1;L2(Ω
S
)3) ,

where we have used that JS(0) = 0, and, analogously,

‖∂tJS
‖2L2(0,t1;L2(Ω

S
)3) ≤ 2∆t

(
‖∂tJS

(0)‖2L2(Ω
S
)3 + ∆t ‖∂ttJS

‖2L2(0,t1;L2(Ω
S
)3)

)
≤ C∆t ‖J

S
‖2H2(0,t1;L2(Ω

S
)3) .

Combining the last four estimates we have that

max
1≤k≤M

tk

∥∥∥∥∥Hk
h −H

k−1
h

∆t

∥∥∥∥∥
2

L2(Ω)3

≤ C ‖JS‖
2
H2(0,T ;L2(Ω

S
)3) .

Hence, as a consequence of the inf-sup condition (4.1) and the first equation of Problem 5
multiplied by tk, for k = 1 . . . ,M we have that

β∗
√
tk
∥∥Ek

h

∥∥
L2(Ω

D
)3 ≤ C

tk
∥∥∥∥∥Hk

h −H
k−1
h

∆t

∥∥∥∥∥
2

L2(Ω)3

+ tk
∥∥ curlHk

h

∥∥2

L2(Ω
C

)3


1/2

≤ C ‖JS‖H2(0,T ;L2(Ω
S
)3) ,

where we have also used the a priori estimate from Lemma 1.

Now, we are in a position to obtain O(ε) estimates for
√
tk

(
Hk

h,ε −H
k
h

)
.

Theorem 5. Let (Hk
h,E

k
h), k = 1, . . . ,M , be the solution to Problem 5 and Hk

h,ε, k = 1, . . . ,M ,
that to Problem 4. If H0 = 0 and J

S
∈ H2(0, T ; L2(Ω

S
)3) with J

S
(0) = 0, then there exists a

constant C > 0, independent of ε, h and ∆t, such that

max
1≤k≤M

tk
∥∥Hk

h,ε −H
k
h

∥∥2

L2(Ω)3 + ∆t

M∑
k=1

tk
∥∥ curl

(
Hk

h,ε −H
k
h

)∥∥2

L2(Ω
C

)3

+ ε∆t

M∑
k=1

tk
∥∥Ek

h,ε −E
k
h

∥∥2

L2(Ω
D

)3 ≤ Cε2.

Proof. Let ukh and vkh be defined as in the proof of Lemma 1. Taking Gh = tku
k
h and F h = tkv

k
h

in (6.2a) and (6.2b), respectively, we obtain∫
Ω

µtk
ukh − u

k−1
h

∆t
· ukh +

∫
Ω

C

tk
σ

∣∣curlukh
∣∣2 + ε

∫
Ω

D

tk
∣∣vkh∣∣2 = −ε

∫
Ω

D

tkE
k
h · vkh. (7.6)

Note that for all Ek
h, k = 1, . . . ,M , there exists a unique ykh ∈ Y

⊥N0
h

(Ω)

h such that∫
Ω

D

curlykh · F h =

∫
Ω

D

Ek
h · F h ∀F h ∈ curl(N Γ

h(ΩD)) (7.7)
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and there exists a constant C > 0, independent of h, such that∥∥ykh∥∥H(curl;Ω)
≤ C

∥∥Ek
h

∥∥
L2(Ω

D
)3 (7.8)

(see [13, Lemma I.4.1(iii)]). In particular∫
Ω

D

curl

(
tk+1y

k+1
h − tkykh
∆t

)
· F h =

∫
Ω

D

tk+1E
k+1
h − tkEk

h

∆t
· F h ∀F h ∈ curl(N Γ

h(Ω
D
))

and

∆t

M−1∑
k=1

∥∥∥∥∥ tk+1y
k+1
h − tkykh
∆t

∥∥∥∥∥
2

H(curl;Ω)

≤ C∆t

M−1∑
k=1

∥∥∥∥∥ tk+1E
k+1
h − tkEk

h

∆t

∥∥∥∥∥
2

L2(Ω
D

)3

. (7.9)

Substituting (7.7) in (7.6) and using (6.2a) we obtain∫
Ω

µtk
ukh − u

k−1
h

∆t
· ukh +

∫
Ω

C

tk
σ

∣∣curlukh
∣∣2 + ε

∫
Ω

D

tk
∣∣vkh∣∣2

= ε

∫
Ω

µtk
ukh − u

k−1
h

∆t
· ykh + ε

∫
Ω

C

tk
σ

curlukh · curlykh

≤ 1

2

∫
Ω

C

tk
σ

∣∣curlukh
∣∣2 +

ε2

2

∫
Ω

C

tk
σ

∣∣curlykh
∣∣2 + ε

∫
Ω

µtk
ukh − u

k−1
h

∆t
· ykh

and, hence,

1

2∆t

∫
Ω

µtk
∣∣ukh∣∣2 − 1

2∆t

∫
Ω

µtk
∣∣uk−1
h

∣∣2 +
1

2

∫
Ω

C

tk
σ

∣∣curlukh
∣∣2 + εtk

∥∥vkh∥∥2

L2(Ω
D

)3

≤ ε2

2

∫
Ω

C

tk
σ

∣∣curlykh
∣∣2 + ε

∫
Ω

µ tk
ukh − u

k−1
h

∆t
· ykh.

Thus, multiplying by 2∆t and summing up from k = 1 to m (m ≤M) and using the fact that

m∑
k=1

∫
Ω

µ tk
ukh − u

k−1
h

∆t
· ykh =

1

∆t

∫
Ω

µtm umh · ymh −
m−1∑
k=1

∫
Ω

µ
tk+1y

k+1
h − tkykh
∆t

· ukh,

we obtain

tm ‖umh ‖
2
L2(Ω)3 + ∆t

m∑
k=1

tk
∥∥curlukh

∥∥2

L2(Ω
C

)3 + ε∆t

m∑
k=1

tk
∥∥vkh∥∥2

L2(Ω
D

)3

≤ C

{
ε2tm ‖ymh ‖

2
L2(Ω)3 + ε2∆t

m∑
k=1

∥∥curlykh
∥∥2

L2(Ω
C

)3 + ∆t

m−1∑
k=1

∥∥ukh∥∥2

L2(Ω)3

+ε2∆t

m−1∑
k=1

∥∥∥∥∥ tk+1y
k+1
h − tkykh
∆t

∥∥∥∥∥
2

L2(Ω)3

 .
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Using (7.8), Lemma 1, (7.9), Lemma 6, Lemma 7 and Lemma 5, we have

tm ‖umh ‖
2
L2(Ω)3 + ∆t

m∑
k=1

tk
∥∥curlukh

∥∥2

L2(Ω
C

)3 + ε∆t

m∑
k=1

tk
∥∥vkh∥∥2

L2(Ω
D

)3 ≤ Cε2

Thus, the estimate of the theorem follows from the fact that ukh := Hk
h,ε −H

k
h and vkh := Ek

h,ε −195

Ek
h.

Finally, we are in a position to write the main result of this section.

Theorem 6. Let H and Hk
h,ε, k = 1, . . . ,M , be the solutions to Problem 1 and Problem 4,

respectively, with H0 = 0, J
S
∈ H2(0, T ; L2(Ω

S
)3) and J

S
(0) = 0. If H ∈ H1(0, T ; Hr(curl; Ω)) ∩

H2(0, T ; L2(Ω)3) with r ∈
(

1
2 , 1
]
, then there exists a constant C > 0 independent of ε, h and ∆t

such that

max
1≤k≤M

tk
∥∥H(tk)−Hk

h,ε

∥∥2

L2(Ω)3 + ∆t
M∑
k=1

tk
∥∥ curl

(
H(tk)−Hk

h,ε

)∥∥2

L2(Ω)3 ≤ C
{

(∆t)
2

+ h2r + ε2
}
.

Proof. The result follows from the equivalence between primal and mixed formulations of the prob-
lem (cf. Theorem 2), Theorem 3 and Theorem 5.

8. Numerical tests200

In this section, we report some numerical results obtained with a MATLAB code that imple-
ments the penalty technique described above. First, we have applied it to a realistic test whose
geometry fits in the above theoretical framework. The aim of this test is to illustrate the conver-
gence with respect to the penalty parameter ε. Next, in order to illustrate the convergence with
respect to the discretization parameters, we have considered an academic example with a known205

analytical solution. Similar tests but with a moving conducting domain ΩC (which therefore lie
beyond the theoretical scope of this paper) can be found in [10].

8.1. Test 1: Convergence with respect to the penalty parameter

Let us consider the geometry sketched in Figure 2, which includes a toroidal coil Ω
S
, a conducting

piece ΩC and the air around.210

The source current density, which is supported in ΩS, is given by

J
S
(t,x) =

I(t)

meas(S)

−
x2√
x2

1+x2
2

x1√
x2

1+x2
2

0

 in Ω
S
,

where the current intensity I(t) is shown in Figure 3. Concerning the physical parameters, we have
taken µ = µ0 = 4π × 10−7 Hm−1 (the magnetic permeability of vacuum) and σ = 106 (Ωm)−1 in
the conducting piece.

To solve this problem, we have implemented Problems 4 and 5 and compared the results at each
time step for different values of the parameter ε. Notice that the implementation of Problem 5215

would in principle require to have a basis of the discrete space curl(N Γ
h(ΩD)), which is not easily
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Figure 2: Sketch of the domain for Test 1 (left). Meridian section (right).
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Figure 3: Source current intensity (A) vs. time (s) for Test 1.

available in practice. To circumvent this drawback, we have used the standard basis functions of
N Γ

h(ΩD), to construct with their curls a (not linearly independent) spanning set. By so doing, at
each time-step, we have been led to solve a singular system of linear equations, well determined
in the sense that it has an (obviously non-unique) solution. The rank-degenerate linear system is220

solved in the least-square sense, which can be easily done in MATLAB environment.
In this case, we have focused on the penalty error. With this end, we have considered the

solutions Hm
h,ε and Hm

h of Problem 4 and 5, respectively, with fixed mesh-size h, fixed time-step

∆t and ε varying from 100 to 10−4. Notice that the difference between the solutions Hk
h,ε and

Hk
h of these two problems is due only to the penalty approach. We have computed the following

percentage errors:

100

max
1≤k≤M

∥∥Hk
h,ε −H

k
h

∥∥
L2(Ω)3

max
1≤k≤M

∥∥Hk
h

∥∥
L2(Ω)3

and 100

{
∆t
∑M
k=1

∥∥Hk
h,ε −H

k
h

∥∥2

H(curl;Ω)

}1/2

{
∆t
∑M
k=1

∥∥Hk
h

∥∥2

H(curl;Ω)

}1/2
,
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which are time-discrete forms of the errors in L∞(0, T ; L2(Ω)3) and L2(0, T ; H(curl; Ω)) norms,
respectively.

Table 1: Test 1. Percentage penalty errors.

ε ε/σ L∞(0, T ; L2(Ω)3) L2(0, T ; H(curl; Ω))
100 10−6 0.2690402 0.1184663
10−1 10−7 0.0270514 0.0118915
10−2 10−8 0.0027066 0.0011896
10−3 10−9 0.0002707 0.0001192
10−4 10−10 0.0000272 0.0000166
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Figure 4: Percentage penalty error curves in L∞(0, T ; L2(Ω)3) (left) and L2(0, T ; H(curl; Ω)) (right) discrete norms,
for the numerical solution of Test 1 computed on a mesh with 8448 elements and a time-step ∆t = 10−4 s.

We report in Table 1 and Figure 4 these errors for a fixed mesh with 8448 elements, a fixed
time step ∆t = 10−4 and different values of the penalty parameter ε ∈ (0, 1]. We also include in225

the table the relative values of ε with respect to the conductivity σ = 106 used in this test. The
numerical results show a clear linear convergence with respect to the parameter ε until it becomes
too small. Indeed, for values of ε/σ < 10−10, the convergence deteriorates due to ill-conditioning of
the resulting linear system, but, in such a case, the percentage errors are already extremely small.

Let us remark that we only report results for one fixed mesh and one time-step, because we230

have checked that the penalty errors do not change significantly when the experiments are repeated
with different discretization parameters.

8.2. Test 2: Convergence with respect to the discretization parameters

Let us consider a conducting domain Ω
C

occupied by the cube (0, 1)× (0, 1)× (1, 2), being the
whole domain Ω := (0, 1) × (0, 1) × (0, 3) (see Figure 5). We have applied our code to solve the
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following source problem:

curlH = σE in (0, T )× Ω,

∂t(µH) + curlE = f in (0, T )× Ω,

where f is a given data and T = 1
2 .

W
C

1 z 2<<

z

x

y

Figure 5: Test 2. Sketch of the domain.

We have used for this test the same physical parameters µ and σ as in the previous one. The
data f has been chosen so that the analytical solution be

H(t,x) := t2

ϕ(z)
ϕ(z)
z

 with ϕ(z) :=

{
(z − 1)

2
(z − 2)

2
, z ∈ [1, 2],

0, z /∈ [1, 2]

and

E(t,x) :=

{
1
σ curlH(t,x) in ΩC,
0 in ΩD.

Notice that curlH(t) = 0 in Ω
D

for all t ∈ [0, T ]. This is the constraint that has to be penalized,
since there is no source current J

S
in this test. Given ε > 0, the corresponding penalized problem

reads as follows: find Hε ∈ L2(0, T ; H(curl; Ω)) ∩H1(0, T ; L2(Ω)3) such that

d

dt

∫
Ω

µHε ·G+

∫
Ω

C

1

σ
curlHε · curlG+

1

ε

∫
Ω

D

curlHε · curlG =

∫
Ω

f ·G+

∫
Γ

g ·G

∀G ∈ H(curl; Ω),
Hε(0) = H0 in Ω,

29



where the exact values of f in Ω and g := E × n on Γ have been used as problem data.235

These equations have been discretized by using Nédélec finite elements in space and the backward
Euler method in time, leading to a scheme similar to that in Problem 4. To assess the dependence
of the errors on the discretization parameters h and ∆t, we have chosen a sufficiently small fixed
value of the penalty parameter: ε = 10−4. We have checked that the errors almost do not change
when using other values of the penalty parameter in the range between 10−3 and 10−5, which is an240

evidence of the fact that the penalty errors are absolutely negligible for such small values of ε (as
it happened in the previous test, too).

For this test, we have computed the actual errors, namely the differences between the obtained
numerical solution and the analytical one. To report in the same figure the dependence of the
errors with respect to both discretization parameters, we have used different meshes (the coarsest245

one with 144 elements) and, for each mesh, we have used time steps ∆t proportional to the mesh-
size h (the coarsest time step being ∆t = 1

20 ). We report in Figure 6 the corresponding error
curves, namely log-log plots of the respective errors versus the number of degrees of freedom (d.o.f.)
(i.e., the number of unknowns of the linear system to be solved at each time step). A clear linear
dependence O(h+ ∆t) can be easily appreciated from these curves.250
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Figure 6: Percentage discretization error curves in L∞(0, T ; L2(Ω)3) (left) and L2(0, T ; H(curl; Ω)) (right) discrete
norms for the numerical solution of Test 2 (ε = 10−4).
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Appendix A. Analysis of the penalty technique for the continuous problem

In Section 3, we introduced Problem 3, which is a penalized form of problem (2.1)–(2.3), and we
claimed that Problem 3 is well posed and that its solution converges to that of (2.1)–(2.3) as the
penalty parameter goes to zero. These two assertions were not proved in that section, because they310

were not needed for the subsequent analysis. However, they are interesting by themselves. This is
the reason why we prove them in this appendix.

First, we show that Problem 3 has a unique solution and that this solution is bounded indepen-
dently of the penalty parameter ε.

Theorem 7. Problem 3 has a unique solution that satisfies Hε ∈ L∞(0, T ; H0(curl; Ω)) and there
exists a constant C > 0, independent of ε, JS and H0, such that

‖Hε‖2L∞(0,T ;H(curl;Ω)) + ‖∂tHε‖2L2(0,T ;L2(Ω)3) ≤ C
{
‖H0‖2H(curl;Ω) + ‖J

S
‖2H1(0,T ;L2(Ω

S
)3)

}
.

Proof. The existence of a unique solution Hε follows by applying Corollary A.2 from [9], where, in
particular, it is shown that the assumption J

S
∈ H1(0, T ; H0(div0; Ω

S
)) yieldsHε ∈ H1(0, T ; L2(Ω)3).

The proof of the a priori estimate is very similar to that of Theorem 1. Thus, we only give a sketch

of this proof. We consider Ĥ as in the proof of Theorem 1, so that in particular (2.10) and (2.11)

hold true. We define H̃ε := Hε− Ĥ. Then, the same arguments as in Theorem 1 allow us to show

that H̃ε ∈ L2(0, T ; H0(curl; Ω)) ∩H1(0, T ; L2(Ω)3) and satisfies∫
Ω

µ∂tH̃ε ·G+

∫
Ω

C

1

σ
curl H̃ε · curlG+

1

ε

∫
Ω

D

curl H̃ε · curlG = −
∫

Ω

µ∂tĤ ·G

∀G ∈ H0(curl; Ω),

H̃ε(0) = H0 − Ĥ(0).
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Therefore, applying similar techniques to those used in the proof of Theorem A.1 and Corollary A.2

from [9], we obtain that H̃ε ∈ L∞(0, T ; H0(curl; Ω)) and that there exists a positive constant C
independent of ε, J

S
and H0 such that∥∥H̃ε

∥∥2

L∞(0,T ;H(curl;Ω))
+
∥∥∂tH̃ε

∥∥2

L2(0,T ;L2(Ω)3)

≤ C

{
‖H0‖2H(curl;Ω) + ‖J

S
‖2H1(0,T ;L2(Ω

S
)3) +

1

ε

∫
Ω

D

∣∣ curl H̃ε(0)
∣∣2} .

Since the last term on the right-hand side above vanishes, because curlH0 = J
S
(0) = curl Ĥ(0)315

(cf. (2.4) and (2.11)), the result follows from (2.10) and the above estimate.

Finally, we prove that Hε →H as ε→ 0.

Theorem 8. Let (H,E) be the solution to Problem 2. Let Hε be the solution to Problem 3 and
Eε := 1

ε (curlHε − JS
) |Ω

D
. Then, there exists C > 0 independent of ε, H0 and J

S
, such that

‖H −Hε‖L∞(0,T ;L2(Ω)3) + ‖curlH − curlHε‖L2(0,T ;L2(Ω)3) +
√
ε ‖E −Eε‖L2(0,T ;L2(Ω

D
)3)

≤ C
√
ε
{
‖H0‖H(curl;Ω) + ‖J

S
‖H1(0,T ;L2(Ω

S
)3)

}
.

Proof. According to its definition, Eε ∈ L2(0, T ; HΓ(div0; Ω
D
)) and (Hε,Eε) satisfies∫

Ω

µ∂tHε ·G+

∫
Ω

C

1

σ
curlHε · curlG+

∫
Ω

D

curlG ·Eε = 0 ∀G ∈ H0(curl; Ω), (A.1a)∫
Ω

D

curlHε · F − ε
∫

Ω
D

Eε · F =

∫
Ω

S

J
S
· F ∀F ∈ HΓ(div0; Ω

D
), (A.1b)

Hε(0) = H0. (A.1c)

For Hε we have already proved an a priori estimate in Theorem 7. For Eε, we use the inf-sup
condition (3.2), the estimate from Theorem 7 and (A.1a) to write

‖Eε‖L2(0,T ;L2(Ω
D

)3) ≤ C
{
‖H0‖H(curl;Ω) + ‖J

S
‖H1(0,T ;L2(Ω

S
)3)

}
. (A.2)

Next, we denote u := Hε −H and v := Eε − E. Subtracting (A.1a)–(A.1c) from the corre-
sponding equations of Problem 2 yields∫

Ω

µ∂tu ·G+

∫
Ω

C

1

σ
curlu · curlG+

∫
Ω

D

curlG · v = 0 ∀G ∈ H0(curl; Ω), (A.3a)∫
Ω

D

curlu · F − ε
∫

Ω
D

v · F = ε

∫
Ω

D

E · F ∀F ∈ HΓ(div0; ΩD), (A.3b)

u(0) = 0. (A.3c)

By taking G = u(t) and F = v(t) in (A.3a) and (A.3b), respectively, subtracting the resulting
expressions, integrating in time, using (A.3c) and Young’s inequality, we obtain

1

2
µ ‖u(t)‖2L2(Ω)3 +

1

σ

∫ t

0

‖curlu(s)‖2Ω
C
ds+

ε

2

∫ t

0

‖v(s)‖2Ω
D
ds ≤ ε

2

∫ t

0

‖E(s)‖2Ω
D
ds

≤ Cε
{
‖H0‖2H(curl;Ω) + ‖JS‖

2
H1(0,T ;L2(Ω

S
)3)

}
∀t ∈ [0, T ],
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where we have used (3.1) for the last inequality.
Thus, there only remains to estimate ‖ curlu‖L2(0,T ;L2(Ω

D
)3). With this end, we take F =

curlu − εv − εE = curlu − εEε in (A.3b) to obtain that curlu(t) = εEε(t) in Ω
D
. Hence, by

using (A.2), we conclude that

‖curlu‖L2(0,T ;L2(Ω
D

)3) = ε ‖Eε‖L2(0,T ;L2(Ω
D

)3) ≤ Cε
{
‖H0‖H(curl;Ω) + ‖J

S
‖L2(0,T ;L2(Ω

S
)3)

}
.

Therefore, the theorem follows from the last two inequalities.
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