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Centro de Investigación en
Ingenieŕıa Matemática (CI2MA)

An efficient third-order WENO scheme with unconditionally
optimal accuracy

Antonio Baeza, Raimund Bürger,
Pep Mulet, David Zoŕıo
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Abstract. A novel third-order Weighted Essentially Non-Oscillatory (WENO) scheme, attaining
unconditionally third order accuracy when the data is smooth enough, even in presence of critical
points, and second order accuracy if a discontinuity crosses the data, is presented. The key to
attribute these properties to this scheme is the inclusion of an additional node in the data stencil,
which is only used in the computation of the weights measuring the smoothness. The accuracy
properties of this scheme are proven in detail and several numerical experiments are presented, which
show that this scheme is more efficient in terms of the CPU cost/error ratio than its traditional third-
order counterparts as well as several higher-order WENO schemes that are found in the literature.
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1. Introduction.

1.1. Scope. Weighted Essentially Non-Oscillatory (WENO) schemes have be-
come very popular, especially in the context of hyperbolic conservation laws, since
they were proposed in [11] and later improved in [9]. One of the most used schemes in
the literature is the fifth-order WENO scheme, which in general attains high efficiency
in terms of the ratio CPU cost/error on weak solutions of hyperbolic conservation laws.

Third-order schemes have been usually dropped from usage due to a worse perfor-
mance in terms of the aforementioned efficiency ratio, since, although they are much
faster than the higher-order alternatives, their error in problems with weak solutions
is also much higher, so that the ratio CPU cost/error is, in general, worse than those
obtained by fifth-order WENO schemes.

In this paper we inspect the causes of the misperformance involving the traditional
third-order WENO schemes through an analysis of their accuracy near critical points.
We propose several solutions to this issue, by first proving that it is impossible to
prevent accuracy loss near critical points in stencils with only three points, but it
is possible to do so with stencils of at least four points. Ultimately the goal is to
present a genuine third-order scheme that is competitive with the most commonly
used fifth-order schemes for problems with weak solutions.

1.2. Related work. To put this work into the proper perspective, we mention
that several previous attemps have been made in order to solve the issue involving
the accuracy loss near critical points. For instance, in [19], the authors propose a
novel smoothness measure based on introducing an additional exponent in the weight
formula proposed in [20], associated to WENO-N3 schemes. However, although this
measure solves the issue of the accuracy loss near critical points, in this case the
resulting weights end up depending on the scaling of the data due to the additional
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exponent. Other works improving this idea have been also done, but the issue of the
weights depending on the scaling of the data in the weight design still remains; see
for instance [6, 7, 21].

There are also many other works tackling the issue by tuning the parameter ε
appearing in the weight design, which was initially conceived to be a small quantity
used to avoid divisions by zero near constant data, but that was proven later to be
crucial to avoid the accuracy loss near critical points if it was scaled properly, see
for instance [1]. There are some recent works which tackle this issue in third-order
schemes and limiters, for instance [14,15].

We will show in this work that it is not possible to build a third-order reconstruc-
tion with a stencil of three points satisfying at once the following properties:

• Detection of discontinuities in the data.
• Detection of critical points in the data.
• Independence of non-linear weights of the scaling of the data (the issue ap-

pearing in [19]).
• Unnecessity of tuning/scaling ε (in contrast to the proposals in, e.g., [1,15]).

And, once exposed, we will propose a novel WENO3 reconstruction method satisfying
at once the aforementioned properties, by using stencils with an additional point,
namely, a stencil containing a total of four points. This does not represent an increase
of the stencil used to compute the numerical divergence in a semi-discrete scheme, as
proven in 3.2.

1.3. Outline of the paper. This paper is divided as follows: Section 2 starts
with some preliminaries and definitions that will be used along this paper, followed
by a motivation in Subsection 2.3 in which we prove through a counterexample that a
third-order WENO scheme cannot attain the optimal accuracy near critical points if
a stencil of only three points is used, but that it is possible to attain the optimal ac-
curacy even near critical points if an additional point is added. The proposed scheme,
attaining unconditionally third order, is presented in Subsection 2.4. In Section 3
the key to use this reconstruction strategy in the context of third-order schemes for
hyperbolic conservation laws without increasing the computational domain is shown.
Section 4 stands for several validation numerical experiments in which our proposed
schemes are compared against the most commonly used fifth-order scheme in terms
of efficiency; finally, in Section 5 some conclusions are drawn.

2. Optimal third-order scheme.

2.1. Preliminaries.

Definition 2.1. Assume that α ∈ Z. we write f(h) = O(hα) to denote that
lim suph→0 |f(h)/hα| < ∞, and f(h) = Ō(hα) if f(h) = O(hα) and in addition
lim infh→0 |f(h)/hα| > 0.

Since, for positive f, g,

lim sup
h→0

f(h)g(h) ≤ lim sup
h→0

f(h) lim sup
h→0

g(h)

lim inf
h→0

f(h)g(h) ≥ lim inf
h→0

f(h) lim inf
h→0

g(h)

it follows that O(hα)O(hβ) = O(hα+β) and Ō(hα)Ō(hβ) = Ō(hα+β).

2.2. Third-order WENO reconstructions. For the sake of exposition, we
briefly describe two classical third-order WENO approaches. The first is the third-
order WENO method defined by the Jiang-Shu approach [9] (henceforth, JS-WENO3)
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and the second is the third-order WENO method through the Yamaleev-Carpenter
approach [22,23] (henceforth, YC-WENO3). Since they have many parts in common,
we will describe both approaches altogether while pointing out the key differences
when necessary.

The input for both cases is an equally spaced three-point stencil (x−1, x0, x1),
xi − xi−1 = h > 0, i ∈ {0, 1}, associated with values (f−1, f0, f1), where either
fi = f(xi) (reconstructions from point values) or

fi =
1

h

∫ xi+1/2

xi−1/2

f(x) dx

(reconstructions from cell averages). Here xi+1/2 = (xi + xi+1)/2, and ε > 0 is a
parameter which is intended to be merely a small positive quantity avoiding divisions
by zero. We assume that a right-biased reconstruction is sought, so the output is
intended to be an approximation of f(x1/2). The smoothness indicators are then
defined as follows:

I0 = (f0 − f−1)2, I1 = (f1 − f0)2.(2.1)

as well as the corresponding interpolating polynomials associated to each 2-point
substencil:

p0(x1/2) = −1

2
f−1 +

3

2
f0, p1(x1/2) =

1

2
f0 +

1

2
f1.(2.2)

Now, in each case we define

αi =


ci

Ii + ε
for JS-WENO methods,

ci

(
1 +

σ

Ii + ε

)
for YC-WENO methods,

where σ = (f1 − 2f0 + f−1)2 and

(c0, c1) =

{
(1/4, 3/4) in case of reconstruction from point values,

(1/3, 2/3) in case of reconstructions from cell averages.
(2.3)

Then, the non-linear weights are computed as

ωi =
αi

α0 + α1
, i = 0, 1,

and the WENO reconstruction is finally given by

p2(x1/2) = ω0p0(x1/2) + ω1p1(x1/2).

2.3. On the accuracy loss of third-order WENO schemes. In the sequel
we will abuse language by referring to the values of a function on a stencil as the
stencil itself.

The following example shows that if a grid xi,h = z + (c + i)h, i ∈ {−1, 0, 1},
samples a function f ∈ C2 such that f ′(z) = 0 and f ′′(z) 6= 0, then there are cases
in which, ignoring the scaling of the stencil (f−1,h, f0,h, f1,h), with fi,h = f(xi,h),
the reconstruction obtained from that stencil for any given h is the same as if the
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function had a discontinuity in it, and thus there cannot be scaling-independent and
dimensionless parameters constructed from the data capable of distinguishing one
case from the other.

Let us consider, for instance, an extreme case by considering f : R→ R given by
f(x) = 4x2, which satisfies f ′(0) = 0 and f ′′(0) = 8 6= 0, and the grid xi,h = ( 1

2 + i)h,
i ∈ {−1, 0, 1}. Then the stencil Fh = (f−1,h, f0,h, f1,h), with fi,h = f(xi,h), is given
by Fh = (h2, h2, 9h2).

On the other hand, we define g : R→ R given by g(x) = 1 if x < 0 and g(x) = 9
if x ≥ 0, with the same grid as above. Then the stencil Gh = (g−1,h, g0,h, g1,h) is
given by Gh = (1, 1, 9).

Now, the relationship Fh = h2Gh holds for all h > 0; that is, both stencils
are, for fixed h, a scaled version of the same stencil. Therefore, any procedure to
analyze smoothness agnostic about the scaling of the data will fail at distinguishing
the first case, consisting of smooth data, from the second one, based on data taken
from both sides of a discontinuity. Therefore, either such procedure, depending on its
construction, will detect asymptotically both cases as smooth data, or will interpret
both as discontinuous data, being in both cases wrong (giving either false negatives
or false positives). The traditional third-order WENO schemes, belong to the latter
group, in which the detection of discontinuities is prioritized against the detection of
critical points, and thus the latter ones are interpreted incorrectly as discontinuities.

2.4. Unconditionally optimal third-order scheme with an additional
node. We next present a novel scheme with essentially non-oscillatory properties
which attains unconditionally the optimal order of accuracy.

Let S := (f−1, f0, f1) be a stencil from a uniform grid, fi = f(xi), i ∈ {−1, 0, 1},
xi = z + (c + i)h, i ∈ {−1, 0, 1}, and S̄ := S ∪ {f2} = (f−1, f0, f1, f2) the extended
stencil. Let us assume that one wants to perform a (right-biased with respect to
S) reconstruction at x1/2 := (x0 + x1)/2 accounting for discontinuities. Then, both
for reconstructions from point values and from cell averages, we define the following
items:

In the first place, we define the corresponding interpolating polynomials associated
to the substencils S0 = (f−1, f0) and S1 = (f0, f1) evaluated at x1/2, which are given
by (2.2). Their associated Jiang-Shu smoothness indicators [9] are thus given by (2.1).
One of the keys here is to define also an additional smoothness indicator, in which
the additional node is used:

I2 = (f2 − f1)2.(2.4)

Now, given a small quantity ε > 0, we define the following weights:

ω̃0 :=
I1 + ε

I0 + I1 + 2ε
, ω̃1 :=

I0 + ε

I0 + I1 + 2ε
= 1− ω̃0.(2.5)

We introduce now the corrector weight, given by

ω =
J

J + τ + ε
, with J = I0(I1 + I2) + (I0 + I1)I2,(2.6)

which clearly satisfies 0 ≤ ω ≤ 1, and τ the product of the square of the undivided
difference associated to the extended stencil S̄ with the sum of the smoothness indi-
cators:

τ := dI, d := (−f−1 + 3f0 − 3f1 + f2)2, I := I0 + I1 + I2.(2.7)
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We then define the corrected weights as

ω0 := ωc0 + (1− ω)ω̃0, ω1 := ωc1 + (1− ω)ω̃1,(2.8)

where c0 and c1 are specified in (2.3). Finally, the reconstruction result is given by

p(x1/2) = ω0p0(x1/2) + ω1p1(x1/2).(2.9)

The key to analyze the accuracy of our proposed scheme is to first study the
accuracy of the corrector weight ω.

Definition 1. We say that a function f has a critical point of order k ≥ 0 at x
if f (l)(x) = 0 for l = 1, . . . , k and f (k+1)(x) 6= 0.

Proposition 2. If f has a critical point at z of order k, k ∈ {0, 1}, there holds

ω =

{
1 +O(h4−2k) +O(ε) if S̄ is smooth, f ∈ C3,
O(h2) +O(ε) if a discontinuity crosses S.

Proof. Clearly, by definition and the fact that J, τ ≥ 0, there holds 0 ≤ ω ≤ 1.
Let us first assume that S̄ is smooth with k ∈ {0, 1}. Then, according to [3,

Lemma 2], if k = 0, I2,i = Ō(h2), i ∈ {0, 1, 2}, and if k = 1, then there exists
i0 ∈ {0, 1, 2} such that I2,i0 = Ō(hs), for some s ∈ {4, 5, 6, . . .}, and I2,i = Ō(h4), for
i ∈ {0, 1, 2}, i 6= i0.

Therefore, combining this, we deduce that I2,0 + I2,1 = Ō(h2+2k) and that I2,1 +
I2,2 = Ō(h2+2k). Moreover, since either I2,0 = Ō(h2+2k) or I2,2 = Ō(h2+2k), it can
be concluded that

J = I2,0(I2,1 + I2,2) + (I2,0 + I2,1)I2,2 = Ō(h4+4k) +O(ε).

On the other hand,

d = (−f−1 + 3f0 − 3f1 + f2)2 = O(h6) = O(h6) +O(ε),

I = I0 + I1 + I2 = O(h2+2k) = O(h2+2k) +O(ε).

Therefore τ = O(h8+2k). Hence, and since by assumption J 6= 0,

ω =
J

J + τ + ε
=

1

1 +
τ

J

−O(ε) =
1

1 +
O(h8+2k)

Ō(h4+4k)

−O(ε) =
1

1 +O(h4−2k)
−O(ε)

= 1−O(h4−2k)−O(ε).

Finally, let us assume that a discontinuity crosses S. Then there exists i0 ∈ {0, 1},
such that I2,i0 = Ō(1). On the other hand, I2,|1−i0| = Ō(h2m0) and I2,2 = Ō(h2m1),
for some 1 ≤ m0,m1 ∈ {1, 2, 3, . . . }. Now, by these considerations, we have

I2,0(I2,1 + I2,2) =

{
Ō(hm) if i0 = 0,

Ō(hm0) if i0 = 1,
(I2,0 + I2,1)I2,2 = Ō(hm1)

with m := max{m0,m1}.
Under any of these combinations, we obtain

J = I2,0(I2,1 + I2,2) + (I2,0 + I2,1)I2,2 = Ō(h2m).
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On the other hand, since in this case there holds

d = (−f−1 + 3f0 − 3f1 + f2)2 = Ō(1) = Ō(1) +O(ε),

I = I0 + I1 + I2 = Ō(1) = Ō(1) +O(ε),

then τ = Ō(1) and

ω =
J

J + τ + ε
=

1

1 +
τ

J

−O(ε) =
1

1 +
Ō(1)2

Ō(h2m)

−O(ε) =
1

1 +
Ō(1)

Ō(h2m)

−O(ε)

=
1

1 + Ō(h−2m)
−O(ε) =

1

Ō(h−2m)
−O(ε) = Ō(h2m) +O(ε) = O(h2) +O(ε),

which completes the proof.

Now, let us focus on the computation of the corrected weights.

Proposition 3. For i ∈ {0, 1}, there holds

ωi =


ci +O(h4−2k) +O(ε) if S̄ contains smooth data,

O(h2) +O(ε) if a discontinuity crosses Si,

O(1) +O(ε) if a discontinuity crosses S, but not Si.

Proof. We first recall that ωi = ωci + (1 − ω)ω̃i. If ω = 1 − O(hm0) − O(ε) for
some m0 ≥ 0, then

ωi = (1−O(hm0)−O(ε))ci + (O(hm0) +O(ε))ω̃i = ci +O(hm0) +O(ε),

where we have taken into account that ω̃i is an expression at most O(1), since in
particular 0 ≤ ω̃i ≤ 1. Therefore, using Proposition 2, we obtain the result.

On the other hand, if ω satisfies ω = O(h2m1) +O(ε) for some m1 ≥ 1, then

ωi =
(
O(h2m1) +O(ε)

)
ci +

(
1−O(h2m1)−O(ε)

)
ω̃i = ω̃i +O(h2m1) +O(ε).

Hence, in this case we must focus on the analysis of the accuracy for ωi. By Proposition
2 we have that ω = O(h2m1), m1 > 0, if a discontinuity crosses S.

In such case, there exists i0 ∈ {0, 1} such that Ii0 = Ō(1), whereas I1−i0 = O(h2).
Therefore, in this case we have

ω̃i0 =
I1−i0 + ε

I0 + I1 + 2ε
=
O(h2)

Ō(1)
+O(ε) = O(h2) +O(ε),

ω̃1−i0 =
Ii0 + ε

I0 + I1 + 2ε
=
Ō(1)

Ō(1)
+O(ε) = O(1) +O(ε).

Therefore, taking into account that ωi = ω̃i+O(h2m1)+O(ε) with m1 ≥ 1, we obtain

ωi0 = O(h2) +O(ε), ω1−i0 = O(1) +O(ε).

Theorem 4. The reconstruction p(x1/2) satisfies

p(x1/2) =

{
f(x1/2) +O(h3) if S̄ is smooth,

f(x1/2) +O(h2) if a discontinuity crosses S.
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Proof. This is a direct consequence of the application of Proposition 3 to the
expression (2.9), taking also into account that both for reconstructions from point
values and from cell averages, the ideal weights ci, i ∈ {0, 1}, satisfy that c0p0(x1/2)+
c1p1(x1/2) equals the corresponding third-order reconstruction of the same type at x1/2.

Remark 2.1. The cases in which the order of the critical point is k ≥ 2 are not
covered, since with this assumption any reconstruction, regardless of the degree of the
corresponding polynomials, will attain an order of at least k + 1 ≥ 3, and therefore
the accuracy will be optimal regardless of the values of the weights ωi, taking into
consideration that they always are a convex combination, namely, ω0, ω1 ≥ 0 and
ω0 + ω1 = 1.

Summary of the algorithm. Input: S̄ = {f−1, f0, f1, f2}, with fi = f(xi) or
fi = 1

h

∫ xi+1/2

xi−1/2
f(x) dx, and ε > 0.

1. Compute the corresponding interpolating polynomials evaluated at x1/2, which,
both in case of reconstructions from point values and from cell averages, are
given by (2.2).

2. Compute the corresponding Jiang-Shu smoothness indicators I0, I1 and I2
(including the one considering the rightmost node) by (2.1) and (2.4).

3. Compute the preliminary weights ω̃0 and ω̃1 from (2.5).
4. Define τ by (2.7).
5. Compute the corrector weight ω from (2.6).
6. Compute the corrected weights ω0 and ω1 from (2.8).
7. Obtain the OWENO reconstruction at x1/2:

p2(x1/2) = ω0p0(x1/2) + ω1p1(x1/2).

Output: R(f−1, f0, f1, f2, ε) := p2(x1/2).

3. WENO schemes for systems of conservation laws. In this section, we
discuss the incorporation of the novel third-order WENO approach in the context
of hyperbolic conservation laws. The purpose is to prove that the resulting scheme
has the same computational domain as a standard third-order WENO reconstruction
based on a three-point stencil.

3.1. Hyperbolic systems of conservation laws. We will briefly describe in
this section the equations and their discretization procedure. We consider hyperbolic
systems of ν scalar conservation laws in d space dimensions:

ut +

d∑
i=1

f i(u)xi = 0, (x, t) ∈ Ω× R+ ⊆ Rd × R+, x = (x1, . . . , xd),(3.1)

where u = u(x, t) ∈ Rν is the sought solution, f i : Rν → Rν are given flux density
vectors, and

u =

u1...
uν

 , f i =

f
i
1
...
f iν

 , i = 1, . . . , d; f =
[
f1 . . . fd

]
.

System (3.1) is complemented with the initial condition

u(x, 0) = u0(x), x ∈ Ω,
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and prescribed boundary conditions.
To describe the spatial discretization, we introduce a Cartesian grid G formed by

points (cell centers) x = xj1,...,jd = ((j1 − 1
2 )h, . . . , (jd − 1

2 )h) ∈ G for h > 0. In what
follows, we use the index vector j = (j1, . . . , jd), let ei denote the i-th d-dimensional
unit vector, and assume that J is the set of all indices j for which point values of
the solution are to be computed. We then advance a semi-discrete scheme in which
spatial derivatives are discretized first, resulting in a system of ordinary differential
equations whose numerical solution is iteratively updated in time. To do so, we first
define

U(t) :=
(
u(xj , t)

)
j∈J .

To solve (3.1) we utilize the Shu-Osher finite difference scheme [17, 18] with upwind
spatial reconstructions of the flux function that are incorporated into numerical flux
vectors f̂ i through a Donat-Marquina flux-splitting [5]. Thus, the contribution to the
flux divergence in the coordinate xi at point x = xj is given by

f i(U)xi
(xj , t) ≈

1

h

(
f̂ ij+ 1

2ei

(
U(t)

)
− f̂ ij− 1

2ei

(
U(t)

))
.

Then, WENO reconstructions [9] of order 2r+1 are considered, with special emphasis
on the case we are interested in, namely, r = 1 (order 3). To specify the time
discretization, we write the semi-discrete scheme compactly as

d

dt
U(t) = L(U(t)), L

(
U(t)

)
=
(
Lj(U(t))

)
j∈J ,

where we define

Lj(U(t)) :=
1

h

d∑
i=1

(
f̂ ij+ 1

2ei

(
U(t)

)
− f̂ ij− 1

2ei

(
U(t)

))
(with suitable modifications for boundary points).

For the time discretization, we either use the third-order Runge-Kutta TVD
scheme proposed in [18] or the approximate Lax-Wendroff (henceforth, LWA) ap-
proach proposed in [24], which in turn is based on the original Lax-Wendroff (hence-
forth, LW) approach proposed by Qiu and Shu in [13]. This will be specified in each
numerical experiment.

3.2. Third-order WENO scheme. Although it may seem that the overall
scheme for finite dimensional conservation laws uses more points than the correspond-
ing scheme for classical WENO3 reconstructions, it is not the case, as we now show.

The semidiscrete scheme for a scalar one-dimensional law is

u′i(t) = − 1

h

(
f̂i+1/2 − f̂i−1/2

)
,(3.2)

f̂i+1/2 = f̂(ui−1, ui, ui+1, ui+2),(3.3)

so that the the right-hand side of (3.2) depends on approximations uj(t) ≈ u(xj , t)
at a 5-point stencil j = i− 2, . . . , i+ 2. An ODE solver, as the TVD Runge-Kutta 3
proposed in [18], is applied to (3.2) to obtain the final time-space accurate scheme.

If the reconstruction (3.3) associated with the cell interface xi+1/2 is sought and
we define the interval I(a, b) := [min{a, b},max{a, b}], then we determine for j ∈
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{i− 1, i, i+ 1, i+ 1} the quantities

f
i+1/2,+
j :=


f(uj) if f ′(u) > 0 for all u ∈ I(ui, ui+1),

0 if f ′(u) < 0 for all u ∈ I(ui, ui+1),

f(uj) + αi+1/2uj otherwise,

f
i+1/2,−
j :=


0 if f ′(u) > 0 for all u ∈ I(ui, ui+1),

f(uj) if f ′(u) < 0 for all u ∈ I(ui, ui+1),

f(uj)− αi+1/2uj otherwise,

where

αi+1/2 := max
u∈I(ui,ui+1)

∣∣f ′(u)
∣∣.

The precise formulation (see [18]) for attaining third-order accuracy (the maxi-
mum for semidiscrete stability being three for this 5-point stencil, cf. [2] for the usual
WENO3 reconstructions consists in using a local flux splitting f(u) = f+(u)+f−(u),
such that ±(f±(u))′ ≥ 0, in the interval I(ui, ui+1] determined by ui and ui+1, which
is defined as

f̂i+1/2 := R+
(
f
i+1/2,+
i−1 , f

i+1/2,+
i , f

i,+1/2,+
i+1

)
+R−

(
f
i+1/2,−
i , f

i+1/2,−
i+1 , f

i+1/2,−
i+2

)
,

(3.4)

where R+ is a right-biased cell-averages reconstruction and is the right-biased cell-
averages reconstruction given by R−(a, b, c) = R+(c, b, a).

In contrast, the flux splitting and reconstruction used herein are defined as follows.
Instead of using (3.4), we propose to define the flux value f̂i+1/2 by our optimal-order
reconstruction R±,opt that depends on the four-point stencil, such that

f̂i+1/2 = f̂(ui−1, ui, ui+1, ui+2)

= R+,opt
(
f
i+1/2,+
i−1 , f

i+1/2,+
i , f

i+1/2,+
i+1 , f

i+1/2,+
i+2

)
+R−,opt

(
f
i+1/2,−
i−1 , f

i+1/2,−
i , f

i+1/2,+
i+1 , f

i+1/2,−
i+2

)
.

Systems of conservation laws are dealt with the application of the former scheme
to local characteristic fields, obtained with a double linearization [5]. The extension to
multidimensional Cartesian grids is straightforwardly obtained by working dimension
by dimension.

4. Numerical experiments.

4.1. Accuracy tests with algebraic problems. We perform some tests in
order to verify the accuracy properties of the scheme in presence of critical points. In
order to perform these experiments, we will use the multiple-precision library MPFR
[12] through its C++ wrapper [8], using a precision of 3322 bits (≈ 1000 digits) and

taking in all the cases ε = 10−10
6

.
Let us consider the family of functions fk : R → R, k ∈ {0, 1}, given by fk(x) =

xk+1ex. Then fk has a smooth extremum at x = 0 of order k. In this case the error is
given by Ek,n = |Pn(0)−fk(0)|, with Pn the corresponding reconstruction at x1/2 = 0,
with the grid xi = (i−1/2)h, i ∈ {−1, . . . , 1+s} (s = 0 for the traditional JS-WENO
and YC-WENO schemes and s = 1 for the proposed optimal WENO schemes, in
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θ k
JSWENO3 YCWENO3 OWENO3
Point Cell Point Cell Point Cell

fk
— 0 3.00 3.00 2.98 2.98 3.00 3.00
— 1 2.00 2.00 2.00 2.00 3.01 3.01

gk

0 0 1.97 1.93 1.98 1.98 2.00 2.00
0 1 1.99 1.99 1.99 1.99 1.96 1.95
1 0 2.00 2.00 2.00 2.00 1.99 2.00
1 1 2.00 2.00 2.00 2.00 2.00 2.00

Table 1
Numerical order for third-order schemes, functions with smooth extrema.

which an additional node is considered), with h = 1/n for n ∈ N, when pointwise
values are taken, namely, fk,i = fk(xi) and reconstructions from pointwise values to
pointwise values are performed. On the other hand, we also present in the tables the
same setup when cell average values are taken instead:

fk,i =

∫ xi+h/2

xi−h/2
f(x) dx,

by performing reconstructions from cell average values to pointwise values. In all the
cases, the tables show the corresponding average orders, Ok = 1

80

∑80
j=1 ok,j , where

ok,j = log2(Ek,nj−1
/Ek,nj

)), with nj = 5 · 2j , j ∈ {0, . . . , 80}.
We also consider alternatively the family of functions gk : R → R, k ∈ {0, 1}

given by

gk(x) =

{
x2kex for x ≤ 0,

ex+1 for x > 0.

Then gk has a discontinuity at x = 0 with a left smooth extremum of order k for
k ∈ {0, 1}. We test the accuracy of the methods with the same parameters as above,
where, in order to emphasize the behaviour of our optimal scheme at discontinuities,
in this case we change the location of the discontinuity by considering a grid of the
form xi = (i− 1

2 + θ)h, i ∈ {−1, . . . , 1 + s}, for θ ∈ {0, 1}. Since x1/2 = θh, the error
in this case is thus given by |P (θh)− g(θh)|.

The results involving the different combinations of the proposed values for k in the
case of fk and for θ and k in the case of gk are shown in Table 1 for the traditional JS-
WENO3 and YC-WENO3 schemes as well as the optimal WENO approach presented
herein.

We discuss row by row the results obtained in Table 1. The first two rows con-
taining data stand for the function fk, which is a smooth function with a critical point
of order k. Therefore, the optimal order is 3. We can see that when the critical point
has order zero, namely, k = 0, all the schemes attain the optimal accuracy. However,
differences arise when k = 1. In this case, the first order critical point affects the
traditional WENO schemes decreasing its accuracy in one unit, whereas the optimal
WENO approach keeps the optimal third order accuracy.

As for the function gk, we can conclude that regardless of the position of the
discontinuity with respect to the stencil S and the order of the critical point, all the
schemes, both the traditional ones and the optimal ones, attain the suboptimal second-
order accuracy, avoiding the error of magnitude Ō(1) associated to the substencil
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JSWENO3 YCWENO3 OWENO3
‖ · ‖1 ‖ · ‖∞ ‖ · ‖1 ‖ · ‖∞ ‖ · ‖1 ‖ · ‖∞

n Err. O Err. O Err. O Err. O Err. O Err. O
40 8.52e-03 — 2.56e-02 — 6.67e-03 — 2.11e-02 — 1.87e-04 — 3.08e-04 —
80 2.10e-03 2.02 1.00e-02 1.36 1.46e-03 2.19 7.90e-03 1.42 2.31e-05 3.02 3.66e-05 3.07
160 4.86e-04 2.11 3.81e-03 1.39 3.19e-04 2.20 2.87e-03 1.46 2.86e-06 3.01 4.50e-06 3.02
320 1.10e-04 2.15 1.43e-03 1.42 6.45e-05 2.31 1.02e-03 1.50 3.56e-07 3.01 5.60e-07 3.01
640 2.45e-05 2.16 5.28e-04 1.43 1.32e-05 2.29 3.54e-04 1.52 4.44e-08 3.00 6.98e-08 3.00
1280 5.42e-06 2.18 1.94e-04 1.45 2.61e-06 2.34 1.21e-04 1.55 5.55e-09 3.00 8.72e-09 3.00
2560 1.19e-06 2.19 7.06e-05 1.46 5.05e-07 2.37 4.10e-05 1.56 6.93e-10 3.00 1.09e-09 3.00
5120 2.57e-07 2.21 2.56e-05 1.46 9.69e-08 2.38 1.37e-05 1.58 8.67e-11 3.00 1.36e-10 3.00
10240 5.54e-08 2.21 9.22e-06 1.47 1.84e-08 2.40 4.53e-06 1.60 1.08e-11 3.00 1.71e-11 2.99
20480 1.19e-08 2.22 3.31e-06 1.48 3.44e-09 2.42 1.49e-06 1.61 1.43e-12 2.92 2.38e-12 2.84

Table 2
Example 1: linear advection equation, third-order schemes.

containing the discontinuity. This is the best order of accuracy that can be obtained
near a discontinuity by shock-capturing methods based on three- or four-point stencils.

4.2. Conservation laws experiments. In this section we present some ex-
periments involving numerical solutions of hyperbolic conservation laws. In order to
discretize them in time, we will use the approximate Lax-Wendroff approach match-
ing the spatial order proposed in [24], unless we indicate the contrary, in whose case
the RK3-TVD schemes will be used. Also, since in this case we work with double
precision, the ε parameter is chosen as ε = 10−100. The flux splitting used is Donat-
Marquina [5] for the problems with weak solutions and LLF for the problems with
smooth solutions (unless all the characteristics move to the same direction, in whose
case we simply use the corresponding left/right-biased upwind reconstructions). In
all cases, and also unless we state the contrary, the CFL used for the 1D experiments
is 0.5 and for the 2D experiments 0.4.

Example 1: Linear advection equation. We consider the linear advection
equation with the following domain, boundary condition and initial condition:

ut + f(u)x = 0, Ω = (−1, 1), u(−1, t) = u(1, t),

f(u) = u, u0(x) = 0.25 + 0.5 sin(πx),

whose exact solution is u(x, t) = 0.25 + 0.5 sin(π(x − t)), with critical points located
at x = t+m+ 1/2, m ∈ Z.

We run several simulations with final time T = 1, resolutions of n points, that is,
with a grid spacing of h = 2/n, using the classical JS-WENO schemes, YC-WENO and
our OWENO3 scheme, both with the ‖ · ‖1 and ‖ · ‖∞ errors. Since the characteristics
move to the right, we use right-biased reconstructions. The results are shown in
Table 2. From the table it can be clearly appreciated that an accuracy loss is produced
in the case of the traditional schemes, whereas the optimal third-order accuracy is
solidly kept by the optimal third-order scheme.

Examples 2a and 2b: Burgers equation. We now consider Burgers equa-
tion with the following setup involving the domain, boundary conditions and initial
condition:

ut + f(u)x = 0, Ω = (−1, 1), u(−1, t) = u(1, t),

f(u) = u2/2, u0(x) = 0.25 + 0.5 sin(πx).
(4.1)
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JSWENO3 YCWENO3 OWENO3
‖ · ‖1 ‖ · ‖∞ ‖ · ‖1 ‖ · ‖∞ ‖ · ‖1 ‖ · ‖∞

n Err. O Err. O Err. O Err. O Err. O Err. O
40 1.77e-03 — 1.11e-02 — 1.62e-03 — 9.85e-03 — 1.70e-04 — 1.11e-03 —
80 4.77e-04 1.89 4.17e-03 1.41 4.21e-04 1.95 3.57e-03 1.46 2.24e-05 2.92 1.81e-04 2.62
160 1.18e-04 2.02 1.62e-03 1.36 9.80e-05 2.10 1.32e-03 1.43 2.75e-06 3.03 2.27e-05 3.00
320 2.91e-05 2.02 6.21e-04 1.38 2.24e-05 2.13 4.94e-04 1.42 3.37e-07 3.03 2.77e-06 3.03
640 7.01e-06 2.06 2.36e-04 1.40 5.05e-06 2.15 1.79e-04 1.46 4.16e-08 3.02 3.41e-07 3.02
1280 1.64e-06 2.10 8.84e-05 1.42 1.11e-06 2.18 6.36e-05 1.50 5.17e-09 3.01 4.23e-08 3.01
2560 3.83e-07 2.10 3.28e-05 1.43 2.47e-07 2.17 2.21e-05 1.52 6.44e-10 3.00 5.26e-09 3.01
5120 8.85e-08 2.11 1.20e-05 1.45 5.45e-08 2.18 8.84e-06 1.32 8.04e-11 3.00 6.56e-10 3.00
10240 2.04e-08 2.11 5.42e-06 1.15 1.21e-08 2.17 4.41e-06 1.00 1.00e-11 3.00 8.19e-11 3.00
20480 4.70e-09 2.12 2.73e-06 0.99 2.71e-09 2.16 2.21e-06 1.00 1.25e-12 3.00 1.02e-11 3.00

Table 3
Example 2a: Burgers equation, third-order schemes.
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Figure 1. Example 2b (Burgers equation, discontinuous solution at T = 12): third-order schemes.

In this case, f(u0(x)) has a first-order smooth extremum at x = −1/2 and x = 1/2.
In Example 2a, we consider the solution of (4.1) at T = 0.3, when it is still smooth,
whose results are shown in Table 3, while in Example 2b we set T = 12, when the
solution of (4.1) has become discontinuous, shown in Figure 1, in which are also
compared against the results obtained by the widely used JS-WENO5 schemes.

From the tables one can see that again, as in the linear advection case, the pres-
ence of first-order critical points makes the accuracy of the traditional schemes decay
to orders lower than three, while the third-order accuracy is still kept by the optimal
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Figure 2. Example 3a: Shu-Osher problem. T = 1.8. n = 200.

third-order scheme. As for the discontinuous case, we can see that the optimal third-
order scheme has a much higher resolution than the traditional third-order schemes,
especially near the discontinuity and, moreover, it is similar than the resolution pre-
sented by the fifth-order scheme.

Examples 3a and 3b: Shu-Osher problem. The 1D Euler equations for gas
dynamics are given by u = (ρ, ρv,E)T and f(u) = f1(u) = (ρv, p+ ρv2, v(E + p))T,
where ρ is the density, v is the velocity and E is the specific energy of the system.
The variable p stands for the pressure and is given by the equation of state p =
(γ − 1)(E − ρv2/2), where γ is the adiabatic constant that will be taken as γ = 1.4.
We now consider the interaction with a Mach 3 shock and a sine wave. The spatial
domain is now given by Ω := (−5, 5) with the initial condition

(ρ, v, p)(x, 0) =

{
(27/7, 4

√
35/9, 31/3) if x ≤ −4,

(1 + sin(5x)/5, 0, 1) if x > −4,

with left inflow and right outflow boundary conditions.
We run the simulation until T = 1.8 and compare the schemes against a reference

solution computed with a resolution of n = 16000 cells. Figures 2 and 3 are associated
to the third-order schemes and JS-WENO5 with resolutions of n = 200 and n = 400
points, respectively, showing the corresponding density fields.

As it can be seen, the third-order optimal schemes show again a much better
resolution than their traditional counterparts, especially observed in the resolution of
n = 400 cells. Moreover, they have a similar resolution than the JS-WENO5 scheme,
and at lower computational cost.
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Figure 3. Example 3a: Shu-Osher problem. T = 1.8. n = 400.

In order to verify the latter statement, we next present an efficiency comparison
involving the ratio error ‖ · ‖1 / CPU time, which can be seen in Figure 4.

We can see that in this case all the proposed optimal third-order scheme shows a
much better performance than its traditional counterparts. Moreover, it is also more
efficient than the JS-WENO5 scheme as the figure shows.

Examples 4a and 4b: Blast wave problem. Continuing with the 1D Euler
equations, let us now simulate the interaction of two blast waves [4] by using the
following initial data

u(x, 0) =

 uL 0 < x < 0.1,
uM 0.1 < x < 0.9,
uR 0.9 < x < 1,

where ρL = ρM = ρR = 1, vL = vM = vR = 0, pL = 103, pM = 10−2, pR = 102. We set
reflecting boundary conditions at x = 0 and x = 1, simulating a solid wall at both
sides. This problem involves multiple reflections of shocks and rarefactions off the
walls and many interactions of waves inside the domain.

The results are shown in Figure 5 for the density field at a resolution of n = 800
cells, in which all the third-order schemes involved in this paper are used, being in
turn compared with the JS-WENO5 scheme. The resolution used for the reference
solution is n = 100000 cells.

As the results show, the third-order optimal scheme has at some regions a higher
resolution than even the fifth-order scheme.

Finally, Figure 6 shows an efficiency comparison between all the involved schemes,
where, for the sake of performing a fair comparison, all the schemes have been
equipped with a RK3-TVD scheme. In this case, the optimal third-order scheme
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Figure 4. Example 3b: Ratio Error/CPU comparison for Shu-Osher problem.

is still more efficient than the fifth-order scheme.

Examples 5a and 5b: Double Mach reflection. The equations that will be
considered in this section are the two-dimensional Euler equations for inviscid gas
dynamics given by

ut +

d∑
i=1

f i(u)xi
= 0, (x, t) ∈ Ω× R+ ⊆ Rd × R+, x = (x1, . . . , xd),(4.2)

by taking in (4.2) m = 4 and d = 2, where setting x = x1 and y = x2, we have

u =


ρ
ρvx

ρvy

E

 , f1(u) =


ρvx

p+ ρ(vx)2

ρvxvy

vx(E + p)

 , f2(u) =


ρvy

ρvxvy

p+ ρ(vy)2

vy(E + p)

 .

Here ρ is the density, (vx, vy) is the velocity, E is the specific energy, and p is the
pressure that is given by the equation of state p = (γ − 1)(E − ρ((vx)2 + (vy)2)/2),
where the adiabatic constant is again chosen as γ = 1.4.

This experiment uses these equations to model a vertical right-going Mach 10
shock colliding with an equilateral triangle. By symmetry, this is equivalent to a
collision with a ramp with a slope of 30◦ with respect to the horizontal line.

For the sake of simplicity, in [4] it is considered the equivalent problem in a
rectangle, consisting in a rotated shock, whose vertical angle is 30◦. The domain is
the rectangle Ω = [0, 4]× [0, 1], and the initial conditions are

(ρ, vx, vy, E)(x, y, 0) =

{
c1 = (ρ1, v

x
1 , v

y
1 , E1) if y ≤ 1

4 + tan(π6 )x,

c2 = (ρ2, v
x
2 , v

y
2 , E2) if 1

4 + tan(π6 )x,

c1 =
(
8, 8.25 cos(π/6),−8.25 sin(π/6), 563.5

)
, c2 = (1.4, 0, 0, 2.5).
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Figure 5. Example 4a: Blast wave problem. T = 0.038.

We impose inflow boundary conditions, with value c1, at the left side, {0} × [0, 1],
outflow boundary conditions both at [0, 14 ]×{0} and {4}× [0, 1], reflecting boundary
conditions at ]14 , 4]×{0} and inflow boundary conditions at the upper side, [0, 4]×{1},
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Figure 6. Example 4b: Ratio Error/CPU comparison for blast wave problem.

which mimics the shock at its actual traveling speed:

(ρ, vx, vy, E)(x, 1, t) =

c1 if x ≤ 1
4 + 1+20t√

3
,

c2 if x > 1
4 + 1+20t√

3
.

We run different simulations until T = 0.2 at a resolution of 2560×640 points, shown
in Figure 7, with CFL = 0.4 and involving the classical JS-WENO5 scheme and the
third-order schemes considered along this paper.

In this case, we can see that in both resolutions, both the YC-WENO3 scheme
and the OWENO3 scheme have a higher resolution than the JS-WENO3 scheme, in
which the discontinuities and the non-smooth features such as turbulence and vorticity
are more smeared. On the other hand, the resolution shown by the former schemes
is still remarkably lower than the JS-WENO5 scheme. This is probably due to the
nature of this problem, which has no solution for the inviscid 2D Euler equations,
since more and more turbulences and vorticities appear at smaller levels as resolution
is increased.

Indeed, it is well known that the resolution obtained in this particular problem is
strongly related with the number of points used for the reconstructions, so that, unlike
the other problems presented herein, in this case increasing arbitrarily the order of
the scheme seems to improve considerably its efficiency.

Finally, in order to stress out the performance of our schemes, with the different
time discretizations, at a same resolution, we show in Table 4 the computational time
taken by all these combinations.

One can see that, for instance, the typically used JS-WENO5 schemes combined
with a RK3-TVD time discretization is almost three times slower than any of the
third-order optimal WENO approaches with an approximate Lax-Wendroff time dis-
cretization.

Examples 6a and 6b: 2D Riemann problem. Finally, we solve numerically
a Riemann problem for the 2D Euler equations on the domain (0, 1)×(0, 1). Riemann
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Figure 7. Example 5a: Double Mach reflection, 2560× 640. T = 0.2.

RK3 LW ALW
JS-WENO5 85.76 65.63 64.53
JS-WENO3 56.56 33.72 30.46
YC-WENO3 57.04 34.42 30.82
OWENO3 58.83 35.23 31.48

Table 4
Example 5b: computational time (seconds) with a resolution of 256× 64 grid points. T = 0.2,

CFL = 0.25.

problems for 2D Euler equations were first studied in [16]. The initial data is taken
from [10, Sect. 3, Config. 3]:

u(x, y, 0) = (ρ(x, y, 0), ρ(x, y, 0)vx(x, y, 0), ρ(x, y, 0)vy(x, y, 0), E(x, y, 0))

and 
ρ(x, y, 0)
vx(x, y, 0)
vy(x, y, 0)
p(x, y, 0)


T

=


(1.5, 0, 0, 1.5) for x > 0.5, y > 0.5,

(0.5323, 1.206, 0, 0.3) for x ≤ 0.5, y > 0.5,

(0.138, 1.206, 1.206, 0.029) for x ≤ 0.5, y ≤ 0.5,

(0.5323, 0, 1.206, 0.3) for x > 0.5, y ≤ 0.5,

with the same equation of state as in the previous test.
We impose outflow boundary conditions everywhere and run this test up to time

T = 0.3. The results can be observed in Figure 8 for a resolution of 2560 × 2560
points.
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Figure 8. Example 6a: 2D Riemann problem, 2560× 2560. T = 0.3.

From the results, it can be seen that the order from lower to higher resolution
is again the following one: JS-WENO3, YC-WENO3, OWENO3 and JS-WENO5,
being the two latter ones close to reach other. This is very significant if one takes into
account that OWENO3 is faster than JS-WENO5.

With the purpose of analyzing more accurately the efficiency associated to each
scheme, we now use the solutions computed with the grid of 2560 × 2560 points as
reference solutions to perform efficiency tests by comparing error versus CPU time
involving numerical solutions with grid sizes 16 · 2n × 16 · 2n, n ∈ {0, 1, 2, 3, 4}, for
the involved schemes. The results are shown in Figure 9 and again indicate a higher
performance for the OWENO3 scheme with respect to their third-order traditional
counterparts.

5. Conclusions. In this paper a third-order scheme based on a weighted essen-
tially non-oscillatory approach with unconditionally third-order optimal accuracy on
smooth data has been presented. The accuracy properties have been proved theoreti-
cally and confirmed numerically along experiments involving static algebraic problems
and hyperbolic conservation laws. This scheme has been proven in most of the ex-
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Figure 9. Example 6b: 2D Riemann problem, efficiency plot.

periments shown to be more efficient than even the classical fifth-order JS-WENO
scheme widely used in the literature. Only in some problems involving very small-
scale features, like the double Mach reflection test, the fifth-order method seems worth
applying.
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