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Centro de Investigación en
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Abstract

In this paper we introduce and analyze a new finite element method for a strongly coupled flow
and transport problem in Rn, n ∈ {2, 3}, whose governing equations are given by a scalar nonlinear
convection-diffusion equation coupled with the Stokes equations. The variational formulation for
this model is obtained by applying a suitable dual-mixed method for the Stokes system and the
usual primal procedure for the transport equation. In this way, and differently from the techniques
previously developed for this and related coupled problems, no augmentation procedure needs to be
incorporated now into the solvability analysis, which constitutes the main advantage of the present
approach. The resulting continuous and discrete schemes, which involve the Cauchy fluid stress, the
velocity of the fluid, and the concentration as the only unknowns, are then equivalently reformulated
as fixed point operator equations. Consequently, the well-known Schauder, Banach, and Brouwer
theorems, combined with Babuška-Brezzi’s theory in Banach spaces, monotone operator theory,
regularity assumptions, and Sobolev imbedding theorems, allow to establish the corresponding
well-posedness of them. In particular, Raviart-Thomas approximations of order k ≥ 0 for the
stress, discontinuous piecewise polynomials of degree ≤ k for the velocity, and continuous piecewise
polynomials of degree ≤ k + 1 for the concentration, becomes a feasible choice for the Galerkin
scheme. Next, suitable Strang-type lemmas are employed to derive optimal a priori error estimates.
Finally, several numerical results illustrating the performance of the mixed-primal scheme and
confirming the theoretical rates of convergence, are provided.

Key words: Stokes equations, nonlinear transport problem, fixed point theory, sedimentation-
consolidation process, finite element methods, a priori error analysis.
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1 Introduction

Several practical applications in engineering, including natural and thermal convection, chemical dis-
tillation processes, fluidized beds, solid-liquid separation, and sedimentation-consolidation processes,

∗This work was partially supported by CONICYT-Chile through the project AFB170001 of the PIA Program: Con-
curso Apoyo a Centros Cientificos y Tecnológicos de Excelencia con Financiamiento Basal; and by Centro de Investigación
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among others, deal with the transport of a species density in an immiscible fluid. Regarding the
understanding and prediction of the behavior of such problems, the main difficulties involved have to
do with the highly nonlinear character of the advection and diffusion terms, the strong interaction
of velocity and solids volume fraction, the complexity of the resulting coupled problem, the saddle-
point structure of either the flow or transport problem, or both, and the eventual non-homogeneous
boundary conditions, whose handling could imply the introduction of Lagrange multipliers as further
unknowns. In any case, most of these difficulties influence the solvability analysis of the continuous
and discrete schemes, and particularly the construction of appropriate finite element subspaces yield-
ing stability of the latter, in addition to the derivation of a priori error bounds and corresponding
rates of convergence.

Now, concerning the unknowns of interest, we stress that until certain time ago, the main sought
physical quantities of most of the above mentioned models were the velocity and the pressure of the
fluid, and the local solids concentration (see, e.g. [13], [14], [38] for the particular phenomenon given
by the sedimentation-consolidation of particles). More recently, the development of new numerical
methods that directly approximate other variables of physical relevance, such as the principal com-
ponents of the fluid or solids stress tensors, the velocity gradient and the vorticity of the fluid, the
concentration gradient, and even some boundary traces, has gained considerable attention by the com-
munity of numerical analysis of partial differential equations. In turn, the need of computing accurate
approximations of additional fields has also arised in related problems in continuum mechanics, thus
motivating, for instance, the derivation of new mixed variational formulations and associated Galerkin
schemes for linear and nonlinear elasticity, Navier-Stokes, Boussinesq, and other equations (see, e.g.
[2], [15], [17], [22], [26], [27], [31], [32] and the references therein).

In the present paper we are interested in the coupled flow and transport problem determined by
a scalar nonlinear convection-diffusion equation interacting with the Stokes equations, which serves
as a prototype for certain sedimentation-consolidation processes, and also models the transport of
species concentration within a viscous fluid. Indeed, diverse combinations of primal and mixed finite
element methods have been proposed lately in the literature for the numerical solution of this and
related models, whose most distinctive feature is the fact that, not only the viscosity of the fluid,
but also the diffusion coefficient and the function describing hindered settling, depend on the solution
to the transport problem. In addition, the first order term of the latter includes the velocity of the
fluid as a factor. In particular, we first refer to [3], where the solvability of our model of interest was
analyzed by means of an augmented dual-mixed method in the fluid and the usual primal scheme in
the transport equation, thus yielding a three-field augmented mixed–primal variational formulation,
whose unknowns, given by the Cauchy stress, the velocity of the fluid, and the concentration, are
sought in H(div; Ω) (the space of tensors in [L2(Ω)]n×n with divergence in [L2(Ω)]n), [H1(Ω)]n, and
H1(Ω), respectively. The well-posedness of the continuous and discrete formulations, rewritten as
fixed point operator equations, are established by using the classical Schauder and Brouwer theorems,
respectively. In addition, suitable regularity assumptions and the Sobolev embedding and Rellich-
Kondrachov compactness theorems, are also employed in the continuous analysis. In turn, the stability
of the associated Galerkin scheme is guaranteed with Raviart-Thomas spaces of order k for the stress,
and continuous piecewise polynomials of degree ≤ k + 1 for both the velocity and the concentration.
Optimal a priori error estimates and consequent rates of convergence are also derived there.

On the other hand, the approach from [3] was extended in [4] to the case of a strongly coupled flow
and transport system typically encountered in sedimentation-consolidation processes. The solvability
of this model had been previously discussed in [12] for the case of large fluid viscosity, using the
technique of parabolic regularization. Additionally, the existence of solutions to a related model
for chemically reacting non-Newtonian fluid had been established in [11] as well. Regarding the
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governing equations in [4], they consist in the Brinkman problem with variable viscosity, written in
terms of Cauchy pseudo-stresses and bulk velocity of the mixture, coupled with a nonlinear advection
– nonlinear diffusion equation describing the transport of the solids volume fraction. Moreover, as
in [3], the viscosity also depends on the concentration, but differently from there, where an explicit
dependence on the gradient of the concentration was assumed for the effective diffusivity, this coefficient
is supposed in [4] to depend only on the scalar value of the concentration. An augmented mixed
approach for the Brinkman problem and the usual primal weak form for the transport equation are
then employed to derive the variational formulation of the coupled problem. In this way, similarly
as in [3], the corresponding continuous and discrete solvability analyses are performed by combining
fixed point arguments, elliptic regularity estimates, and some classical results. The techniques from [3]
and [4] have also been applied in [8] to a model describing the flow-transport interaction in a porous-
fluidic domain. In this case, the medium consists of a highly permeable material, where the flow of an
incompressible viscous fluid is governed by Brinkman equations (written in terms of vorticity, velocity
and pressure, as in [6]), and a porous medium where Darcy’s law describes fluid motion using filtration
velocity and pressure. In turn, an augmented fully-mixed variational formulation for the model from
[3], in which both the dual-mixed method and the augmentation procedure are applied to each one
of the equations, was recently introduced and analyzed in [30]. Furthermore, reliable and efficient
residual-based a posteriori error estimators for the models and corresponding methods studied in [3]
and [4] are derived in [5] and [7], respectively.

While the augmentation procedure has played a crucial role in all the aforementioned references,
particularly to make possible the solvability analyses in suitable Hilbert space frameworks, and also
to allow more flexibility in the choice of the finite elements subspaces yielding the stability of the
associated Galerkin schemes, it is no less true that the introduction of additional terms into the
formulation certainly leads to much more expensive schemes in terms of the number of stiffness matrices
that need to be computed. As a consequence of this fact, several efforts have been made in recent
years aiming to avoid the introduction of augmented terms and appealing to a Banach space framework
for analyzing the continuous and discrete formulations of diverse problems in continuum mechanics.
The list of works in this direction includes, for instance, [18], [20], [21], [23], and [35], all of which,
irrespective of dealing with different models, namely Poisson, Navier-Stokes, and Boussinesq equations,
share a Banach saddle-point structure for the resulting variational formulations.

According to all the previous discussion, our long-term goal is to extend the applicability of the
Banach spaces-based analysis, and together with it, to avoid the use of any augmentation procedure,
to address the solvability of a large family of coupled flow-transport problems, which includes those
studied in [3], [4], and [8], as the most representative ones. In this way, in order to begin contributing
in this direction, in the present work we employ some of the theoretical tools from [18], [20], and
even [3], to propose a new mixed-primal finite element method for the model analyzed in [3]. In
particular, since the formulation for the transport equation is the same one employed in [3], our
present analysis certainly makes use of the corresponding results available there. The contents of this
work are organized as follows. The remainder of this section describes some useful notation to be
utilized along the paper. The model problem is introduced in Section 2, and all the auxiliary variables
to be employed in the setting of the formulation are defined there. As in [3], the pressure unknown
is eliminated, which, however, can be recovered later on via a postprocessing formula. In Section 3.1
we derive the variational formulation of the coupled problem by using a non-augmented dual-mixed
approach for Stokes, which constitutes the main advantage with respect to [3], and the classical primal
method for the transport. In this way, the resulting mixed-primal scheme yields the Cauchy fluid stress
and the velocity of the fluid living in suitable Banach spaces, whereas the concentration lies in the usual
Hilbert space H1(Ω). Then, a global fixed-point strategy combined with Babuška-Brezzi’s theory in

3



the fluid and classical results on monotone operators in the transport equation, allow to establish the
well-posedness of the continuous formulation. Next, in Section 4 we introduce the associated Galerkin
scheme and address its solvability by employing the discrete analogue tools of Section 3.1. Thus,
the stability of the mixed-primal finite element method is guaranteed with Raviart-Thomas spaces of
order k ≥ 0 for the stress, discontinuous piecewise polynomials of degree ≤ k for the velocity, and
continuous piecewise polynomials of degree ≤ k+ 1 for the concentration. The a priori error estimates
and the associated rates of convergence are deduced in Section 5 by using suitable Strang-type lemmas
and the approximation properties of the finite element subspaces involved. Finally, the performance
of the method is illustrated in Section 6 with several numerical examples in 2D and 3D, which also
confirm the aforementioned rates.

Preliminary notations

In what follows Ω ⊆ Rn, n ∈ {2, 3}, is a given bounded domain with polyhedral boundary Γ, whose
outward unit normal vector is denoted by ν. Standard notation will be adopted for Lebesgue spaces
Lp(Ω) and Sobolev spaces Ws,p(Ω), with s ∈ R and p > 1, whose corresponding norms, either for the
scalar, vectorial, or tensorial case, are denoted by ‖ · ‖0,p;Ω and ‖ · ‖s,p;Ω, respectively. In particular,
given a non-negative integer m, Wm,2(Ω) is also denoted by Hm(Ω), and the notations of its norm
and seminorm are simplified to || · ||m,Ω and | · |m,Ω, respectively. In addition, H1/2(Γ) is the space of
traces of functions of H1(Ω), H−1/2(Γ) denotes its dual, and 〈·, ·〉 stands for the corresponding duality
pairing between H−1/2(Γ) and H1/2(Γ). On the other hand, given any generic scalar functional space
M, we let M and M be the corresponding vectorial and tensorial counterparts, whereas ‖ · ‖, with no
subscripts, will be employed for the norm of any element or operator whenever there is no confusion
about the space to which they belong. Furthermore, as usual I stands for the identity tensor in Rn×n,
and | · | denotes the Euclidean norm in Rn. Also, for any vector field v = (vi)i=1,n we let ∇v and
div(v) be its gradient and divergence, respectively. In addition, for any tensor τ = (τij)i,j=1,n and
ζ = (ζij)i,j=1,n, we let div(τ ) be the divergence operator div acting along the rows of τ , and define
the transpose, the trace, the tensor inner product, and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr (τ ) :=
n∑
i=1

τii, τ : ζ :=
n∑

i,j=1

τijζij , and τ d := τ − 1

n
tr (τ ) I .

Finally, for any pair of normed spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ), we provide the product space X × Y
with the natural norm ‖(x, y)‖X×Y := ‖x‖X + ‖y‖Y ∀ (x, y) ∈ X × Y .

2 The model problem

The following system of partial differential equations describes the stationary state of the transport
of species in an immiscible fluid occupying the domain Ω:

σ = µ(φ)∇u− p I, −div(σ) = fφ, div(u) = 0,

p = ϑ (|∇φ|)∇φ− φu− γ(φ)k, −div(p) = g,∫
Ω
p = 0 ,

(2.1)

where the sought quantities are the Cauchy fluid stress σ, the local volume-average velocity of the
fluid u, the pressure p, and the local concentration of species φ. In turn, f ∈ L2(Ω) and g ∈ L2(Ω) are
given functions, and, as observed from the second equation in (2.1), the driving force of the mixture
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depends linearly on φ. In addition, the kinematic effective viscosity, µ; the diffusion coefficient, ϑ; and
the one-dimensional flux function describing hindered settling, γ; depend nonlinearly on φ, whereas k
is a vector pointing in the direction of gravity. Furthermore, ϑ is assumed of class C1 and we suppose
that there exist positive constants µ1, µ2, γ1, γ2, ϑ1, and ϑ2, such that

µ1 ≤ µ(s) ≤ µ2 and γ1 ≤ γ(s) ≤ γ2 ∀ s ∈ R , (2.2)

ϑ1 ≤ ϑ(s) ≤ ϑ2 and ϑ1 ≤ ϑ(s) + s ϑ′(s) ≤ ϑ2 ∀ s ≥ 0 . (2.3)

Additionally, we assume that µ and γ are Lipschitz continuous, that is that there exist positive
constants Lµ and Lγ such that

|µ(s)− µ(t)| ≤ Lµ |s− t| ∀ s, t ∈ R , (2.4)

and
|γ(s)− γ(t)| ≤ Lγ |s− t| ∀ s, t ∈ R . (2.5)

Finally, given uD ∈ H1/2(Γ), the following Dirichlet boundary conditions complement (2.1):

u = uD on Γ , φ = 0 on Γ , (2.6)

where, due to the incompressibility of the fluid, the datum uD must satisfy the compatibility constraint∫
Γ uD · ν = 0. On the other hand, it is easy to see that the first and third equations in (2.1) are

equivalent to
1

µ(φ)
σd = ∇u and p = − 1

n
tr (σ) in Ω , (2.7)

which allows us to eliminate the pressure p, thus arriving at the following equivalent coupled system

1

µ(φ)
σd = ∇u in Ω , −div(σ) = fφ in Ω ,

p = ϑ(|∇φ|)∇φ − φu − γ(φ)k in Ω , −div(p) = g in Ω ,

u = uD on Γ , φ = 0 on Γ ,

∫
Ω

tr (σ) = 0 .

(2.8)

We stress here that the incompressibility condition is implicitly present in the first equation of (2.8),
that is in the constitutive equation relating σ and u. In addition, the uniqueness condition for
p, originally given by

∫
Ω p = 0, is now stated as

∫
Ω tr (σ) = 0, which certainly follows from the

postprocessed formula for p provided by the second expression in (2.7).

3 The continuous formulation

In this section we introduce and analyze a mixed-primal formulation of the coupled problem (2.8).

3.1 A mixed-primal approach

We first observe that the Dirichlet condition for φ motivates the introduction of the space

H1
0(Ω) :=

{
ψ ∈ H1(Ω) : ψ = 0 on Γ

}
,
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for which, thanks to the Poincaré inequality, there exists a positive constant cp, depending only on Ω,
such that

‖ψ‖1,Ω ≤ cp |ψ|1,Ω ∀ ψ ∈ H1
0(Ω) . (3.1)

Moreover, the continuous injection of H1(Ω) into L4(Ω) (cf. [1, Thm. 4.12], [37, Thm. 1.3.4]) yields
the existence of a positive constant c(Ω) > 0, depending only on Ω, such that

‖ψ‖0,4;Ω ≤ c(Ω) ‖ψ‖1,Ω ∀ ψ ∈ H1(Ω) . (3.2)

Next, in order to derive the variational formulation of (2.8), we begin with the transport equation. In
fact, multiplying the respective equilibrium equation div(p) = −g by ψ ∈ H1

0(Ω), integrating by parts,
taking into account the third equation of (2.8), and bearing in mind the Dirichlet boundary condition
φ = 0 on Γ, we deduce that the primal approach for the concentration becomes: Find φ ∈ H1

0(Ω) such
that

Au(φ, ψ) = Gφ(ψ) , (3.3)

where

Au(ϕ,ψ) :=

∫
Ω
ϑ(|∇ϕ|)∇ϕ · ∇ψ −

∫
Ω
ϕu · ∇ψ ∀ ϕ, ψ ∈ H1

0(Ω) , (3.4)

and

Gφ(ψ) :=

∫
Ω
γ(φ)k · ∇ψ +

∫
Ω
gψ ∀ ψ ∈ H1

0(Ω) . (3.5)

Concerning Au, we first recall from [33, Theorem 3.8] (see also [3, Lemma 3.5]) that, thanks to the
assumptions on ϑ (cf. (2.3)), the nonlinear operator induced by its first term is strongly monotone in
H1

0(Ω) and Lipschitz-continuous in H1(Ω) with constants ϑ1 and ϑ̃2 := max
{
ϑ2, 2ϑ2−ϑ1

}
, respectively,

that is there hold∫
Ω

{
ϑ(|∇ϕ|)∇ϕ− ϑ(|∇ψ|)∇ψ

}
· ∇(ϕ− ψ) ≥ ϑ1 |ϕ− ψ|21,Ω ∀ ϕ, ψ ∈ H1(Ω) , (3.6)

and ∣∣∣∣∫
Ω

{
ϑ(|∇φ|)∇φ− ϑ(|∇ϕ|)∇ϕ

}
· ∇ψ

∣∣∣∣ ≤ θ̃2 |φ− ϕ|1,Ω |ψ|1,Ω ∀ φ, ϕ, ψ ∈ H1(Ω) . (3.7)

Furthermore, we notice, using (2.3), Cauchy-Schwarz’s inequality, and (3.2), that there hold∣∣∣∣∫
Ω
ϑ(|∇ϕ|)∇ϕ · ∇ψ

∣∣∣∣ ≤ ϑ2 ‖ϕ‖1,Ω‖ψ‖1,Ω ∀ ϕ,ψ ∈ H1(Ω) , (3.8)

and ∣∣∣∣∫
Ω
ϕv · ∇ψ

∣∣∣∣ ≤ c(Ω) ‖ϕ‖1,Ω‖v‖0,4;Ω |ψ|1,Ω ∀ ϕ, ψ ∈ H1(Ω), ∀ v ∈ L4(Ω) , (3.9)

which shows that Au is well-defined if the given u lies in L4(Ω), and hence from now on we look for
this unknown in the latter space. Throughout the rest of the paper, we make no notational distinction
between the semilinear form Au : H1

0(Ω)×H1
0(Ω)→ R (as defined by (3.4)) and its induced nonlinear

operator Au : H1
0(Ω)→ H1

0(Ω)′, which maps each ϕ ∈ H1
0(Ω) into a functional Au(ϕ) ∈ H1

0(Ω)′, whose
evaluation in an arbitrary ψ ∈ H1

0(Ω) is precisely the right hand side of (3.4). In turn, regarding the
functional Gφ, we readily observe from (3.5) and (2.2) that it is bounded, independently of φ, with

‖Gφ‖ ≤ γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω . (3.10)
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Furthermore, multiplying the first equation of (2.8) by a sufficiently smooth arbitrary tensor τ (living
in a suitable space to be described later), integrating by parts, taking into account the Dirichlet
boundary condition u = uD on Γ and the identity σd : τ = σd : τ d, we formally obtain∫

Ω

1

µ(φ)
σd : τ d +

∫
Ω

u · div(τ ) = 〈τν,uD〉 . (3.11)

We observe here, thanks to the boundedness of µ (cf. (2.2)), that the first expression on the left-hand
side of (3.11) makes sense if both σ and τ belong to L2(Ω), whereas the second one requires that
div(τ ) lies in L4/3(Ω), which follows from Hölder’s inequality and the fact that u is already sought
in L4(Ω). The above suggests to introduce now the Banach space

H(div4/3; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ L4/3(Ω)

}
,

endowed with the norm

‖τ‖div4/3;Ω := ‖τ‖0,Ω + ‖div(τ )‖0,4/3;Ω ∀ τ ∈ H(div4/3; Ω) .

In this way, the continuous injection of H1(Ω) into L4(Ω) guarantees that τν (as defined in [28, eq.
(1.43)]) belongs to H−1/2(Γ) not only for τ ∈ H(div; Ω) but also when τ ∈ H(div4/3; Ω), which proves
that (3.11) makes full sense for all τ ∈ H(div4/3; Ω). Moreover, it is easy to show (see, e.g. [20, Section
3.1] or [16, Lemma 3.5]) that there exists a positive constant c̃(Ω), depending only on c(Ω) (cf. (3.2)),
such that

‖τν‖−1/2,Γ ≤ c̃(Ω) ‖τ‖div4/3;Ω ∀ τ ∈ H(div4/3; Ω) . (3.12)

Thus, looking for the unknown σ in H(div4/3; Ω) as well, we realize that the equilibrium equation
−div(σ) = fφ in Ω can be imposed, equivalently, as∫

Ω
v · div(σ) = −

∫
Ω
fφ · v ∀ v ∈ L4(Ω) . (3.13)

In addition, the null mean value of tr (σ) stated as the last equation of (2.8) says that σ must be
actually sought in H0(div4/3; Ω), where

H0(div4/3; Ω) :=
{
τ ∈ H(div4/3; Ω) :

∫
Ω

tr (τ ) = 0
}
.

Therefore, given φ ∈ H1
0(Ω), we collect (3.11) and (3.13) to arrive at first instance to the following

mixed formulation for the flow: Find (σ,u) ∈ H0(div4/3; Ω)× L4(Ω) such that

aφ(σ, τ ) + b(τ ,u) = F(τ ) ∀ τ ∈ H(div4/3; Ω) ,

b(σ,v) = Gφ(v) ∀ v ∈ L4(Ω) ,
(3.14)

where aφ : H(div4/3; Ω) × H(div4/3; Ω) → R, b : H(div4/3; Ω) × L4(Ω) → R, F : H(div4/3; Ω) → R,
and Gφ : L4(Ω)→ R are the bounded bilinear and linear forms, respectively, defined as

aφ(ζ, τ ) :=

∫
Ω

1

µ(φ)
ζd : τ d , b(τ ,v) :=

∫
Ω

v · div(τ ) , (3.15)

F(τ ) = 〈τν,uD〉 , and Gφ(v) := −
∫

Ω
fφ · v (3.16)
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for all ζ, τ ∈ H(div4/3; Ω), and for all v ∈ L4(Ω). In fact, note that there hold

|aφ(ζ, τ )| ≤ 1

µ1
‖ζ‖div4/3;Ω ‖τ‖div4/3;Ω and |b(ζ,v)| ≤ ‖ζ‖div4/3;Ω ‖v‖0,4;Ω ,

which confirms boundedness constants given by

‖aφ‖ =
1

µ1
and ‖b‖ = 1 . (3.17)

In turn, employing the duality between H−1/2(Γ) and H1/2(Γ) together with the estimate (3.12), and
then applying Cauchy-Schwarz’s inequality and the continuous injection given by (3.2), we readily
show that

|F(τ )| ≤ c̃(Ω) ‖uD‖1/2,Γ ‖τ‖div4/3;Ω and |Gφ(v)| ≤ c(Ω) ‖f‖0,Ω ‖φ‖1,Ω ‖v‖0,4;Ω , (3.18)

which yields
‖F‖ ≤ c̃(Ω) ‖uD‖1/2,Γ and ‖Gφ‖ ≤ c(Ω) ‖f‖0,Ω ‖φ‖1,Ω . (3.19)

Furthermore, thanks to the compatibility condition for uD and the decomposition

H(div4/3; Ω) = H0(div4/3; Ω) ⊕ R I ,

it is easily shown that imposing the first equation of (3.14) against τ ∈ H(div4/3; Ω) is equivalent to
doing it against τ ∈ H0(div4/3; Ω), and therefore (3.14) reduces to: Find (σ,u) ∈ H0(div4/3; Ω) ×
L4(Ω) such that

aφ(σ, τ ) + b(τ ,u) = F(τ ) ∀ τ ∈ H0(div4/3; Ω) ,

b(σ,v) = Gφ(v) ∀ v ∈ L4(Ω) .
(3.20)

Finally, combining (3.20) and (3.3), we arrive at the following mixed-primal formulation of our coupled
problem (2.8): Find (σ,u, φ) ∈ H0(div4/3; Ω)× L4(Ω)×H1

0(Ω) such that

aφ(σ, τ ) + b(τ ,u) = F(τ ) ∀ τ ∈ H0(div4/3; Ω) ,

b(σ,v) = Gφ(v) ∀v ∈ L4(Ω) ,

Au(φ, ψ) = Gφ(ψ) ∀ψ ∈ H1
0(Ω) .

(3.21)

3.2 A fixed point strategy

In what follows we proceed similarly as in [3] (see also [4], [8]) and utilize a fixed point strategy to
analyze the solvability of (3.21). For this purpose, we first let S : H1

0(Ω)→ H0(div4/3; Ω)× L4(Ω) be
the operator defined by:

S(φ) = (S1(φ),S2(φ)) := (σ,u) ∈ H0(div4/3; Ω)× L4(Ω) ∀ φ ∈ H1
0(Ω) ,

where (σ,u) is the unique solution (to be confirmed below) of (3.20) with the given φ. In turn, we let
S̃ : H1

0(Ω)× L4(Ω)→ H1
0(Ω) be the operator defined by

S̃(φ,u) := φ̃ ∀ (φ,u) ∈ H1
0(Ω)× L4(Ω) ,

with φ̃ ∈ H1
0(Ω) being the unique solution (to be confirmed below) of the problem:

Au(φ̃, ψ̃) = Gφ(ψ̃) ∀ ψ̃ ∈ H1
0(Ω) (3.22)
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with the given (φ,u). Then, we set the operator T : H1
0(Ω)→ H1

0(Ω) as

T(φ) := S̃(φ,S2(φ)) ∀φ ∈ H1
0(Ω), (3.23)

and realize that solving (3.21) is equivalent to seeking a fixed point of T, that is: Find φ ∈ H1
0(Ω)

such that
T(φ) = φ . (3.24)

3.3 Well-posedness of the uncoupled problems

In this section we show that the operators S and S̃ are indeed well-defined, which means, equivalently,
that the uncoupled problems (3.20) and (3.22) are well-posed. We begin with (3.20), for which we
employ the classical Babuška-Brezzi theory in Banach spaces (see e.g. [25, Theorem 2.34]), which,
given φ ∈ H1

0(Ω), requires two inf-sup conditions of aφ on the kernel of b, and an inf-sup condition
of b. To this end, we now recall from [16, Lemma 3.2] that a simple modification of the proof of
[28, Lemma 2.3] (see also [10, Proposition 3.1, Chapter IV]) allows to show that there exists c1 > 0,
depending only on Ω, such that

c1 ‖τ‖20,Ω ≤ ‖τ d‖20,Ω + ‖div(τ )‖20,4/3;Ω ∀ τ ∈ H0(div4/3; Ω) . (3.25)

Next, we let V be the kernel of b, that is

V :=
{
τ ∈ H0(div4/3; Ω) : b(τ ,v) = 0 ∀ v ∈ L4(Ω)

}
,

which clearly reduces to

V =
{
τ ∈ H0(div4/3; Ω) : div(τ ) = 0 in Ω

}
. (3.26)

Then, we have the following result.

Lemma 3.1. There exists a positive constant α such that for each φ ∈ H1
0(Ω) there holds

aφ(τ , τ ) ≥ α ‖τ‖2div4/3;Ω ∀ τ ∈ V . (3.27)

Proof. Given φ ∈ H1
0(Ω) and τ ∈ V, we easily deduce, according to the definition of aφ (cf. (3.15)),

the boundedness of µ (cf. (2.2)), and the inequality (3.25), that

aφ(τ , τ ) =

∫
Ω

1

µ(φ)
τ d : τ d ≥ 1

µ2
‖τ d‖20,Ω ≥

c1

µ2
‖τ‖20,Ω =

c1

µ2
‖τ‖2div4/3;Ω ,

which proves (3.27) with α = c1/µ2.

As a straightforward consequence of (3.27) it follows that

sup
ζ∈V

aφ(ζ, τ ) > 0 ∀ τ ∈ V \ {0} , ∀φ ∈ H1
0(Ω) . (3.28)

In turn, the aforementioned inf-sup condition of the bilinear form b is stated as follows.

Lemma 3.2. There exists a positive constant β, depending on n, cp (cf. (3.1)) and c(Ω) (cf. (3.2)),
such that

sup
τ∈H0(div4/3;Ω)

τ 6=0

b(τ ,v)

‖τ‖div4/3;Ω
≥ β ‖v‖0,4;Ω ∀ v ∈ L4(Ω) . (3.29)
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Proof. See [16, Lemma 3.4] for details.

According to the previous results, we are now able to prove the well-definedness of the operator S.

Lemma 3.3. For each φ ∈ H1
0(Ω) there exists a unique S(φ) := (σ,u) ∈ H0(div4/3; Ω) × L4(Ω)

solution to the problem (3.20). Moreover, there exists a positive constant CS, depending only on µ1,
α, β, and c(Ω), and hence independent of φ, such that

‖S(φ)‖ = ‖(σ,u)‖ ≤ CS

{
‖uD‖1/2,Γ + ‖f‖0,Ω ‖φ‖1,Ω

}
∀ φ ∈ H1

0(Ω) . (3.30)

Proof. Given φ ∈ H1
0(Ω), we first recall from (3.17) and (3.19) that aφ, b, F, and Gφ are all bounded.

Then, thanks to Lemmas 3.1 and 3.2, and inequality (3.28), the proof follows from a straightforward
application of the Babuška-Brezzi theory in Banach spaces (see, e.g. [25, Theorem 2.34]) to problem
(3.20). In particular, the corresponding a priori estimate reads

‖(σ,u)‖ ≤ C
{
‖F‖ + ‖Gφ‖

}
, (3.31)

with a positive constant C depending only on ‖aφ‖ = 1
µ1

, α, and β. In this way, the foregoing
inequality together with (3.17) and (3.19) imply (3.30) and complete the proof.

We now establish the unique solvability of the nonlinear problem (3.22), which confirms the well-
definedness of the operator S̃.

Lemma 3.4. Let φ ∈ H1
0(Ω), δ ∈]0, 1[, and u ∈ L4(Ω) such that ‖u‖0,4;Ω < δϑ1

c(Ω) cp
(cf. (2.3), (3.1),

(3.9)). Then, there exists a unique φ̃ := S̃(φ,u) ∈ H1
0(Ω) solution to (3.22), and there holds

‖S̃(φ,u)‖ = ‖φ̃‖1,Ω ≤
c2
p

(1− δ)ϑ1

{
γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω

}
. (3.32)

Proof. We proceed similarly as in [3, Lemma 3.5] by observing first, thanks to (3.6), (3.1), and (3.9),
that for each φ̃, ϕ̃ ∈ H1

0(Ω) there holds

Au(φ̃, φ̃− ϕ̃)−Au(ϕ̃, φ̃− ϕ̃) ≥ ϑ1 |φ̃− ϕ̃|21,Ω − c(Ω)‖φ̃− ϕ̃‖1,Ω ‖u‖0,4;Ω |φ̃− ϕ̃|1,Ω

≥
{
ϑ1 − c(Ω)cp‖u‖0,4;Ω

}
|φ̃− ϕ̃|21,Ω ≥ c−2

p

{
ϑ1 − c(Ω)cp‖u‖0,4;Ω

}
‖φ̃− ϕ̃‖21,Ω ,

(3.33)

which, using the hypothesis on u, implies the strong monotonicity of the operator Au with constant
α̃ := c−2

p (1− δ)ϑ1. In turn, employing now (3.7), and again (3.9) and the aforementioned bound on

u, we obtain that for each φ̃, ϕ̃, ψ̃ ∈ H1
0(Ω) there holds∣∣Au(φ̃, ψ̃)−Au(ϕ̃, ψ̃)

∣∣ ≤ {ϑ̃2 |φ̃− ϕ̃|1,Ω + c(Ω) ‖φ̃− ϕ̃‖1,Ω ‖u‖0,4;Ω

}
|ψ̃|1,Ω

≤
{
ϑ̃2 + c(Ω) ‖u‖0,4;Ω

}
‖φ̃− ϕ̃‖1,Ω |ψ̃|1,Ω ≤

{
ϑ̃2 +

δϑ1

cp

}
‖φ̃− ϕ̃‖1,Ω |ψ̃|1,Ω ,

(3.34)

which implies the Lipschitz-continuity of Au with constant L̃ = ϑ̃2 + δϑ1
cp

. In this way, given φ ∈ H1
0(Ω),

a classical result on the bijectivity of monotone operators (cf. [36, Theorem 3.3.23]) guarantees the
existence of a unique φ̃ ∈ H1

0(Ω) solution to (3.22). Moreover, exactly as derived in [3, Lemma 3.5],

we find that ‖φ̃‖1,Ω ≤ α̃−1 ‖Gφ‖, which, together with the upper bound for ‖Gφ‖ (cf. (3.10)), gives
(3.32) and ends the proof.
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We remark here that the assumption on u in Lemma 3.4 depends on a particular value of δ ∈]0, 1[.
In this regard, we notice that the closer to 1, the larger the range for choosing u, but then the constant
in the a priori estimate (3.32) tends to blow up. Conversely, the closer to 0, the smaller the range
for u, but then the constant in (3.32) remains bounded. According to the above, in what follows we
simply consider the midpoint δ = 1/2, which yields

α̃ =
ϑ1

2 c2
p

and L̃ = ϑ̃2 +
ϑ1

2cp
, (3.35)

and with which the assumption on u and the a priori estimate for S̃(φ,u) = φ̃ in Lemma 3.4, become

‖u‖0,4;Ω <
ϑ1

2 c(Ω) cp
(3.36)

and
‖S̃(φ,u)‖ = ‖φ̃‖1,Ω ≤ C

S̃

{
γ2|Ω|1/2‖k‖ + ‖g‖0,Ω

}
, (3.37)

respectively, where C
S̃

:= 1
α̃ .

3.4 Solvability analysis of the fixed point equation

Having established in the previous section that the uncoupled problems (3.20) and (3.22) are well-
posed, equivalently that the operators S, S̃, and hence T are well defined, we now adress the solvability
analysis of the fixed point equation (3.24). To this end, in this section we apply the Schauder fixed
point theorem, whose statement is as follows (see, e.g. [19, Theorem 9.12-1(b)]).

Theorem 3.5. Let W be a closed and convex subset of a Banach space X and let T : W → W be a
continuous mapping such that T (W ) is compact. Then T has at least one fixed point.

We now proceed to verify that, under suitable assumptions on the data, the operator T satisfy the
hypotheses of Theorem 3.5. We begin with the following result.

Lemma 3.6. Given r > 0, we let W be the closed and convex subset of H1
0(Ω) defined by

W :=
{
φ ∈ H1

0(Ω) : ‖φ‖1,Ω ≤ r
}
,

and assume that the data satisfy

‖uD‖1/2,Γ + r‖f‖0,Ω <
ϑ1

2CS c(Ω) cp
and γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω ≤

r

C
S̃

. (3.38)

Then T(W ) ⊆ W .

Proof. Given φ ∈W , we get from (3.30) that

‖S(φ)‖ = ‖(σ,u)‖ ≤ CS

{
‖uD‖1/2,Γ + r‖f‖0,Ω

}
,

and hence, thanks to the first restriction in (3.38), we observe that u = S1(φ) satisfies the hypothesis
of Lemma 3.4 given by (3.36). Moreover, the corresponding a priori estimate given by (3.37) yields

‖T(φ)‖ = ‖S̃(φ,u)‖ ≤ C
S̃

{
γ2|Ω|1/2‖k‖+ ‖g‖0,Ω

}
,

which, due to the second hypothesis in (3.38), proves that T(φ) ∈W , thus finishing the proof.
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Throughout the rest of the paper we assume further regularity for the problem defining the operator
S. More precisely, we suppose that uD ∈ H1/2+ε(Γ) for some ε ∈ (0, 1) (when n = 2) or ε ∈ (1

2 , 1)
(when n = 3), and that for each ψ ∈ H1

0(Ω) with ‖ψ‖1,Ω ≤ r, r > 0 given, there hold (ζ,w) := S(ψ) ∈
H0(div4/3; Ω) ∩Hε(Ω)× L4(Ω) ∩Wε,4(Ω) and

‖ζ‖ε,Ω + ‖w‖ε,4;Ω ≤ C̃S(r)
{
‖uD‖1/2+ε,Γ + ‖f‖0,Ω‖ψ‖1,Ω

}
, (3.39)

with a positive constant C̃S(r) independent of the given ψ but depending on the upper bound r of its
H1-norm.

We now aim to prove the continuity and compactness properties of T, which will be straightforward
consequences of the following two lemmas providing the compactness of S and the continuity of S̃,
respectively. In this regard, we remark in advance that the further regularity assumption specified by
(3.39) plays a key role in the proof of the first result, which is established as follows.

Lemma 3.7. There exists a positive constant LS, depending on µ1, Lµ, α, β and ε, such that

‖S(φ)− S(ψ)‖

≤ LS

{
‖f‖0,Ω ‖φ− ψ‖0,4;Ω + ‖S1(ψ)‖ε,Ω ‖φ− ψ‖0,n/ε;Ω

}
∀ φ, ψ ∈ H1

0(Ω) .
(3.40)

Proof. We base our arguments on the proof of [3, Lemma 3.9]. Indeed, letting H := H0(div4/3; Ω)×
L4(Ω), we first notice that the a priori estimate (3.31) of problem (3.20), with a given ϕ ∈ H1

0(Ω), is
equivalent to stating that

‖(ρ, z)‖ ≤ C sup
(τ ,v)∈H
(τ ,v)6=0

aϕ(ρ, τ ) + b(τ , z) + b(ρ,v)

‖(τ ,v)‖
∀ (ρ, z) ∈ H , (3.41)

with a positive constant C depending only on µ1, α and β, and hence independent of ϕ. Next, given
φ, ψ ∈ H1

0(Ω), we let (σ,u) = S(φ) and (ζ,w) = S(ψ), which means, according to the definition of S
provided in Section 3.2, that

aφ(σ, τ ) + b(τ ,u) = 〈τν,uD〉Γ ∀ τ ∈ H0(div4/3; Ω) ,

b(σ,v) = −
∫

Ω
fφ · v ∀ v ∈ L4(Ω) ,

(3.42)

and
aψ(ζ, τ ) + b(τ ,w) = 〈τν,uD〉Γ ∀ τ ∈ H0(div4/3; Ω),

b(ζ,v) = −
∫

Ω
fψ · v ∀ v ∈ L4(Ω) .

(3.43)

Then, applying (3.41) with (ρ, z) = S(φ)− S(ψ) = (σ − ζ,u−w) and ϕ = φ, and then using (3.42),
(3.43), and the definitions of aφ and aψ (cf. (3.15)), we first arrive at

‖S(φ)− S(ψ)‖ ≤ C sup
(τ ,v)∈H
(τ ,v)6=0

aφ(σ − ζ, τ ) + b(τ ,u−w) + b(σ − ζ,v)

‖(τ ,v)‖

= C sup
(τ ,v)∈H
(τ ,v) 6=0

aψ(ζ, τ )− aφ(ζ, τ ) + b(σ − ζ,v)

‖(τ ,v)‖

= C sup
(τ ,v)∈H
(τ ,v) 6=0

∫
Ω

(
µ(φ)− µ(ψ)

µ(ψ)µ(φ)

)
ζd : τ d −

∫
Ω
f(φ− ψ) · v

‖(τ ,v)‖
.

(3.44)
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Next, employing the boundedness and Lipschitz-continuity of µ (cf. (2.2), (2.4)), and the Cauchy-
Schwarz inequality, it follows from (3.44) that

‖S(φ)− S(ψ)‖ ≤ C sup
(τ ,v)∈H
(τ ,v)6=0

Lµ µ
−2
1

∫
Ω
|(φ− ψ)ζd| |τ d|+ ‖f‖0,Ω ‖φ− ψ‖0,4;Ω ‖v‖0,4;Ω

‖(τ ,v)‖

≤ C sup
(τ ,v)∈H
(τ ,v)6=0

Lµ µ
−2
1 ‖(φ− ψ)ζ‖0,Ω ‖τ‖0,Ω + ‖f‖0,Ω ‖φ− ψ‖0,4;Ω ‖v‖0,4;Ω

‖(τ ,v)‖
,

which, applying now the Hölder inequality to the expression ‖(φ− ψ)ζ‖0,Ω, yields

‖S(φ)− S(ψ)‖ ≤ C
{
Lµ µ

−2
1 ‖ζ‖0,2p;Ω ‖φ− ψ‖0,2q;Ω + ‖f‖0,Ω‖φ− ψ‖0,4;Ω

}
, (3.45)

where p, q ∈]1,+∞) are such that 1
p + 1

q = 1. Next, bearing in mind the further regularity in (3.39),
we notice that the Sobolev embedding Theorem (cf. [1, Theorem 4.12] and [37, Theorem 1.3.4])
establishes the continuous injection iε : Hε(Ω)→ Lε

∗
(Ω) with boundedness constant Cε, where

ε∗ :=

{
2

1−ε if n = 2,
6

3−2ε if n = 3.

Thus, choosing p such that 2p = ε∗, we deduce that ζ := S1(ψ) does in fact belong to L2p(Ω), and
hence, thanks to the aforementioned continuity, there holds

‖ζ‖0,2p;Ω ≤ Cε ‖ζ‖ε,Ω , (3.46)

which, when needed, can be bounded by (3.39), yielding for each ψ with ‖ψ‖1,Ω ≤ r

‖ζ‖0,2p;Ω ≤ Cε C̃S(r)
{
‖uD‖1/2+ε,Γ + ‖f‖0,Ω‖ψ‖1,Ω

}
.

In addition, according to the above choice of p, we readily find that

2q :=
2p

p− 1
=

{
2
ε if n = 2,
3
ε if n = 3,

=
n

ε
. (3.47)

In this way, (3.45) and (3.46), together with (3.47), imply (3.40) and complete the proof.

At this point we find it very important to remark that the further regularity assumption specified
by (3.39) is not needed if the viscosity µ is constant. Indeed, in that case the term aψ(ζ, τ )−aφ(ζ, τ )
vanishes in (3.44), and hence (3.40) reduces to

‖S(φ)− S(ψ)‖ ≤ LS ‖f‖0,Ω ‖φ− ψ‖0,4;Ω ∀ φ, ψ ∈ H1
0(Ω) .

Certainly, Lemmas 3.8 and 3.9, and Theorem 3.10 below, can all be enhanced accordingly. We omit
further details.

On the other hand, the continuity of S̃ is proved next.

Lemma 3.8. There exists a positive constant L
S̃

, depending on θ1, Lγ, cp, and c(Ω), such that for

all (φ,u), (ϕ,w) ∈ H1
0(Ω)× L4(Ω), with ‖u‖0,4;Ω, ‖w‖0,4;Ω ≤ ϑ1

2 c(Ω) cp
, there holds

‖S̃(φ,u)− S̃(ϕ,w)‖ ≤ L
S̃

{
‖k‖‖φ− ϕ‖0,Ω + ‖S̃(ϕ,w)‖ ‖u−w‖0,4;Ω

}
.
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Proof. This proof, being essentially the same as the one of [3, Lemma 3.10], is based on the strong
monotonicity of Au with respective constant α̃ = θ1

2c2p
(cf. (3.35)), the Lipschitz continuity of γ (cf.

(2.5)), the Cauchy-Schwarz inequality, and estimate (3.9) (which is the analogue of [3, eq. 3.5]).
Further details are omitted and we refer the interested reader to [3, Lemma 3.10].

We are now in position to establish the announced properties of T as straightforward consequences
of Lemmas 3.7 and 3.8. More precisely, we have the following result.

Lemma 3.9. Given r > 0, we let W :=
{
φ ∈ H1

0(Ω) : ‖φ‖1,Ω ≤ r
}

, and assume that the data

satisfy (3.38). In turn, let LS and L
S̃

be the constants provided by Lemmas 3.7 and 3.8. Then, there
holds

‖T(φ)−T(ϕ)‖1,Ω ≤ L
S̃
‖k‖ ‖φ− ϕ‖0,Ω + LS LS̃

‖T(ϕ)‖1,Ω ‖f‖0,Ω ‖φ− ϕ‖0,4;Ω

+ LS LS̃
‖T(ϕ)‖1,Ω ‖S1(ϕ)‖ε,Ω ‖φ− ϕ‖0,n/ε;Ω ∀ φ, ϕ ∈W ,

(3.48)

and hence T : W →W is continuous and T(W ) is compact.

Proof. We proceed basically as in the proofs of [3, Lemmmas 3.11 and 3.12]. In fact, we begin by
recalling from Lemma 3.6 that the hypothesis (3.38) on the data guarantees that T(W ) ⊆ W . Next,
in order to deduce (3.48) it suffices to recall from (3.23) that T(φ) = S̃(φ,S2(φ)) for all φ ∈ H1

0(Ω),
and then apply Lemmas 3.7 and 3.8, in addition to perform some algebraic manipulations. In turn,
thanks to the Rellich-Kondrachov compactness Theorem (cf. [1, Theorem 6.3], [37, Theorem 1.3.5])
and the ranges for ε specified by the regularity assumption (3.39), we know that H1(Ω) is compactly
embedded in L4(Ω), L2(Ω), and Ln/ε(Ω). In this way, these compact (and hence continuous) injections
together with (3.48), allow to prove, exactly as done for [3, Lemmma 3.12], the remaining properties
of T.

According to the above results, the main result concerning the solvability of (3.21) reads as follows.

Theorem 3.10. Given r > 0, we let W :=
{
φ ∈ H1

0(Ω) : ‖φ‖1,Ω ≤ r
}

, and assume that the

data satisfy (3.38). Then the mixed-primal formulation (3.21) has at least one solution (σ,u, φ) ∈
H0(div4/3; Ω)× L4(Ω)×H1

0(Ω) with φ ∈W , and there holds

‖φ‖1,Ω ≤ C
S̃

{
γ2|Ω|1/2‖k‖+ ‖g‖0,Ω

}
(3.49)

and
‖(σ,u)‖ ≤ CS

{
‖uD‖1/2,Γ + ‖f‖0,Ω‖φ‖1,Ω

}
. (3.50)

In turn, if the data k, f , and uD are sufficiently small so that

LT := L
S̃
‖k‖+ LS LS̃

r
{(
c(Ω) + r C̃ε C̃S(r)

)
‖f‖0,Ω + C̃ε C̃S(r) ‖uD‖1/2+ε,Γ

}
< 1, (3.51)

where C̃ε is the boundedness constant of the continuous injection of H1(Ω) into Ln/ε(Ω), and c(Ω),
C̃S(r), LS, and L

S̃
are given by (3.2), (3.39), and Lemmas 3.7 and 3.8, respectively, then (3.21) has

a unique solution (σ,u, φ) ∈ H0(div4/3; Ω)× L4(Ω)×H1
0(Ω) with φ ∈W .

Proof. The proof is just a recontextualization of the one of [3, Theorem 3.13]. Indeed, according
to the equivalence between (3.21) and (3.24), and thanks to Lemmas 3.6 and 3.9, the existence of
solution is a straightforward application of the Schauder fixed point Theorem (cf. Theorem 3.5).
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Then, the estimates (3.49) and (3.50) follow from (3.37) and (3.30), respectively. In turn, employing

the estimates ‖T(ϕ)‖1,Ω = ‖ϕ‖1,Ω ≤ r, ‖S1(ϕ)‖ε,Ω ≤ C̃S(r)
{
‖uD‖1/2+ε,Γ + ‖f‖0,Ω‖ϕ‖1,Ω

}
(cf.

(3.39)), ‖ψ‖0,n/ε;Ω ≤ C̃ε ‖ψ‖1,Ω, and ‖ψ‖0,4;Ω ≤ c(Ω) ‖ψ‖1,Ω (cf. (3.2)) for ψ ∈ H1(Ω), it follows
straightforwardly from (3.48) that ‖T(φ) − T(ϕ)‖1,Ω ≤ LT ‖φ − ϕ‖1,Ω ∀ φ, ϕ ∈ W . Therefore,
the Banach fixed-point theorem and the assumption (3.51) complete the proof.

4 The discrete formulation

In this section we introduce the Galerkin scheme associated with (3.21) and study its solvability and
convergence.

4.1 A mixed-primal finite element method

We first let Th be a regular family of triangulation of Ω by triangles K (resp. tetrahedra K in R3) and
set h := max

{
hK : K ∈ Th

}
. In turn, given an integer l ≥ 0 and a subset S of Rn, we denote by Pl(S)

the space of polynomials of total degree at most l defined on S. Hence, for each integer k ≥ 0 and for
each K ∈ Th, we define the local Raviart–Thomas space of order k as RTk(K) := Pk(K)⊕ P̃k(K) x,
where x := (x1, . . . , xn)t is a generic vector of Rn and P̃k(K) is the space of polynomials of total
degree equal to k defined on T . In this way, introducing the finite element subspaces:

Hσ
h :=

{
τ h ∈ H0(div4/3; Ω) : ct τ h|K ∈ RTk(K) ∀ c ∈ Rn , ∀ K ∈ Th

}
, (4.1)

Hu
h :=

{
vh ∈ L4(Ω) : vh|K ∈ Pk(K) ∀ K ∈ Th

}
, (4.2)

Hφ
h :=

{
ψh ∈ C(Ω) ∩H1

0(Ω) : ψh|K ∈ Pk+1(K) ∀ K ∈ Th
}
, (4.3)

the aforementioned Galerkin scheme reads: Find (σh,uh, φh) ∈ Hσ
h ×Hu

h ×Hφ
h such that

aφh(σh, τ h) + b(τ h,uh) = F(τ h) ∀ τ h ∈ Hσ
h ,

b(σh,vh) = Gφh(vh) ∀vh ∈ Hu
h ,

Auh(φh, ψh) = Gφh(ψh) ∀ψh ∈ Hφ
h .

(4.4)

where the corresponding definitions of the bilinear forms aφh , b, and Auh , and the linear functionals
F, Gφh , and Gφh , are given in (3.4), (3.5), (3.15), and (3.16), with φ = φh and u = uh.

4.2 A discrete fixed-point strategy

In what follows we reformulate (4.4) by adopting the discrete analogue of the fixed point strategy

introduced in Section 3.2. Hence, we now let Sh : Hφ
h −→ Hσ

h ×Hu
h be the operator defined by

Sh(φh) = (S1,h(φh),S2,h(φh)) := (σh,uh) ∀ φh ∈ Hφ
h ,

where (σh,uh) ∈ Hσ
h ×Hu

h is the unique solution of

aφh(σh, τ h) + b(τ h,uh) = F(τ h) ∀ τ h ∈ Hσ
h ,

b(σh,vh) = Gφh(vh) ∀vh ∈ Hu
h ,

(4.5)
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with the given φh ∈ Hφ
h. In addition, we let S̃h : Hφ

h ×Hu
h −→ Hφ

h be the operator defined by

S̃h(φh,uh) := φ̃h ∀ (φh,uh) ∈ Hφ
h ×Hu

h ,

where φ̃h ∈ Hφ
h is the unique solution of

Auh(φ̃h, ψ̃h) = Gφh(ψ̃h) ∀ ψ̃h ∈ Hφ
h , (4.6)

with the given (φh,uh) ∈ Hφ
h ×Hu

h . Finally, we define the operator Th : Hφ
h −→ Hφ

h by

Th(φh) := S̃h(φh,S2,h(φh)) ∀ φh ∈ Hφ
h , (4.7)

and realize that (4.4) can be rewritten, equivalently, as: Find φh ∈ Hφ
h such that

Th(φh) = φh . (4.8)

Certainly, all the above makes sense if we guarantee that the discrete problems (4.5) and (4.6) are
well–posed, which is addressed in the first part of the following section.

4.3 Solvability analysis of the discrete fixed-point equation

We begin by showing that the discrete operator Sh is well-defined. To this end, we now let Vh be the
discrete kernel of b, that is

Vh :=
{
τ ∈ Hσ

h : b(τ h,vh) = 0 ∀vh ∈ Hu
h

}
,

which, using from (4.1) - (4.2) that div
(
Hσ
h

)
⊆ Hu

h , becomes

Vh =
{
τ ∈ Hσ

h : div(τ h) = 0 in Ω
}
.

It follows that Vh ⊆ V (cf. (3.26)), and hence, thanks to Lemma 3.1, we readily deduce that, with
the same constant α from Lemma 3.1, there holds

aφh(τ h, τ h) ≥ α ‖τ h‖2div4/3;Ω ∀ τ h ∈ Vh , ∀φh ∈ Hφ
h , (4.9)

which certainly implies that the bilinear form aφh satisfies the corresponding hypothesis required by
the discrete Babuška-Brezzi theory in Banach spaces (cf. [25, Proposition 2.42]). Besides the already
proved boundedness of the linear functionals involved (cf. (3.19)), the requirements of this abstract
result are completed with the discrete inf-sup condition for the bilinear form b, which we recall next
from [20] (see also [18]).

Lemma 4.1. There exists a positive constant βd, independent of h, such that

sup
τ∈Hσ

h
τ 6=0

b(τ h,vh)

‖τ h‖div4/3;Ω
≥ βd ‖vh‖0,4;Ω ∀ vh ∈ Hu

h . (4.10)

Proof. It relies on several useful results concerning the Raviart-Thomas spaces and their interpolation
and projection operators involved, within the framework of suitable Banach spaces, and also on an
elliptic regularity estimate. For further details, we refer to [20, Section 5.3] and [20, Lemma 5.5,
Section 5.4].
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We are now in position to establish next the discrete analogue of Lemma 3.3.

Lemma 4.2. For each φh ∈ Hφ
h there exists a unique Sh(φh) = (σh,uh) ∈ Hσ

h ×Hu
h solution to the

problem (4.5). Moreover, there exists a positive constant CS,d, depending only on µ1, α, βd, and c(Ω),
and hence independent of φh, such that

‖Sh(φh)‖ = ‖(σh,uh)‖ ≤ CS,d

{
‖uD‖1/2,Γ + ‖f‖0,Ω ‖φh‖1,Ω

}
∀ φh ∈ Hφ

h . (4.11)

Proof. It follows from (4.9), Lemma 4.1, and the discrete Babuška-Brezzi theory in Banach spaces (cf.
[25, Proposition 2.42]). In particular, the corresponding a priori estimate reduces to

‖Sh(φh)‖ = ‖(σh,uh)‖ ≤ C̄
{
‖F|Hσ

h
‖ + ‖Gφh |Hu

h
‖
}
, (4.12)

with a positive constant C̄ depending only on µ1, α, and βd. In this way, (4.12), the fact that ‖F|Hσ
h
‖

and ‖Gφh |Hu
h
‖ are obviously bounded by ‖F‖ and ‖Gφh‖, respectively, and the bounds for the latter

provided in (3.19), imply (4.11).

In turn, the discrete analogue of Lemma 3.4 and the corresponding estimates (3.36) and (3.37),
reads as follows.

Lemma 4.3. Let φ ∈ Hφ
h and uh ∈ Hu

h such that ‖uh‖0,4;Ω < ϑ1
2 c(Ω) cp

(cf. (2.3), (3.1), (3.9)). Then,

there exists a unique φ̃h := S̃h(φh,uh) ∈ Hφ
h solution to (4.6), and there holds

‖S̃h(φh,uh)‖ = ‖φ̃h‖1,Ω ≤ C
S̃

{
γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω

}
. (4.13)

Proof. It suffices to observe that the strong monotonicity and Lipschitz-continuity of Auh on H1
0(Ω)×

H1
0(Ω) is certainly transferred to Hφ

h × Hφ
h with the same constants α̃ and L̃, respectively, provided

in (3.35). Therefore, under the stipulated hypotheses, another straightforward application of [36,
Theorem 3.3.23] yields the unique solvability of (4.6) and the a priori estimate (4.13).

We now aim to show the solvability of (4.4) by analyzing the equivalent fixed point equation (4.8).
To this end, in what follows we verify the hypotheses of the Brouwer fixed point theorem, which is
recalled next (cf. [19, Theorem 9.9-2]).

Theorem 4.4. Let W be a compact and convex subset of a finite dimensional Banach space X, and
let T : W →W be a continuous mapping. Then T has at least one fixed point.

We begin with the discrete version of Lemma 3.6.

Lemma 4.5. Given r > 0, we let Wh :=
{
φ ∈ Hφ

h : ‖φh‖1,Ω ≤ r
}

, and assume that

‖uD‖1/2,Γ + r ‖f‖0,Ω <
ϑ1

2CS,d c(Ω) cp
and γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω ≤

r

C
S̃

. (4.14)

Then Th(Wh) ⊆ Wh.

Proof. Similarly to the proof of Lemma 3.6, it is a direct consequence of Lemmas 4.2 and 4.3.

In turn, the discrete analogue of Lemma 3.7 is provided next. We notice in advance that, instead
of the regularity assumption employed in the proof of that result, which is not needed nor could be
applied in the present discrete case, we simple utilize a L4 – L4 – L2 argument.

17



Lemma 4.6. There exists a positive constant LS,d, depending on µ1, Lµ, α, and βd, such that

‖Sh(φh)− Sh(ψh)‖ ≤ LS,d

{
‖f‖0,Ω + ‖S1,h(ψh)‖0,4;Ω

}
‖φh − ψh‖0,4;Ω ∀ φh, ψh ∈ Hφ

h . (4.15)

Proof. We begin by observing that the discrete stability estimate for Sh provided by (4.12), with a

given φh ∈ Hφ
h, is equivalent to stating that (cf. [25, Proposition 2.36])

‖(ρh, zh)‖ ≤ C̄ sup
(τh,vh)∈Hσ

h×H
u
h

(τh,vh)6=0

aϕ(ρh, τ h) + b(τ h, zh) + b(ρh,vh)

‖(τ h,vh)‖
(4.16)

for all (ρh, zh) ∈ Hσ
h ×Hu

h . Then, according to the foregoing inequality, the rest of the proof proceeds
exactly as done for Lemma 3.7, except for the last part of the derivation of the discrete analogue of
(3.45). In fact, given φh, ψh ∈ Hφ

h, we now let (σh, τ h) = Sh(φh) and (ζh,wh) = Sh(ψh), and instead
of applying Hölder’s inequality with the values of p and q determined by the regularity parameter ε,
we simply employ Cauchy-Schwarz’s inequality to obtain

‖Sh(φh)− Sh(ψh)‖ ≤ C̄
{
Lµ µ

−2
1 ‖ζh‖0,4;Ω ‖φh − ψh‖0,4;Ω + ‖f‖0,Ω ‖φh − ψh‖0,4;Ω

}
, (4.17)

which readily yields (4.15) and finishes the proof.

The continuity of S̃h, that is the discrete analogue of Lemma 3.8, is shown now.

Lemma 4.7. There exists a positive constant L
S̃,d

, depending on θ1, Lγ, cp, and c(Ω), such that for

all (φh,uh), (ϕh,wh) ∈ Hφ
h ×Hu

h , with ‖uh‖0,4;Ω, ‖wh‖0,4;Ω ≤ ϑ1
2 c(Ω) cp

, there holds

‖S̃h(φh,uh)− S̃h(ϕh,wh)‖ ≤ L
S̃,d

{
‖k‖ ‖φh − ϕh‖0,Ω + ‖S̃h(ϕh,wh)‖ ‖uh −wh‖0,4;Ω

}
.

Proof. It proceeds as in the proof of Lemma 3.8 by using now the strong monotonicity of Auh , the
Lipschitz-continuity of γ, Cauchy-Schwarz’s inequality, and again estimate (3.9). We omit further
details.

The continuity of the discrete fixed-point operator Th is proved next.

Lemma 4.8. Given r > 0, we let Wh :=
{
φh ∈ Hφ

h : ‖φh‖1,Ω ≤ r
}

, and assume that the data

satisfy (4.14). In turn, let LS,d and L
S̃,d

be the constants provided by Lemmas 4.6 and 4.7. Then,
there holds

‖Th(φh)−Th(ϕh)‖1,Ω

≤ L
S̃,d
‖k‖ ‖φh − ϕh‖0,Ω + LS,d LS̃,d

‖Th(ϕh)‖1,Ω ‖f‖0,Ω ‖φh − ϕh‖0,4;Ω

+ LS,d LS̃,d
‖Th(ϕh)‖1,Ω ‖S1,h(ϕh)‖0,4;Ω ‖φh − ϕh‖0,4;Ω ∀ φh, ϕh ∈Wh ,

(4.18)

and hence Th : Wh →Wh is continuous.

Proof. In order to obtain (4.18), it suffices to recall from (4.7) that Th(φh) := S̃h(φh,S2,h(φh)) for

all φ ∈ Hφ
h, and then apply the estimates provided by Lemmas 4.6 and 4.7. Then, the compact (and

therefore continuous) injections of H1(Ω) into both L4(Ω) and L2(Ω) confirm the continuity of Th.
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We stress here that, while ‖Th(ϕh)‖1,Ω can be certainly bounded by r in (4.18), the lack of a bound
independent of h for the expression ‖S1,h(ϕh)‖0,4;Ω that also appears there, stops us of deriving a
controllable Lipschitz-continuity constant for Th. This is the reason why we are not able to apply the
Banach fixed-point theorem to Th, but only the Brouwer one (cf. Theorem 4.4) as we state next.

Theorem 4.9. Given r > 0, we let Wh :=
{
φh ∈ Hφ

h : ‖φh‖1,Ω ≤ r
}

, and assume that the data

satisfy (4.14). Then the Galerkin scheme (4.4) has at least one solution (σh,uh, φh) ∈ Hσ
h ×Hu

h ×Hφ
h

with φh ∈Wh, and there holds

‖φh‖1,Ω ≤ C
S̃

{
γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω

}
(4.19)

and
‖(σh,uh)‖ ≤ CS,d

{
‖uD‖1/2,Γ + ‖f‖0,Ω ‖φh‖1,Ω

}
. (4.20)

Proof. Thanks to the equivalence between (4.4) and (4.8), the existence of solution follows from
Lemmas 4.5 and 4.8, and a direct application of Theorem 4.4. In addition, the a priori estimates
(4.19) and (4.20) are consequences of (4.13) and (4.11), respectively.

5 A priori error Analysis

Given (σ,u, φ) ∈ H0(div4/3; Ω)×L4(Ω)×H1
0(Ω) with φ ∈W , and (σh,uh, φh) ∈ Hσ

h ×Hu
h ×Hφ

h with
φh ∈ Wh, solutions of (3.21) and (4.4), respectively, we now aim to derive a corresponding a priori
error estimate. For this purpose, we now recall from those equations, that the above means that

aφ(σ, τ ) + b(τ ,u) = F(τ ) ∀ τ ∈ H0(div4/3; Ω) ,

b(σ,v) = Gφ(v) ∀ v ∈ L4(Ω) ,

aφh(σh, τ h) + b(τ h,uh) = F(τ h) ∀ τ h ∈ Hσ
h

b(σh,vh) = Gφh(vh) ∀ vh ∈ Hh ,

(5.1)

and
Au(φ, ψ) = Gφ(ψ) ∀ ψ ∈ H1

0(Ω) ,

Auh(φ, ψh) = Gφh(ψh) ∀ ψh ∈ Hφ
h .

(5.2)

We begin by denoting as usual

dist (φ,Hφ
h) := inf

ϕh∈Hφh

‖φ− ϕh‖1,Ω

and
dist

(
(σ, τ ),Hσ

h ×Hu
h

)
:= inf

(τh,vh)∈Hσ
h×H

u
h

‖(σ,u)− (τ h,vh)‖ .

Next, we recall two Strang–type lemmas that will be utilized in our subsequent analysis. The first
one deals with strongly monotone and Lipschitz-continuous nonlinear operators.

Lemma 5.1. Let H be a Hilbert space, F ∈ H ′ and A : H −→ H ′ a nonlinear operator. In addition,
let {Hn}n∈N be a sequence of finite dimensional subspaces of H, and for each n ∈ N consider a
nonlinear operator An : Hn −→ H ′n and a functional Fn ∈ H ′n. Assume that the family {A}∪{An}n∈N
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is uniformly Lipschitz continuous and strongly monotone with constants ΛLC and ΛSM, respectively.
In turn, let u ∈ H and un ∈ Hn such that

[A(u), v] = [F, v] ∀ v ∈ H and [An(un), vn] = [Fn, vv] ∀ vn ∈ Hn ,

where [·, ·] denotes the duality pairing between H ′ (resp. H ′n ) and H (resp. Hn). Then for each n ∈ N
there holds

‖u− un‖ ≤ ΛST

{
sup

wn∈Hn
wn 6=0

[F,wn]− [Fn, wn]

‖wn‖

+ inf
vn∈Hn
wn 6=0

(
‖u− vn‖+ sup

wn∈Hn
wn 6=0

[A(vn), wn]− [An(vn), wn]

‖wn‖

)}
,

with ΛST := Λ−1
SM max

{
1, ΛSM + ΛLC

}
.

Proof. It is a particular case of [29, Theorem 6.4].

The second theorem concerns the Babuška-Brezzi theory in Banach spaces.

Lemma 5.2. Let H and Q be reflexive Banach spaces, F ∈ H ′, G ∈ Q′, and a : H × H → R
and b : H × Q → R bounded bilinear forms. In addition, let {Hn}n∈N and {Qn}n∈N be sequences
of finite dimensional subspaces of H and Q, respectively, and for each n ∈ N consider bilinear forms
an : Hn × Hn → R and bn : Hn × Qn → R, and functionals Fn ∈ H ′n and Gn ∈ Q′n. Assume that
the families {a} ∪ {an}n∈N and {b} ∪ {bn}n∈N uniformly verify the hypotheses of the continuous and
discrete Babuška-Brezzi theories in Banach spaces (cf. [25, Theorem 2.34, Proposition 2.42]) with
constants α and β, independent of n ∈ N , and that they are uniformly bounded with constants Λa and
Λb, respectively. In turn, let (σ, u) ∈ H ×Q and (σn, un) ∈ Hn ×Qn such that

a(σ, τ) + b(τ, u) = F (τ) ∀ τ ∈ H ,

b(σ, v) = G(v) ∀ v ∈ Q ,
(5.3)

and
an(σn, τn) + bn(τn, un) = Fn(τn) ∀ τn ∈ Hn ,

bn(σn, vn) = Gn(vn) ∀ vn ∈ Qn .
(5.4)

Then, there exists a positive constant ΛST, depending only on α, β, Λa, and Λb, such that for each
n ∈ N there holds

‖(σ, u)− (σn, un)‖H×Q ≤ ΛST

{
sup
τn∈Hn
τn 6=0

F (τn)− Fn(τn)

‖τn‖H
+ sup
vn∈Qn
vn 6=0

G(vn)−Gn(vn)

‖vn‖Q

+ inf
ζn∈Hn
ζn 6=0

(
‖σ − ζn‖H + sup

τn∈Hn
τn 6=0

an(ζn, τn)− a(ζn, τn)

‖τn‖H
+ sup
vn∈Qn
vn 6=0

bn(ζn, vn)− b(ζn, vn)

‖vn‖Q

)

+ inf
wn∈Qn
ηn 6=0

(
‖u− wn‖Q + sup

τn∈Hn
τn 6=0

bn(τn, wn)− b(τn, wn)

‖τn‖H

) }
.
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Proof. We begin by applying the triangular inequality to obtain

‖(σ, u)− (σn, un)‖H×Q ≤ ‖(σ, u)− (ζn, wn)‖H×Q + ‖(σn, un)− (ζn, wn)‖H×Q (5.5)

for all (ζn, wn) ∈ Hn × Qn. On the other hand, similarly as we did for (4.16), we observe that the
fact that an and bn satisfy the hypotheses of the discrete Babuška-Brezzi theory (cf. [25, Proposition
2.42]), guarantees, according to [25, Proposition 2.36], the global discrete inf-sup condition

‖(ρn, zn)‖H×Q ≤ Λ sup
(τn,vn)∈Hn×Qn

(τn,vn)6=0

an(ρn, τn) + bn(τn, zn) + bn(ρn, vn)

‖(τn, vn)‖H×Q
∀ (ρn, zn) ∈ Hn ×Qn , (5.6)

with Λ := 1
β +

(
1 + Λa

β

) {
1
β + 1

α

(
1 + Λa

β

)}
. In this way, applying the inequality (5.6) to the pair

(ρn, zn) := (σn, un)− (ζn, wn), and using the equations from (5.4), we arrive at

‖(σn, un)− (ζn, wn)‖H×Q

≤ Λ sup
(τn,vn)∈Hn×Qn

(τn,vn)6=0

an(σn − ζn, τn) + bn(τn, un − wn) + bn(σn − ζn, vn)

‖(τn, vn)‖H×Q

= Λ sup
(τn,vn)∈Hn×Qn

(τn,vn)6=0

Fn(τn)− an(ζn, τn)− bn(τn, wn) +Gn(vn)− bn(ζn, vn)

‖(τn, vn)‖H×Q
.

(5.7)

The rest of the proof proceeds by adding and subtracting the equations from (5.3) to the upper term
on the right hand side of (5.7), by performing suitable algebraic manipulations, and then by plugging
the resulting estimate back into (5.5). Finally, we take there infimum with respect to ζn ∈ Hn and
wn ∈ Qn. Further details are omitted.

Now, we have the following preliminary result concerning ‖φ− φh‖1,Ω.

Lemma 5.3. There exists a positive constant Λ̃ST, depending only on α̃ and L̃ (cf. (3.35)), such that

‖φ− φh‖1,Ω ≤ Λ̃ST

{
Lγ ‖k‖ ‖φ− φh‖0,Ω + c(Ω) ‖φ‖1,Ω ‖u− uh‖0,4;Ω

+
(

1 + c(Ω) ‖u− uh‖0,4;Ω

)
dist (φ,Hφ

h)

}
.

(5.8)

Proof. The proof follows very similarly to the one of [3, Lemma 5.2]. In fact, we first recall, from
Lemma 3.4 and the remark right after it, that Au and Auh are both strongly monotone and Lipschitz-

continuous with the respective constants α̃ and L̃ given in (3.35). Hence, applying Lemma 5.1 to the
corresponding context given by (5.2), we deduce that

‖φ− φh‖1,Ω ≤ Λ̃ST

{
sup
ψh∈Hφh
ψh 6=0

Gφ(ψh)−Gφh(ψh)

‖ψh‖1,Ω

+ inf
ϕh∈Hφh
ϕh 6=0

(
‖φ− ϕh‖1,Ω + sup

ψh∈Hφh
ψh 6=0

Au(ϕh, ψh)−Auh(ϕh, ψh)

‖ψh‖1,Ω

)}
,

(5.9)
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with Λ̃ST := α̃−1 max
{

1, α̃ + L̃
}

. Next, from the definitions of Gφ and Gφh (cf. (3.5)), and the

Lipschitz-continuity of γ (cf. (2.5)), we obtain

|Gφ(ψh)−Gφh(ψh) | ≤ Lγ ‖k‖ ‖φ− φh‖0,Ω |ψh|1,Ω ,

whereas the definitions of Au and Auh (cf. (3.4)), and the estimate (3.9) give

|Au(ϕh, ψh)−Auh(ϕh, ψh) | ≤ c(Ω) ‖ϕh‖1,Ω‖u− uh‖0,4;Ω |ψ|1,Ω .

In this way, replacing the foregoing estimates back into (5.9), bounding ‖ϕh‖1,Ω in the latter one by

‖φ− ϕh‖1,Ω + ‖φ‖1,Ω, and then taking infimum with respect to ϕh ∈ Hφ
h in the resulting inequality in

(5.9), we easily arrive to (5.8) and end the proof.

Furthermore, the following lemma provides a preliminary estimate for ‖(σ,u)− (σh,uh)‖.

Lemma 5.4. There exists a positive constant Λ̂ST > 0, depending only on µ1, α, β, and βd, such that

‖(σ,u)− (σh,uh)‖ ≤ Λ̂ST

{
dist

(
(σ,u),Hσ

h ×Hu
h

)
+ LµCε ‖σ‖ε,Ω ‖φ− φh‖0,n/ε;Ω + c(Ω) ‖f‖0,Ω ‖φ− φh‖1,Ω

}
.

(5.10)

Proof. We begin by recalling, thanks to Lemmas 3.1, 3.2, and 4.1, and the estimate (4.9), that the
bilinear forms aφ, aφh , and b do satisfy the corresponding hypotheses of Lemma 5.2. Thus, applying
this result to the context given by (5.1), we can write

‖(σ,u)− (σh,uh)‖ ≤ ĈST

{
sup

vh∈Hu
h

vh 6=0

Gφ(vh)−Gφh(vh)

‖vh‖0,4;Ω
+ dist (u,Hu

h)

+ inf
τh∈Hσ

h

(
‖σ − τ h‖div4/3;Ω + sup

ζh∈Hσ
h

ζ 6=0

aφ(τ h, ζh)− aφh(τ h, ζh)

‖ζh‖div4/3;Ω

)}
,

(5.11)

where ĈST is a positive constant depending only on µ1, α, β, and βd. Next, using the definitions of
Gφ and Gφh (cf. (3.5)) and the second estimate in (3.18), we obtain

|Gφ(vh)−Gφh(vh)| =

∣∣∣∣∫
Ω
f (φ− φh) · vh

∣∣∣∣ ≤ c(Ω) ‖f‖0,Ω ‖φ− φh‖1,Ω ‖vh‖0,4;Ω . (5.12)

In turn, adding and subtracting σ in the first component of each expression, we find that

aφ(τ h, ζh) − aφh(τ h, ζh) = aφ(τ h − σ, ζh) + aφh(σ − τ h, ζh) + (aφ − aφh)(σ, ζh) , (5.13)

from which, applying the boundedness of aφ to the first and second terms on the right hand side
of (5.13), proceeding with the third one as we did for deriving (3.45), in particular employing the
Lipschitz-continuity of µ (cf. (2.4)), and making use of (3.46), we arrive at

|aφ(τ h, ζh)− aφh(τ h, ζh)|

≤
{

2

µ1
‖σ − τ h‖div4/3;Ω +

Lµ
µ2

1

Cε ‖σ‖ε,Ω ‖φ− φh‖0,n/ε,Ω
}
‖ζh‖div4/3;Ω .

(5.14)

Finally, replacing (5.12) and (5.14) back into (5.11), we get (5.10), which ends the proof.
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We now combine the inequalities provided by Lemmas 5.3 and 5.4 to derive the Cea estimate for the
total error ‖φ− φh‖1,Ω + ‖(σ,u)− (σh,uh)‖. More precisely, we replace the bound for ‖u− uh‖0,4;Ω

given by (5.10) into the second term on the right hand side of (5.8). In this way, employing from
(3.39) that

‖σ‖ε,Ω ≤ C̃S(r)
{
‖uD‖1/2+ε,Γ + ‖f‖0,Ω ‖φ‖1,Ω

}
, (5.15)

recalling that ‖φ‖1,Ω is bounded by r, denoting by C̃ε the boundedness constant of the continuous
injection of H1(Ω) into Ln/ε(Ω), and performing several algebraic manipulations, we are lead to

‖φ− φh‖1,Ω ≤
{
C1 ‖k‖ + (C2 + r C3) ‖f‖0,Ω + C3 ‖uD‖1/2+ε,Γ

}
‖φ− φh‖1,Ω

+ C4 dist
(
(σ,u),Hσ

h ×Hu
h

)
+ Λ̃ST

(
1 + c(Ω) ‖u− uh‖0,4;Ω

)
dist (φ,Hφ

h) ,

(5.16)

where Ci, i ∈
{

1, 2, 3, 4
}

, are the positive constants defined by

C1 := Λ̃ST Lγ , C2 := Λ̃ST

(
c(Ω)

)2
r Λ̂ST ,

C3 := Λ̃ST c(Ω) r Λ̂ST LµCε C̃ε C̃S(r) , C4 := Λ̃ST c(Ω) r Λ̂ST .

We highlight here that ‖u‖1,Ω and ‖uh‖1,Ω are estimated according to (3.30), and hence the ex-

pression in (5.16) multiplying dist (φ,Hφ
h) can be easily controlled by constants, parameters, and data

only. As a consequence of the foregoing discussion, we are able to prove the requested Céa estimate
as follows.

Theorem 5.5. Assume that the data k, f and uD are sufficiently small so that

C1 ‖k‖ + (C2 + r C3) ‖f‖0,Ω + C3 ‖uD‖1/2+ε,Γ ≤
1

2
. (5.17)

Then, there exist a positive constant C, depending only on parameters, data, and other constants, all
them independent of h, such that

‖(σ,u)− (σh,uh)‖ + ‖φ− φh‖1,Ω ≤ C
{

dist (φ,Hφ
h) + dist

(
(σ,u),Hσ

h ×Hu
h

)}
. (5.18)

Proof. The estimate for ‖φ − φh‖1,Ω follows straightforwardly from (5.16) and (5.17), and then, the

replacement of it back into (5.10), using again that ‖φ− φh‖0,n/ε;Ω ≤ C̃ε ‖φ− φh‖1,Ω, completes the
proof.

We now recall the approximation properties of the subspaces defined by (4.1), (4.2), and (4.3), which
follow from interpolation estimates of Sobolev spaces and the approximation properties provided by
the orthogonal projectors and the interpolation operators involved in their definitions (see, e.g. [9],
[10], [18], [20], [25], [28]):

(APσ
h ) there exists C > 0, independent of h, such that for each l ∈ [0, k + 1], and for each τ ∈

Hl(Ω) ∩ H0(div4/3; Ω) with div(τ ) ∈Wl,4/3(Ω), there holds

dist (τ ,Hσ
h ) := inf

τh∈Hσ
h

‖τ − τ h‖div4/3;Ω ≤ C hl
{
‖τ‖l,Ω + ‖div(τ )‖l,4/3;Ω

}
. (5.19)

(APu
h) there exists C > 0, independent of h, such that for each l ∈ [0, k + 1], and for each v ∈Wl,4(Ω)

there holds
dist (v,Hu

h) := inf
vh∈Hu

h

‖v − vh‖0,4;Ω ≤ C hl ‖v‖l,4;Ω . (5.20)
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(APφ
h) there exists C > 0, independent of h, such that for each l ∈ [0, k + 1], and for each ψ ∈ Hl+1(Ω)

there holds
dist (ψ,Hφ

h) := inf
ψh∈Hφh

‖ψ − ψh‖1,Ω ≤ C hl ‖ψ‖l+1,Ω . (5.21)

Finally, we conclude this section with the rates of convergence of our Galerkin scheme (4.4).

Theorem 5.6. In addition to the hypotheses of Theorems 3.10, 4.9, and 5.5, assume that there exists
l ∈ [0, k + 1] such that σ ∈ Hl(Ω), div(σ) ∈Wl,4/3(Ω), u ∈Wl,4(Ω), and φ ∈ Hl+1(Ω). Then, there
exists a positive constant Crc, independent of h, such that

‖(σ,u)− (σh,uh)‖ + ‖φ− φh‖1,Ω

≤ Crc h
l
{
‖σ‖l,Ω + ‖div(σ)‖l,4/3;Ω + ‖u‖l,4;Ω + ‖φ‖l+1,Ω

}
.

(5.22)

Proof. The result is a straightforward application of Theorem 5.5, (APσ
h ), (APu

h), and (APφ
h).

6 Numerical results

In this section we present some examples illustrating the performance of our mixed-primal finite
element method (4.4), on a set of quasi-uniform triangulations of the corresponding domains. Our
implementation is based on a FreeFem++ code (see [34]), in conjuntion with the direct linear solver
UMFPACK (see [24]). A Picard algorithm with a fixed given tolerance tol has been used for the
corresponding fixed-point problems (4.8), and the iterations are terminated once the relative error of
the entire coefficient vectors between two consecutive iterates, say coeffm and coeffm+1, is sufficiently
small, i.e.,

‖coeffm+1 − coeffm‖
‖coeffm+1‖

≤ tol ,

where ‖ · ‖ stands for the usual euclidean norm in RN , with N denoting the total number of degrees
of freedom defining the finite element method.

We now introduce some additional notation. The individual and total errors are denoted by:

e(σ) := ‖σ − σ‖div4/3;Ω, e(u) := ‖u− uh‖0,4;Ω,

e(φ) := ‖φ− φh‖1,Ω, e(p) := ‖p− ph‖0,Ω,

where ph corresponds to the post-processed pressure ph obtained via the expression (cf. (2.7))

ph = − 1

n
tr (σh) .

Next, as usual, for ? ∈ {σ,u, φ, p} we let r(?) be the experimental rate of convergence given by

r(?) :=
log(e(?)/ê(?))

log(h/ĥ)
,

where h and ĥ denote two consecutive meshsizes with errors e and ê, respectively.
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6.1 Example 1.

In our first example we illustrate the accuracy of our method in 2D by considering a manufactured exact
solution defined on Ω := (0, 1)2. We introduce the coefficients µ(φ) = (1− cφ)−2, γ(φ) = cφ(1− cφ)2,
ϑ(|∇φ|) = m1 + m2(1 + |∇φ|2)m3/2−1, and the source terms on the right hand sides are adjusted in
such a way that the exact solutions are given by the smooth functions

φ(x1, x2) = b− b exp(−x1(x1 − 1)x2(x2 − 1)),

u(x1, x2) =

(
sin(2πx1) cos(2πx2)
− cos(2πx1) sin(2πx2)

)
, σ = µ(φ)∇u− (x2

1 − x2
2) I ,

for (x1, x2) ∈ Ω. We take b = 15, c = m1 = m2 = 1/2, m3 = 3/2, where φ vanishes at Γ and uD is
imposed accordingly to the exact solution. The mean value of trσh over Ω is fixed via a Lagrange
multiplier strategy. The domain is partitioned into quasi-uniform meshes with 2n+2, n ∈ {0, . . . , 5}
vertices on each side of the domain. Values and plots of errors and corresponding rates associated to
RTk–Pk–Pk+1 for (4.4) and k ∈ {0, 1} are summarized in Table 6.1 and Figure 6.1. These findings
are in agreement with the theoretical error bounds of (5.22).

6.2 Example 2.

Our second test focuses on the non-convex domain Ω = (0, 1)2\[0.5, 1]2 under quasi-uniform refinement.
The functions µ, ϑ and γ are given as in the previous test. In this case, b = 3, c = m1 = m2 = 1/2,
m3 = 3/2. Since φ doesn’t identically vanishes on Γ, the right hand side must be modified properly.
Values and plots of errors and corresponding rates associated to RTk–Pk–Pk+1 for (4.4) and k ∈ {0, 1}
are summarized in Table 6.2 and Figure 6.2. Despite the non-convexity of the domain, the experimental
rates of convergence are in agreement with the theoretical error bounds of (5.22).

6.3 Example 3.

In this example we illustrate the accuracy of our method in 3D. We consider Ω = (0, 1)3, and the
functions µ, ϑ and γ are established as in Example 1. The source terms on the right hand side are
adjusted such that the exact solutions are given by

φ(x1, x2, x3) = b− b exp(x(x− 1)y(y − 1)z(z − 1)),

u(x1, x2, x3) =

 sin(πx) cos(πy) cos(πz)
−2 cos(πx) sin(πy) cos(πz)

cos(πx) cos(πy) sin(πz),

 σ = µ(φ)∇u− (x1 − 0.5)3 sin(x3 + x2) I ,

for (x1, x2, x3) ∈ Ω. Values and plots of errors for RT0–P0–P1 are summarized in Table 6.3 and
Figure 6.3. For the most refined meshes, the optimal rate of convergence O(h) is recovered.
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