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Abstract. We study approximation properties of weighted L2-orthogonal
projectors onto spaces of polynomials of bounded degree in the Euclidean unit
ball, where the weight is of the reflection-invariant form (1−‖x‖2)α

∏d
i=1 |xi|

γi ,
α, γ1, . . . , γd > −1. Said properties are measured in Dunkl–Sobolev-type
norms in which the same weighted L2 norm is used to control all the involved
differential-difference Dunkl operators, such as those appearing in the Sturm–
Liouville characterization of similarly weighted L2-orthogonal polynomials, as
opposed to the partial derivatives of Sobolev-type norms. The method of proof
relies on spaces instead of bases of orthogonal polynomials, which greatly sim-
plifies the exposition.
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1. Introduction

Let Bd denote the unit ball of Rd, α > −1 and let the weight functionWα : Bd →
R be defined by Wα(x) = (1− ‖x‖2)α with ‖·‖ being the Euclidean norm. Let L2

α

denote the weighted Lebesgue space L2(Bd,Wα) := {W−1/2
α f | f ∈ L2(Bd)}, whose

natural squared norm is ‖u‖2α :=
∫
Bd
|u|2Wα. In [10] one of the authors proved

that the orthogonal projector SαN mapping L2
α onto Πd

N (the space of d-variate
polynomials of degree less than or equal to N) satisfies the bound

(∀u ∈ Hl
α) ‖u− SαN (u)‖α;1 ≤ C N

3/2−l ‖u‖α;l , (1.1)

where C > 0 depends on α and the integer l ≥ 1 only, and, for every integer
m ≥ 1, Hα

m denotes the weighted Sobolev space whose natural squared norm is
‖u‖α;m :=

∑m
k=0

∥∥∇ku∥∥2

α
(here ∇k is the k-fold gradient).

The purpose of this work is proving an analogue of (1.1) for a class of reflection-
invariant weights involving, fittingly, differential-difference Dunkl operators [7, Sec. 6.4]
instead of partial derivatives. In order to state this analogue we introduce now the
rest of the minimal necessary notation. Given α > −1 and γ = (γ1, . . . , γd) ∈
(−1,∞)d, let the weight function Wα,γ : Bd → R be defined by

Wα,γ(x) := (1− ‖x‖2)α
d∏
i=1

|xi|γi .

We denote by L2
α,γ the weighted Lebesgue space L2(Bd,Wα,γ), whose natural

inner product and squared norm are 〈u, v〉α,γ :=
∫
Bd
u vWα,γ and ‖u‖2α,γ :=

1
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Bd
|u|2Wα,γ , respectively. Let Sα,γN be the orthogonal projector mapping L2

α,γ

onto Πd
N . For j ∈ {1, . . . , d} the Dunkl operator D(γ)

j is defined by

D(γ)
j u(x) := ∂ju(x) +

γj
2

(
u(x)− u(x1, . . . ,

j-th entry︷︸︸︷
−xj , . . . , xd)

)
.

Given an integer m ≥ 0, we define the Dunkl–Sobolev space Hm
α,γ as the topological

completion of Cm(Bd) with respect to the norm ‖u‖α,γ;m :=
∑m
k=0

∥∥(D(γ))ku
∥∥2

α,γ
,

where (D(γ))k is the k-fold Dunkl gradient constructed in terms of the Dunkl opera-
tors (we reintroduce the Dunkl operators and Dunkl–Sobolev spaces in their proper
context in (2.12) and Definition 2.2, respectively). Our main result is

Theorem 1.1. For all integers 1 ≤ r ≤ l, α ∈ (−1,∞) and γ ∈ (−1,∞)d, there
exists C = C(α, γ, l, r) > 0 such that

(∀u ∈ Hl
α,γ) ‖u− Sα,γN (u)‖α,γ;r ≤ C N

−1/2+2r−l ‖u‖α,γ;l .

This work builds upon a lineage of works which proved results analogous to
Theorem 1.1, all of which correspond, in our notation, to cases with γ = 0, so the
involved weights lack interior singularities and the Dunkl operators reduce to partial
derivatives. In [5, Th. 2.2 and Th. 2.4] our main result was proved in dimension
d = 1 when the α = −1/2 (Chebyshev case) and when α = 0 (Legendre case); see
also the streamlined proofs for these cases at [4, Ch. 5]. In [12, Th, 2.6], the one-
dimensional case was proved for general α (Gegenbauer case). In [19, Th. 2.6], the
one-dimensional case with general asymmetric (1−x)α(1+x)β weight (Jacobi case)
was proved. In [11, Th. 3.11], Theorem 1.1 was extended to dimension d = 2 for
general α. Finally, in [10, Th. 1.1], a new technique of proof, based on orthogonal
polynomial spaces instead of orthogonal polynomial bases (thus circumventing the
need for spectral differentiation formulas, which by [11] had made the necessary
algebraic manipulation very long in comparison) allowed for extending the result
to arbitrary dimension for general α.

In the γ = 0 cases cited above, the analogues of Theorem 1.1 are results of
provably non-optimal polynomial approximation with respect to the power on N ,
caused by the mismatch between the orthogonality that defines the projection op-
erator Sα,γN —which can be characterized as a generalized Fourier series truncation
operator; cf. (3.3)— and the Hilbert norm in which the error is measured (see
the references provided in [10, Sec. 1] for optimal polynomial approximation re-
sults). The same mismatch occurs in this work, so we expect Theorem 1.1 to be
non-optimal too; however, we cannot be sure because we are not aware of best
approximation results for the general γ case.

The study of approximation results involving weights such as Wα,γ is interest-
ing, first, as an archetype of weights of interior singularities, as its highly symmetric
form allows for sourcing useful results from the theory of reflection-invariant orthog-
onal polynomials [7, Ch. 6 and Ch. 7]. Secondly, there is an intimate connection
between orthogonal polynomials in the ball with respect to Wα,γ and orthogonal
polynomials in the simplex with respect to weights that are products of powers
of signed distances to their faces [7, Subsec. 8.2]; as this reference attests, when
mapping orthogonal polynomials in the ball to orthogonal polynomials in the sim-
plex, only the fully reflection-symmetric of the former participate, and for these
the Dunkl operators reduce to partial derivatives. Thirdly, we fully expect that
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the techniques and partial results introduced below, not least the adaptation of the
orthogonal polynomials spaces-based techniques of [10] to the present situation, will
prove useful again in the pursuit of further approximation results.

Our main result involves weighted Dunkl–Sobolev spaces instead of the better
understood weighted Sobolev spaces because it is in terms of the former that the
contours of the argument in [10] can be reproduced. This is readily apparent
because the characterization of L2

α,γ-orthogonal polynomials as eigenfunctions of
Sturm–Liouville-type operators occurs in terms of Dunkl operators [7, Th. 8.1.3];
said characterization is essential for our way of inferring approximation rates out
of the regularity of the function being approximated.

We remark that r = 0 (i.e., approximation error measured in L2
α,γ) lies outside

of the scope of Theorem 1.1; indeed, in this case, the provably optimal power on N
is −l (cf. Corollary 4.5 below), outside of the pattern set by our main result.

The outline of this article is as follows. We finish this introductory Section 1
introducing some additional notation. In Section 2 we introduce the reflections,
Dunkl operators and main Dunkl–Sobolev spaces that participate in this work.
In Section 3 we introduce orthogonal polynomials spaces and their interaction
with Dunkl operators and certain generalizations thereof. In Section 4 we put
the differential-difference Sturm–Liouville operator the abovementioned orthogo-
nal polynomial spaces are eigenspaces in a suitable weak form, prove preliminary
approximation results upon it and prove our main result. At last, in Section 5
we prove the sharpness of our main result for special values of its Dunkl–Sobolev
regularity parameters and give a brief conclusion.

Given, j ∈ {1, . . . , d}, let ej ∈ Rd be Cartesian unit vector in the j-th direction;
i.e., (ej)i is 1 if i = j and 0 otherwise. We will denote the Euclidean norm by
‖·‖. We will denote the space of d-variate polynomials by Πd; we have already
introduced its subspace Πd

N consisting of polynomials of total degree less than or
equal to N . We will adopt the convention that, for N < 0, Πd

N = {0}.
Given an open Ω ⊂ Rd we will denote the integral of functions f : Ω → R with

respect to the Lebesgue measure simply by
∫

Ω
f(x) dx. We will denote by σd−1 the

surface measure of Sd−1, the unit sphere of Rd [2, Ex. 3.10.82]. For all Lebesgue-
integrable f , ∫

Rd
f(x) dx =

∫ ∞
0

∫
Sd−1

f(ry) rd−1 dσd−1(y) dr. (1.2)

We denote by N the set of strictly positive integers and N0 := {0}∪N. Members
of [N0]d will be called multi-indices and for every multi-index a ∈ [N0]d, point
x ∈ Rd and regular enough real-valued function f defined on some open set of Rd
we shall write |a| =

∑d
i=1 ai, x

a =
∏d
i=1 x

ai
i and ∂af = ∂|a|f/(∂xa11 · · · ∂x

ad
d ).

Setting ai = 1, pi = 2, t1 = 0, t2 = 1, αi = γi + 1 and f(u) = (1 − u)α in [1,
Th. 1.8.5] it readily follows that∫

Bd
Wα,γ(x) dx =

∏d
i=1 Γ

(
γi+1

2

)
Γ
(
d+

∑d
i=1 γi
2

) B

(
d

2
+

1

2

d∑
i=1

γi, α+ 1

)
, (1.3)

where Γ and B denote Gamma and Beta functions respectively; these functions
being finite for positive arguments, it follows that the constraints α > −1 and
γ ∈ (−1,∞)d are precisely those that ensure that the above integral is finite. As
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a consequence of (1.3), L∞(Bd) ⊂ L2
α,γ . In particular, every polynomial, being a

bounded function in Bd, belongs to L2
α,γ .

We finish this introductory section noting that we mostly omit the dimension d
from the notation of e.g., function spaces, in order to avoid cluttering and because
all of our arguments work independently of the dimension.

2. Dunkl operators and weighted Dunkl–Sobolev spaces

Given j ∈ {1, . . . , d} let σj : Bd → Bd be the reflection defined by

(∀x ∈ Bd) σjx := x− 2xj ej ; (2.1)

that is, σj flips the sign of the j-th component of its argument. The group generated
by {σj | 1 ≤ j ≤ d} with function composition as the group operation is (isomorphic
to) the Coxeter group Zd2 [7, Sec. 7.5]. Given a scalar-, vector- or tensor-valued
function f on Bd, we shall write σ∗j := f ◦ σj . We will say that f is σj-even (resp.
σj-odd) if σ∗j f = f (resp. σ∗j f = −f) almost everywhere. On defining

Symj(f) :=
f + σ∗j f

2
and Skewj(f) :=

f − σ∗j f
2

, (2.2)

every such f admits
f = Symj(f) + Symj(f) (2.3)

as its unique decomposition into a σj-even and a σj-odd part. For every i, j ∈
{1, . . . , d}, σi and σj commute. Therefore, so do the operator pairs (σ∗i , σ

∗
j ),

(Symi,Symj) and (Symi,Skewj). It follows that

f = Symi(Symj(f))+Symi(Skewj(f))+Skewi(Symj(f))+Skewi(Skewj(f)). (2.4)

is the only decomposition of f into all four combinations of σi- and σj-parity.
Following [7, Def. 6.4.4], we further introduce the operators ρj by

ρj(f)(x) :=
f(x)− f(σjx)

xj
=

2 Skewj(f)(x)

xj
, (2.5)

where, whenever xj = 0, the ratio must be interpreted as the corresponding limit;
namely, 2 ∂jf(x). The following variant of Hadamard’s lemma (cf. [15, Sec. 3.20])
encapsulates the properties of the ρj operators we shall need later.

Proposition 2.1. Let j ∈ {1, . . . , d} and f ∈ Cr(Bd), r ≥ 1. Then, ρj(f) ∈
Cr−1(Bd) and, for all multi-indices a with 0 ≤ |a| ≤ r − 1,

‖∂aρj(f)‖∞ ≤ 2 ‖∂a∂jf‖∞ . (2.6)

If f happens to be a polynomial of degree n, ρj(f) is also a polynomial of degree at
most n− 1.

Proof. Throughout this proof, for all z ∈ Bd we set z′ = (z1, . . . , zd−1) and
z′′ = (z1, . . . , zd−2) so that z = (z′, zd) = (z′′, zd−1, zd). Also, given a func-
tion h : Bd → R we denote its modulus of continuity by ω( · ;h); that is, for all
t ∈ [0,∞], ω(t;h) := sup

{
|h(x)− h(y)| | x, y ∈ Bd, |x− y| ≤ t

}
. We also assume,

without loss of generality, that j = d.
Given k ∈ N0 let the integral operator Hk be defined by

Hk(h)(x) :=

∫ 1

−1

sk h(x′, s xd) ds. (2.7)
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First, let us note that

(∀h ∈ C(Bd)) Hk(h) ∈ C(Bd). (2.8)

Indeed, let h ∈ C(Bd). Then, for all x, y ∈ Bd,

|Hk(h)(x)−Hk(h)(y)| ≤
∫ 1

−1

|h(x′, s xd)− h(y′, s xd)| ds ≤ 2ω(|x− y| ;h).

Thus, 0 ≤ ω( · ;Hk(h)) ≤ 2ω( · ;h) so Hk(h) inherits the uniform continuity of h,
which, in turn, stems from the fact that Bd is compact. Also, directly from the
definition (2.7),

(∀h ∈ C(Bd)) ‖Hk(h)‖∞ ≤ 2 ‖h‖∞ . (2.9)

Next, we note that, as a consequence of the Fundamental Theorem of Calculus, for
all i ∈ {1, . . . , d},

(∀h ∈ C1(Bd))

∣∣∣∣h(x+ η ei)− h(x)

η
− ∂ih(x)

∣∣∣∣ ≤ ω(|η| ; ∂ih). (2.10)

Further, we affirm that

(∀h ∈ C1(Bd)) ∂iHk(h) =

{
Hk(∂ih) if i 6= d,

Hk+1(∂dh) if i = d.
(2.11)

Indeed, let h ∈ C1(Bd). Let i ∈ {1, . . . , d − 1}; without loss of generality we can
assume that i = d− 1. Then,∣∣∣∣Hk(h)(x+ ηed−1)−Hk(h)(x)

η
−Hk(∂d−1h)(x)

∣∣∣∣
≤
∫ 1

−1

∣∣∣∣h(x′′, xd−1 + η, s xd)− h(x′′, xd−1, s xd)

η
− ∂d−1h(x′, s xd)

∣∣∣∣ ds
η→0−−−→ 0

because, per (2.10), the last integrand tends to 0 as η tends to 0 uniformly with
respect to s. If i = d,∣∣∣∣Hk(h)(x+ ηed)−Hk(h)(x)

η
−Hk+1(∂dh)(x)

∣∣∣∣
≤
∫ 1

−1

∣∣∣∣h(x′, s(xd + η))− h(x′, s xd)

η
− s ∂dh(x′, s xd)

∣∣∣∣ ds

≤
∫ 1

−1

∣∣∣∣h(x′, s xd + s η)− h(x′, s xd)

s η
− ∂dh(x′, s xd)

∣∣∣∣ ds
η→0−−−→ 0,

again by (2.10) and the fact that |s η| ≤ |η|. Thus we have justified (2.11).
Let f ∈ Cr(Bd). Then, ρd(f) = H0(∂df). Indeed, if xd = 0, ρd(f)(x) = 2 ∂df(x)

and H0(∂df)(x) obviously coincide. If xd 6= 0, by the Fundamental Theorem of
Calculus and the definition in (2.5),

ρd(f)(x) =
1

xd

∫ xd

−xd
∂df(x′, t) dt =

∫ 1

−1

∂df(x′, s xd) ds = H0(∂df)(x).

With ρdf characterized in this way, its membership in Cr−1(Bd) and the bound
(2.6) stem from (2.8), (2.9) and (2.11).
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Let us note that if h happens to be the monomial h(x) =
∏d
i=1 x

αi
i , α1, . . . , αd ∈

N0, a direct computation shows that H0(h) = 1−(−1)αd+1

αd+1 h. Thus, H0 maps polyno-
mials to polynomials of at most the same total degree. Hence, if f is a polynomial
of total degree n, ρd(f) = H0(∂df) is a polynomial of total degree at most n−1. �

Given any γ ∈ Rd, the map that to each ej and −ej , j ∈ {1, . . . , d} associates
γj is Zd2 invariant, so it is a multiplicity function in the sense of [7, Def. 6.4.1].
The Dunkl operators associated with (the multiplicity function induced by) γ [7,
Def. 6.4.2] are

(∀ j ∈ {1, . . . , d}) D(γ)
j q(x) := ∂jq(x) +

γj
2
ρj(q)(x)

(2.5)
= ∂jq(x) +

γj
2

q(x)− q(σjx)

xj
.

(2.12)
Through Proposition 2.1 the Dunkl operators inherit from the standard partial
derivatives the inclusions

D(γ)
j

(
Cm(Bd)

)
⊆ Cm−1(Bd) and D(γ)

j

(
Πd
m

)
⊆ Πd

m−1 (2.13)

for m ∈ N and m ∈ N0, respectively.
The following commutation relations are particularizations of Prop. 6.4.3, Th. 6.4.9

and Prop. 6.4.10 [7], respectively:

D(γ)
j σ∗i =

{
σ∗iD

(γ)
j if i 6= j,

−σ∗jD
(γ)
j if i = j,

(2.14)

D(γ)
i D

(γ)
j = D(γ)

j D
(γ)
i , (2.15)

D(γ)
j (xiq) =

{
xiD(γ)

j q if i 6= j,

xjD(γ)
j q + q + γjσ

∗
j q if i = j.

(2.16)

Note that in (2.16) and in the sequel we commit the common abuse of notation of
denoting maps of the form x 7→ xiq(x) simply as xiq. Some consequences of (2.14)
are

D(γ)
j Symi =

{
SymiD

(γ)
j if i 6= j,

SkewiD(γ)
j if i = j

and D(γ)
j Skewi =

{
SkewiD(γ)

j if i 6= j,

SymiD
(γ)
j if i = j.

(2.17)
Also, as

xjσ
∗
i q =

{
σ∗i (xjq) if i 6= j,

−σ∗j (xjq) if i = j,
(2.18)

we further have

xj Symi q =

{
Symi(xjq) if i 6= j,

Skewi(xjq) if i = j
and xj Skewi q =

{
Skewi(xjq) if i 6= j,

Symi(xjq) if i = j.

(2.19)
Because of the commutation property (2.15), we can unambiguously use the

multi-index notation to express compositions of Dunkl operators; hence, given a ∈
[N0]d, we shall write D(γ)

a := (D(γ)
1 )a1 ◦· · ·◦(D(γ)

d )ad . We can now compactly express
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the following consequence of Proposition 2.1: For all multi-indices a ∈ [N0]d and
f ∈ C|a|(Bd), ∥∥∥D(γ)

a f
∥∥∥
∞
≤

d∏
i=1

(1 + |γi|)ai ‖∂af‖∞ . (2.20)

We define the Dunkl gradient by D(γ)f :=
∑d
j=1D

(γ)
j (f) ej . Given m ∈ N0 we

define the Sobolev-type inner product 〈·, ·〉α,γ;m : Cm(Bd)× Cm(Bd)→ R by

(∀ p, q ∈ Cm(Bd)) 〈p, q〉α,γ;m :=

m∑
k=0

〈
(D(γ))kp, (D(γ))kq

〉
α,γ

, (2.21)

where (D(γ))k is the k-fold Dunkl gradient. Using the multi-index notation, this
inner product can also be expressed as (p, q) 7→

∑m
k=0

∑
|a|=k

(
k
a

)
〈D(γ)

a p,D(γ)
a q〉α,γ

(here
(
k
a

)
= k!

a1!···ad! is the number of times D(γ)
a p with |a| = k appears in the k-

dimensional array-valued (D(γ))kp) and is of course bounded from above and below
by positive-constant multiples of (p, q) 7→

∑
|a|≤m〈D

(γ)
a p,D(γ)

a q〉α,γ .
We define now in some detail the function spaces involved in our main result

Theorem 1.1.

Definition 2.2. Given m ∈ N0, we define Hm
α,γ as the topological completion of

(Cm(Bd), ‖·‖α,γ;m).
That is, up to isometry, Hm

α,γ is the space of equivalence classes of Cauchy se-
quences of (Cm(Bd), ‖·‖α,γ;m) with respect to the equivalence relation ∼ defined by
(xn)n∈N ∼ (yn)n∈N ⇐⇒ limn→∞ ‖xn − yn‖α,γ;m = 0, equipped with the metric
(x, y) 7→ limn→∞ ‖xn − yn‖α,γ;m, where (xn)n∈N and (yn)n∈N are any representa-
tives of the equivalence classes x and y, respectively, which makes it a complete
metric space. Identifying each f ∈ Cm(Bd) with the equivalence class of the con-
stant sequence (f)n∈N, Cm(Bd) is a dense subset of Hm

α,γ [13, Th. III.33.VII], [8,
Th. 4.3.19].

It is easily checked that the map (x, y) 7→ limn→∞〈xn, yn〉α,γ;m, where again
(xn)n∈N and (yn)n∈N are any representatives of the equivalence classes x and y,
respectively, is a well defined inner product that induces the above metric, whence
Hm
α,γ is a Hilbert space. We denote that inner product by 〈·, ·〉α,γ;m as well.

Proposition 2.3. Polynomials are dense in Hm
α,γ .

Proof. Let f ∈ Hm
α,γ and ε > 0. By the characterization of Hm

α,γ as a topological
completion in Definition 2.2, there exists g ∈ Cm(Bd) such that ‖f − g‖α,γ;m < ε/2.
Now, g can be extended to a Cm(Rd) function g̃ [18], which, by smooth truncation
if necessary, can be assumed to have its support contained in the ball B(0, 2). By
[9, Cor. 3], there exists a polynomial p such that∑

|a|≤m

sup
Bd
|∂ag − ∂ap| =

∑
|a|≤m

sup
Bd
|∂ag̃ − ∂ap| <

ε

2 cd,m
,
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where cd,m = ‖1‖1/2α,γ max|α|≤m
(|a|
a

)1/2
max|α|≤m

∏d
i=1(1 + |γi|)αi (this constant is

finite on account of (1.3)). Thus, by (2.20) and the definition (2.21),

‖g − p‖α,γ;m ≤ ‖1‖
1/2
α,γ max
|α|≤m

(
|a|
a

)1/2
 ∑
|α|≤m

∥∥∥D(γ)
a g −D(γ)

a p
∥∥∥2

∞

1/2

≤ ‖1‖1/2α,γ max
|α|≤m

(
|a|
a

)1/2

max
|α|≤m

d∏
i=1

(1 + |γi|)αi
∑
|α|≤m

‖∂ag − ∂ap‖∞ <
ε

2
.

�

Remark 2.4. We define our Dunkl–Sobolev spaces as topological completions of
strongly differentiable functions with respect to the chosen norm; that is, ‘H’ spaces
in the nomenclature of Meyers & Serrin [14]. One might also define Dunkl–Sobolev
spaces intrinsically, as spaces of (classes of equivalence of) L2

α,γ functions whose
Dunkl operators up to a certain order still belong to L2

α,γ ; i.e., ‘W’ spaces in the
nomenclature of [14]. To the latter end distributional generalizations of the Dunkl
operators (see, e.g., [17, Th. 4.4]) might be required to properly define their action
on non-differentiable functions. However, we do not know if such ‘W’ spaces would
be appropriate substitutes for (perhaps even identical to) our ‘H’ spaces.

3. Orthogonal polynomial spaces

Let Vα,γk be the space of orthogonal polynomials of degree k with respect to the
weight Wα,γ ; i.e.,

Vα,γk :=
{
p ∈ Πd

k | (∀ q ∈ Πd
k−1) 〈p, q〉α,γ = 0

}
. (3.1)

If k < 0 we adopt the convention Πd
k = {0} and so Vα,γk = {0}. As Wα,γ

is centrally symmetric, it transpires from [7, Th. 3.3.11] that, for all k ∈ N0 =
{0, 1, 2, . . . }, there holds the following parity relation:

(∀ pk ∈ Vα,γk ) (∀x ∈ Bd) pk(−x) = (−1)kpk(x). (3.2)

Let projα,γk denote the orthogonal projection from L2
α,γ onto V

α,γ
k . From [7, Th. 3.2.18],

Πd
n =

⊕n
k=0 V

α,γ
k and L2

α,γ =
⊕∞

k=0 V
α,γ
k , whence

(∀n ∈ N0) Sα,γn =

n∑
k=0

projα,γk and (∀u ∈ L2
α,γ) u =

∞∑
k=0

projα,γk (u). (3.3)

We mention in passing that we will denote the entrywise application of Sα,γn to L2
α,γ

vectors and higher-order tensors by Sα,γn as well. Parseval’s identity takes the form(
∀u ∈ L2

α,γ

)
‖u‖2α,γ =

∞∑
k=0

‖projα,γk (u)‖2
α,γ

. (3.4)

The following proposition, analogous to [10, Prop. 3.1], collects relations between
orthogonal polynomial spaces and projectors onto them that do not involve Dunkl
operators.

Proposition 3.1. Let α ∈ (−1,∞) and γ ∈ (−1,∞)d.
(i) Let pk ∈ Vα+1,γ

k . Then, (1− ‖·‖2)pk ∈ Vα,γk ⊕ Vα,γk+2.
(ii) Let qk ∈ Vα,γk . Then, qk = projα+1,γ

k−2 (qk) + projα+1,γ
k (qk).
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(iii) Let u ∈ L2
α,γ . Then, projα+1,γ

k (u) = projα+1,γ
k

(
projα,γk (u) + projα,γk+2(u)

)
.

(iv) Let u ∈ L2
α,γ . Then,

projα+1,γ
k (u) = projα,γk (u) + projα+1,γ

k ◦ projα,γk+2(u)− projα+1,γ
k−2 ◦ projα,γk (u).

Proof. Given q ∈ Πd
k−1, 〈(1 − ‖·‖

2
)pk, q〉α,γ = 〈pk, q〉α+1,γ = 0 by definition (3.1).

Also, by the parity relation (3.2), (1− ‖·‖2)pk ⊥α,γ Vα,γk+1. Therefore part (i) stems
from (3.3). An analogous argument accounts for part (ii). Part (iii) comes from
the fact that given pk ∈ Vα+1,γ

k ,

〈projα+1,γ
k (u), pk〉α+1,γ = 〈u, pk〉α+1,γ = 〈u, (1− ‖·‖2)pk〉α,γ

(i)
= 〈projα,γk (u)+projα,γk+2(u), (1−‖·‖2)pk〉α,γ = 〈projα,γk (u)+projα,γk+2(u), pk〉α+1,γ .

Part (iv) is obtained from adding and substracting projα+1,γ
k−2 (projα,γk (u)) to the

right hand side of part (iii) and using part (ii). �

Proposition 3.2. Let α ∈ (−1,∞) and γ ∈ (−1,∞)d.
(i) Let f ∈ L2

α,γ be σj-odd. Then,
∫
Bd
f(x)Wα,γ(x) dx = 0.

(ii) Given k ∈ N0, j ∈ {1, . . . , d} and pk ∈ Vα,γk , pk ◦ σj ∈ Vα,γk as well.

Proof. Because of the invariance of the Lebesgue measure with respect to reflections,∫
Bd
f(x)Wα,γ(x) dx =

∫
Bd
f(σjx)Wα,γ(σj(x)) dx. AsWα,γ is σj-invariant, part (i)

follows.
Part (ii) is proven similarly, using additionally the fact that the composition with

σj preserves the degree of a polynomial. �

Given any α ∈ R and γ ∈ Rd we introduce the differential-difference operators
D(α,γ;?)
j , j ∈ {1, . . . , d}, by

D(α,γ;?)
j q(x) := −(1− ‖x‖2)−αD(γ)

j

(
(1− ‖x‖2)α+1q(x)

)
= −(1− ‖x‖2)D(γ)

j q(x) + 2(α+ 1)xjq(x). (3.5)

From the inclusions in (2.13) they inherit

D(α,γ;?)
j

(
Cm(Bd)

)
⊆ Cm−1(Bd) and D(α,γ;?)

j

(
Πd
m

)
⊆ Πd

m+1 (3.6)

for m ∈ N and m ∈ N0, respectively. Also, from (2.17) and (2.19),

D(α,γ;?)
j Symi =

{
SymiD

(α,γ;?)
j if i 6= j,

SkewiD(α,γ;?)
j if i = j

and

D(α,γ;?)
j Skewi =

{
SkewiD(α,γ;?)

j if i 6= j,

SymiD
(α,γ;?)
j if i = j.

(3.7)

As its notation suggests, the D(α,γ;?)
j operator is indeed adjoint to the Dunkl op-

erator D(γ)
j , to the extent allowed by the first part of the following proposition,

analogous to [10, Prop. 3.2], that also goes on to show that D(α,γ;?)
j is a parameter-

lowering and degree-raising operator, that D(γ)
j is a parameter-raising and degree-

lowering operator and a useful commutation relation between projections onto or-
thogonal polynomials spaces and a Dunkl operator.
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Proposition 3.3. Let α ∈ (−1,∞), γ ∈ (−1,∞)d and j ∈ {1, . . . , d}.

(i) Let p, q ∈ C1(Bd). Then, 〈D(γ)
j p, q〉α+1,γ = 〈p,D(α,γ;?)

j q〉α,γ .
(ii) Let rk ∈ Vα+1,γ

k . Then, D(α,γ;?)
j rk ∈ Vα,γk+1.

(iii) Let pk ∈ Vα,γk . Then, D(γ)
j pk ∈ Vα+1,γ

k−1 .
(iv) Let u ∈ C1(Bd). Then, D(γ)

j projα,γk (u) = projα+1,γ
k−1 (D(γ)

j u).

Proof. As both D(γ)
j and D(α,γ;?)

j flip σj-symmetry into σj-antisymmetry and vice
versa (cf. (2.17) and (3.7)), per part (i) of Proposition 3.2, it is enough to prove
(i) in the special cases where p and q are either σj-even and σj-odd or σj-odd and
σj-even, respectively. Let us define, for δ, ε > 0, the set Xδ,ε := {x ∈ Bd | |xj | >
δ ∧ (∀ i ∈ {1, . . . , d}) \ {j} |xi| > ε}. By integration by parts,∫

Xδ,ε

∂jp(x)q(x)Wα+1,γ(x) dx

=

∫
∂Xδ,ε

p(x)q(x)Wα+1,γ(x)νj(x) dS(x)︸ ︷︷ ︸
:=bδ,ε

−
∫
Xδ,ε

p(x)∂j(q(x)Wα+1,γ(x)) dx, (3.8)

where ν is the outher normal vector field defined almost anywhere (with respect to
the surface measure) on ∂Xδ,ε. Now, for every x ∈ Xδ,ε, by direct computation

∂j(q(x)Wα+1,γ(x))

=
(
∂jq(x)(1− ‖x‖2)− 2(α+ 1)xjq(x)

)
Wα,γ(x) +

γj
xj
q(x)Wα+1,γ(x). (3.9)

From the definition (2.12) of D(γ)
j , (3.8) and (3.9),∫

Xδ,ε

D(γ)
j p(x) q(x)Wα+1,γ(x) dx

= bδ,ε −
∫
Xδ,ε

p(x)
(
∂jq(x) (1− ‖x‖2)− 2(α+ 1)xj q(x)

)
Wα,γ(x) dx

− γj
2

∫
Xδ,ε

p(x) + p(σjx)

xj
q(x)Wα+1,γ(x) dx. (3.10)

As Xδ,ε and Wα,γ are σj-invariant, a simple computation shows that∫
Xδ,ε

p(x) + p(σjx)

xj
q(x)Wα+1,γ(x) dx =

∫
Xδ,ε

p(x)
q(x)− q(σjx)

xj
Wα+1,γ(x) dx,

which, substituted into (3.10), results in (cf. (3.5))∫
Xδ,ε

D(γ)
j p(x) q(x)Wα+1,γ(x) dx = bδ,ε +

∫
Xδ,ε

p(x)D(α,γ;?)
j q(x)Wα,γ(x) dx.

(3.11)
As Wα+1,γ vanishes on ∂Xδ,ε ∩ Sd−1 and νj vanishes almost everywhere on each of
the sets {x ∈ ∂Xδ,ε | |xi| = ε} for i ∈ {1, . . . , d} \ {j}, the boundary integral in
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(3.8), (3.10) and (3.11) can be written as

bδ,ε =

∫
{x∈∂Xδ,ε||xj |=δ}

p(x) q(x)Wα+1,γ(x) sign(xj) dS(x)

=

∫
{x∈∂Xδ,ε||xj |=δ}

p(x) q(x)

xj
Wα+1,γ+ej (x) dS(x).

Since pq is σj-odd, we infer from Proposition 2.1 that x 7→ p(x)q(x)/xj = ρj(pq)/2

belongs to C(Bd). Also, as α+ 1 > 0, (1−‖x‖2)α+1 ≤ 1 for all x in the integration
domain above. Additionally, said integration domain is contained in {x ∈ [−1, 1]d |
|xj | = δ}. Thus,

|bδ,ε| ≤ δγj+1 max
x∈Bd

∣∣∣∣p(x)q(x)

xj

∣∣∣∣ d∏
i=1
i 6=j

∫
[−1,1]

|xi|γi dxi.

Then, as γi > −1 for i ∈ {1, . . . , d}, for every fixed ε, limδ→0+ bε,δ = 0. Then, (i)
follows from (3.11) by first taking the limit as δ → 0+ (which makes the bound-
ary integral disappear) and then the limit as ε → 0+ (the volume integrals over
Xδ,ε converging to the corresponding ones over Bd by the dominated convergence
theorem)

Given rk ∈ Vα+1,γ
k , by (3.6), D(α,γ;?)

j rk ∈ Πd
k+1, and, on account of part (i), the

latter is L2
α,γ-orthogonal to Πd

k, whence part (ii). An analogous argument accounts
for part (iii).

Given u ∈ C1(Bd), by part (iii), D(γ)
j projα,γk (u) ∈ Vα+1,γ

k−1 . Part (iv) then comes
about from the fact that for all r ∈ Vα+1,γ

k−1 ,

〈D(γ)
j projα,γk (u), r〉α+1,γ

(i)
= 〈projα,γk (u),D(α,γ;?)

j r〉α,γ
(ii)
= 〈u,D(α,γ;?)

j r〉α,γ
(i)
= 〈D(γ)

j u, r〉α+1,γ .

�

Given γ ∈ Rd we introduce the differential-difference operators D(γ)
i,j , i, j ∈

{1, . . . , d}, by
D(γ)
i,j := xiD(γ)

j − xj D(γ)
i . (3.12)

Under this definition, the D(γ)
i,i operators are simply the null operator. If γ = 0 and

i < j, the D(γ)
i,j operators are angular derivatives [6, Sec. 1.8].

The following proposition shows that this operators is minus its adjoint in a
certain sense, that this operator is parameter- and degree-invariant and a com-
mutation relation involving this operator and projectors onto the same orthogonal
polynomial spaces.

Proposition 3.4. Let α ∈ (−1,∞), γ ∈ (−1,∞)d, i, j ∈ {1, . . . , d}.

(i) Let p, q ∈ C1(Bd). Then, 〈D(γ)
i,j p, q〉α,γ = −〈p,D(γ)

i,j q〉α,γ .
(ii) Let pk ∈ Vα,γk . Then, D(γ)

i,j pk ∈ V
α,γ
k .

(iii) Let u ∈ C1(Bd). Then, D(γ)
i,j projα,γk (u) = projα,γk (D(γ)

i,j u).
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Proof. In the non-trivial case i 6= j, we infer from the commutation relations (2.17)
and (2.19) and the definition (3.12) that the operator D(γ)

i,j flips both the σi-parity
and the σj parity of each term in the four-way decomposition (2.4) of p. Then, by
part (i) of Proposition 3.2,

〈D(γ)
i,j p, q〉α,γ = 〈D(γ)

i,j (Symi Symj p),Skewi Skewj q〉α,γ

+ 〈D(γ)
i,j (Symi Skewj p),Skewi Symj q〉α,γ

+ 〈D(γ)
i,j (Skewi Symj p),Symi Skewj q〉α,γ

+ 〈D(γ)
i,j (Skewi Skewj p),Symi Symj q〉α,γ .

Thus, it is enough to consider the special cases in which p and q are simultaneously
of opposite σi- and σj-parity. Those cases, in turn, are covered by the supposition
that pq is simultaneously σi-odd and σj-odd, which we adopt from now on.

By direct computation it is rapidly checked that,

〈D(γ)
i,j p, q〉α,γ + 〈p,D(γ)

i,j q〉α,γ = 〈D(0)
i,j p, q〉α,γ + 〈p,D(0)

i,j q〉α,γ

+

∫
Bd

(
γj
2
xi
p(x)− p(σjx)

xj
− γi

2
xj
p(x)− p(σix)

xi

)
q(x)Wα,γ(x) dx

+

∫
Bd
p(x)

(
γj
2
xi
q(x)− q(σjx)

xj
− γi

2
xj
q(x)− q(σix)

xi

)
Wα,γ(x) dx. (3.13)

As the purely differential operatorD(0)
i,j = xi∂j−xj∂i satisfies the relationD(0)

i,j (pq) =

D(0)
i,j (p) q + pD(0)

i,j (q) and vanishes on radial functions,

〈D(0)
i,j p, q〉α,γ + 〈p,D(0)

i,j (q)〉α,γ

=

∫
Bd

div
(
p(x)q(x)(1− ‖x‖2)α(xiej − xjei)

) d∏
k=1

|xk|γk dx. (3.14)

Let us define, for ε > 0 and 0 < r < 1, the set Xr,ε := {x ∈ rBd | (∀ k ∈
{1, . . . , d}) |xk| > ε}. By the Lebesgue dominated convergence theorem and inte-
gration by parts,

〈D(0)
i,j p, q〉α,γ + 〈p,D(0)

i,j (q)〉α,γ

= lim
r→1−

ε→0+

(∫
∂Xr,ε

p(x)q(x)Wα,γ(x)(xiej − xjei) · ν(x) dS(x)

−
∫
Xr,ε

p(x)q(x)Wα,γ(x)(xiej − xjei) ·
d∑
l=1

(
x−1
l γl el

)
dx︸ ︷︷ ︸

:=vr,ε

)
, (3.15)

where ν is the outer unit normal vector field defined almost anywhere (with respect
to the surface measure we have denoted by S) on ∂Xr,ε. For k ∈ {1, . . . , d}, let
us define the subsurfaces Ar,ε,k := {x ∈ ∂Xr,ε | |xk| = ε}. Then, the union
(rSd−1 ∩ ∂Xr,ε) ∪

⋃d
k=1Ar,ε,k is a decomposition of ∂Xr,ε in sets whose pairwise

intersections have zero S-measure. Now, for S-almost every x ∈ rSd−1 ∩ ∂Xr,ε,
ν(x) = r−1x, which is orthogonal to xiej−xjei, and for k ∈ {1, . . . , d}, for S-almost
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every x ∈ Ar,ε,k, ν(x) = − sign(xk) ek, which is again orthogonal to xiej − xjei if
k /∈ {i, j}. Hence, on defining

Ir,ε,j := −
∫
Ar,ε,j

p(x)q(x)xi sign(xj)Wα,γ(x) dS(x),

Ir,ε,i :=

∫
Ar,ε,i

p(x)q(x)xj sign(xi)Wα,γ(x) dS(x),

we can express (3.15) as

〈D(0)
i,j p, q〉α,γ + 〈p,D(0)

i,j q〉α,γ = lim
r→1−

ε→0+

(Ir,ε,j + Ir,ε,i − vr,ε) . (3.16)

As pq is σj-odd, by Proposition 2.1, x 7→ p(x)q(x)/xj = ρj(pq)/2 belongs to
C(Bd). Also, for all x ∈ Ar,ε,j , ‖x‖ ≤ r < 1, which in turn implies that (1−‖x‖2)α

is bounded by (1− r2)α if α < 0 and by 1 if α ≥ 0. Further, Ar,ε,j is contained in
{x ∈ [−1, 1]d | |xj | = ε}. Thus,

|Ir,ε,j | ≤ εγj+1 sup
x∈Bd

∣∣∣∣p(x)q(x)

xj

∣∣∣∣ r
{

(1− r2)α if α < 0

1 if α ≥ 0
×

d∏
k=1
k 6=j

∫
[−1,1]

|xk|γk dxk.

As all the entries of γ are greater than −1, the integrals over [−1, 1] above are finite,
so we can conclude that, for all r ∈ (0, 1), limε→0+ Ir,ε,j = 0. The same argument
holds for Ir,ε,i, so for all r ∈ (0, 1), limε→0+ Ir,ε,i = 0.

By expanding the dot product in the integral in vr,ε (cf. (3.15)), judiciously
expanding, say, p = Symi(p) + Skewi(p) or p = Symj(p) + Skewj(p) and changing
variable through σi or σj where necessary to make Symi(p) and Symj(p) disappear
and Skewi(q) and Skewj(q) appear, we find that

vr,ε =

∫
Xr,ε

(
γj
2
xi
p(x)− p(σjx)

xj
− γi

2
xj
p(x)− p(σix)

xi

)
q(x)Wα,γ(x) dx

+

∫
Xr,ε

p(x)

(
γj
2
xi
q(x)− q(σjx)

xj
− γi

2
xj
q(x)− q(σix)

xi

)
Wα,γ(x) dx. (3.17)

Therefore, substituting (3.17) into (3.16) and the result, in turn, into (3.13), yields
(i).

Let pk ∈ Vα,γk . By (2.13), D(γ)
i,j pk ∈ Πd

k, and, on account of part (i), the latter is
L2
α,γ-orthogonal to Πd

k−1, whence part (ii).
Given u ∈ C1(Bd), by part (ii), D(γ)

i,j projα,γk (u) ∈ Vα,γk . Part (iii) then follows
from the fact that for all r ∈ Vα,γk ,

〈D(γ)
i,j projα,γk (u), r〉α,γ

(i)
= −〈projα,γk (u),D(γ)

i,j r〉α,γ
(ii)
= −〈u,D(γ)

i,j r〉α,γ
(i)
= 〈D(γ)

i,j u, r〉α,γ .
�

4. Sturm–Liouville problems and approximation results

In rough terms, we will infer from the regularity of a function being approx-
imated the weighted summability of the squared norms of its projectors onto a
sequence of orthogonal polynomial spaces. In turn, this will lead to information
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about the approximation quality of the truncation projection S
(α,γ)
N . In this en-

deavor, the characterization of orthogonal polynomial spaces as eigenspaces of a
Sturm–Liouville-type operator will be essential.

From [7, Th. 8.1.3], if α > −1 and γ ∈ (−1,∞)d, every pn ∈ Vα,γn satisfies

Lα,γ(pn) :=
(
−∆h + (x · ∇)2 + 2λα,γx · ∇

)
pn = n(n+ 2λα,γ)pn, (4.1)

where

∆h =

d∑
i=1

(D(γ)
i )2 and λα,γ = α+

1

2

d∑
i=1

γi +
d

2
. (4.2)

We will now put the operator Lα,γ of (4.1) into a form that we can test, treat
with integration-by-parts substitutes (part (i) of Proposition 3.3 and part (i) of
Proposition 3.4) and turn into a transparently self-adjoint weak form.

Taking into account the second characterization in (3.5) defining D(α,γ;?)
j , it is

readily checked that

d∑
i=1

D(α,γ;?)
i (D(γ)

i p) = −(1− ‖x‖2)∆hp+ 2(α+ 1)x · ∇p+ 2(α+ 1)

d∑
i=1

γi Skewi(p).

(4.3)
Also, from the definition (3.12) and (2.16), for all i, j ∈ {1, . . . , d} with i 6= j,

(D(γ)
i,j )2 = (x2

i (D
(γ)
j )2 + x2

j (D
(γ)
i )2)− 2xixj D(γ)

i D
(γ)
j

− (xiD(γ)
i + xj D(γ)

j )− (γixjσ
∗
iD

(γ)
j + γjxiσ

∗
jD

(γ)
i ). (4.4)

Then, as a direct consequence of (4.4), we can write

∑
1≤i<j≤d

(D(γ)
i,j )2 =

1

2

∑
1≤i,j≤d
i 6=j

(D(γ)
i,j )2

= ‖x‖2 ∆h −
∑

1≤i,j≤d

xixj D(γ)
i D

(γ)
j − (d− 1)

∑
1≤i≤d

xiD(γ)
i −

∑
1≤i,j≤d
i 6=j

γixjσ
∗
iD

(γ)
j .

(4.5)

Considering the easily verifiable identities

(x · ∇)2 =
∑

1≤i,j≤d

xixj∂i∂j + (x · ∇), (4.6)

x2
i (D

(γ)
i )2 = x2

i ∂
2
i + γixi∂i − γi Skewi (4.7)

and

(xiD(γ)
i )(xj D(γ)

j ) = xixj∂i∂j + (γjxi∂i Skewj +γixj∂j Skewi) + γiγj Skewi Skewj ,

(4.8)



ORTHOGONAL POLYNOMIAL PROJECTION ERROR IN DUNKL–SOBOLEV NORMS 15

for i 6= j; we can readily write∑
1≤i,j≤d

xixj D(γ)
i D

(γ)
j =

∑
1≤i≤d

x2
i (D

(γ)
i )2 +

∑
1≤i,j≤d
i 6=j

xixjD(γ)
i D

(γ)
j

= (x · ∇)2 − (x · ∇) +
∑

1≤i≤d

γixi∂i + 2
∑

1≤i,j≤d
i6=j

γixj∂j Skewi

−
∑

1≤i≤d

γi Skewi +
∑

1≤i,j≤d
i 6=j

γiγj Skewi Skewj . (4.9)

Then, replacing (4.9) in (4.5) and using the fact that xj D(γ)
j = xj∂j + γj Skewj ,

we get∑
1≤i<j≤d

(D(γ)
i,j )2 = ‖x‖2 ∆h − (x · ∇)2 − (d− 2)(x · ∇)− (d− 2)

∑
1≤i≤d

γi Skewi

−
∑

1≤i,j≤d
i6=j

γiσ
∗
i xj∂j −

∑
1≤i,j≤d
i 6=j

γiγjσ
∗
i Skewj −

∑
1≤i≤d

γixi∂i

− 2
∑

1≤i,j≤d
i 6=j

γixj∂j Skewi−
∑

1≤i,j≤d
i 6=j

γiγj Skewi Skewj . (4.10)

Lastly, considering the identity
∑

1≤i≤d γixi∂i = (
∑

1≤i≤d γi)(x·∇)−
∑

1≤i,j≤d
i 6=j

γixj∂j ,

adding and substracting the term (
∑

1≤i≤d γi)
∑
i≤i≤d γi Skewi, considering the

identity Skewj = Id−σ∗j − Skewj , and simplifying, we can readily obtain

∑
1≤i<j≤d

(D(γ)
i,j )2 = ‖x‖2 ∆h − (x · ∇)2 −

(
d− 2 +

d∑
i=1

γi

)
(x · ∇)

−

(
d− 2 +

d∑
i=1

γi

)
d∑
i=1

γi Skewi +

d∑
i=1

d∑
j=1

γiγj Skewi Skewj . (4.11)

Thus, substracting (4.11) from (4.3) to then note the appearance of the operator
Lα,γ of (4.1) we can conclude that it can also be expressed as

Lα,γ(p) =

d∑
i=1

D(α,γ;?)
i (D(γ)

i p)−
∑

1≤i<j≤d

(D(γ)
i,j )2p

− 2λα,γ
d∑
i=1

γi Skewi(p) +

d∑
i=1

d∑
j=1

γiγj Skewi(Skewj(p)). (4.12)

Using part (i) of Proposition 3.2, part (i) of Proposition 3.3 and part (i) of
Proposition 3.4, we find that(

∀ p ∈ C2(Bd)
) (
∀ q ∈ C1(Bd)

)
〈Lα,γ(p), q〉α,γ = B(p, q), (4.13)
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where the symmetric bilinear form B : C1(Bd)× C1(Bd)→ R is defined by

B(u, v) :=

d∑
i=1

〈D(γ)
i u,D(γ)

i v〉α+1,γ +
∑

1≤i<j≤d

〈D(γ)
i,j u,D

(γ)
i,j v〉α,γ

− 2λα,γ
d∑
i=1

γi〈Skewi(u),Skewi(v)〉α,γ

+

d∑
i=1

d∑
j=1

γiγj〈Skewi(Skewj(u)),Skewi(Skewj(v))〉α,γ . (4.14)

Through (4.13) the eigenvalue (Sturm–Liouville) problem (4.1) satisfied by the L2
α,γ-

orthogonal polynomials can be expressed in the weak form

(∀ pn ∈ Vα,γn )
(
∀ q ∈ C1(Bd)

)
B(pn, q) = n(n+ 2λα,γ)〈pn, q〉α,γ , (4.15)

Directly from the definition (4.14) and standard inequalities follows the bound(
∀u, v ∈ C1(Bd)

)
|B(u, v)| ≤ CB ‖u‖α,γ;1 ‖v‖α,γ;1 (4.16)

for some CB = CB(α, γ) > 0. Given any polynomial p ∈ Πd, it follows from (4.15)
and (3.4) that

B(p, p) =

degree(p)∑
n=0

n(n+ 2λα,γ) ‖projα,γn (p)‖2α,γ ≥ inf
n∈N0

(n(n+ 2λα,γ)) ‖p‖2α,γ .

From the definition of λα,γ in (4.2) and the fact that α, γ1, . . . , γd > −1 it fol-
lows that the above infimum is min(0, 1 + 2λα,γ). Also, because of the bound
(4.16) and the density of polynomials in H1

α,γ ⊇ C1(Bd) (cf. Proposition 2.3),
the above inequality can be extended to C1(Bd) functions. Thus, choosing any
K > max(0,−1 − 2λα,γ), the shifted bilinear form B̃ : C1(Bd) × C1(Bd) → R,
defined by

B̃(p, q) := B(p, q) +K〈p, q〉α,γ , (4.17)

is an inner product in C1(Bd); we denote the induced norm by ‖·‖B̃ . This allows
for defining an ad hoc function space in very much the same vein of Definition 2.2.

Definition 4.1. We define HB̃ as the topological completion of (C1(Bd), ‖·‖B̃).

Proposition 4.2. There holds the inclusion H1
α,γ ⊆ HB̃ and

(∀u ∈ H1
α,γ) ‖u‖B̃ ≤ (CB +K)1/2 ‖u‖α,γ;1 ;

that is, H1
α,γ is continuously embedded in HB̃.

Proof. From Definition 2.2, every u ∈ H1
α,γ is (a class of equivalence of) a Cauchy se-

quence (un)n∈N of C1(Bd) functions with respect to the norm ‖·‖α,γ;1 of (2.21). By
(4.16), ‖um − un‖B̃ ≤ (CB+K)1/2 ‖um − un‖α,γ;1

m,n→∞−−−−−→ 0, so u ∈ HB̃ according
to Definition 4.1, and ‖u‖B̃ = limn→∞ ‖un‖B̃ ≤ (CB + K)1/2 limn→∞ ‖un‖α,γ;1 =

(CB +K)1/2 ‖u‖α,γ;1. �
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In the sequence of results Lemma 4.3, Lemma 4.4 and Corollary 4.5 below, we
will exploit the Sturm–Liouville-type equations satisfied by our orthogonal poly-
nomial spaces, both in its strong (Lα,γ-based) and weak (B and B̃-based) forms,
to prove that Dunkl–Sobolev regularity implies convergence rates of our truncation
projector, with the error measured in L2

α,γ . See [11, Lem. 2.2, Lem. 2.3 and Cor. 2.4]
for the corresponding results in the γ = 0 case.

Lemma 4.3. Let α ∈ (−1,∞) and γ ∈ (−1,∞)d. For all u ∈ HB̃, the series∑∞
n=0 projα,γn (u) (cf. (3.3)) converges in HB̃ as well. There also holds the Parseval

identity

(∀u ∈ HB̃) ‖u‖2B̃ =

∞∑
n=0

(n(n+ 2λα,γ) +K) ‖projα,γn (u)‖2α,γ .

Proof. By density (cf. Definition 4.1), (4.15) extends to q ∈ HB̃ . AddingK〈pn, q〉α,γ
to both sides we obtain

(∀ pn ∈ Vα,γn ) (∀ q ∈ HB̃) B̃(pn, q) = (n(n+ 2λα,γ) +K) 〈pn, q〉α,γ .

Polynomials are dense in HB̃ . Indeed, if s ∈ HB̃ is HB̃-orthogonal to Πd, by the
above equality and the fact that n(n + 2λα,γ) + K > 0 for all n ∈ N0, it follows
that s is L2

α,γ-orthogonal to Πd as well; i.e, s = 0. Now, as the V(α,γ)
n are finite-

dimensional, there exists a Hilbert basis of L2
α,γ consisting of L2

α,γ-orthonormal
polynomials. Such a basis can be renormalized to obtain a Hilbert basis of the
closure of polynomials in HB̃ ; i.e., HB̃ itself. The desired results then stem from
the basic properties of Hilbert bases; see, e.g., [3, Corollary 5.10]. �

Lemma 4.4. Let α ∈ (−1,∞), γ ∈ (−1,∞)d and l ∈ N0. Then, there exists
C = C(α, γ, l) > 0 such that(

∀u ∈ Hl
α,γ

) ∞∑
n=0

(n(n+ 2λα,γ) +K)
l ‖projα,γn (u)‖2α,γ ≤ C ‖u‖

2
α,γ;l .

Proof. The l = 0 case is simply (3.4). From Proposition 4.2 and Lemma 4.3, for all
u ∈ H1

α,γ ,
∞∑
n=0

(n(n+ 2λα,γ) +K) ‖projα,γn (u)‖2α,γ = ‖u‖2B̃ ≤ (CB +K) ‖u‖2α,γ;1 , (4.18)

which accounts for the l = 1 case.
Particularizing (4.13) to p ∈ C2(Bd) and q ∈ Πd and using the symmetry of the

bilinear form B and the inner product of L2
α,γ , we find that

(∀ p ∈ C2(Bd)) (∀ q ∈ Πd) 〈Lα,γ(p), q〉α,γ = 〈p,Lα,γ(q)〉α,γ . (4.19)

Now, by virtue of the bound (2.20) and the definitions (3.5) and (3.12), the operators
D(γ)
j , D(α,γ;?)

j and D(γ)
i,j are bounded operators between Cm(Bd) and Cm−1(Bd),

m ≥ 1. From Definition 2.2 they extend to bounded operators between Hm
α,γ and

Hm−1
α,γ . Using these extended first-order operators in the definition of Lα,γ in (4.12),

the resulting extended Lα,γ and Lα,γ + K I operators are bounded maps between
Hm
α,γ to Hm−2

α,γ , m ≥ 2. The m = 2 case allows for extending (4.19) to

(∀u ∈ H2
α,γ) (∀ q ∈ Πd) 〈Lα,γ(u), q〉α,γ = 〈u,Lα,γ(q)〉α,γ . (4.20)
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Then, for all u ∈ H2
α,γ and q ∈ Vα,γn ,

〈projα,γn (Lα,γn (u)), q〉α,γ = 〈Lα,γn (u), q〉α,γ
(4.20)

= 〈u,Lα,γn (q)〉α,γ
(4.1)
= n(n+ 2λα,γ)〈u, q〉α,γ = n(n+ 2λα,γ)〈projα,γn (u), q〉α,γ ,

whence

(∀u ∈ H2
α,γ) projα,γn (Lα,γ(u)) = n(n+ 2λα,γ) projα,γn (u). (4.21)

Therefore, if l ≥ 2 is even, our desired result stems from

∞∑
n=0

(n(n+ 2λα,γ) +K)
l ‖projα,γn (u)‖2α,γ

(4.21)
=

∞∑
n=0

∥∥∥projα,γn

(
(Lα,γ +K I)l/2(u)

)∥∥∥2

α,γ
=
∥∥∥(Lα,γ +K I)l/2(u)

∥∥∥2

α,γ

≤
∥∥∥(Lα,γ +K I)l/2

∥∥∥2

L(Hlα,γ ,L
2
α,γ)
‖u‖2α,γ;l .

Finally, if l ≥ 3 is odd,

∞∑
n=0

(n(n+ 2λα,γ) +K)
l ‖projα,γn (u)‖2α,γ

(4.21)
=

∞∑
n=0

(n(n+ 2λα,γ) +K)
∥∥∥projα,γn

(
(Lα,γ +K I)(l−1)/2(u)

)∥∥∥2

α,γ

(4.18)
= (CB +K)

∥∥∥(Lα,γ +K I)(l−1)/2(u)
∥∥∥2

α,γ;1

≤ (CB +K)
∥∥∥(Lα,γ +K I)(l−1)/2

∥∥∥2

L(Hlα,γ ,H
1
α,γ)
‖u‖2α,γ;l .

�

Corollary 4.5. For all α ∈ (−1,∞), d ∈ N, γ ∈ (−1,∞)d and l ∈ N0, there exists
C = C(α, γ, l) such that

(∀N ∈ N0) (∀u ∈ Hl
α,γ) ‖u− Sα,γN (u)‖α,γ ≤ C(N + 1)−l ‖u‖α,γ;l .

Proof. This is a direct consequence of the Parseval identity (3.4), Lemma 4.4 and
the fact that n(n+ 2λα,γ) +K depends quadratically on n. �

Proposition 4.7 below allows for quantifying the L2
α,γ norm of a member of Vα+1

k

with respect to its L2
α+1,γ norm, thus containing the seed of the quantification of

the price to be paid in our main result Theorem 1.1 because of the mismatch of
the orthogonal projector there and the norm the approximation error is measured
with; its third part is a Dunkl variant of the Markov brothers’ inequality. However,
we need the following technical proposition first.
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Proposition 4.6. Let α ∈ (−1,∞) and γ ∈ (−1,∞)d. Then, there existsMα,γ > 0
such that

(∀ p ∈ L2
α,γ) − 2λα,γ

d∑
i=1

γi ‖Skewi(p)‖2α,γ

+

d∑
i=1

d∑
j=1

γiγj ‖Skewi(Skewj(p))‖2α,γ ≥ −Mα,γ ‖p‖2α,γ .

Proof. This comes from the fact that the Skewj operators are bounded in L2
α,γ . �

Proposition 4.7. Let α ∈ (−1,∞) and γ ∈ (−1,∞)d.

(i) For all p, q ∈ Vα+1,γ
k ,

〈p, q〉α,γ =

(
k + d/2 +

∑d
j=1 γj/2

α+ 1
+ 1

)
〈p, q〉α+1,γ .

(ii) Let k ∈ N0. Then, for all r ∈ Vα,γk ,

‖D(γ)r‖α,γ ≤
(

(k(k + 2λα,γ) +Mα,γ)(k + λα,γ)

α+ 1

)1/2

‖r‖α,γ ,

where Mα,γ > 0 is that of Proposition 4.6. If r is, additionally, a radial
function, this inequality turns into an equality by replacing Mα,γ with 0.

(iii) There exists a constant C = C(α, γ) > 0 such that, for all n ∈ N0 and
p ∈ Πd

n,
‖D(γ)p‖α,γ ≤ Cn2 ‖p‖α,γ .

Proof. On homogeneous polynomials of degree k, k ∈ N0, there holds x · ∇ = k I.
As a first consequence, x · ∇ maps Πd

n into itself, for every n ∈ N0.
Let p, q ∈ Vα+1,γ

k . As every member of Vα+1,γ
k is a linear combination of ho-

mogeneous polynomials of degree ranging from 0 to k, there exists a homogeneous
polynomial sp of degree k such that p−sp ∈ Πd

k−1 and hence x·∇p−x·∇sp ∈ Πd
k−1.

Thus,

〈x · ∇p, q〉α+1,γ = 〈x · ∇sp, q〉α+1,γ = k〈sp, q〉α+1,γ = k〈p, q〉α+1,γ . (4.22)

Using the fact that div(x) = d and (4.22) (which is still valid if the roles of p and
q are interchanged),

(2k + d)〈p, q〉α+1,γ = 〈x · ∇p, q〉α+1,γ + 〈p, x · ∇q〉α+1,γ + d〈p, q〉α+1,γ

=

∫
Bd

div(p(x)q(x)x)Wα+1,γ(x) dx. (4.23)

Now,∫
Bd

div(p(x)q(x)x)Wα+1,γ(x) dx+

d∑
j=1

γj〈p, q〉α+1,γ =

d∑
j=1

〈D(γ)
j (xjpq), 1〉α+1,γ

=

d∑
j=1

〈xjpq,D(α,γ;?)
j (1)〉α,γ = 2(α+ 1)

∫
Bd
p(x)q(x) ‖x‖2Wα,γ(x) dx,
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where the first equality comes from the definition (2.12) and part (i) of Proposi-
tion 3.2, the second from part (i) of Proposition 3.3 and the third from the definition
(3.5). Substituting this into (4.23), yields

(2k + d)〈p, q〉α+1,γ = 2(α+ 1)

∫
Bd
p(x)q(x) ‖x‖2Wα,γ(x) dx−

d∑
j=1

γj〈p, q〉α+1,γ .

Part (i) then follows from the fact that Wα,γ(x) = ‖x‖2Wα,γ(x) +Wα+1,γ(x).
Part (ii) is obviously true if k = 0; otherwise, from part (iii) of Proposition 3.3

and part (i) above,

(∀ r ∈ Vα,γk ) ‖D(γ)r‖2α,γ =
k + λα,γ

α+ 1
‖D(γ)r‖2α+1,γ . (4.24)

On the other hand, from (4.14) and (4.15) (with pn and q there both set as r),

‖Dγr‖2α+1,γ +
∑

1≤i<j≤d

‖Dγi,jr‖
2
α,γ − 2λα,γ

d∑
i=1

γi ‖Skewi(r)‖2α,γ

+

d∑
i=1

d∑
j=1

γiγj ‖Skewi(Skewj(r))‖2α,γ +Mα,γ ‖r‖2α,γ

= (k(k + 2λα,γ) +Mα,γ) ‖r‖2α,γ .
Per Proposition 4.6, dropping the second, third, fourth and fifth terms from the
left-hand side of the above equality, the remaining first term will be bounded from
above by the right-hand side. Combining the resulting inequality with (4.24) and
taking square roots results in the generic case of part (ii). If r is radial, the second,
third and fourth terms on the left-hand side above vanish, andMα,γ can be canceled
from both sides; what now remains an equality can also be combined with (4.24).

Given n ∈ N0 and p ∈ Πd
n, from (3.3), part (ii) above, and the Cauchy–Schwarz

inequality,

‖D(γ)p‖α,γ ≤
n∑
k=0

‖D(γ) projα,γk (p)‖α,γ

≤

(
n∑
k=0

(k(k + 2λα,γ) +Mα,γ)(k + λα,γ)

α+ 1

)1/2( n∑
k=0

‖projα,γk (p)‖2
α,γ

)1/2

=

(
(n+ 1)(n+ 2λα,γ)(n2 + 2λα,γn+ n+ 2Mα,γ)

4(α+ 1)

)1/2

‖p‖α,γ .

Part (iii) then follows after realizing that there exists a positive constant C de-
pending on α and γ only such that (n+1)(n+2λα,γ)(n2+2λα,γn+n+2Mα,γ)

4(α+1) ≤ C2n4 for
all n ∈ N0. �

Now we prove a lemma with the core of the main result, a bridging corollary and
then, finally, the main result itself.

Lemma 4.8. Let α ∈ (−1,∞), γ ∈ (−1,∞)d and l ∈ N. Then, there exists
C = C(α, γ, l) > 0 such that for all u ∈ Hl

α,γ , n ∈ N and j ∈ {1, . . . , d},∥∥∥D(γ)
j Sα,γn (u)− Sα,γn (D(γ)

j u)
∥∥∥
α,γ
≤ C n3/2−l

∥∥∥D(γ)
j u

∥∥∥
α,γ;l−1

.
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Proof. Let us first assume that u ∈ Cl(Bd). Combining part (iv) of Proposition 3.1
and (iv) of Proposition 3.3, we obtain

D(γ)
j projα,γk+1(u)− projα,γk (D(γ)

j u)

= projα+1,γ
k ◦projα,γk+2(D(γ)

j u)− projα+1,γ
k−2 ◦projα,γk (D(γ)

j u) (4.25)

Using (3.3) to express Sα,γn in terms of the projα,γk , using (4.25), noticing that a tele-
scoping sum results and using part (ii) of Proposition 3.1 to expand an appearance
of projα,γn (D(γ)

j u) ∈ Vα,γ ,

D(γ)
j Sα,γn (u)− Sα,γn (D(γ)

j u) =

n∑
k=0

D(γ)
j projα,γk (u)−

n∑
k=0

projα,γk (D(γ)
j u)

=

n−1∑
k=0

(
D(γ)
j projα,γk+1(u)− projα,γk (D(γ)

j u)
)
− projα,γn (D(γ)

j u)

= projα+1,γ
n−2 ◦projα,γn (D(γ)

j u) + projα+1,γ
n−1 ◦ projα,γn+1(D(γ)

j u)− projα,γn (D(γ)
j u)

= projα+1,γ
n−1 ◦projα,γn+1(D(γ)

j u)− projα+1,γ
n ◦ projα,γn (D(γ)

j u). (4.26)

Now, by part (i) of Proposition 4.7, the fact that ‖projα+1,γ
n−1 ‖L(L2

α+1,γ) ≤ 1 and the
fact that ‖·‖α+1,γ ≤ ‖·‖α,γ in L2

α,γ (because Wα+1,γ ≤ Wα,γ) we have that, for all
n ≥ 1,

‖projα+1,γ
n−1 ◦ projα,γn+1(D(γ)

j u)‖2α,γ

≤
n+ d/2 +

∑d
j=1 γj/2 + α

α+ 1
‖projα,γn+1(D(γ)

j u)‖2α,γ . (4.27)

Analogous arguments show that, for all n ∈ N,

‖projα+1,γ
n ◦ projα,γn (D(γ)

j u)‖2α,γ

≤
n+ 1 + d/2 +

∑d
j=1 γj/2 + α

α+ 1
‖projα,γn (D(γ)

j u)‖2α,γ . (4.28)

Taking the squared L2
α,γ norm of both ends of (4.26), exploiting the L2

α,γ orthog-
onality of Vα+1,γ

n−1 and Vα+1,γ
n (a consequence of the parity relation (3.2)) and the

bounds (4.27) and (4.28) we observe that

‖D(γ)
j Sα,γn (u)− Sα,γn (D(γ)

j u)‖2α,γ

≤
n+ 1 + d/2 +

∑d
j=1 γj/2 + α

α+ 1
‖D(γ)

j u− Sα,γn−1(D(γ)
j u)‖2α,γ .

As D(γ)
j u ∈ Cl−1(Bd) (cf. Proposition 2.1), we can appeal to Corollary 4.5 to ob-

tain the desired result for u ∈ Cl(Bd) after realizing that there exists a constant C̃

depending only on α, γ and l such that
n+1+d/2+

∑d
j=1 γj/2+α

α+1 (n−(l−1))2 ≤ C̃ n3−2l

for all n ∈ N. The general result then follows via density of Cl(Bd) in Hl
α,γ (Defi-

nition 2.2). �
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Corollary 4.9. Let α ∈ (−1,∞), γ ∈ (−1,∞)d and r, l ∈ N with r ≤ l. Then,
there exists C = C(α, γ, l, r) > 0 such that, for all u ∈ Hl

α,γ and n ∈ N,∥∥∥(D(γ))rSα,γn (u)− Sα,γn ((D(γ))ru)
∥∥∥
α,γ
≤ C n2r−1/2−l ‖u‖α,γ;l .

Proof. Let us first note that iterating part (iii) of Proposition 4.7 we find that for
all r ∈ N there exists C > 0 depending on α, γ, and r such that

(∀n ∈ N0) (∀ p ∈ Πd
n) ‖(D(γ))rp‖α,γ ≤ C n2r ‖p‖α,γ . (4.29)

We will now operate by induction on r. Taking the square root of the sum with
respect to j of the square of both sides of the inequality in Lemma 4.8 the case
r = 1 follows almost immediately. Let us suppose now that our desired result holds
for some r ∈ {1, . . . , l} and that r + 1 ≤ l. Then, for all j ∈ {1, . . . , d}, by the
triangle inequality,∥∥∥(D(γ))rD(γ)

j Sα,γn (u)− Sα,γn ((D(γ))rD(γ)
j u)

∥∥∥
α,γ

≤
∥∥∥(D(γ))rD(γ)

j Sα,γn (u)− (D(γ))rSα,γn (D(γ)
j u)

∥∥∥
α,γ

+
∥∥∥(D(γ))rSα,γn (D(γ)

j u)− Sα,γn ((D(γ))rD(γ)
j u)

∥∥∥
α,γ

.

By (4.29) and Lemma 4.8, the first term is bounded by an appropriate constant
times n2rn3/2−l‖D(γ)

j u‖α,γ;l−1. By the induction hypothesis and the fact that
D(γ)
j u ∈ Hl−1

α,γ , the second term is bounded by an appropriate constant times
n2r−1/2−(l−1)‖D(γ)

j u‖α,γ;l−1. Then, the desired result in the r + 1 case follows
from summing up with respect to j and standard inequalities connecting vector 1-
and 2-norms. �

Proof of Theorem 1.1. For every k ∈ {1, . . . , r},∥∥∥(D(γ))ku− (D(γ))kSα,γN (u)
∥∥∥2

α,γ

≤ 2
∥∥∥(D(γ))ku− Sα,γN ((D(γ))ku)

∥∥∥2

α,γ
+ 2

∥∥∥Sα,γN ((D(γ))ku)− (D(γ))kSα,γN (u)
∥∥∥2

α,γ

≤ C1 (N + 1)−2(l−k)
∑
|β|=k

(
k

β

)
‖D(γ)

β u‖2α,γ;l−k + C2N
4k−1−2l ‖u‖2α,γ;l

≤ C3N
4r−1−2l ‖u‖2α,γ;l ,

where we have used Corollary 4.5, Corollary 4.9 and C1 and C2 depend on α, γ, l
and k only and C3 depends on α, γ, l and r only. Thus,

‖u− Sα,γN (u)‖2α,γ;r ≤
(
C4 (N + 1)−2l + r C3N

4r−1−2l
)
‖u‖2α,γ;l

≤ C5N
4r−1−2l ‖u‖2α,γ;l ,

where we have again used Corollary 4.5, C4 depends on α, γ, and l only and C5

depends on α, γ, l and r only. �
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5. On the sharpness of the main result

We will say that our main result, Theorem 1.1 is sharp if the power on the
truncation degree N appearing there cannot be lowered. We refer to [10, Sec. 5]
for an account of sharpness results for previous incarnations of our main result,
to which we should add that the one-dimensional, Jacobi-weighted variant of [19,
Th. 2.6] comes with its own proof of sharpness (for the cases in which, in our
notation, r = l).

We will the sharpness of our main result for all dimensions d ∈ N, natural
singularity parameters α > −1 and γ ∈ (−1,∞)d, but restricted to l = r = 1.

We will find it easier to work with an alternative norm, equivalent to that of
H1
α,γ , as proved in Proposition 5.3 (see [11, Lem. 2.6] for the corresponding result

in the γ = 0 case). However, we first need to show that differentiable functions
with vanishing Dunkl gradient are constant in Bd.

Proposition 5.1. Let γ > −1, L > 0, and p ∈ C1(−L,L) such that

D(γ)
1 p = 0 in (−L,L). (5.1)

Then, p is constant in (−L,L).

Proof. As Skew p
x is a always an even function and so is 0, directly from the definition

(2.12) of D(γ)
1 , it follows that p′ is an even function. Therefore, p can be expressed

as the sum of a constant and an odd function, which also belongs to C1(−L,L).
Hence, y := Skew(p)|(0,L) satisfies the Cauchy–Euler differential equation

x y′(x) + γ y(x) = 0,

whence it has the form
y(x) = C x−γ .

As y extends to a C1(−1, 1) function, C has to vanish. �

Proposition 5.2. Let γ ∈ (−1,∞)d and p ∈ C1(Bd) such that

D(γ)p = 0 in Bd.

Then, p is constant in Bd.

Proof. Given two points in Bd, they can be connected via a polygonal path con-
sisting exclusively of segments that are parallel to a coordinate axis. By apply-
ing Proposition 5.1 in every segment, it transpires that p is constant along this
polygonal path and, in particular, the evaluations of p at the original two points
coincide. �

Proposition 5.3. The following is an equivalent inner product for (C1(Bd), 〈·, ·〉α,γ;1).

〈u, v〉α,γ;1,P := 〈D(γ)u,D(γ)v〉α,γ + 〈Sα,γ0 (u), Sα,γ0 (v)〉α,γ . (5.2)

Therefore the topological completion of (C1(Bd), 〈·, ·〉α,γ;1,P) equals H1
α,γ , with the

extension of 〈·, ·〉α,γ;1,P to H1
α,γ (cf. Definition 2.2) being an equivalent inner prod-

uct.

Proof. 〈·, ·〉α,γ;1,P being an inner product is a direct consequence of Proposition 5.2.
Clearly, ‖·‖α,γ;1,P ≤ ‖·‖α,γ,1.
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We will now prove the converse bound. Let u ∈ C1(Bd). Given N ∈ N, by
Parseval’s identity (3.4),

‖u‖2α,γ = ‖Sα,γN u‖2α,γ +

∞∑
n=N+1

‖projα,γn (u)‖2α,γ . (5.3)

As Πd
N is finite dimensional, there exists a positive constant C > 0, depending only

on N , α and γ, such that(
∀ p ∈ Πd

N

)
‖p‖2α,γ ≤ C

(
‖Sα,γ0 p‖2α,γ +

∥∥∥D(γ)p
∥∥∥2

α+1,γ

)
.

In particular, with p = Sα,γN u and using part (iv) of Proposition 3.3, we have

‖Sα,γN u‖2α,γ ≤ C
(
‖Sα,γ0 Sα,γN u‖2α,γ +

∥∥∥D(γ)Sα,γN u
∥∥∥2

α+1,γ

)
= C

(
‖Sα,γ0 u‖2α,γ +

∥∥∥Sα+1,γ
N−1 D

(γ)u
∥∥∥2

α+1,γ

)
≤ C

(
‖Sα,γ0 u‖2α,γ +

∥∥∥D(γ)u
∥∥∥2

α+1,γ

)
.

(5.4)

In turn, as projα,γn (u) ∈ Vα,γn , by (4.15), (4.14), part (iv) of Proposition 3.3, part
(iii) of Proposition 3.4 and taking into account that ‖Skewi ·‖α,γ ≤ ‖·‖α,γ for all
i ∈ {1, . . . , d}, we obtain

n(n+ 2λα,γ) ‖projα,γn (u)‖2α,γ = B(projα,γn (u),projα,γn (u))

=
∥∥∥D(γ) projα,γn (u)

∥∥∥2

α+1,γ
+

∑
1≤i<j≤d

∥∥∥D(γ)
i,j projα,γn (u)

∥∥∥2

α,γ

− 2λα,γ
d∑
i=1

γi ‖Skewi projα,γn (u)‖2α,γ +

d∑
i,j=1

γiγj ‖Skewi Skewj projα,γn (u)‖2α,γ

≤
∥∥∥projα+1,γ

n−1 D(γ)(u)
∥∥∥2

α+1,γ
+

∑
1≤i<j≤d

∥∥∥projα,γn D(γ)
i,j (u)

∥∥∥2

α,γ
+ C̃ ‖projα,γn (u)‖2α,γ ,

(5.5)

where C̃ = C̃(α, γ) := 2 |λα,γ |
∑d
i=1 |γi| +

∑d
i,j=1 |γiγj |. Let us now fix N ∈ N to

any value which ensures that C̃ < n(n + 2λα,γ) for all n > N . Then, combining
(5.3), (5.4) and (5.5) and using Parseval’s identity (3.4) again, we obtain

‖u‖2α,γ ≤ C
(
‖Sα,γ0 u‖2α,γ +

∥∥∥D(γ)u
∥∥∥2

α+1,γ

)

+ sup
n>N

1

n(n+ 2λα,γ)− C̃

∥∥∥D(γ)u
∥∥∥2

α+1,γ
+

∑
1≤i<j≤d

∥∥∥D(γ)
i,j u

∥∥∥2

α,γ

 .
The result follows upon using the bounds ‖·‖α+1,γ ≤ ‖·‖α,γ and

∥∥∥D(γ)
i,j ·
∥∥∥2

α,γ
≤

2
∥∥D(γ)·

∥∥2

α,γ
. �

We can now prove our sharpness result.

Theorem 5.4. For all α > −1 and γ ∈ (−1,∞)d, Theorem 1.1 is sharp in the
case l = r = 1.
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Proof. Let P (α,β)
n denote the Jacobi polynomial of parameter (α, β) and degree n

[16, Ch. IV]. From [16, Eqs. (4.21.7) and (4.3.3)] and [1, Eq. (6.4.21)],

P (α,β)
n

′
(x) =

n+ α+ β + 1

2
P

(α+1,β+1)
n−1 (x), (5.6)

h(α,β)
n :=

∫ 1

−1

∣∣∣P (α,β)
n (x)

∣∣∣2 (1− x)α(1 + x)β dx

=
2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+ α+ β + 1)
,

(5.7)

P (α,β)
n (x) =

n+ α+ β + 1

2n+ α+ β + 1
P (α+1,β)
n (x)− n+ β

2n+ α+ β + 1
P

(α+1,β)
n−1 (x); (5.8)

the last expression in (5.7) must be modified if n = 0. Let us adopt the abbreviation
s(γ) =

∑d
j=1 γj . Given n ∈ N, we define tα,γ,n ∈ Πd

2n by

tα,γ,n(x) :=
2n+ 2λα,γ − 2

4n+ 2λα,γ − 2
P

(α, 12 s(γ)+ d−2
2 )

n (2 ‖x‖2 − 1)

− 2n+ s(γ) + d− 2

4n+ 2λα,γ − 2
P

(α, 12 s(γ)+ d−2
2 )

n−1 (2 ‖x‖2 − 1). (5.9)

From [7, Prop. 8.1.5], we learn that the first term defining tα,γ,n in (5.9) is a member
of Vα,γ2n and the second is a member of Vα,γ2n−2. Therefore

Rα,γ,n(x) := tα,γ,n − Sα,γ2n−1(tα,γ,n)(x)

=
2n+ 2λα,γ − 2

4n+ 2λα,γ − 2
P

(α, 12 s(γ)+ d−2
2 )

n (2 ‖x‖2 − 1). (5.10)

As Rα,γ,n is a radial member of Vα,γ2n , from part (ii) of Proposition 4.7,∥∥∥D(γ)Rα,γ,n

∥∥∥2

α,γ
=

2n(2n+ 2λα,γ)(2n+ λα,γ)

α+ 1
‖Rα,γ,n‖2α,γ . (5.11)

Also,

‖Rα,γ,n‖2α,γ =
(2n+ 2λα,γ − 2)2

(4n+ 2λα,γ − 2)2

∫
Bd

∣∣∣P (α, 12 s(γ)+ d−2
2 )

n (2 ‖x‖2 − 1)
∣∣∣2Wα,γ(x) dx

=
(2n+ 2λα,γ − 2)2

(4n+ 2λα,γ − 2)2
2−(2+α+ 1

2 s(γ)+ d−2
2 )h

(α, 12 s(γ)+ d−2
2 )

n

∣∣Sd−1
∣∣
γ
,

(5.12)
where

∣∣Sd−1
∣∣
γ

:=
∫
Sd−1 W0,γ(x) dS(x); the integral was computed by first switching

to generalized spherical coordinates and then performing the change of variable
t = 2r2 − 1. Given j ∈ {1, . . . , d},

D(γ)
j tα,γ,n(x)

(5.6)
=

2n+ 2λα,γ − 2

4n+ 2λα,γ − 2
xj

[
(2n+ 2λα,γ)P

(α+1, 12 s(γ)+ d
2 )

n−1 (2 ‖x‖2 − 1)

− (2n+ s(γ) + d− 2)P
(α+1, 12 s(γ)+ d

2 )
n−2 (2 ‖x‖2 − 1)

]
(5.8)
= (2n+ 2λα,γ − 2)xj P

(α, 12 s(γ)+ d
2 )

n−1 (2 ‖x‖2 − 1).
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Hence,∥∥∥D(γ)tα,γ,n

∥∥∥2

α,γ
= (2n+ 2λα,γ − 2)2

∫
Bd
‖x‖2

∣∣∣P (α, 12 s(γ)+ d
2 )

n−1 (2 ‖x‖2 − 1)
∣∣∣2Wα,γ(x) dx

= (2n+ 2λα,γ − 2)22−(2+α+ 1
2 s(γ)+ d

2 )h
(α, 12 s(γ)+ d

2 )
n−1

∣∣Sd−1
∣∣
γ
,

(5.13)

where the integral over Bd was computed similarly to that in (5.12). Therefore, for
n ≥ 2,∥∥D(γ)Rα,γ,n

∥∥2

α,γ∥∥D(γ)tα,γ,n
∥∥2

α,γ

(5.11)
=

2n(2n+ 2λα,γ)(2n+ λα,γ)

α+ 1

‖Rα,γ,n‖2α,γ∥∥D(γ)tα,γ,n
∥∥2

α,γ

(5.12),(5.13)
=

2n(2n+ 2λα,γ)(2n+ λα,γ)

α+ 1

2h
(α, 12 s(γ)+ d−2

2 )
n

(4n+ 2λα,γ − 2)2h
(α, 12 s(γ)+ d

2 )
n−1

(5.7)
=

4n(2n+ 2λα,γ)(2n+ λα,γ)

(α+ 1)(4n+ 2λα,γ − 2)2

(2n+ λα,γ − 1)Γ(n+ α+ 1)Γ(n)

2(2n+ λα,γ)Γ(n+ α)Γ(n+ 1)

=
(2n+ 2λα,γ)(n+ α)

(α+ 1)(4n+ 2λα,γ − 2)
∼ 2n− 1

4(α+ 1)
as n→∞, (5.14)

where we have exploited the identity Γ(z + 1) = zΓ(z) and we use ∼ to denote
that the ratio of two expressions thus linked tends to 1. As u 7→

∥∥D(γ)u
∥∥
α,γ

+

‖Sα,γ0 (u)‖α,γ is an equivalent norm for H1
α,γ (cf. Proposition 5.3) and both tα,γ,n

and Rα,γ,n are L2
α,γ-orthogonal to V

α,γ
0 if n ≥ 2, we infer from (5.14) that there

exists a positive constant C depending on d, α and γ only such that

lim
n→∞

∥∥tα,γ,n − Sα,γ2n−1(tα,γ,n)
∥∥
α,γ;1

‖tα,γ,n‖α,γ;1 (2n− 1)1/2
= C.

Thus, the l = r = 1 instance of Theorem 1.1 is sharp, because otherwise the
left-hand side limit would vanish. �

Conclusion. We have proved our mismatched approximation result Theorem 1.1
and its sharpness for special values of the regularity parameters of the function
being approximated and the norm used to measure the error. On the way, we de-
veloped a suite of auxiliary results connecting Dunkl operators and L2

α,γ-orthogonal
polynomials.

Starting from this work, some avenues of further work that we detect are: (1)
Adapting our arguments to weights invariant with respect to other reflection groups.
(2) Find analogues of Dunkl operators that raise or lower components of γ instead
of α. (3) Explore how Theorem 1.1 fares under polynomial-preserving mappings to
other domains.
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