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Centro de Investigación en
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nonlinear Brinkman model of porous media flow
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Abstract

In this paper we present an a posteriori error analysis of a mixed-VEM discretization for a nonlin-
ear Brinkman model of porous media flow, which has been proposed by the authors in a previous
work. Therein, the system is formulated in terms of a pseudostress tensor and the velocity gradi-
ent, whereas the velocity and the pressure of the fluid are computed via postprocessing formulae.
Furthermore, the well-posedness of the associated augmented formulation along with a priori er-
ror bounds for the discrete scheme also were established. We now propose reliable and efficient
residual-based a posteriori error estimates for a computable approximation of the virtual solution
associated to the aforementioned problem. The resulting error estimator is fully computable from
the degrees of freedom of the solutions and applies on very general polygonal meshes. For the
analysis we make use of a global inf-sup condition, Helmholtz decomposition, local approximation
properties of interpolation operators and inverse inequalities together with localization arguments
based on bubble functions. Finally, we provide some numerical results confirming the properties of
our estimator and illustrating the good performance of the associated adaptive algorithm.

Key words: mixed virtual element method, nonlinear Brinkman model, a posteriori error analysis,
postprocessing techniques.

1 Introduction

The Virtual Element Method (VEM) is a novel technique used for the numerical approximation of
partial differential equations, which was originally introduced in [3], and later extended in [10] to
handle mixed methods. Its applications to fluid mechanics has become a very active research subject
in recent years. Indeed, regarding the Stokes equations, we can cite to [2, 16, 6, 12, 14, 28]. The
Brinkman model has been addressed in [13, 32, 23], whereas VEM-discretizations for the Navier-
Stokes equations have been developed in [7, 24, 27, 26]. Recently, a mixed-VEM for the Boussinesq
problem has been proposed in [25].

The main motivation to use VEM is to construct Galerkin schemes with the capability to use general
polygonal/polyhedral meshes, naturally including hanging nodes and non-convex shapes. In this way,
the VEM approach offers several advantages due to the flexibility allowed to deal with general meshes.
On one hand, this flexibility ensures that adaptive strategies can be implemented very easily and
efficiently. On the other hand, the use of hanging nodes introduced by the refinement of a neighbouring
element are simply treated as new nodes, which has been proved does not affect the quality of the
approximation [15]. Thereby, local refinements can be performed on polygonal/polyhedral meshes
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using few elements, in contrast to classical mesh refinement techniques for triangular meshes, which
suffer from the fact that local refinement propagates into neighbouring regions. Hence, the design and
analysis of adaptive mesh refinement strategies based on a posteriori error indicators for the VEM
approach and particularly for the mixed-VEM is an attractive task. However, the literature on a
posteriori analysis for VEM is focused on primal schemes. In this regard, we can mention the following
works [8, 15, 9, 29, 30, 18]. In particular, the authors of [8] proposed a posteriori error bounds for the
C1-conforming VEM for the two-dimensional Poisson problem. Next, a posteriori error bounds for the
C0-conforming VEM for the discretization of second-order linear elliptic reaction-convection-diffusion
problems with nonconstant coefficients in two and three dimensions were proposed in [15], whereas
a residual-based a posteriori error estimator for the VEM discretization of the Poisson problem with
discontinuous diffusivity coefficient was introduced and analyzed in [9]. Moreover, in [29] and [30],
the authors developed an a posteriori error analysis of a VEM approach for the Steklov eigenvalue
problem and the spectral analysis for the elasticity equations, respectively. Finally, in [18] a general
recovery-based a posteriori error estimation framework for the VEM of arbitrary order on general
polygonal/polyhedral meshes has been developed.

On the other hand, in the context of mixed methods using the VEM approach, an a posteriori
error analysis was recently developed in [17], applied to second order elliptic equations in divergence
form with mixed boundary conditions. More precisely, the authors propose a framework to incor-
porate adaptive strategies to mixed-VEM on polygonal meshes. They employed techniques based in
Helmholtz decomposition, local approximation properties of interpolation operators, inverse inequali-
ties and localization arguments based on bubble functions, to construct a posteriori error estimates.

According to the above discussion, the main purpose of the present work is to apply the approach
from [17] to develop an a posteriori error analysis and the corresponding adaptive strategy for the
nonlinear Brinkman model of porous media flow proposed in [23]. To this end, we propose a residual-
type estimator, which involves fully computable approximations of the pseudostress variable. The
behavior of our estimator is analyzed with several numerical tests. The remainder of this paper
is organized as follows. In Section 2 we introduce the model problem, the associated variational
formulation and its respective mixed virtual element scheme. The a posteriori error analysis of our
method, which constitutes the main contribution of this work, is presented in details in Section 3.
Finally, we propose an adaptive algorithm and validate its effectiveness with some numerical examples
in Section 4.

We end this section with several notations to be used throughout the paper. Firstly, we let I be
the identity matrix in R2×2, and for any τ := (τij), ζ := (ζij) ∈ R2×2, we set

τ t := (τji) , tr(τ ) :=

2∑
i=1

τii, τd := τ − 1

2
tr(τ ) I and τ : ζ :=

2∑
i,j=1

τijζij ,

which denote, respectively, the transpose, the trace, the deviator of the tensor τ , and the tensorial
product between τ and ζ. Next, given a bounded domain O ⊆ R2, with polygonal boundary ∂O,
we utilize standard notations for Lebesgue spaces Lp(O), p > 1, and Sobolev spaces Hs(O), s ∈ R,
with norm ‖ · ‖s,O and seminorm | · |s,O. In particular, H1/2(∂O) is the space of traces of functions of
H1(O) and H−1/2(∂O) denotes its dual. Moreover, by M and M we will refer to the corresponding
vector and tensorial counterparts of the generic scalar functional space M, and ‖·‖, with no subscripts,
will stand for the natural norm of either an element or an operator in any product functional space.
Furthermore, we recall that

H(div;O) :=
{
τ ∈ L2(O) : div(τ ) ∈ L2(O)

}
,

and
H(rot;O) :=

{
τ ∈ L2(O) : rot(τ ) ∈ L2(O)

}
,
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equipped with the usual norms

‖τ‖2div;O := ‖τ‖20,O + ‖div(τ )‖20,O ∀ τ ∈ H(div;O) ,

and
‖τ‖2rot;O := ‖τ‖20,O + ‖rot(τ )‖20,O ∀ τ ∈ H(rot;O) ,

are Hilbert space. Also, we define

L2
tr(O) :=

{
s ∈ L2(O) : tr(s) = 0

}
, (1.1)

and

H0(div;O) :=

{
τ ∈ H(div;O) :

∫
O

tr(τ ) = 0

}
. (1.2)

Furthermore, we recall (see [11, 19]) that there holds the decomposition

H(div;O) = H0(div;O)⊕ R I , (1.3)

which, for each τ ∈ H(div;O) indicates that there exist unique τ 0 ∈ H0(div;O) and c := 1
2|O|

∫
O tr(τ )

∈ R, where |O| denotes the measure of O, such that τ = τ 0 + c I. Finally, we employ 0 to denote a
generic null vector, null tensor or null operator, and use C and c, with or without subscripts to denote
generic constants independent of the discretization parameters, which may take different values at
different places.

2 The nonlinear Brinkman model

In this section we briefly describe the augmented formulation considered in this work for the nonlinear
Brinkman model. Firstly, in Section 2.1 we recall the system of partial differential equations modeling
the problem, and its corresponding variational formulation. Then, the mixed-VEM discretization is
discussed in Section 2.2.

2.1 The model problem and its continuous formulation

Let Ω ⊆ R2 be a bounded domain with polygonal boundary Γ. Then, a nonlinear Brinkman model of
porous media flow is given by the following system of partial differential equations

σ = µ(|∇u|)∇u− p I in Ω , αu − div(σ) = f in Ω ,

div(u) = 0 in Ω , u = g on Γ and

∫
Ω
p = 0 ,

(2.1)

where the unknowns are given by the pseudostress σ, the velocity u and the pressure p of a fluid
occupying the region Ω. The nonlinear function µ : R+ → R represents the kinematic viscosity
function of the fluid, α > 0 is a constant approximation of the viscosity divided by the permeability,
f ∈ L2(Ω), and g ∈ H1/2(Γ) is a boundary data. Notice that the data g must satisfy the compatibility
condition

∫
Γ g ·ν = 0, where ν is the unit outward normal on Γ, whereas the uniqueness of a pressure

solution is ensured by the last equation of (2.1).

In what follows, we let ψij : R2×2 → R be the mapping given by ψij(r) := µ(|r|)rij for each
r := (rij) ∈ R2×2. Then, throughout this paper we assume that µ is of class C1 and that there exist
γ0, α0 > 0 such that for each r := (rij), s := (sij) ∈ R2×2, there hold

|ψij(r)| ≤ γ0 |r| ,
∣∣∣∣ ∂

∂rkl
ψij(r)

∣∣∣∣ ≤ γ0 ∀ i, j, k, l ∈ {1, 2} ,
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and
2∑

i,j,k,l=1

∂

∂rkl
ψij(r)sijskl ≥ α0 |s|2.

We recall here that the assumptions above allow us to define a nonlinear operator A : L2(Ω)→ [L2(Ω)]′

given by

[A(r), s] :=

∫
Ω
ψ(r) : s =

∫
Ω
µ(|r|)r : s ∀ r, s ∈ L2(Ω) , (2.2)

which is Lipschitz-continuous and strongly monotone (cf. [22, Lemma 2.1]). More precisely, there hold

‖A(r)− A(s)‖[L2(Ω)]′ ≤ γ0‖r− s‖0,Ω and [A(r)− A(s), r− s] ≥ α0‖r− s‖20,Ω , (2.3)

for each r, s ∈ L2(Ω).

Now, as was explained in [20], using the incompressibility condition to eliminate the pressure, and
introducing the auxiliary unknown t := ∇u in Ω, we can rewrite (2.1) as follows:

t = ∇u in Ω, σd = µ(|t|)t in Ω , αu − div(σ) = f in Ω ,

tr(t) = 0 in Ω , u = g on Γ and

∫
Ω

tr(σ) = 0 .
(2.4)

We recall that the pressure can be obtained using the formula (cf. [23, Section 2.2])

p = −1

2
tr(σ) in Ω . (2.5)

Note from the fourth and last equation of (2.4) that t and σ must belong to L2
tr(Ω) (cf. (1.1))

and H0(div; Ω) (cf. (1.2)), respectively. In what follows, we make use of the notation X := L2
tr(Ω)

and H := H0(div; Ω). Then, proceeding as in [23, Section 2.2], that is, testing the first two equations
of (2.4) by suitable test functions, integrating by parts, using the Dirichlet conditions for u, the fact
that the velocity can be replaced from the third equation of (2.4) as u = 1

α

{
f + div(σ)

}
, and adding

the following redundant term

κ

∫
Ω

{
σd − µ(|t|)t

}
: τd = 0 ∀ τ ∈ H ,

with κ a positive parameter to be specified later, we arrive at the augmented variational formulation:
Find (t,σ) ∈ X ×H such that

[A(t,σ), (s, τ )] = [F, (s, τ )] ∀ (s, τ ) ∈ X ×H , (2.6)

where A : X ×H → (X ×H)′ and F : X ×H → R are given by

[A(t,σ), (s, τ )] := [A(t), s− κτd] −
∫

Ω
s : σd +

∫
Ω

t : τd + κ

∫
Ω
σd : τd

+
1

α

∫
Ω

div(σ) · div(τ ) ,

(2.7)

and

[F, (s, τ )] := − 1

α

∫
Ω

f · div(τ ) + 〈τν,g〉 , (2.8)

respectively, where 〈·, ·〉 stands for the duality pairing between H−1/2(Γ) and H1/2(Γ).
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In addition, the analysis of the continuous formulation (2.6) is based in results of nonlinear analysis
(cf. [23, Section 2.2]). More precisely, it was proved there the Lipschitz-continuity of the operator A,
that is, there exists LA > 0 (cf [23, eq. 2.18]), depending only on κ, γ0 and α, such that

‖A(r, ζ)−A(s, τ )‖(X×H)′ ≤ LA ‖(r, ζ)− (s, τ )‖X×H , ∀ (r, ζ), (s, τ ) ∈ X ×H . (2.9)

Furthermore, for κ ∈
(

0, 2δα0
γ0

)
with δ ∈

(
0, 2

γ0

)
there exists CSM > 0 (cf. [23, Lemma 2.2]), depending

only on κ, α0, γ0, δ,Ω and α, such that

[A(r, ζ)−A(s, τ ), (r, ζ)− (s, τ )] ≥ CSM‖(r, ζ)− (s, τ )‖2X×H ∀ (r, ζ), (s, τ ) ∈ X ×H ,

which yielded the strong monotonicity of the operator A. In this way, the well-posedness of the
variational formulation (2.6) is established by the following theorem.

Theorem 2.1. Assume that f ∈ L2(Ω),g ∈ H1/2(Γ), and that given δ ∈
(

0, 2
γ0

)
, the parameter κ

lies in
(

0, 2δα0
γ0

)
. Then, there exists a unique (t,σ) ∈ X ×H solution of (2.6). Moreover, there exists

a positive constant C, depending only on Ω, α0, γ0, κ and α, such that

‖(t,σ)‖X×H ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
.

Proof. See [23, Theorem 2.1]).

2.2 The mixed virtual element method

Regarding the mesh, given {Th}h>0 a family of partitions of Ω into an open non-overlapping polygonal
elements and K ∈ Th, we denote its barycenter, diameter and number of edges by xK , hK , and dK ,
respectively, and define, as usual, h := max{hK : K ∈ Th}. In addition, in what follows we assume
that there exists a constant CT > 0 such that for each partition Th and for each K ∈ Th there hold:

a) the ratio between the shortest edge and the diameter hK of K is bigger than CT , and

b) K is star-shaped with respect to a ball B of radius CT hK and center xB ∈ K.

We recall here, from the above assumptions, that it is possible to show that each K ∈ Th is simply
connected, and that there exists an integer NT (depending only on CT ), such that the numbers of
edges of each K ∈ Th is bounded above by NT . Furthermore, the assumption b) implies that each
element K admits a sub-triangulation T Kh , obtained by joining each vertex of K with the point with
respect to which K is starred. In this way, since we are also assuming a), we have that the resulting

global triangulation T̂h :=
⋃
K∈Th

T Kh is shape regular. Finally, partitions including non-convex elements

are allowed, as also meshes with hanging nodes.

Now, given an integer ` ≥ 0 and O ⊆ R2, we let P`(O) be the space of polynomials on O of degree
up to `, and according to Section 1, we set P`(O) := [P`(O)]2 and P`(O) := [P`(O)]2×2. In addition,
given an edge e of Th with barycenter xe and diameter he, we introduce the following set of (` + 1)
normalized monomials on e

B`(e) :=

{(
x− xe
he

)j}
0≤j≤`

,

which certainly constitutes a basis on P`(e). Similarly, given K ∈ Th with barycenter xK , we define
the following set of 1

2(`+ 1)(`+ 2) normalized monomials

B`(K) :=

{(
x− xK
hK

)α}
0≤|α|≤`

,
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which is a basis of P`(K). Notice that in the definition of B`(K) above, we have made use of the
multi-index notation, that is, given x := (x1, x2)t ∈ R2 and α := (α1, α2)t, with non-negative integers
α1, α2, we set xα := xα1

1 xα2
2 and |α| := α1 + α2. Furthermore, for e and K as indicated, we define

B`(e) :=
{

(q, 0)t : q ∈ B`(e)
}
∪
{

(0, q)t : q ∈ B`(e)
}
,

and
B`(K) :=

{
(q, 0)t : q ∈ B`(K)

}
∪
{

(0, q)t : q ∈ B`(K)
}
.

In addition, for each integer ` ≥ 0, we let G`(K) be a basis of
(
∇P`+1(K)

)⊥ ∩ P`(K), which is the
L2(K)-orthogonal of ∇P`+1(K) in P`(K), and denote its tensorial counterpart as follows:

G`(K) :=
{(

qt

0

)
: q ∈ G`(K)

}
∪
{(

0

qt

)
: q ∈ G`(K)

}
.

We remark that, alternatively, one could also consider another choices, not necessarily orthogonal, that
have been proposed recently, such as Pk(K) = ∇Pk+1⊕x⊥Pk−1(K), where, given x := (x1, x2)t ∈ R2,
x⊥ denotes the rotated vector (−x2, x1)t. Actually, it is not difficult to see that it suffices to choose
any space G(K) such that P`(K) = ∇P`+1 ⊕ G(K).

Throughout the paper, we denote by PKk : L2(K)→ Pk(K) the L2(K)-orthogonal projection onto
the space Pk(K), for any K ∈ Th and k ≥ 0. In addition, we will make use of a tensorial version of
the aforementioned projector, which is denoted by PK

k . The following approximation properties of
these projectors are well-known:

‖v − PKk (v)‖0,K ≤ ChsK |v|s,K and ‖ζ −PK
k (ζ)‖0,K ≤ ChsK |ζ|s,K (2.10)

for all K ∈ Th, and for all v ∈ Hs(K), ζ ∈ Hs(K) with s ∈ {0, . . . , k + 1}. Finally, we now denote by
Phk and Ph

k , respectively, their global counterparts, that is, given v ∈ L2(Ω) and ζ ∈ L2(Ω), we let

Phk (v)
∣∣
K

:= PKk (v
∣∣
K

) and Ph
k(ζ)

∣∣
K

:= PK
k (ζ

∣∣
K

) ∀ K ∈ Th .

2.2.1 The virtual element space and its approximation properties

Let k ≥ 0 be an integer. Then, we define the finite dimensional subspaces of X and H, respectively,
as

Xh
k :=

{
s ∈ X : s

∣∣
K
∈ XK

k ∀ K ∈ Th
}

(2.11)

and
Hh
k :=

{
τ ∈ H : τ

∣∣
K
∈ HK

k ∀ K ∈ Th
}
, (2.12)

where, given K ∈ Th, XK
k := Pk(K) and HK

k is the space introduced in [5, Section 3.1], given by

HK
k :=

{
τ ∈ H(div;K) ∩H(rot;K) : τν|e ∈ Pk(e) ∀ edge e ∈ ∂K ,

div(τ ) ∈ Pk(K) and rot(τ ) ∈ Pk−1(K)
}
.

(2.13)

The degrees of freedom guaranteeing unisolvency for each τ ∈ HK
k are defined by (see, e.g., [4], [5])∫

e
τν · q ∀ q ∈ Bk(e) , ∀ edge e ∈ ∂K ,∫

K
τ : ∇p ∀p ∈ Bk(K) \ {(1, 0)t, (0, 1)t} ,∫

K
τ : ρ ∀ ρ ∈ Gk(K) .

(2.14)
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We now introduce the interpolation operator ΠK
k : H1(K) → HK

k , which is defined for each
τ ∈ H1(K) as the unique ΠK

k (τ ) in HK
k such that∫

e
(τ −ΠK

k (τ ))ν · q = 0 ∀ q ∈ Bk(e) , ∀ edge e ∈ ∂K ,∫
K

(τ −ΠK
k (τ )) : ∇p = 0 ∀ p ∈ Bk(K) \ {(1, 0)t, (0, 1)t} ,∫

K
(τ −ΠK

k (τ )) : ρ = 0 ∀ ρ ∈ Gk(K) .

(2.15)

Concerning the approximation properties of ΠK
k , we first recall from [5, eq. 3.19] that for each

τ ∈ Hs(K), with s ∈
{

1, . . . , k + 1
}

, there holds

‖τ −ΠK
k (τ )‖0,K ≤ C hsK |τ |s,K . (2.16)

Now, from (2.10) and the following conmutative property

div(ΠK
k (τ )) = PKk (div(τ )) ∀ τ ∈ H1(K) , (2.17)

we deduce, for each τ ∈ H1(K) such that div(τ ) ∈ Hs(K), with s ∈
{

0, . . . , k + 1
}

, that there holds

‖div(τ )− div(ΠK
k (τ ))‖0,K ≤ C hsK |div(τ )|s,K . (2.18)

In addition (cf. [17, Lemma 5.2]), for each τ ∈ H1(Ω) there holds

‖τν −ΠK
k (τ )ν‖0,e ≤ C h1/2

e ‖τ‖1,K ∀ edge e ∈ Th , (2.19)

where K is any element of Th such that e is an edge of K.

2.2.2 The discrete scheme and a priori error estimates

We now recall the discrete formulation proposed in [23, Section 3.3]. Indeed, using the fact that the
degrees of freedom introduced in (2.14) allow us the explicit computation of the orthogonal projection
on Pk(K) for each τ ∈ HK

k (cf. [5, Section 3.2]), we define the local discrete nonlinear operator
AK
h : (XK

k ×HK
k )→ (XK

k ×HK
k )′ given by

[AK
h (r, ζ), (s, τ )] := [A(r), s− κ(PK

k (τ ))d] −
∫
K

(PK
k (ζ))d : s +

∫
K

(PK
k (τ ))d : r

+ κ

∫
K

(PK
k (ζ))d : (PK

k (τ ))d +
1

α

∫
K

div(ζ) · div(τ )

+ SK(ζ −PK
k (ζ), τ −PK

k (τ ))

(2.20)

for all (r, ζ), (s, τ ) ∈ XK
k ×HK

k , where SK : HK
k ×HK

k → R is any symmetric and positive bilinear
form verifying (see [3, Section 4.6] or [5, Section 3.3])

ĉ0‖ζ‖20,K ≤ SK(ζ, ζ) ≤ ĉ1‖ζ‖20,K ∀ ζ ∈ HK
k , (2.21)

with constants ĉ0, ĉ1 > 0 depending only on CT . More precisely, for the numerical results reported
below in Section 4 we take SK as:

SK(ζ, τ ) :=

nK
k∑

j=1

mj,K(ζ)mj,K(τ ) ∀ (ζ, τ ) ∈ HK
k ×HK

k .
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where nKk denote the dimension of HK
k and mj,K , j ∈ {1, 2, . . . , nKk } collects the degrees of freedom

given by (2.14). Then, according to (2.20), we now introduce the global discrete nonlinear operator
Ah : (Xh

k ×Hh
k )→ (Xh

k ×Hh
k )′ as:

[Ah(r, ζ), (s, τ )] :=
∑
K∈Th

[AK
h (r, ζ), (s, τ )] ∀ (r, ζ), (s, τ ) ∈ Xh

k ×Hh
k . (2.22)

Therefore, the mixed virtual element scheme associated with the augmented formulation (2.6) reads:
Find (th,σh) ∈ Xh

k ×Hh
k such that

[Ah(th,σh), (sh, τ h)] = [F, (sh, τ h)] ∀ (sh, τ h) ∈ Xh
k ×Hh

k . (2.23)

The inconsistency between A and Ah is established by the following result.

Lemma 2.1. There exists a constant C > 0, depending only on κ and ĉ1 (cf. (2.21)), such that

[Ah(rh, ζh)−A(rh, ζh), (sh, τ h)]

≤ C
{
‖ζh −Ph

k(ζh)‖0,Ω + ‖(Ph
k

(
ζh))d − µ(|rh|) rh‖0,Ω

}
‖(sh, τ h)‖X×H

for all (rh, ζh), (sh, τ h) ∈ Xh
k ×Hh

k .

Proof. It is a light modification of [23, Lemma 4.1].

The unique solvability and stability of the virtual scheme (2.23) is established now.

Theorem 2.2. Assume that given δ ∈
(

0, 2
γ0

)
, the parameter κ lies in

(
0, 2δα0

γ0

)
. Then, there exists

a unique (th,σh) ∈ Xh
k ×Hh

k solution of (2.23), and there exists a positive constant C, independent
of h, such that

‖(th,σh)‖X×H ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
.

Proof. See [23, Theorem 3.1].

Now, we recall that the respective a priori error estimates for (2.6) and the corresponding rate of
convergence was developed in [23, Section 4]. More precisely, we have the following result.

Theorem 2.3. Let (σ, τ ) ∈ X×H and (σh, τ h) ∈ Xh
k ×Hh

h be the unique solutions of the continuous
and discrete schemes (2.6) and (2.23), respetively. Assume that for some s ∈ [1, k + 1] there hold
t
∣∣
K
,σ
∣∣
K
∈ Hs(K), and div(σ) ∈ Hs(K) for each K ∈ Th. Then, there exists C > 0, independent of

h, such that

‖t− th‖X + ‖σ − σh‖H ≤ Chs
∑
K∈Th

{
|t|s,K + |σ|s,K + |div(σ)|s,K

}
.

Proof. See [23, Theorem 4.2].

Next, as usual in VEM discretizations it is neccesary to get error estimates for computable ap-
proximations of the virtual solution. To this end, we construct two approximations from the virtual
solution σh, which are computed locally. The first one is obtained as its L2(Ω)-orthogonal projection
on Pk(K), namely

σ̂h,K := PK
k (σh|K) ∀ K ∈ Th , (2.24)
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whereas the second one, which is denoted by σ?h,K and belong to Pk+1(K), is computed as the unique
solution of the local problem

(σ?h,K , τ h)div;K =

∫
K
σ̂h,K : τ h +

∫
K

div(σh) · div(τ h) ∀ τ h ∈ Pk+1(K) , (2.25)

where (·, ·)div;K stands for the usual H(div;K)-inner product induced by norm ‖ · ‖div;K . We remark
here that the two approximations of σh can be explicitly computed for each K ∈ Th using only its
degrees of freedom. For more details see [23, Section 4.3] or [13, Section 5.3].

In what follows, for the approximation σ̂h,K introduced in (2.24), we denote by σ̂h its global
counterpart, that is, σ̂h

∣∣
K

:= σ̂h,K for all K ∈ Th. In this way, the following theorems provide the
theoretical rates of convergence for σ̂h, σ?h,K and the postproccesing variables ph and uh (cf. [23,
Section 4.1]), which are given by

ph := −
∫

Ω
tr(σ̂h) and uh :=

1

α

{
Phk (f) + div(σh)

}
. (2.26)

Theorem 2.4. Let (t,σ) ∈ X×H and (th,σh) ∈ Xh
k ×Hh

k be the unique solutions of the continuous
and discrete schemes (2.6) and (2.23), respectively. In addition, let σ̂h and (ph,uh) be the discrete
approximations introduced in (2.24) and (2.26), respectively. Assume that for some s ∈ [1, k+1] there
hold t

∣∣
K

, σ
∣∣
K
∈ Hs(K), div(σ)

∣∣
K
∈ Hs(K), and u

∣∣
K
∈ Hs(K) for each K ∈ Th. Then, there exist

positive constants C1 and C2, independent of h, such that

‖σ − σ̂h‖0,Ω + ‖p− ph‖0,Ω ≤ C1 h
s
∑
K∈Th

{
|t|s,K + |σ|s,K + |div(σ)|s,K

}
, (2.27)

and
‖u− uh‖0,Ω ≤ C2 h

s
∑
K∈Th

{
|u|s,K + |t|s,K + |σ|s,K + |div(σ)|s,K

}
. (2.28)

Proof. See [23, Theorem 4.3].

Theorem 2.5. Assume that the hypotheses of Theorem 2.4 are satisfied. Then, there exists a positive
constant C, independent of h, such that{ ∑

K∈Th

‖σ − σ?h,K‖2div;K

}1/2

≤ C hs
∑
K∈Th

{
|t|s,K + |σ|s,K + |div(σ)|s,K

}
. (2.29)

Proof. See [23, Theorem 4.4].

Finally, we recall here that the approximation σ?h,K is introduced to improve the non-satisfactory
order provided by the first approximation σ̂h,K with respect to the broken H(div)-norm. This fact
was substantiated numerically in [23, Section 5].

3 A posteriori error analysis

In this section we present details about an a posteriori error analysis for the mixed virtual element
scheme (2.23). For this purpose, we follow the approach from [17], which allows us to establish an
adaptive strategy bearing in mind the two approximations of σh introduced in Section 2.2.2.

We start by introducing some useful notation. Let Eh be the set of all edges of Th, and E(K) denotes
the set of edges of a given K ∈ Th. Then Eh = Eh(Ω) ∪ Eh(Γ), where Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and
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Eh(Γ) := {e ∈ Eh : e ⊆ Γ} . Moreover, he stands for the length of a given edge e. Also, for each edge
e ∈ Eh we fix a unit normal vector νe := (ν1, ν2)t, and let se := (−ν2, ν1)t be the corresponding fixed
unit tangential vector along e. However, when no confusion arises, we simply write ν and s instead of
νe and se, respectively. Now, given ζ ∈ L2(Ω) such that ζ

∣∣
K
∈ C(K) for each K ∈ Th and e ∈ Eh(Ω),

we denote by [[ζs]] the tangential jump of ζ across e, that is [[ζs]] := (ζ
∣∣
K
− ζ

∣∣
K′

)
∣∣
e
s, where K and

K ′ are the elements of Th having e as a common edge. Finally, given scalar, vector and tensor valued
fields v,ϕ := (ϕ1, ϕ2)t and τ := (τij), respectively, we let

curl(v) :=

(
∂v
∂x2

− ∂v
∂x1

)t

, curl(ϕ) :=

(
curl(ϕ1)t

curl(ϕ2)t

)
and curl(τ ) :=

(
∂τ12
∂x1
− ∂τ11

∂x2
∂τ22
∂x1
− ∂τ21

∂x2

)
.

In what follows we assume the hypotheses of Theorems 2.1 and 2.2 and let (t,σ) ∈ X × H and
(th,σh) ∈ Xh

k × Hh
k be the unique solutions of (2.6) and (2.23), respectively. In addition, let σ̂h,K ,

σ?h,K and uh be the approximations introduced in Section 2.2.2. Then, we define for each K ∈ Th the
local a posteriori error indicators

Ψ2
K := Λ2

1,K + Λ2
2,K + Λ2

3,K + ‖σ?,dh,K − µ(|th|)th‖20,K ,

and

θ2
K := Λ2

4,K + h2
K‖th −∇uh‖20,K + h2

K‖curl(th)‖20,K +
∑

e∈E(K)∩Eh(Ω)

he‖[[ths]]‖20,e

+
∑

e∈E(K)∩Eh(Γ)

he

{
‖g − uh‖20,e +

∥∥∥dg
ds
− ths

∥∥∥2

0,e

}
,

where σ?,dh,K is denoting the deviator tensor of σ?h,K , and

Λ2
1,K := SK(σh − σ̂h,K ,σh − σ̂h,K) , Λ2

2,K := ‖σ?h,K − σ̂h,K‖20,K ,

Λ2
3,K := ‖div(σh − σ?h,K)‖20,K , Λ2

4,K :=
1

α2
‖f − PKk (f)‖20,K .

(3.1)

We observe that the term dg
ds in θ2

K requires the trace g to be more regular, in particular, we need
that g ∈ H1(Γ). Then, we introduce the global error estimator given by

η :=

{ ∑
K∈Th

{
Ψ2
K + θ2

K

}}1/2

. (3.2)

The following theorem constitutes the main result of this section

Theorem 3.1. Let (t,σ) ∈ X ×H and (th,σh) ∈ Xh
k ×Hh

k be the unique solutions of the problem
(2.6) and (2.23), respectively. In addition, let σ?h,K be the discrete approximation introduced in

(2.25). Furthermore, assume that the data g ∈ H1(Γ) and
dg

ds
is piecewise polynomial. Then, there

exist positives constants Ceff and Crel, independent of h, such that

‖u− uh‖0,Ω + ‖(t,σ)− (th,σh)‖X×H +

{ ∑
K∈Th

‖σ − σ?h,K‖2div;K

}1/2

≤ Crelη , (3.3)

and

Ceffη ≤ ‖u−uh‖0,Ω + ‖(t,σ)−(th,σh)‖X×H +

{ ∑
K∈Th

‖σ−σ?h,K‖2div;K

}1/2

+ ‖σ−Ph
k(σ)‖0,Ω . (3.4)
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The proof of the Theorem 3.1 is separated into the two parts given by the next subsections. More
precisely, we show lower and upper bounds for the error that involves the discrete approximations σ?h,K ,
which were introduced in Section 2.2.2, and the global error estimator defined in (3.2). In Section
3.1 we prove that η satisfy reliability properties, whereas the corresponding efficiency properties are
derived in Section 3.2.

3.1 Reliability

We proceed with the following preliminary estimate.

Lemma 3.1. Let (t,σ) ∈ X ×H and (th,σh)×Xh
k ×Hh

k be the unique solutions of (2.6) and (2.23),
respectively. Then, there exists a positive constant C, such that

C‖(t,σ)− (th,σh)‖X×H ≤
{ ∑
K∈Th

{
Λ2

1,K + Λ2
2,K + ‖σ?,dh,K −µ(|th|)th‖20,K

}}1/2

+ sup
τ∈H
τ 6=0

R(τ )

‖τ‖H
, (3.5)

where

R(τ ) := −
∫

Ω
th : (τ − τ h) + 〈(τ − τ h)ν,g〉 − 1

α

∫
Ω

(f + div(σh)) · div(τ − τ h) (3.6)

for all (s, τ h) ∈ Xh
k × Hh

k such that ‖(sh, τ h)‖X×H ≤ C‖(s, τ )‖X×H for some positive constant C
independent of (s, τ ).

Proof. Proceeding as in [20, Section 5.2], together with the fact that the nonlinear operator A (cf.
(2.2)), has Gâteaux derivative DA(r̃) at any r̃ ∈ X, it is possible to deduce that the linear operator
M : X ×H → (X ×H)′ defined by

[M(s, τ ), (r, ζ)] := DA(r̃)(r, s−κτd) −
∫

Ω
s : ζd +

∫
Ω

r : τd + κ

∫
Ω
ζd : τd +

1

α

∫
Ω

div(ζ) ·div(τ )

for all (s, τ ), (r, ζ) ∈ X×H, satisfies a global inf-sup condition. More precisely, there exists a constant
C > 0, independent of h, such that

C‖(r, ζ)‖X×H ≤ sup
(s,τ )∈X×H

(s,τ ) 6=0

[M(s, τ ), (r, ζ)]

‖(s, τ )‖X×H
. (3.7)

for all r̃ ∈ X and for all (r, ζ) ∈ X ×H. Next, since t, th ∈ X, the mean value theorem ensure the
existence of r̃h ∈ X, such that

DA(r̃h)(t− th, s) = [A(t)− A(th), s] ∀ s ∈ X .

Then, applying (3.7) to the error (r, ζ) := (t− th,σ − σh), we get

C‖(t,σ)− (th,σh)‖X×H ≤ sup
(s,τ )∈X×H

(s,τ )6=0

[A(t,σ)−A(th,σh), (s, τ )]

‖(s, τ )‖X×H
. (3.8)

Furthermore, from (2.6), (2.23), and adding and subtracting suitable terms, we realize that

[A(t,σ)−A(th,σh), (s, τ )] = [F, (s, τ )]− [A(th,σh), (s, τ )]

= [F, (s− sh, τ − τ h)] + [F, (sh, τ h)]− [A(th,σh), (s, τ )]

= [F, (s− sh, τ − τ h)] + [Ah(th,σh), (sh, τ h)]
− [A(th,σh), (s, τ )]

= [F, (s− sh, τ − τ h)] + [Ah(th,σh)−A(th,σh), (sh, τ h)]
− [A(th,σh), (s− sh, τ − τ h)]

(3.9)
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for a given (s, τ ) ∈ X ×H and any (sh, τ h) ∈ Xh
k ×Hh

k

Now, in what follows we assume that (sh, τ h) ∈ Xh
k × Hh

k is chosen such that ‖(sh, τ h)‖X×H ≤
C‖(s, τ )‖X×H for some positive constant C independent of (s, τ ). Hence, from Lemma 2.1, the
inequality (2.21), and the expresions in (3.1), we deduce

[Ah(th,σh)−A(th,σh), (sh, τ h)] ≤ C

{ ∑
K∈Th

{
Λ2

1,K+Λ2
2,K+‖σ?,dh,K−µ(|th|)th‖20,K

}}1/2

‖(s, τ )‖X×H ,

(3.10)
with a constant C > 0, independent of h. On the other hand, from (2.7) and (2.8), adding and
subtracting suitable terms, and then performing some algebraic manipulations, we find that

[F, (s− sh, τ − τ h)]− [A(th,σh), (s− sh, τ − τ h)]

=

∫
Ω

{
σ̂d
h − µ(|th|)th

}
:
{

(s − sh)− κ(τ − τ h)d
}

+

∫
Ω

(σh − σ̂h) :
{

(s− sh)− κ(τ − τ h)d
}

+ R(τ ) ,

(3.11)

where R(τ ) is given by (3.6). Then, from (3.8)–(3.11), using the Cauchy-Schwarz inequality, adding

and subtracting locally σ?,dh,K , and recalling that ‖(sh, τ h)‖X×H ≤ C‖(s, τ )‖X×H , we conclude the
proof.

We now aim to bound the supremum on the right-hand side of (3.5). In order to do that, we need
a suitable choice of (sh, τ h) ∈ Xh

k × Hh
k . To this end, given (s, τ ) ∈ X × H, we take by simplicity

sh := Ph
k(s) ∈ Xh

k , whereas the choice of τ h requires the use of a Clément-type interpolant and the
Helmholtz decomposition in H.

Then, proceeding as in [17, Section 5], we make use of the interpolation operator Ihk : H1(Ω)→ V h
k ,

where V h
k (cf. [3]) is defined for all k ≥ 0 as

V h
k :=

{
v ∈ H1(Ω) : v

∣∣
∂K
∈ Bk(∂K) and ∆v ∈ Pk−1(K) ∀K ∈ Th

}
,

with
Bk(∂K) :=

{
v ∈ C(∂K) : v|e ∈ Pk+1(e) ∀ edge e ⊆ ∂K

}
.

Next, the following lemma establishes the local approximation properties of Ih.

Lemma 3.2. There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω) there
hold

‖v − Ihk (v)‖0,K ≤ c1hK‖v‖1,ωK ∀ K ∈ Th , (3.12)

and
‖(v − Ihk (v)) · νe‖0,e ≤ c2h

1/2
e ‖v‖1,ωe ∀ e ∈ Eh , (3.13)

where ωK := {K ′ ∈ Th : K ∩K ′ 6= ∅} and ωe := {K ∈ Th : e ∈ E(K)}.

Proof. See [29, Section 4, Proposition 4.2] and [17, Section 5, eq. 24] for more details.

Now, for each τ ∈ H we consider its Helmholtz decomposition (see, e.g, [21, Section 4])

τ = ∇z + curl (ϕ) , (3.14)

where z ∈ H2(Ω) and ϕ ∈ H1(Ω), are such that div (∇z) = div (τ ) in Ω, and there holds

‖z‖2,Ω + ‖ϕ‖1,Ω ≤ C‖τ‖div;Ω , (3.15)
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with C a positive constant independent of all the foregoing variables. Then, recalling that Ihk :
H1(Ω)→ V h

k and Πh
k : H1(Ω)→ Hh

k are the respective interpolation operators on V h
k and Hh

k , letting
ζ := ∇z ∈ H1(Ω), ϕh := Ihk (ϕ), and using Lemma 5.1 in [17, Section 5], we set

τ h := Πh
k(ζ) + curl (ϕh) + chI , (3.16)

where ch ∈ R is chosen so that τ h ∈ Hh
k . Equivalently, τ h is the H0(div; Ω)-component of curl(ϕh) +

Πh
k(ζ). In addition, it follows from our chosen for (sh, τ h), by applying of the triangle inequality, the

estimates (2.16), (3.12), and the property (3.15), that there holds ‖(sh, τ h)‖X×H ≤ C‖(s, τ )‖X×H for
some C > 0 independent of (s, τ ).

Now, according to (3.14), (3.16), and the linearity of R (cf. (3.6)), we deduce that the expression
R(τ ) can be rewritten as

R(τ ) = R(ζ −Πh
k(ζ)) + R(curl(ϕ−ϕh)) + chRI ,

where

RI :=

∫
Ω

th : Id − 〈Iν,g〉 +
1

α

∫
Ω

(f + div(σh)) · div(I) .

Then, using that Id = 0, div(I) = 0 and the fact that 〈Iν,g〉 = 0 (which is a consequence of the
compatibility condition for the Dirichlet datum g explained in Section 2.1), we obtain

R(τ ) = R(ζ −Πh
k(ζ)) + R(curl(ϕ−ϕh)) . (3.17)

Next, the following lemma yields the required bound for the supremum on the right-hand side of
(3.5).

Lemma 3.3. Assume that g ∈ H1(Γ). Then, there exists C > 0, independent of h, such that

|R(τ )| ≤ C

{ ∑
K∈Th

θ2
K

}1/2

‖τ‖H .

Proof. It is follows after to bound the modules of the two expressions on the right-hand side of (3.17).
To bound |R(ζ−Πh

k(ζ))|, we use the ideas from Lemma 5.8 in [17, Section 5], together to the identity

div(ζ −Πh
k(ζ)) = (I− Phk )(div(τ )) ,

which is consequence of (2.17), and the fact that div(ζ) = div(τ ) in Ω, and where I is denoting
a generic identity operator. In addition, following similar arguments to the proof of Lemma 5.4 in
[20, Section 5] (see also [17, Lemma 5.9]), in join with Lemma 3.2, and the fact that the number of
elements in ωe is bounded, the term |R(curl(ϕ−ϕh))| is suitably bounded.

Then, as a consequence of Lemmas 3.1 and 3.3, the triangle inequality, and the lower bound in
(2.21), we conclude that there exists C > 0, independent of h, such that

‖(t,σ)− (th,σh)‖X×H +

{ ∑
K∈Th

‖σ − σ?h,K‖2div;K

}1/2

≤ C

{
‖(t,σ)− (th,σh)‖X×H +

{ ∑
K∈Th

{
Λ2

1,K + Λ2
2,K + Λ2

3,K

}}1/2}
≤ C η

(3.18)
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where η is the global estimator defined by (3.2). Now, in order to incorporate the error ‖u− uh‖0,Ω,
we recall that from (2.1) and (2.26), we have that

u =
1

α

{
f + div (σ)

}
and uh =

1

α

{
Phk (f) + div (σh)

}
, (3.19)

whence,

‖u− uh‖0,Ω ≤
1

α

{
‖f − Phk (f)‖0,Ω + ‖σ − σh‖H

}
. (3.20)

Finally, from (3.18) and (3.20) we have that there exists Crel > 0, independent of h, such that

‖u− uh‖0,Ω + ‖(t,σ)− (th,σh)‖X×H +

{ ∑
K∈Th

‖σ − σ?h,K‖2div;K

}1/2

≤ Crelη ,

which proves the reliability of the estimator η.

3.2 Efficiency

In this section we prove the efficiency of our a posteriori error estimator η (lower bound in (3.4)). For
this purpose, we derive suitable upper bounds for the terms defining the local error indicators. First,
using the upper bound in (2.21), the estimate (3.19), and adding and subtracting suitable terms, we
get

Λ2
1,K ≤ 4 ĉ1

{
‖σ − σ?h,K‖20,K + Λ2

2,K + ‖σ − σh‖20,K
}
,

Λ2
2,K ≤ 4

{
‖σ − σ?h,K‖20,K + ‖σ − σh‖20,K + ‖σ −PK

k (σ)‖20,K
}
,

Λ2
3,K ≤ 2

{
‖div(σ − σ?h,K)‖20,K + ‖div(σ − σh)‖20,K

}
,

Λ2
4,K ≤ 4 max{1, α2}

{
‖u− uh‖20,K + ‖div(σ − σ?h,K)‖20,K + Λ2

3,K

}
.

(3.21)

Moreover, procceding as in [20, Section 5.3, eq. 5.26], that is, adding and subtracting σd, using
the second equation in (2.4), the fact that ‖ζd‖0,K ≤ ‖ζ‖0,K for all ζ ∈ L2(K), and the Lipschitz-
continuity of the operator A (cf. (2.3)), but restricted to the element K ∈ Th instead of Ω, we deduce
that

‖σ̂?,dh,K − µ(|th|)th‖20,K ≤ 2
{
‖σ − σ?h,K‖20,K + γ2

0 ‖t− th‖20,K
}
. (3.22)

Next, the upper bounds of the terms which depend on the mesh parameters hK and he, will be
derived below. For this purpose, we make use of the results and estimates proved in [17, Section 5.4],
whose proofs use techniques based on bubble functions, extension operators, and discrete trace and
inverse inequalities. More precisely, it was used the following Lemma (see [15, 17, 29] for more details).

Lemma 3.4. Given k ≥ 0 and K ∈ Th, there exists a positive constant Cbub, independent of hK , such
that

C−1
bub‖q‖

2
0,K ≤ ‖ψ

1/2
K q‖20,K ≤ Cbub‖q‖20,K ∀ q ∈ Pk(K) ,

and
C−1

bub‖q‖0,K ≤ ‖ψKq‖0,K + hK |ψKq|1,K ≤ Cbub‖q‖0,K ∀ q ∈ Pk(K) .

In addition, given e ∈ ∂K, there hold

C−1
bub‖q‖

2
0,e ≤ ‖ψ1/2

e q‖20,e ≤ Cbub‖q‖20,e ∀ q ∈ Pk(e) ,

14



and
h
−1/2
K ‖ψeL(q)‖0,K + h

1/2
K |ψeL(q)|1,K ≤ Cbub‖q‖0,e ∀ q ∈ Pk(e) ,

where K ∈ ωe and ωe is as in Lemma 3.2.

Lemma 3.5. Assume that
dg

ds
is piecewise polynomial. Then, there exist Ci > 0, i = 1, . . . , 4,

independent of h, such that

h2
K‖curl(th)‖20,K ≤ C1‖t− th‖20,K ∀ K ∈ Th ,

he
∥∥[[ths]]

∥∥2

0,e
≤ C2‖t− th‖20,ωe

∀ e ∈ Eh(Ω) ,

h2
K‖th −∇uh‖20,K ≤ C3

{
‖u− uh‖20,K + h2

K‖t− th‖20,K
}

∀ K ∈ Th ,

he

{
‖g − uh‖20,e +

∥∥∥dg
ds
− ths

∥∥∥2

0,e

}
≤ C4

{
‖u− uh‖20,ωe

+ h2
Ke
‖t− th‖20,ωe

}
∀ e ∈ Eh(Γ) ,

where ωe is as in Lemma 3.2.

Proof. The first two estimates are consequence of [17, Lemma 5.17] through an adaptation of [17,
Lemma 5.16]. The third inequality follows from a slight modification of the proof of Lemma 5.14 in
[17]. Finally, the last estimate follows the same arguments used in the proof of Lemmas 5.15 and 5.18
of [17]. We remark here that all these proofs makes use of Lemma 3.4.

Consequently, the efficiency of η (lower bound in Lemma 3.1) follows straightforwardly from esti-
mates (3.21)–(3.22), together with Lemma 3.5, after summing up over K ∈ Th. We observe here that
this bound shows the efficiency of the estimator η up to data oscillation. This fact can be interpreted
as a quasi-efficiency (see, e.g, [1, 31]).

4 Numerical results

In this section, we present several numerical examples confirming reliability and efficiency of the a
posteriori error estimator η derived in Section 3, and showing the behavior of the associated adaptive
algorithm. We recall here that the condition

∫
Ω tr(τ h) = 0 for each τ h ∈ Hh

k was imposed as usual,
that is, via a real Lagrange multiplier (see [23, Section 5] for more details). In what follows N stands
for the total number of degrees of freedom of (2.23), that is,

N := 2(k + 1)× {number of edges e ∈ Th}+
(k + 2)(7k + 3)

2
× {number of elements K ∈ Th}+ 1.

Also, the individual errors are defined by

e(u) := ‖u− uh‖0,Ω , e(t) := ‖t− th‖0,Ω , e(p) := ‖p− ph‖0,Ω ,

e(σ) :=

∑
K∈Th

‖σ − σ?h,K‖2div;K


1/2

and e(u, t,σ) :=
{

[e(u)]2 + [e(t)]2 + [e(σ)]2
}1/2

,

where uh and ph are computed by the postprocessing formulae (2.26), whereas the effectivity index
with respect η is given by

eff(η) :=
e(u, t,σ)

η
.
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Observe that this quantity is not a true efficiency index, however, it gives information on the behavior
of η. Moreover, in this case, some of the local indicators defined in (3.1) can be interpreted as
oscillation terms . At least they must have the same rate of convergence of the global error if the
exact solution is smooth enough (see, e.g. [17, Section 5.4]). In Example 1 it is proved numerically

Then, we define the experimental rates of convergence

r(·) := −2
log(e(·)/e′(·))

log(N/N ′)
,

where e and e′ denote the corresponding errors for two consecutive meshes with N and N ′ the respec-
tive degrees of freedom of each decomposition. Similarly, we define:

r(Λi) := −2
log(Λi/Λ

′
i)

log(N/N ′)
,

where Λi :=
{ ∑
K∈Th

Λ2
i,K

}1/2
. For the tests that include adaptivity, we use for the local a posteriori

error indicator ηK := η|K , the strategy:

(i) Start with a coarse mesh Th.

(ii) Solve the discrete problem on the current mesh Th.

(iii) Compute local indicators for each K ∈ Th.

(iv) Mark each K ′ ∈ Th to be refined appyling the rule

ηK′ ≥ β max
K∈Th

ηK ,

with β ∈ (0, 1). Here we use β = 0.35.

(v) Define the new mesh as actual mesh Th and go to step (ii).

Regarding adaptive strategy, for each K ∈ Th that has been marked for refinement, we subdivide it
using the midpoint of each edge of the boundary of K and connecting these to its barycenter. Observe
that all meshes used for the numerical examples in this section (see Figure 4.1) are composed of convex
elements, therefore, the barycenter of K is an internal point of this. In this way, each new element
generated with this strategy is a quadrilateral. Now, since for meshes with non-convex elements, it is
possible that some barycenter is outside its respective element, we can use the barycenter of Ker(K)
to subdivide K.

In turn, the nonlinear algebraic systems are solved by the Newton method with a tolerance of 10−6

and taking as initial iteration the solution of the linear Brinkman problem with µ = 1. The numerical
results presented below were obtained using a MATLAB code. For all the numerical tests we use
α = 1 and κ = 0.4, where the value of κ is chosen according to the Theorems 2.2 and 2.3.

4.1 Example 1

First, we consider the unit square Ω := (0, 1)2, and choose f and g such that the exact solution is
given by

u(x) :=

(
− cos(πx1) sin(πx2)

sin(πx1) cos(πx2)

)
and p(x) := x2

1 + x2
2 − p0
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Figure 4.1: Sample meshes: distorted squares (left), triangular (center) and hexagonal (right).

for all x := (x1, x2)t ∈ Ω, where p0 ∈ R is such that
∫

Ω p = 0. Moreover, we consider the nonlinear
viscosity µ given by

µ(s) := 2 + (1 + s2)−1/6 ∀ s ≥ 0 . (4.1)

The aim of this test is to verify the asymptotic behavior of the estimator with a smooth solution
and under uniform refinements. To this end, we use three families of uniformly generated meshes:
distorted squares, uniform triangular and hexagonal (see Figure 4.1).

Tables 4.1 to 4.3 show the convergence history of the errors and the estimator on the three sequence
of uniformly refined meshes, indicating that all converge at the optimal rate for polynomial degrees
k = 0, 1, 2. We can observe the robustness of the estimator with respect to the mesh shape. Moreover,
the effectivity of η remains bounded. In addition, we see from Table 4.4–4.6 that each term Λi,K for
i = 1, ..., 4, converge with optimal order k + 1, with exception of Λ3,K , which converge with order
k + 2. Also, the robustness of the terms with respect to the mesh shape is verified.

k N e(u, t,σ) r(u, t,σ) η r(η) eff(η)

741 4.9184e+00 −− 5.5400e+00 −− 0.8878
2881 2.4631e+00 1.0186 2.7848e+00 1.0131 0.8845

0 6421 1.6443e+00 1.0084 1.8597e+00 1.0076 0.8842
11361 1.2342e+00 1.0056 1.3961e+00 1.0050 0.8840
17701 9.8742e-01 1.0061 1.1173e+00 1.0047 0.8837

2381 4.2581e-01 −− 4.7037e-01 −− 0.9053
9361 1.0858e-01 1.9963 1.1968e-01 1.9995 0.9072

1 20941 4.8948e-02 1.9790 5.3847e-02 1.9840 0.9090
37121 2.7384e-02 2.0290 3.0154e-02 2.0256 0.9081
57901 1.7577e-02 1.9948 1.9348e-02 1.9963 0.9084

4721 4.7913e-02 −− 4.9194e-02 −− 0.9740
18641 9.4987e-03 2.3566 9.6137e-03 2.3775 0.9880

2 41761 3.0449e-03 2.8209 3.0779e-03 2.8241 0.9893
74081 1.2901e-03 2.9964 1.3039e-03 2.9968 0.9894

115601 6.5711e-04 3.0321 6.6436e-04 3.0307 0.9891

Table 4.1: Example 1. Convergence history for a uniformly generated sequence of meshes composed
of distorted squares.
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k N e(u, t,σ) r(u, t,σ) η r(η) eff(η)

801 5.0103e+00 −− 5.6443e+00 −− 0.8877
3137 2.5110e+00 1.0120 2.8399e+00 1.0063 0.8842

0 7009 1.6749e+00 1.0074 1.8961e+00 1.0050 0.8834
12417 1.2565e+00 1.0053 1.4229e+00 1.0039 0.8830
19361 1.0053e+00 1.0042 1.1387e+00 1.0033 0.8828

2753 4.0703e-01 −− 4.7947e-01 −− 0.8489
10881 1.0774e-01 1.9342 1.2502e-01 1.9561 0.8618

1 24385 4.8734e-02 1.9663 5.6304e-02 1.9772 0.8656
43265 2.7545e-02 1.9902 3.1787e-02 1.9942 0.8666
67521 1.7659e-02 1.9976 2.0370e-02 1.9994 0.8669

5601 4.4640e-02 −− 5.0546e-02 −− 0.8832
22209 1.0416e-02 2.1128 1.0857e-02 2.2331 0.9594

2 49825 3.3845e-03 2.7825 3.5066e-03 2.7973 0.9652
88449 1.4448e-03 2.9665 1.4962e-03 2.9681 0.9656

138081 7.4558e-04 2.9705 7.7186e-04 2.9720 0.9660

Table 4.2: Example 1. Convergence history for a uniformly generated sequence of triangular meshes.

k N e(u, t,σ) r(u, t,σ) η r(η) eff(η)

903 5.1548e+00 −− 5.5410e+00 −− 0.9303
3891 2.3753e+00 1.0608 2.5969e+00 1.0377 0.9147

0 7806 1.6636e+00 1.0230 1.8278e+00 1.0089 0.9102
13071 1.2797e+00 1.0178 1.4098e+00 1.0074 0.9078
19686 1.0399e+00 1.0137 1.1474e+00 1.0057 0.9063

2723 3.7773e-01 −− 4.2442e-01 −− 0.8810
11669 8.4064e-02 2.0651 9.3206e-02 2.0835 0.9019

1 23414 4.1853e-02 2.0029 4.6318e-02 2.0083 0.9036
39209 2.4964e-02 2.0045 2.7602e-02 2.0080 0.9044
59054 1.6562e-02 2.0038 1.8302e-02 2.0065 0.9049

5257 5.2896e-02 −− 5.3776e-02 −− 0.9836
22471 6.9311e-03 2.7980 6.9875e-03 2.8096 0.9919

2 45091 2.5194e-03 2.9062 2.5381e-03 2.9082 0.9926
75511 1.1781e-03 2.9484 1.1865e-03 2.9496 0.9929

113731 6.4129e-04 2.9700 6.4576e-04 2.9707 0.9931

Table 4.3: Example 1. Convergence history for a uniformly generated sequence of hexagonal meshes.

k N Λ1 r(Λ1) Λ2 r(Λ2) Λ3 r(Λ3) Λ4 r(Λ4)

741 1.8477e+00 −− 7.5024e-01 −− 1.5379e-02 −− 4.9244e+00 −−
2881 9.3401e-01 1.0048 3.7905e-01 1.0056 3.8945e-03 2.0229 2.4657e+00 1.0188

0 6421 6.2345e-01 1.0087 2.5285e-01 1.0104 1.7304e-03 2.0244 1.6465e+00 1.0078
11361 4.6799e-01 1.0053 1.8981e-01 1.0051 9.7493e-04 2.0110 1.2359e+00 1.0054
17701 3.7456e-01 1.0044 1.5192e-01 1.0043 6.2437e-04 2.0098 9.8875e-01 1.0063

2381 1.0284e-01 −− 5.7518e-02 −− 6.9336e-04 −− 4.2232e-01 −−
9361 2.7016e-02 1.9529 1.4446e-02 2.0185 8.7022e-05 3.0319 1.0808e-01 1.9910

1 20941 1.2218e-02 1.9710 6.4404e-03 2.0066 2.5888e-05 3.0115 4.8795e-02 1.9753
37121 6.9260e-03 1.9831 3.6282e-03 2.0048 1.0944e-05 3.0080 2.7314e-02 2.0270
57901 4.4529e-03 1.9873 2.3227e-03 2.0065 5.6063e-06 3.0093 1.7539e-02 1.9930

4721 4.1684e-03 −− 4.1204e-03 −− 5.5974e-05 −− 4.7853e-02 −−
18641 6.0907e-04 2.8010 5.1934e-04 3.0162 3.4255e-06 4.0684 9.4926e-03 2.3558

2 41761 1.9152e-04 2.8687 1.5552e-04 2.9898 6.7610e-07 4.0235 3.0429e-03 2.8209
74081 8.3109e-05 2.9129 6.4689e-05 3.0606 2.0539e-07 4.1571 1.2894e-03 2.9959

115601 4.2959e-05 2.9660 3.3209e-05 2.9969 8.4115e-08 4.0125 6.5675e-04 3.0323

Table 4.4: Example 1. Convergence history of some terms using a uniformly generated sequence of
meshes composed of distorted squares.

18



k N Λ1 r(Λ1) Λ2 r(Λ2) Λ3 r(Λ3) Λ4 r(Λ4)

801 1.8756e+00 −− 6.6290e-01 −− 1.1960e-02 −− 4.9732e+00 −−
3137 9.4552e-01 1.0035 3.3426e-01 1.0031 3.0154e-03 2.0186 2.4931e+00 1.0117

0 7009 6.3131e-01 1.0049 2.2319e-01 1.0048 1.3423e-03 2.0135 1.6631e+00 1.0072
12417 4.7374e-01 1.0042 1.6749e-01 1.0042 7.5547e-04 2.0103 1.2476e+00 1.0052
19361 3.7909e-01 1.0036 1.3403e-01 1.0036 4.8362e-04 2.0083 9.9822e-01 1.0042

2753 1.5275e-01 −− 5.3977e-02 −− 6.0926e-04 −− 4.0644e-01 −−
10881 3.8424e-02 2.0084 1.3587e-02 2.0074 7.6697e-05 3.0159 1.0766e-01 1.9332

1 24385 1.7101e-02 2.0064 6.0479e-03 2.0061 2.2760e-05 3.0110 4.8702e-02 1.9661
43265 9.6244e-03 2.0051 3.4039e-03 2.0049 9.6074e-06 3.0084 2.7527e-02 1.9901
67521 6.1611e-03 2.0042 2.1791e-03 2.0041 4.9203e-06 3.0068 1.7648e-02 1.9976

5601 9.6676e-03 −− 3.3427e-03 −− 2.9024e-05 −− 4.4573e-02 −−
22209 1.3049e-03 2.9075 4.4608e-04 2.9241 1.9316e-06 3.9342 1.0411e-02 2.1114

2 49825 3.9533e-04 2.9558 1.3486e-04 2.9609 3.8905e-07 3.9663 3.3828e-03 2.7825
88449 1.6788e-04 2.9847 5.7233e-05 2.9870 1.2382e-07 3.9897 1.4440e-03 2.9665

138081 8.6179e-05 2.9941 2.9370e-05 2.9957 5.0834e-08 3.9974 7.4520e-04 2.9705

Table 4.5: Example 1. Convergence history of some terms using a uniformly generated sequence of
triangular meshes.

k N Λ1 r(Λ1) Λ2 r(Λ2) Λ3 r(Λ3) Λ4 r(Λ4)

903 1.8103e+00 −− 7.6139e-01 −− 1.6158e-02 −− 5.0494e+00 −−
3891 8.8261e-01 0.9836 3.5881e-01 1.0301 3.5023e-03 2.0936 2.3539e+00 1.0450
7806 6.2697e-01 0.9824 2.5287e-01 1.0052 1.7330e-03 2.0210 1.6545e+00 1.0129

13071 4.8602e-01 0.9880 1.9519e-01 1.0045 1.0307e-03 2.0161 1.2752e+00 1.0102
19686 3.9676e-01 0.9911 1.5892e-01 1.0039 6.8250e-04 2.0131 1.0374e+00 1.0078

2723 1.4070e-01 −− 6.1339e-02 −− 7.7155e-04 −− 3.7815e-01 −−
11669 3.0868e-02 2.0848 1.3240e-02 2.1072 7.6419e-05 3.1778 8.4359e-02 2.0619
23414 1.5308e-02 2.0143 6.5354e-03 2.0276 2.6446e-05 3.0475 4.2013e-02 2.0020
39209 9.1135e-03 2.0117 3.8807e-03 2.0219 1.2089e-05 3.0367 2.5064e-02 2.0038
59054 6.0396e-03 2.0091 2.5678e-03 2.0166 6.5029e-06 3.0280 1.6630e-02 2.0033

5257 5.8995e-03 −− 3.3259e-03 −− 3.3573e-05 −− 5.2785e-02 −−
22471 6.2194e-04 3.0975 3.4240e-04 3.1302 1.5341e-06 4.2484 6.9226e-03 2.7969
45091 2.2035e-04 2.9797 1.1957e-04 3.0212 3.6877e-07 4.0937 2.5165e-03 2.9059
75511 1.0208e-04 2.9849 5.4821e-05 3.0249 1.2775e-07 4.1120 1.1768e-03 2.9482

113731 5.5393e-05 2.9850 2.9538e-05 3.0199 5.5315e-08 4.0876 6.4060e-04 2.9699

Table 4.6: Example 1.Convergence history of some terms using a uniformly generated sequence of
hexagonal meshes.

4.2 Example 2

We consider again the unit square Ω := (0, 1)2, and choose f and g such that the exact solution is
given by

u(x) :=

 (1 + x1 − ex1)(1− cos(x2))

(1− ex1)(sin(x2)− x2)

 and p(x) :=
1

x1 + 0.1
− p0

for all x := (x1, x2)t ∈ Ω, where p0 ∈ R is such that
∫

Ω p = 0 and we use again the same nonlinearity
µ from Example 1 (cf. (4.1)). In this example, whereas that u is smooth, the variable p is singular
along the line x1 = −0.1, therefore, we should expect regions of high gradients along the line x1 = 0.
For this test, we make use of hexagonal meshes (see Figure 4.5).

First, we show that the adaptive methods decrease faster than those obtained by uniforms. This
fact is better illustrated in Figure 4.2. In addition, the order of convergence of the estimator is shown
in Figure 4.3. Also, the effectivity index remain bounded from above and below, which confirms the
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reliability and efficiency of η. More precisely, we can observe that the effectivity for η is very near
to 1, which is highly desirable because this determine the good quality of the estimator. Next, the
Figure 4.4 show the orders of convergence of all variables under the refinement. We notice there that
the rate of convergence O(hk+1) is attained by all the unknowns, including the postprocessed u and
p.
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Figure 4.2: Example 2. Convergence history under uniform and adaptive refinement of the error
e(u, t,σ) using hexagonal meshes.

Also, some intermediate meshes obtained with this adaptive strategy are displayed in Figure 4.5.
Notice there that the adapted meshes concentrate the refinements along the line x1 = 0, which means
that the method is able to recognize the regions with high gradients of the solutions.
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Figure 4.3: Example 2. Behavior under adaptive refinement (left). Effectivity of the estimator (right).
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Figure 4.4: Example 2. Convergence history of the variables using an adaptive strategy based in the
estimator η.
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Figure 4.5: Example 2. Approximate pseudostress component σ?11,h. Some meshes from the adaptive
refinement sequence obtained with k = 1: initial (left), after 3 refinement steps (center), and after 7
refinement steps (right).

4.3 Example 3

We take the L-shaped domain Ω := (−1, 1)2 \ (0, 1)2, and choose f and g such that the exact solution
is given by

u(x) := curl
(√

(x1 − 0.01)2 + (x2 − 0.01)2
)

and p(x) :=
1

x2 + 1.1
− p0

for all x := (x1, x2)t ∈ Ω, where p0 ∈ R is such that
∫

Ω p = 0. Moreover, we consider the nonlinear
viscosity µ given by

µ(s) :=
1

2
+

1

2
(1 + s2)−1/4 ∀ s ≥ 0 . (4.2)

Note in this example that u and p are singular near to the origin, and along the line x2 = −1.1,
respectively. Hence, we should expect regions of high gradients around (0, 0), and along the line
x2 = −1. For this test, we use meshes composed of distorted squares (see Figure 4.9).

Firstly, as expected, the error of the adaptive method decrease faster than the obtained by the
uniform one. This fact is illustrated in Figure 4.6. In addition, from Figure 4.7, we can observe
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Figure 4.6: Example 3. Convergence history under uniform and adaptive refinement of the error
e(u, t,σ) using the estimator η and meshes composed of distorted squares.
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Figure 4.7: Example 3. Behavior under adaptive refinement (left). Effectivity of the estimator (right).

how the effectivity index remain again bounded from above and below, which confirms again the
reliability and efficiency of the estimator for the associated adaptive algorithm as well. Here we can
see a similar behavior to the observed in the Example 2, in connection with the optimality properties
of the estimator. Also, the robustness with respect to the nonlinearity is established.

On the other hand, Figure 4.8 shows the orders of convergence of all variables under the refine-
ment. We notice that the rate of convergence O(hk+1) is attained by all the unknowns, including the
postprocessed u and p. Finally, some intermediate meshes obtained with this adaptive strategy are
displayed in Figures 4.9. Notice there that the adapted meshes concentrate the refinements around
the origin and the line x2 = −1, which means that the method is able to recognize the regions with
high gradients of the solutions.
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Figure 4.8: Example 3. Convergence history of the variables using an adaptive strategy based in the
estimator η.
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Figure 4.9: Example 3. Approximate velocity component u2,h. (Top) The mesh after eleven adaptive
refinements with k = 0 (left), k = 1 (center) and k = 2 (right). Approximate velocity component u1,h

(Below) Some meshes from the adaptive refinement sequence obtained with k = 1: after 4 refinement
steps (left), after 8 refinement steps (center), and after 12 refinement steps (right).

Acknowledgements

The authors would like to thank Gabriel N. Gatica, CI2MA and Departamento de Ingenieŕıa Matemá-
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asymptotic model based on matching far and near field expansions for thin gratings
problems
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