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Ingenieŕıa Matemática (CI2MA)

An HDG method for Maxwell equations in heterogeneous media

Liliana Camargo, Bibiana López-Rodŕıguez,
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Liliana Camargoa, Bibiana López-Rodrı́gueza, Mauricio Osorioa,∗, Manuel Solanob,c
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Abstract

We analyze a hybridizable discontinuous Galerkin (HDG) method for the time harmonic Maxwell’s equa-
tions arising from modeling photovoltaic solar cells. The problem is set in an inhomogeneous domain with
a polyhedral connected boundary and the divergence-free condition is imposed using a Lagrange multiplier.
We prove the HDG scheme is well-posed up to some frequencies and derive an stability estimate. Moreover,
we prove that the method is optimal, that is, the L2-norm of the error of the approximation in both, the
electric and magnetic fields, are of order hk+1, where h is the meshize and k the polynomial degree of the
local approximation spaces. Numerical examples are shown to validate the theory.

Keywords: hybridizable discontinuous Galerkin, time-harmonic Maxwell’s equations, heterogeneous
media, photovoltaic solar cells
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1. Introduction

Thin film photovoltaic solar cells are devices of thickness between few nanometers and tens micrometers
that collect sunlight, converting it to electrical energy. In particular, it is of interest the study of devices
comprising a periodically corrugated metallic backreflector because they are able to excite surface plasmonic
polariton waves [1] and, as a consequence, enhance the intensity of the electromagnetic field in the cell. In
this context, structures with periodic surface-relief gratings have been intensively studied during the last
decade: amorphous silicon thin film tandem solar cell [2], rugate filters [1], periodic multilayered isotropic
dielectric material on top of the metallic backreflector [3, 4], just to name a few.

The optimal design of these type of structures requires the maximization of quantities of interest such
as light absorption, solar-spectrum-integrated power-flux density and spectrally averaged electron–hole pair
density [4, 5], where the following Maxwell’s equations [6] in the frequency domain must be solved for a
wide range of geometrical and optical parameters:

∇×E = iω µ0 H in R3,

∇×H = J− iω ε0 ε E in R3, (1)
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maosorio@unal.edu.co (Mauricio Osorio), msolano@ing-mat.udec.cl (Manuel Solano)

Preprint submitted to Elsevier July 27, 2019



complemented with the effect of an incident field (sunlight). Here, E denotes the electric field, H the
magnetic field, J the current density, ω the frequency, µ0 the permeability of free space, ε0 the permittivity
of free space and ε the relative permittivity, which is a complex-valued function. Also, an e−iωt dependence
on time t > 0 is implicit. It is convenient to define the free-space wavenumber κ := ω

√
ε0µ0, the free-space

wavelength λ0 := 2π/κ and the intrinsic impedance of the free space η0 :=
√

µ0/ε0.
The most commonly used numerical methods to approximate the solution of (1) are the exact modal

method [7], the method of moments [8], the rigorous coupled-wave approach (RCWA) [9], the finite el-
ement method (FEM) [6], and the finite-difference time-domain (FDTD) method [10]. In the context of
Galerkin methods, by taking the advantage of the periodicity of the surface relief, the equations are solved
in a bounded domain Ω ⊂ R3 occupied by one period of the periodic structure illuminated by the incident
sunlight. On the vertical walls of Ω, quasi-periodic boundary conditions are imposed, whereas on top and
bottom boundaries, suitable outgoing radiation conditions are considered [11, 12]. These radiation condi-
tions can be handled by approximations of Dirichlet-to-Neumann operators that couple the solution in the
free space with the solution in the bounded domain. An alternative to the latter approach, is to consider a
perfectly matched layer technique in order to attenuate both outgoing and evanescent waves [13, 14].

The aim of this work is to contribute to the development of hybridizable discontinuous Galerkin (HDG)
methods in simulations of photovoltaic devices. In particular, we restrict ourselves on analyzing an HDG
scheme for (1) in a bounded domain with prescribed boundary conditions since, to the best of our knowledge,
the theory is not fully developed when the electric permittiviy is complex-valued. Even though this is
a simplification of the original problem, it involves several important issues that must be addressed first.
In other words, our contribution constitutes a stepping stone towards developing an HDG method for the
original problem arisen from photovoltaic cells modeling.

In recent years, most of the HDG methods for Maxwell’s equations have been proposed and
analysed assuming the electric permittivity ε is a positive real number, which is in general not true in light
harvesting devices: Maxwell’s operator [15, 16, 17], eddy current problems [18], Maxwell’s equations in
frequency-domain [19, 20], time-domain [21]. On the other hand, to the best of our knowledge, few contri-
butions of HDG methods considering complex-valued permittivity can be found in the literature, for instance
[22] and [23]. Motivated by the application to photovoltaic devices, the aim of our work is to introduce and
analyze an HDG method considering an heterogeneous medium occupying the bounded domain Ω. In par-
ticular, Ω is divided in two disjoint domains: Ωd and Ωm, where Ωd is occupied by an isotropic dielectric
material and Ωm is a metallic region. On the first region we assume a real and positive relative electric per-
mittivity, while on the metallic one, the relative electric permittivity is assumed to be complex-valued with
negative real part. This introduces additional difficulties that we address out using available techniques for
the Helmholtz equation [24] and the Maxwell’s equations with high wave number [19].

After defining a convenient tetrahedrization for the non homogeneous domain, we propose an HDG
formulation for the Maxwell equation and we carry out a full error analysis. We highlight that in order to
impose a divergence free condition to ε E, a Lagrange multiplier p needs to be introduced as in [17], [18]
and [25]. Then, by using a duality argument we deduce error estimates for E and ∇×E.

The remaining of this paper is organized as follows. In Section 2 we define the truncated domain and
introduce the boundary value problem. In Section 3, we set the approximation spaces, define the HDG
formulation and prove it is well posed. Then, we employ a duality argument with the aim of getting a
stability estimate. In Section 4, the error estimates for the HDG scheme are derived, and finally, in Section
5 we show some numerical results.
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2. Problem statement

Let us begin by setting a preliminary notation that will be used through the manuscript. We use standard
simplified terminology for Sobolev spaces and norms, where vector-valued functions are bold-faced. In
particular, if O is a domain in R3, Σ is an open or closed Lipschitz curve, and s ∈ R, we set Hs(O) :=
[Hs(O)]3 and Hs(Σ) := [Hs(Σ)]3. However, when s = 0 we write L2(O) and L2(Σ) instead of H0(O) and
H0(Σ), respectively. The corresponding norms are denoted by ‖ · ‖s,O for Hs(O) and Hs(O); and ‖ · ‖s,Σ for
Hs(Σ) and Hs(Σ), when s = 0 we will ignore the first subindex. For s > 0, we write | · |s,O for the Hs- and
Hs-seminorms. In addition, we introduce the following spaces

H(divε ;O) := {w ∈ L2(O) : ∇ · (εw) ∈ L2(O)}, H(div0
ε ;O) := {w ∈ L2(O) : ∇ · (εw) = 0},

H(curl;O) := {w ∈ L2(O) : ∇×w ∈ L2(O)}, H0(curl;O) := {w ∈ H(curl;O) : w×n|∂O = 0},

where n denotes the outward unit normal vector to ∂O . For a vector-valued function w defined on a face F ,
we denote by wt := (n×w)×n and wn := (w ·n)n its tangential and normal components, respectively.

Finally, to avoid proliferation of unimportant constants, when there is no confusion will write A . B,
whenever there exists C > 0, independent of the meshsize, such that A≤CB.

As we mentioned in the introduction, we consider one period of a photovoltaic solar cell, denoted by
Ω := (0,L)× (0,L)× (0,M), whose boundary Γ := ∂Ω is polyhedral and connected; and L, M are positive
numbers. Ω is assumed to be simply connected and is divided into two parts by a piecewise plane interface
as Fig. 1 shows: a metallic region Ωm with relative electric permittivity εm ∈ C satisfying Re(εm) < 0 and
Im(εm) > 0, and a dielectric region Ωd : with relative permittivity εd ∈ R+. Specific values of the relative
permittivities of these materials can be found in [3] .

Figure 1: Example of domain having a flat interface between the metallic region Ωm of thickness Lm and a dielectric region Ωd .

Given ĝ∈L2(Γ) (or more precisely in γt
(
H(curl;Ω)∩H(div0

ε ;Ω)
)
, as will be explained in the appendix)

and J ∈ H(div0;Ω), we look for E and H such that

∇×E = iω µ0 H in Ω,

∇×H = J− iω ε0 ε E in Ω, (2)
E×n = ĝ on Γ,

where n denotes the outward unit normal of Γ. We recall that ε is the relative permittivity,
ε0 = 8.854× 10−12 Fm−1 and µ0 = 4π × 10−7 Hm−1. It is convenient to write (2) in terms of relative
quantities. To that end we introduce the change of variable u := ε

1/2
0 E and v := iκµ

1/2
0 H. Moreover, the
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condition ∇ · (εE) = 0 in Ω, deduced from the second equation, will be imposed by a Lagrange multiplier
p. Then, from (2), the system to solve is the following: Find u, v and p such that

v−∇×u = 0 in Ω,

∇×v−κ
2
εu+ ε∇p = f in Ω,

∇ · εu = 0 in Ω, (3)
u×n = g on Γ,

p = 0 on Γ,

where f := iκµ
1/2
0 J, g = ε

1/2
0 ĝ and ε is the complex conjugate of ε . By Lemma Appendix A.1, if κ2εd is

not an eigenvalue of the operator ∇×∇×, then (3) has a unique solution.

3. The HDG method

We consider a shape-regular simplicial tetrahedrization Th of Ω, such that each
◦
K ∈ Th is completely

contained in Ωm or Ωd . Then, T m
h and T d

h will denote the sets of tetrahedra lying in Ωm and Ωd , resp.
Furthermore, we define ∂Th := {∂K : K ∈Th} and Eh := EI ∪EΓ, where EI and EΓ denote the interior and
boundary faces induced by Th, respectively. Given a region O ⊂ R3, we denote by (·, ·)O and 〈·, ·〉∂O the
L2(O) and L2(∂O) inner products, respectively. We set also (·, ·)Th

= ∑
K∈Th

(·, ·)K and 〈·, ·〉∂Th
= ∑

K∈Th

〈·, ·〉∂K .

In addition, Pk(A) denotes the space of complex-valued polynomials of degree less or equal to k≥ 0 defined
over a region A and we set Pk(A) := [Pk(A)]3.

Considering the above tetrahedrization of Ω, we define the following approximation spaces

Vh :=
{

w ∈ L2(Ω) : w |K ∈ Pk(K), ∀ K ∈Th
}
,

Qh :=
{

q ∈ L2(Ω) : q |K ∈ Pk(K), ∀ K ∈Th
}
,

Mh :=
{

µ ∈ L2(Eh) : µ |F ∈ Pk(F), ∀ F ∈ Eh
}
,

Mt
h :=

{
β ∈ L2(Eh) : β |F ∈ Pk(F),(β ·n) |F = 0, ∀ F ∈ Eh

}
.

The HDG scheme associated to (3) seeks the approximation (vh,uh, ph, ût
h, p̂h) ∈ Vh×Vh×Qh×Mt

h×
Mh of the exact solution (v,u, p,ut |Eh , p|Eh), satisfying

(vh,w)Th − (uh,∇×w)Th
−〈ût

h,w×n〉∂Th
= 0, (4a)

(vh,∇× z)Th
+ 〈v̂t

h,z×n〉∂Th
−κ

2 (εuh,z)Th
− (ph,∇ · (εz))Th

+ 〈p̂h,εz ·n〉∂Th
= F(z) , (4b)

−(ε uh,∇t)Th
+ 〈ε̂ un

h ·n, t〉∂Th
= 0, (4c)

〈n× v̂t
h,η〉∂Th rΓ = 0, (4d)

〈ε̂ un
h ·n,µ〉∂ThrΓ = 0, (4e)

〈ût
h,η〉Γ = 〈g,η×n〉Γ, (4f)
〈p̂h,µ〉Γ = 0, (4g)
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for all (w,z, t,η ,µ) ∈ Vh×Vh×Qh×Mt
h×Mh, where F : Pk(Th)→ C is such that F(z) = (f,z)Th

and the
numerical fluxes defined on ∂Th are given by

n× v̂t
h := n×vt

h + τ(ut
h− ût

h), (4h)

ε̂un
h ·n := εun

h ·n+ τn(ph− p̂h), (4i)

being τ and τn positive stabilization parameters.

Remark 3.1. Using similar arguments as in Section 3 of [18] and Section 3 of [20], it can be proved that
the HDG formulation (4) is locally conservative and consistent.

3.1. Well-posedness
Let us start by establishing a Gårding-type identity.

Lemma 3.1. If (vh,uh, ph, ût
h, p̂h) ∈ Vh×Vh×Qh×Mt

h×Mh satisfies (4), then

‖vh‖2
Th

+‖τ1/2 (ut
h− ût

h
)
‖2

∂Th
+‖τ1/2

n (ph− p̂h)‖2
∂Th

+κ
2 (|Re(εm)|+ i Im(εm))‖uh‖2

T m
h
= κ

2
εd‖uh‖2

T d
h
+F(uh)−〈g, v̂t

h〉Γ. (5)

Proof. Let w := vh, z := uh and t := ph in (4). After applying the Green identity in H(curl;Th) to (4a) and
the Green identity in H(div;Th) to (4c), we have

(vh,vh)Th − (∇×uh,vh)Th + 〈u
t
h− ût

h,vh×n〉∂Th
= 0,

(∇ · (ε uh), ph)Th −〈ε uh ·n, ph〉∂Th
+ 〈ε̂ un

h ·n, ph〉∂Th
= 0.

Then, adding the two above expressions with the conjugate of equation (4b), we have

(vh,vh)Th −〈u
t
h− ût

h,n×vt
h〉∂Th

+ 〈ut
h,n× v̂t

h〉∂Th
−κ

2(uh,εuh)Th

+〈ε̂un
h ·n, ph〉∂Th

−〈εun
h ·n, ph− p̂h〉∂Th

= F(uh).

Furthermore, if here we add and subtract 〈ût
h,n× v̂t

h〉∂Th
and 〈ε̂un

h ·n, p̂h〉∂Th
, it follows that

‖vh‖2
Th

+ 〈ut
h− ût

h,n× (v̂t
h−vt

h)〉∂Th
+ 〈ût

h,n× v̂t
h〉∂Th

−κ
2(uh,εuh)Th

+〈(ε̂un
h− εun

h) ·n, ph− p̂h〉∂Th
+ 〈ε̂ un

h ·n, p̂h〉∂Th
= F(uh),

from where, after using (4e), (4g), (4h) and (4i), we have

‖vh‖2
Th

+ 〈ut
h− ût

h,τ(u
t
h− ût

h)〉∂Th
+ 〈ût

h,n× v̂t
h〉∂Th

−κ
2(uh,εuh)Th

+〈τn(ph− p̂h), ph− p̂h〉∂Th
= F(uh). (6)

Now, from (4d) and (4f), we have 〈ût
h,n× v̂t

h〉∂Th
= 〈ût

h,n× v̂t
h〉Γ = 〈g,n× (v̂t

h× n)〉Γ = 〈g, v̂t
h〉Γ. Thus,

substituting the previous expression in (6), we obtain

‖vh‖2
Th

+‖τ1/2(ut
h− ût

h)‖2
∂Th

+ 〈g, v̂t
h〉Γ−κ

2
εm‖uh‖2

T m
h
−κ

2
εd‖uh‖2

T d
h
+‖τ1/2

n (ph− p̂h)‖2
∂Th

= F(uh)

and (5) follows.
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We will show that the HDG scheme (4) is well-posed assuming that κ2εd is not an eigenvalue of the
following problem:
Find λ ∈ R and (ϕh,ψh,σh, ψ̂

t
h, σ̂h) ∈ Vh×Vh×Qh×Mt

h×Mh such that

(ϕh,s)Th − (ψh,∇× s)Th −〈ψ̂
t
h,γt(s)〉∂Th

= 0,

(ϕh,∇×q)Th + 〈ϕ̂
t
h,γt(q)〉∂Th

−κ
2 (εmψh,q)T m

h
− (σh,∇ · (εq))Th + 〈σ̂h,εq ·n〉∂Th

= λ (ψh,q)T d
h
,

−(ε ψh,∇r)Th + 〈ε̂ ψn
h ·n,r〉∂Th

= 0,

〈n× ϕ̂
t
h,η〉∂ThrΓ = 0, (7)

〈ε̂ ψn
h ·n,ζ 〉∂ThrΓ = 0,

〈ψ̂ t
h,η〉Γ = 0,
〈σ̂h,ζ 〉Γ = 0,

for all (s,q,r,η ,ζ ) ∈ Vh×Vh×Qh×Mt
h×Mh, where

n× ϕ̂
t
h = n×ϕ

t
h + τ(ψ t

h− ψ̂
t
h),

ε̂ψn
h ·n = εψ

n
h ·n+ τn(σh− σ̂h).

Theorem 3.1. If κ2εd is not an eigenvalue of (7), then (4) is well-posed.

Proof. Here we use similar ideas to the ones used in proposition 2 of [20]. First notice that if we consider
the homogeneous problem associate to (4), then the Gårding-type identity given by (5) has the form

‖vh‖2
Th

+‖τ1/2 (ut
h− ût

h
)
‖2

∂Th
+κ

2 (|Re(εm)|+ i Im(εm))‖uh‖2
T m

h
+‖τ1/2

n (ph− p̂h)‖2
∂Th

= κ
2
εd‖uh‖2

T d
h
.

(8)

Now, after applying to (7) similar arguments to the ones used to proof Lemma 3.1, we get

‖ϕh‖2
Th

+‖τ1/2 (
ψ

t
h− ψ̂

t
h
)
‖2

∂Th
+κ

2(|Re(εm)|+ i Im(εm))‖ψh‖2
T m

h
+‖τ1/2

n (σh− σ̂h)‖2
∂Th

= λ‖ψh‖2
T d

h
.

(9)

Then, we conclude from (8) and (9) that uh = 0 in T d
h since λ is not an eigenvalue of (7). Then, the real

part of (8) is ‖vh‖2
Th

+‖τ1/2
(
ut

h− ût
h

)
‖2

∂Th
+κ2 |Re(εm)|‖uh‖2

T m
h
+‖τ1/2

n (ph− p̂h)‖2
∂Th

= 0, from which,
vh = 0 in Th, ut

h = ût
h on ∂Th, uh = 0 in T m

h and ph = p̂h on ∂Th. Therefore, uh = 0 in Th. Finally,
by (4b) and (4h), we have 0 =−(ph,∇ · (εz))Th

+ 〈p̂h,ε z ·n〉∂Th
= (∇ph,εz)Th

, ∀z ∈ Vh, which together
with (4g) and the fact that p̂h = ph, implies ph = 0 on ∂Ω.

3.2. Stability estimate

We first state the main result of this section and postpone its proof to the end.

Theorem 3.2. Suppose the regularity estimate (11) (stated below) holds and τ , τn are of order one. Then,
there exists h0 > 0, such that for all h < h0, it holds

‖vh‖2
Th

+‖τ1/2 (ut
h− ût

h
)
‖2

∂Th
+‖τ1/2

n (ph− p̂h)‖2
∂Th

+κ
2‖εuh‖2

Th
. ‖F‖2

L (L2(Th),C)
+h−1‖g‖2

Γ.
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Remark 3.2. Theorem 3.2 implies (4) is well-posed without using problem (7), relaxing this assumption in
Theorem 3.1. In fact, for h small enough, it is enough to ask κ2εd not to be an eigenvalue of the operator
∇×∇×. On the other hand, the price to pay is the additional regularity requirement (11).

From (5), we observe that we need to bound κ2εd‖uh‖2
T d

h
in terms of the data, in order to obtain a

stability estimate. To that end, we employ a duality argument and consider the following auxiliary problem:
Given Θ ∈ L2(Ω), we look for φ ,ψ,ρ such that

φ −∇×ψ = 0 in Ω, (10a)

∇×φ −κ
2
εψ + ε ∇ρ = Θ in Ω, (10b)

∇ · (εψ) = 0 in Ω, (10c)
ψ×n = 0 on Γ, (10d)

ρ = 0 on Γ. (10e)

We assume the following regularity estimate holds true for all s ∈ (0,1)

‖ρ‖s+1,Ω +‖φ‖s,Ωd +‖φ‖s,Ωm +‖εdψ‖s+1,Ωd +‖εmψ‖s+1,Ωm . ‖Θ‖Ω. (11)

In Appendix B we will comment on situations where this assumption is satisfied.
We now introduce the HDG projection operator: Given (w,q) ∈ H1(Th)×H1(Th), (ΠVw,ΠQq) ∈

Vh×Qh is the only solution of

(ΠVw,z)K = (w,z)K , ∀z ∈ Pk−1(K), (12a)
(ΠQq, t)K = (q, t)K , ∀ t ∈ Pk−1(K), (12b)

〈εΠVw ·n+ τnΠQq,η〉F = 〈εw ·n+ τnq,η〉F , ∀η ∈ Pk(F), ∀F ∈ ∂K, (12c)

on each K ∈Th. Moreover if lw, lq ∈ [0,k], τ∗n = minτn, w ∈ Hlw+1 (Th) and q ∈ Hlq+1 (Th), then

‖ΠVw−w‖Th . hlw+1 |z|lz+1,Th
+

hlq+1

τ∗n
|q|lq+1,Th

, (12d)

‖ΠQq−q‖Th . hlq+1 |q|lq+1,Th
. (12e)

We refer to [26] for further details. In addition, we denote by PV the standard L2- orthogonal projector from
L2(Th) into Vh. It is well-known (c.f. [27]) that if lw ∈ [0,k] and w ∈ Hlw+1 (Th), then

‖PVw−w‖Th . hlw+1 |w|lw+1,Th
. (13)

Likewise, we define PMt
h

: L2(Eh)→Mt
h and PMh : L2 (Eh)→Mh as standard L2− orthogonal projectors on

Mt
h and Mh, respectively.

Let us also define X0 :=H0(curl;Ω)∩H(div0
ε ;Ω), endowed with the norm ‖w‖X0 :=

(
‖∇×w‖2

Ω
+‖w‖2

Ω

)1/2.
In the following lemma we prove an identity that allow us to bound ‖εuh‖Th .

Lemma 3.2. Given Θ∈L2(Ω), let (φ ,ψ,ρ)∈H(curl;Ω)×X0×H1
0 (Ω) and

(
vh,uh, ph, ût

h, p̂
)
∈Vh×Vh×

Qh×Mt
h×Mh be the solutions of (10) and (4), respectively. It holds

(uh,Θ)Th
= F(ΠVψ)+ 〈g,PMt

h

(
φ

t)〉Γ + 〈τ1/2 (ut
h− ût

h
)
,τ1/2 (ΠVψ−ψ)〉∂Th

+ 〈ph− p̂h,ε (ΠVψ−ψ) ·n〉∂Th
+ 〈τn (ph− p̂h) ,ΠQρ−ρ〉∂Th

+ 〈τ1/2 (ut
h− ût

h
)
,τ−1/2 (PVφ −φ)×n〉∂Th

+κ
2 (εuh,ΠVψ−ψ)Th

. (14)
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Proof. In order to prove this lemma we follow the guidelines given in the proof of Lemma 3.3 of [24]. To
begin, let us test (10b) with uh

(uh,Θ)Th
= (uh,∇×φ)Th

−
(
uh,κ

2
εψ
)
Th

+(uh,ε ∇ρ)Th
. (15)

Now, using the Green identities, (12b) and the orthogonality property of PV, we have

(uh,∇×φ)Th
= (uh,∇×PVφ)Th

+ 〈ut
h,(PVφ −φ)×n〉∂Th

,

(uh,ε ∇ρ)Th
= (εuh,∇ΠQρ)Th

+ 〈εun
h ·n,ρ−ΠQρ〉∂Th

.

Then, substituting these expressions in (15) and using (4a) with w = PVφ in Th, we obtain

(uh,Θ)Th
= (vh,PVφ)Th

−〈ût
h,PVφ ×n〉∂Th

+ 〈ut
h,(PVφ −φ)×n〉∂Th

−κ
2 (εuh,ψ)Th

+(εuh,∇ΠQρ)Th
+ 〈εun

h ·n,ρ−ΠQρ〉∂Th
.

By (4c) with t = ΠQρ , together with the fact that (vh,PVφ)Th
= (vh,φ)Th

= (vh,∇×ψ)Th
by (10a), we have

(uh,Θ)Th
=(vh,∇×ψ)Th

−〈ût
h,PVφ ×n〉∂Th

+ 〈ut
h,(PVφ −φ)×n〉∂Th

−κ
2 (εuh,ψ)Th

+ 〈ε̂un
h ·n,ΠQρ〉∂Th

+ 〈εun
h ·n,ρ−ΠQρ〉∂Th

.

Adding and subtracting 〈ût
h,φ × n〉∂Th

= 〈n× ût
h,φ

t〉∂Th
and 〈ε̂un

h · n,ρ〉∂Th
, we obtain after rearranging

terms that

(uh,Θ)Th
=(vh,∇×ψ)Th

+ 〈τ1/2 (ut
h− ût

h
)
,τ−1/2 (PVφ −φ)×n〉∂Th

−〈n× ût
h,φ

t〉∂Th

−κ
2 (εuh,ψ)Th

+ 〈(ε̂un
h− εun

h) ·n,ΠQρ−ρ〉∂Th
+ 〈ε̂un

h ·n,ρ〉∂Th
.

By the ortogonality of PMh , (4e) and (10e), we obtain 〈ε̂un
h ·n,ρ〉∂Th

= 〈ε̂un
h ·n,PMh(ρ)〉∂Th

= 0 and then

(uh,Θ)Th
=(vh,∇×ψ)Th

+ 〈τ1/2 (ut
h− ût

h
)
,τ−1/2 (PVφ −φ)×n〉∂Th

−〈n× ût
h,φ

t〉∂Th

−κ
2 (εuh,ψ)Th

+ 〈τn (ph− p̂h) ,ΠQρ−ρ〉∂Th
,

where we have also used (4i). Moreover, since 〈n× ût
h,φ

t〉∂Th
= 〈n× ût

h,φ
t〉Γ = 〈ût

h,PMt
h
(φ t)×n〉Γ, by (4f)

with ρ = PMt
h
(φ t)×n,

(uh,Θ)Th
=(vh,∇×ψ)Th

+ 〈τ1/2 (ut
h− ût

h
)
,τ−1/2 (PVφ −φ)×n〉∂Th

+ 〈g,PMt
h

(
φ

t)〉Γ
−κ

2 (εuh,ψ)Th
+ 〈τn (ph− p̂h) ,ΠQρ−ρ〉∂Th

. (16)

Now, let us rewrite the term (vh,∇×ψ)Th
. By the Green identities, (12a) with z = ∇× vh and (4b) with

z = ΠVψ , we have

(vh,∇×ψ)Th
= 〈vt

h,(ΠVψ−ψ)×n〉∂Th
−〈v̂t

h,ΠVψ×n〉∂Th
+κ

2 (εuh,ΠVψ)Th
+(ph,∇ · (ε ΠVψ))Th

−〈p̂h,ε ΠVψ ·n〉∂Th
+F(ΠVψ) .

Hence, adding and subtracting 〈v̂t
h,ψ×n〉∂Th

and integrating by parts the fourth term, it holds

(vh,∇×ψ)Th
= 〈vt

h− v̂t
h,(ΠVψ−ψ)×n〉∂Th

−〈v̂t
h,ψ×n〉∂Th

+κ
2 (εuh,ΠVψ)Th

− (∇ph,ε ΠVψ)Th

+ 〈ph− p̂h,ε ΠVψ ·n〉∂Th
+F(ΠVψ) .
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By (4h), (10d), the orthogonality of PMt
h
, (12a), integrating by parts again the fourth term, adding and

subtracting 〈p̂h,εψ ·n〉∂Th
, we obtain

(vh,∇×ψ)Th
= 〈τ

(
ut

h− ût
h
)
,ΠVψ−ψ〉∂Th

−〈n× v̂t
h,PMt

h

(
ψ

t)〉∂ThrΓ +κ
2 (εuh,ΠVψ)Th

+(ph,∇ · (εψ))Th
+F(ΠVψ)−〈p̂h,εψ ·n〉∂Th

+ 〈ph− p̂h,ε (ΠVψ−ψ) ·n〉∂Th

= 〈τ1/2 (ut
h− ût

h
)
,τ1/2 (ΠVψ−ψ)〉∂Th

+κ
2 (εuh,ΠVψ)Th

+ 〈ph− p̂h,ε (ΠVψ−ψ) ·n〉∂Th
+F(ΠVψ) ,

where for the last inequality we have used (4d), the facts that εψ ∈ H(div;Ω) and ∇ · (εψ) = 0, together
with (4g). Finally, replacing the above expression in (16), we obtain (14).

Lemma 3.3. Let (φ ,ψ,ρ)∈H(curl;Ω)×X0×H1
0 (Ω) be the solution of (10) satisfying (11) and

(
vh,uh, ph, ût

h, p̂
)
∈

Vh×Vh×Qh×Mt
h×Mh the solution of (4). If τ and τn are of order one and k≥ 1, then there exists h0 > 0

such that, for all h < h0, it holds

‖εuh‖Th . ‖F‖L (L2(Th),C)+h−1/2‖g‖Γ.

Proof. From Lemma 3.2 we have∣∣∣(uh,Θ)Th

∣∣∣≤|F(ΠVψ)|+
∣∣∣〈g,PMt

h

(
φ

t)〉Γ∣∣∣+ ∣∣∣〈τ1/2 (ut
h− ût

h
)
,τ1/2 (ΠVψ−ψ)〉∂Th

∣∣∣
+
∣∣〈ph− p̂h,ε (ΠVψ−ψ) ·n〉∂Th

∣∣+ ∣∣〈τn (ph− p̂h) ,ΠQρ−ρ〉∂Th

∣∣ (17)

+
∣∣∣〈τ1/2 (ut

h− ût
h
)
,τ−1/2 (PVφ −φ)×n〉∂Th

∣∣∣+κ
2
∣∣∣(εuh,ΠVψ−ψ)Th

∣∣∣ .
Using the Cauchy-Schwarz inequality, inverse inequality, (11) and (12d), we have∣∣∣〈τ1/2 (ut

h− ût
h
)
,τ1/2 (ΠVψ−ψ)〉∂Th

∣∣∣. (τ∗)1/2 hs+1/2‖τ1/2 (ut
h− ût

h
)
‖∂Th
‖Θ‖Ω,

where τ∗ = max
F∈Eh
{τF}. Similarly, taking τ̂∗ = max

F∈Eh

{
τ
−1
F
}

, τ∗ = max
F∈Eh

{
τ

F
n
}

and τ̂∗ = max
F∈Eh

{(
τ

F
n
)−1
}

, we

have the following bounds

|F(ΠVψ)|. ‖F‖L (L2(Th),C)‖Θ‖Ω,

〈g,PMt
h

(
φ

t)〉Γ . h−1/2‖g‖Γ‖Θ‖Ω,∣∣∣κ2 (εuh,ΠVψ−ψ)Th

∣∣∣. hs+1‖εuh‖Th‖Θ‖Ω,∣∣〈τn (ph− p̂h) ,ΠQρ−ρ〉∂Th

∣∣. hs+1/2 (τ∗)
1/2‖τ1/2

n (ph− p̂h)‖∂Th
‖Θ‖Ω,∣∣〈ph− p̂h,ε (ΠVψ−ψ) ·n〉∂Th

∣∣. (τ̂∗)
1/2 hs+1/2‖τ1/2

n (ph− p̂h)‖∂Th
‖Θ‖Ω,∣∣∣〈τ1/2 (ut

h− ût
h
)
,τ−1/2 (PVφ −φ)×n〉∂Th

∣∣∣. (τ̂∗)1/2 hs−1/2 ‖τ1/2 (ut
h− ût

h
)
‖∂Th
‖Θ‖Ω.

Hence, taking Θ = |ε|2 uh, (17) becomes

(1−hs+1)‖εuh‖Th .((τ∗)1/2hs+1/2 +(τ̂∗)1/2hs−1/2)‖τ1/2(ut
h− ût

h)‖∂Th

+‖F‖L (L2(Th),C)+hs+1/2((τ̂∗)
1/2 +(τ∗)

1/2)‖τ1/2
n (ph− p̂h)‖∂Th

+h−1/2‖g‖Γ

.hs−1/2‖τ1/2(ut
h− ût

h)‖∂Th
+hs+1/2‖τ1/2

n (ph− p̂h)‖∂Th
+‖F‖L (L2(Th),C)+h−1/2‖g‖Γ.

(18)
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On the other hand, from (5) we have

‖vh‖2
Th

+‖τ1/2 (ut
h− ût

h
)
‖2

∂Th
+‖τ1/2

n (ph− p̂h)‖2
∂Th

+κ
2 |Re(εm)|‖uh‖2

T m
h

≤ κ
2
εd‖uh‖2

T d
h
+
∣∣F(uh)

∣∣+ ∣∣〈g, v̂t
h〉Γ
∣∣ .

Bounding the last two terms on the right hand side by using Young’s inequality and the definition in (4h), it
can be deduced that

1
2
‖vh‖2

Th
+

1
2
‖τ1/2 (ut

h− ût
h
)
‖2

∂Th
+‖τ1/2

n (ph− p̂h)‖2
∂Th

+κ
2 |Re(εm)|‖uh‖2

T m
h

≤ κ
2
εd‖uh‖2

T d
h
+

1
2
‖F‖2

L (L2(Th),C)
+

1
2
‖εuh‖2

Th
+
(
h−1 + τ

∗)‖g‖2
Γ.

Thus, by inserting last expression in (18), considering s > 1/2 in (11), we obtain for h small enough

‖εuh‖Th . (hs−1/2 +1)‖F‖L (L2(Th),C)+h−1/2‖g‖Γ

and the result follows.

Proof of Theorem 3.2. It follows directly from Lemmas 3.1 and 3.3.

4. Error analysis

In this section we deduce error estimates based on the stability results proved in the former section.

4.1. Error estimates

In order to develop the arguments in this section we start by defining the following projection of errors:

ev
h := PVv−vh, eu

h := ΠVu−uh, ep
h := ΠQ p− ph,

eût
h

h := PMt
h
ut − ût

h, e p̂
h := PMh p− p̂h, ev̂t

h
h := PMt

h
vt − v̂t

h, eε̂un
h

h := PMh (εu ·n)− ε̂un
h ·n.

(19)

Lemma 4.1. Let (v,u, p) and
(
vh,uh, ph, ût

h, p̂h
)

be the solutions of (3) and (4), respectively. The projection

of the errors (ev
h,e

u
h ,e

p
h ,e

ût
h

h ,ep̂
h ,e

v̂t
h

h ,eûn
h

h ) satisfy the following system of equations

(ev
h,w)Th

− (eu
h ,∇×w)Th

+ 〈eût
h

h ×n,w〉∂Th
= 0,

(ev
h,∇× z)Th

+ 〈ev̂t
h

h ,z×n〉∂Th
−κ

2 (εeu
h ,z)Th

−
(
ep

h ,∇ · (εz)
)
Th

+ 〈e p̂
h ,εz ·n〉∂Th

=−κ
2 (ΠVu−u,εz)Th

,

−(εeu
h ,∇t)Th

+ 〈eε̂un
h

h , t〉∂Th
= 0,

〈n× ev̂t
h

h ,η〉∂ThrΓ = 0, (20)

〈eε̂un
h

h ,µ〉∂ThrΓ = 0,

〈eût
h

h ,η〉Γ = 0,

〈e p̂
h ,µ〉Γ = 0,
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for all (w,z, t,η ,µ) ∈ Vh×Vh×Qh×Mt
h×Mh. Here,

n× ev̂t
h

h = n× (ev
h)

t + τ((eu
h)

t − eût
h

h ),

eε̂un
h

h = ε(eu
h)

n ·n+ τn(ep
h − ep̂

h).

Proof. Let us focus on the second and ninth equations since the rest is proven in a similar way. First notice
that using the definitions given in (19) and the orthogonality of the projectors, from (4b) we obtain

F(z) = (PVv− ev
h,∇× z)Th

+ 〈PMt
h
vt − ev̂t

h
h ,z×n〉∂Th

−κ
2 (ε (ΠVu− eu

h) ,z)Th

−
(
ΠQ p− ep

h ,∇ · (εz)
)
Th

+ 〈PMh p− ep̂
h ,εz ·n〉∂Th

= (v,∇× z)Th
− (ev

h,∇× z)Th
+ 〈vt ,z×n〉∂Th

−〈ev̂t
h

h ,z×n〉∂Th
−κ

2 (ε ΠVu,z)Th

+κ
2 (ε eu

h ,z)Th
− (p,∇ · (εz))Th

+
(
ep

h ,∇ · (εz)
)
Th

+ 〈p,εz ·n〉∂Th
−〈ep̂

h ,εz ·n〉∂Th
. (21)

On the other hand, we know that the continuous solution (v,u) satisfies

(v,∇× z)Th
+ 〈vt ,z×n〉∂Th

−κ
2 (εu,z)Th

− (p,∇ · (εz))Th
+ 〈p,εz ·n〉∂Th

= F(z) . (22)

Thus, the second error equation follows from combining (21) and (22).
Now, let µ ∈Mh. By using (19) in (4i), we have

〈PMh (εun ·n)− eε̂un
h

h ,µ〉∂Th
= 〈ε (ΠVu− eu

h)
n ·n+ τn(ΠQ p− ep

h −PMh p+ ep̂
h),µ〉∂Th

,

from where, 〈PMh (εun ·n)− εΠVu ·n− τn(ΠQ p−PMh p),µ〉∂Th
= 〈eε̂un

h
h − ε

(
eu

h

)n ·n+ τn(ep̂
h − ep

h),µ〉∂Th
.

Then, by choosing µ = eε̂un
h

h −ε
(
eu

h

)n ·n+τn(ep̂
h−ep

h) and using the orthogonality of the projectors together

with (12c), we obtain eε̂un
h

h = ε(eu
h)

n ·n+ τn(ep
h − ep̂

h).

Theorem 4.1. Let (v,u, p)∈Hlu+1(Th)×Hlv+1(Th)×H lp+1(Th) and
(
vh,uh, ph, ût

h, p̂h
)
∈Vh×Vh×Qh×

Mt
h×Mh be the solutions of (3) and (4), respectively, for lv, lu, lp ∈ [0,k] . There exists h0 > 0 such that, for

all h < h0, it holds

‖ev
h‖2

Th
+‖τ1/2((eu

h)
t − eût

h
h )‖2

∂Th
+‖τ1/2

n (ep
h − ep̂

h)‖
2
∂Th

+κ‖εeu
h‖2

Th
. h2(lu+1)|u|2lu+1,Th

+h2(lp+1)|p|2lp+1,Th
.

Proof. We observe that the formulation (20) is the same as (4), where F̃ : Pk(Th) → C,
such that F̃(z) :=−κ2 (ΠVu−u,εz)Th

, plays the role of F, and 0 plays the role of g. Then, by Theorem 3.2
there exists h0 > 0, such that

‖ev
h‖2

Th
+‖τ1/2((eu

h)
t − eût

h
h )‖2

∂Th
+‖τ1/2

n (ep
h − e p̂

h)‖
2
∂Th

+κ
2‖εeu

h‖2
Th

. ‖F̃‖2
L (L2(Th),C)

,

for all h < h0. It remains to bound the right hand side of this inequality.
Given z ∈ P(Th), by the Cauchy-Schwarz inequality and the properties in (12d), we obtain

|F̃(z)|. κ
2 ‖ΠVu−u‖Th

‖εz‖Th . (hlu+1|u|lu+1,Th +hlp+1|p|lp+1,Th)‖z‖Th .

Then, ‖F̃‖L (L2(Th),C) . hlu+1|u|lu+1,Th +hlp+1|p|lp+1,Th and the proof is completed.

Corollary 4.1. Under the same assumptions as in Theorem 4.1, if l := min{lu, lp}, we have

‖v−vh‖Th +‖ε(u−uh)‖Th . hl+1(|u|lu+1,Th + |p|lp+1,Th).
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5. Numerical results

The implementation of the HDG method is based on the code developed by [28] in the context of
diffusion and convection-diffusion problems. The numerical experiments are carried out on a unit cube
Ω := [0,1]3 divided in two regions Ωd and Ωm and triangulated by a sequence of shape regular tetrahedral
meshes. The interior of a tetrahedron belongs to either Ωd or Ωm. We set the wavelength λ0 = 4.5 (450 nm),
consider the isotropic dielectric region Ωd is made of silicon oxynitride whose relative electric permittivity
is εd = 2.7124, and the metal region is taken to be evaporated silver with εm = −5.8828+ i0.6650. These
values of the relative electric permittivities depend on λ0 and were taken from [3]. In all the examples we
set τ = τn = 1.

The experimental order of convergence is computed as r(w) :=
log
(
‖w−wh‖Th/‖w−wh‖Th̃

)
log(h/h̃)

, where

h and h̃, are the sizes of two consecutive meshes and w ∈ {u,v, p}.

Example 5.1: The domain Ω is divided in Ωd = [0,1]× [0,1]× [0,1/2] and Ωm = [0,1]× [0,1]× [1/2,1].
We test our HDG formulation, with the case p(x,y,z) = 0 and consider the exact solution u(x,y,z) :=
(0,u2(x,y,z),0)T , with

u2(x,y,z) =

{
exp(−iκ

√
εd (z−0.5))+ exp(iκ

√
εd (z−0.5)) , if z≥ 0.5,

exp(−iκ
√

εm (z−0.5))+ exp(iκ
√

εm (z−0.5)) , if z < 0.5,

where we recall that κ := 2π/λ0 and hence κ = 1.3963. The values of f and g are calculated according with
the exact solution.

Table 1 shows the experimental convergence rates and absolute errors. We observe that, as Theorem 4.1
predicts, optimal rates of convergence are obtained, i.e., order k+1 for u and v.

Table 1: Rate of convergence and errors of Example 5.1

k r(v) r(u) r(p) Nelts ‖v−vh‖Th ‖u−uh‖Th ‖p− ph‖Th

- - - 48 1.4117e-01 2.5022e-01 1.9122e-01
1.96 2.41 1.24 384 3.6382e-02 4.7241e-02 8.0744e-02

1 1.82 2.03 2.51 3072 1.0280e-02 1.1567e-02 1.4166e-02
1.87 1.99 2.49 24576 2.8218e-03 2.9133e-03 2.5182e-03

- - - 48 2.1954e-02 2.7236e-02 2.4103e-01
2.68 2.31 2.31 384 3.4161e-03 5.4944e-03 4.8506e-02

2 2.85 2.90 2.89 3072 4.7249e-04 7.3397e-04 6.5483e-03
2.93 3.00 2.97 24576 6.1861e-05 9.1955e-05 8.3516e-04

- - - 48 3.5477e-03 1.2115e-02 1.3306e-01
3.68 3.64 3.63 384 2.7665e-04 9.7457e-04 1.0771e-02

3 3.95 3.83 3.88 3072 1.7914e-05 6.8709e-05 7.2993e-04
4.05 3.94 3.97 24576 1.0826e-06 4.4708e-06 4.6515e-05

Example 5.2: In this example we consider the same setting as in Example 5.1, but considering p(x,y,z)=
sin(2πx)sin(2πy)sin(2πz) instead. Once again, the values of f and g are calculated according with the exact
solution. Table 2 shows that the predicted optimal rates of convergence are achieved.
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Table 2: Rate of convergence and errors of Example 5.2

k r(v) r(u) r(p) Nelts ‖v−vh‖Th ‖u−uh‖Th ‖p− ph‖Th

- - - 48 9.7455e-02 1.4749e-01 1.8858e-02
1.54 1.89 1.60 384 3.3616e-02 3.9763e-02 6.2176e-03

1 1.73 1.93 1.91 3072 1.0150e-02 1.0404e-02 1.6601e-03
1.85 1.96 1.94 24576 2.8184e-03 2.6685e-03 4.3362e-04

- - - 48 2.1492e-02 2.3376e-02 3.4517e-03
2.71 2.85 2.95 384 3.2891e-03 3.2332e-03 4.4790e-04

2 2.86 2.94 2.84 3072 4.5457e-04 4.2035e-04 6.2567e-05
2.94 3.00 2.91 24576 5.9395e-05 5.2433e-05 8.3503e-06

- - - 48 1.5614e-03 2.0326e-03 3.2012e-04
3.53 3.68 3.62 384 1.3546e-04 1.5808e-04 2.6109e-05

3 3.81 3.89 3.79 3072 9.6377e-06 1.0693e-05 1.8916e-06
3.92 3.96 3.90 24576 6.3701e-07 6.8644e-07 1.2705e-07

Example 5.3: We now consider a metallic corrugation on the interface between Ωm and Ωd , that is,
Ωm := [0,1]× [0,1]× [0,0.5]∪ [0.25,0.75]× [0.25,0.75]× [0.5,0.75] and Ωd :=Ω\Ωm. Motivated by the ap-
plication to photovoltaic devices, we consider f≡ 0 and the top of the domain, the plane z = 1, is illuminated
by an incident field given by u(x,y,1) :=(0,u2(x,y,1),0)T , with u2(x,y,z)= exp(−i [κxx+κyy−κz(z−1)]) ,
where κx = κ sinθ cosφ , κy = κ sinθ sinφ , κz = (κ2−κ2

x −κ2
y )

1/2, θ = π/4 and φ = 0. The boundary data
g is computed according to u. We emphasize the realistic problem involves quasi-periodic boundary condi-
tions on the vertical walls and outgoing radiation conditions above and below the structure. This example
constitutes a stepping stone towards that goal. Figure 2 shows the approximation of the intensity |uh|.

6. Concluding Remarks

We have been able to develop an a priori error analysis of an HDG method for a Maxwell equation in
heterogeneous media arising from the application to photovoltaic solar cells that involve periodic surface-
relief gratings. We proved that under enough regularity of the exact solution, the error of the method achieves
optimal rate of convergence of the magnetic and electric fields. In despite of the simplification of the original
problem, we consider this work constitutes a step forward to the ultimate goal of developing an error analysis
of HDG methods for simulations of photovoltaic devices. The next step will consist on extending these
results to the more realistic case where quasi-periodic boundary conditions are imposed on the vertical
boundaries and radiation conditions are considered above and below the domain. This is the topic of our
current research.
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Figure 2: |uh| for k = 1 and 24576 elements.

Appendix A. Well-posedness of (3)

The aim of this part of the appendix is to prove that (3) has a unique solution. We begin by replacing
v = ∇×u into the second equation of (3), from which we get the following second order system

∇×∇×u−κ
2
εu+ ε∇p = f in Ω,

∇ · εu = 0 in Ω, (A.1)
u×n = g on Γ,

p = 0 on Γ.

First let us suppose g = 0 and define X0 as in Section 3. We consider the following variational formula-
tion equivalent to (A.1) (see Section 5 in [25]): Find (u, p) ∈ X0×H1

0(Ω) such that

(∇×u,∇×w)Ω−κ
2(εu,w)Ω = (f,w)Ω, (A.2a)

(ε ∇p,∇q)Ω = (f,∇q)Ω, (A.2b)

for all (w,q) ∈ X0×H1
0(Ω).

Lemma Appendix A.1. Suppose κ2εd is not an eigenvalue of ∇×∇×. Then (A.2a) has a unique solution.
Moreover, ‖u‖X0 . ‖f‖Ω.

Proof. We will employ Fredholm alternative together with a compact perturbation theory of a bijective
operator. To that end, we rewrite (A.2a) as: Find u∈X0 such that ã(u,v) := a(u,w)−k(u,w) = (f,w), ∀w∈
X0, where a(u,w) := (∇×u,∇×w)Ω−κ2(εu,w)Ωm +κ2(εu,w)Ωd and k(u,w) := 2κ2(εu,w)Ωd . It is easy
to see that a and k are bounded sesquilinear forms. Moreover, a is elliptic in (X0,‖·‖X0). In fact, let w∈X0.
It follows that |a(w,w)| ≥ Re(a(w,w))≥min{1,−κ2Re(εm),κ

2εd}‖w‖2
X0

, where we recall that Re(εm)<

0. In other words, ã satisfies the Gårding inequality |ã(w,w)| ≥min{1,−κ2Re(εm),κ
2εd}‖w‖2

X0
− k(w,w)

14



for all w ∈ X0. Then, since the inclusion X0 in L2(Ω) is compact (c.f. Theorem 4.7 in [6]), by Fredholm
alternative the solution exists if and only if it is unique (c.f. [29]).

Finally, to show uniqueness, let us take u1, u2 ∈ X0 such that (A−K)u1 = (A−K)u2 and define φ :=
u1−u2. By the linearity of the problem and taking w = φ , (A.2a) implies that

0 = (∇×φ ,∇×φ)−κ
2 (εφ ,φ) = ‖∇×φ‖2

Ω
+κ

2 |Re(εm)|‖φ‖2
Ωm
− iκ2 Im(εm)‖φ‖2

Ωm
−κ

2
εd ‖φ‖2

Ωd
.

Therefore, taking imaginary part we obtain that −κ2Im(εm)‖φ‖2
Ωm

= 0, from where, φ = 0 in Ωm. Thus,
0 = ‖∇×φ‖2

Ωd
−κ2εd ‖φ‖2

Ωd
, which implies that φ = 0 in Ωd if and only if κ2εd is not an eigenvalue of

∇×∇×φ = λφ .

Lemma Appendix A.2. (A.2b) has a unique solution.

Proof. We consider the following sesquilinear forms: b(p,q) := (ε ∇p,∇q)− i(∇p,∇q) and c(p,q) :=
−i(∇p,∇q) in (A.2b). We notice that |b(q,q)| ≥ |Im(b(q,q))|= Im(εm)‖∇q‖2

Ωm
+‖∇q‖2

Ω
, for all q∈H1

0 (Ω),
then b is elliptic in H1

0 (Ω) by the Poincaré inequality. Let S : H1
0 (Ω)→ H1

0 (Ω)′ the operator induced by
the bounded sesquilinear form c(·, ·). We observe that S can be expressed as the composition of continu-

ous functions, i, R−1,
∼
i and a compact injection S̃, i.e. S :=

∼
i ◦R−1 ◦ S̃ ◦ i, where i : H1

0 (Ω)→ H1 (Ω),
S̃ : H1 (Ω)→ L2 (Ω), R :

[
L2 (Ω)

]′ → L2 (Ω), ĩ :
[
L2 (Ω)

]′ → [
H1

0 (Ω)
]′, then S is compact (see Theorem

9.11 in [29]). The result follows by similar arguments to the ones used in the proof of previous lemma.

Remark Appendix A.1. Using the arguments presented in [25], we can prove that (A.2) is equivalent
to (A.1) and thus (A.1) has also a unique solution. On the other hand, for the case g 6= 0 we just need
to consider g ∈ γt

(
H(curl;Ω)∩H(div0

ε ;Ω)
)
⊂ H−1/2(Γ) and take into account that there exists a unique

ϕ ∈H(curl;Ω)∩H(div0
ε ;Ω) such that γt (ϕ) = g (see section 3.5 of [6]). So, if we set χ := u−ϕ , χ satisfies

the homogeneous problem and the unicity of u, solution of (3), follows.

Appendix B. On the regularity estimate (11)

By the same arguments in previous section, (10a) and (10b) are well-posed. Now, assumption (11)
holds, for instance, when Ω is simply connected and the interface between Ωm and Ωd is a plane. In fact,
by Theorem 7.1 of [30], ψ|Ω j ∈ Hs+1(Ω j), for all s ∈ (0,1), where j ∈ {m,d}. Then φ ∈ Hs(Ω j), since
φ := ∇×ψ . Moreover, by elliptic regularity ρ ∈ H2

loc(Ω).
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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