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Abstract

We adapt the three-field formulation for nearly incompressible hyperelasticity introduced in [Cha-
van, Lamichhane, Wohlmuth, Comput. Methods Appl. Mech. Engrg. (2007), 196:4075–4086] to the
fully incompressible case. We also discuss the solvability of the linearised problem restricted to simple
material laws. We construct a mixed finite element scheme for simplicial meshes and verify its error
decay through computational tests. We also propose a new augmented Lagrangian preconditioner that
improves convergence properties of iterative solvers. A few benchmark solutions are computed, and we
test the formulation in models of cardiac biomechanics using orthotropic strain energy densities.

1 Introduction

Mixed methods for nonlinear solid mechanics consider additional fields in the variational formulation, min-
imising suitable energy functionals and using further constraints. Approaches based on the Hu–Washizu and
Hellinger–Reissner principles are among the most popular choices, and they often lead to saddle-point prob-
lems where suitable inf-sup conditions need to be satisfied (see e.g. [12,43]). Recent variants of these methods
include mixed (first Piola–Kirchhoff) stress tensor and displacement formulations, introduced in [31]. These
arise from inversion of the constitutive relations. Also, a HDG method based on the minimisation of the
potential energy has been analysed in [26], where the authors also discuss when the convergence is compro-
mised and propose a stabilisation strategy. Mixed formulations involving pseudo-stress, displacement and
pressure have been studied in [16]. Recent comparisons between different discontinuous approximations can
be found in [7] and between least-squares mixed formulations in [38]. Recent preconditioners tailored for
hyperelasticity of soft tissue can be found in [14,42].

More relevant to the present case, formulations in terms of Kirchhoff stress, displacement and pressure
were introduced in [15] and have been adapted to the study of cardiac electromechanics in [33,36]. Recasting
the three-field formulation in this particular set of unknowns is very useful for modelling the physiological
responses of cardiac tissue, as the Kirchhoff stress tensor acts as the coupling field with the equations
describing electrical propagation. It thus allows for the direct approximation of the variables of interest [36].
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An additional key feature is that the formulation imposes symmetry of the stress without the need for
additional reconstruction or complicated element choices. Solving the three-field formulation using a suitable
discretisation also avoids volumetric locking. However, the size of the systems involved leads to rather high
computational costs, thus making the adoption of robust and efficient iterative solvers important. Within
the context of cardiac mechanics, the performance of numerical solvers is particularly crucial to clinical
applications. The primary difficulties not only lie with the high spatial and temporal resolutions required
by the simulations of patient-specific physiological conditions, but also with the time constraints posed
by clinical diagnosis. As a result, the use of preconditioning techniques is mandatory for lowering the
computational cost associated with diagnostic-oriented simulations.

Let us recall that (left) preconditioning improves the spectral properties of a general linear system [41]
by pre-multiplying both sides of the equation with a matrix P−1:

Au = b

=⇒ P−1Au = P−1b.
(1.1)

Roughly speaking, the quality of a preconditioner depends on how closely P−1 can approximate the exact
inverse of A; the better the approximation, the higher the quality [11]. The choice of P−1 for block systems
relies heavily on knowledge about the block structure of A. For a general non-singular 2 × 2 block matrix
with a non-singular top-left block A,

A =

[
A B
C D

]
, (1.2)

a popular class of preconditioners builds on the block factorisation formula [10,18,25,32,41]

A−1 ≈ P−1 =

[
I −Â−1B
0 I

] [
Â−1 0

0 Ŝ−1

] [
I 0

−CÂ−1 I

]
, (1.3)

where Â−1 and Ŝ−1 are respectively approximations of A−1 and S−1, with S = D − CA−1B being the
Schur complement. In this context A acts on the displacement and Kirchhoff stress, while D acts on the
pressure. Interpreting the inverse of a matrix as the action of solving a linear system involving the original
matrix, this block Gaussian elimination then reduces the problem of solving the coupled preconditioned
system to that of solving two separate smaller linear systems involving matrices Â and Ŝ. As a result, the
availability of fast approximate solvers for the two smaller linear problems is crucial to the performance of
the preconditioner.

Even if a robust approximation for the top-left block A is known, approximating the Schur complement
S is usually a challenging task, as it is typically dense [9]. An augmented Lagrangian approach which
effectively controls the Schur complement for the Oseen problem was introduced in [9]. The idea is to
introduce an extra term in the variational formulation that does not affect the overall continuous solution,
but serves to ease the approximation of the Schur complement [20]. This extra augmentation is weighted
by a positive constant γ, and is often regarded as the penalty term enforcing the constraint in the problem.
Adding the augmented term leads to changes in the linear system, in particular changes to the blocks of the
matrix A, with Âγ and Ŝγ being the augmented versions of Â and Ŝ; by increasing the penalty parameter γ,

Ŝγ becomes a better and better approximation to Sγ , at the cost of making the operator Aγ more complex.
In our context, the augmented Lagrangian strategy allows us to apply direct factorisations to Aγ instead of
A, substantially decreasing time to solution.

The outline of the paper is as follows. Section 2 summarises the equations of hyperelasticity for general
constitutive laws, and presents the continuous form of the three-field version of the problem in strong and
weak forms. In Section 3 we address the linearisation of the weak form and sketch its solvability analysis
when restricted to neo-Hookean materials. There we also discuss the minimisation of the general nonlinear
variational form. A mixed finite element discretisation and the construction of an augmented Lagrangian
preconditioner are detailed in Section 4. We numerically examine the properties of the formulation, the
finite element scheme, and of the preconditioner in Section 5. We conclude in Section 6 with a brief summary
of our findings and also discussing ongoing extensions of this work.
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2 Model description

2.1 Kinematics and constitutive relations

Let Ω ⊂ Rd (d ∈ {2, 3}) denote an open, connected Lipschitz domain with piecewise smooth boundary ∂Ω,
representing a deformable body in its reference configuration, and denote by n the outward unit normal
vector on ∂Ω. The kinematic description of finite deformations is made precise as follows. A material
point in Ω is denoted by x, whereas U : Ω → Rd will denote the displacement field defining its new
position x + U(x) in the deformed configuration. The tensor F := I + ∇U is the gradient (applied with
respect to the fixed material coordinates) of the deformation map; its Jacobian determinant, denoted by
J = det F = det(I +∇U), measures the solid volume change during the deformation; and C = FtF is the
right Cauchy-Green deformation tensor on which all strain measures will be based (here the superscript (·)t
denotes the transpose operator). The triplet (f0(x), s0(x),n0(x)) represents a coordinate system pointing
in the local preferential directions of motion with n0(x) = f0(x) × s0(x), and the system is restricted to
(f0(x), s0(x)) in 2D. The first isotropic invariant ruling deviatoric effects is I1(C) = tr C, and for generic
unit vectors f0, s0, the scalars I4,f (C) = f0 · (Cf0), I4,s(C) = s0 · (Cs0), I8,fs(C) = f0 · (Cs0) are
direction-dependent pseudo-invariants of C measuring direction-specific stretches.

Constitutive relations depend on the specific material under consideration and they are encoded through
a strain energy density function Ψ written in terms of the deformation gradient. We consider two cases:
the generic neo-Hookean material law and the Holzapfel–Ogden law specifically designed for orthotropic
myocardial tissue [24]. The strain energy densities read respectively

ΨNH(F) =
µ

2
(I1 − d), ΨHO(F) =

a

2b
eb(I1−d) +

afs
2bfs

[
ebfsI

2
8,fs − 1

]
+

∑
i∈{f,s}

ai
2bi

[
ebi(I4,i−1)2

+ − 1
]
, (2.1)

where µ, a, b, ai, bi with i ∈ {f, s, fs} are material parameters and we have used the notation (s)+ := s
if s > 0 or zero otherwise. Both specifications in (2.1) satisfy the condition of polyconvexity needed for
minimisers of the free potential energy form of the problem to exist [30].

The first Piola–Kirchhoff stress tensor is

P =
∂Ψ(·)

∂∇U
− P (I +∇U)−t, (2.2)

where P denotes the solid hydrostatic pressure, which is the Lagrange multiplier used to impose the incom-
pressibility constraint

det(I +∇U) = 1,

and which implies that J does not appear in (2.2). The symmetric Kirchhoff stress tensor is given by

Π = PFt =
∂Ψ(·)

∂∇U
(I +∇U)t − P I. (2.3)

2.2 Force balance and boundary conditions

The constitutive relation, the balance of linear momentum, and the incompressibility constraint are then
combined (when posed in the inertial reference frame and under static mechanical equilibrium configuration)
in the following strong form

Π−
∂Ψ(·)

∂∇U
(I +∇U)t + P I = 0 in Ω, (2.4a)

−div Π(I +∇U)−t = ρ0b in Ω, (2.4b)

det(I +∇U)− 1 = 0 in Ω, (2.4c)

where ρ0 is the reference medium density and b is a vector field of body loads. The balance of angular
momentum translates into the condition of symmetry of the Kirchhoff stress tensor and it is implicitly
carried by the momentum and constitutive relations.
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The Euler-Lagrange equations (2.4) will be supplemented with mixed displacement and traction bound-
ary conditions

U = 0 on ∂ΩD, and Π(I +∇U)−tn = t on ∂ΩN , (2.5)

where ∂ΩD,∂ΩN are a disjoint partition of the boundary ∂Ω and t is a prescribed traction. We assume that
both b and t are sufficiently regular.

2.3 Three-field weak formulation

We proceed to test (2.4a)-(2.4c) against suitable functions, integrating by parts only in (2.4b), and using
(2.5), to obtain the following nonlinear variational problem: Find (Π,U, P ) ∈ L4

sym(Ω)×W1,4
D (Ω)× L4(Ω)

such that∫
Ω

[
Π− ∂Ψ

∂∇U
(I +∇U)t + P I

]
: τ = 0 ∀τ ∈ L4

sym(Ω), (2.6a)∫
Ω

Π(I +∇U)−t : ∇v =

∫
Ω

ρ0b · v +

∫
∂ΩN

t · v ∀v ∈ H1
D(Ω), (2.6b)∫

Ω

[det(I +∇U)− 1] q = 0 ∀q ∈ L4(Ω), (2.6c)

where L4
sym(Ω) := {τ ∈ L4(Ω) : τ = τ t}, W1,4

D (Ω) = {v ∈W1,4(Ω) : v = 0 on ∂ΩD}, and H1
D(Ω) = {v ∈

H1(Ω) : v = 0 on ∂ΩD}. We have taken the usual notation for tensor-tensor scalar product σ : τ = tr(σtτ ),
and we are implicitly assuming that the displacements are admissible in the sense that they have sufficient
regularity as made precise above, or they are in W1,d(Ω) and they satisfy det(I +∇U) > 0 (which implies
that deformations are continuous), see e.g. [8, 17,40].

The motivation for using three-field elasticity formulations is to avoid volumetric locking [27], and to
provide direct approximation of a variable of importance [33, 36], nonetheless at a higher computational
cost. As mentioned in [16], capturing stress concentrations with the guarantee of stress convergence under
mesh refinement is a key requirement that is very difficult to achieve in a point-wise manner simply by
standard displacement-based formulations. A further advantage of using the Kirchhoff stress is that this
tensor is symmetric and for simpler material laws is a polynomial function of the displacements, whereas
first and second Piola–Kirchhoff stresses are rational functions of displacement [15].

2.4 Energy minimisation and an augmented Lagrangian form

Regarding the general case of nonlinear elasticity, let us denote by M3 the set of all 3× 3 matrices, and

M3
+ = {A ∈M3 : det(A) > 0}.

A stored energy function Ψ : M3
+ → R is said to be polyconvex if there exists a convex function G :

M3 ×M3 → R such that
Ψ(F) = G(F, adj F), F ∈M3

+.

The function G is coercive if there exist a ∈ R, b > 0, p ≥ 2, and q ≥ p
p−1 such that

G(F,H) ≥ a+ b(‖F‖p + ‖H‖q), (F,H) ∈M3 ×M3,

where ‖F‖ is the Euclidean norm of the matrix F ∈ R3×3.

According to the right-hand side of (2.6b), let the linear functional M be defined by

M(v) =

∫
Ω

ρ0b · v +

∫
∂ΩN

t · v ,
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which gives the external force to the system. Recall that the standard energy approach for nonlinear
elasticity is to find the solution of the minimisation problem

1

2

∫
Ω

Ψ(I +∇U)−M(U), (2.7)

over a suitable space for displacements [4, 39]. Existence of a solution of the minimisation problem using
pure Dirichlet boundary conditions has been proved in [3, 44], and we recall here its application to (2.4).

Theorem 2.1 Let the stored energy function Ψ : M3
+ → R be continuous and polyconvex with Ψ(F) =

G(F, adj F) on M3
+, with G coercive. Let b ∈ L

p
p−1 (Ω) and suppose that the set

Σ = {v ∈W1,p(Ω) : adj(∇v) ∈ Lq(Ω,M3
+), det(∇v) = 1 a.e. in Ω, v = g on ∂Ω},

is not empty. Assume further that the total stored energy function S : Σ→ R defined by

S(v) =

∫
Ω

Ψ(∇v)−M(v),

satisfies
inf
v∈Σ

S(v) <∞.

Then the problem of finding U such that

U ∈ Σ and S(U) = inf
v∈Σ

S(v),

has at least one solution.

Using the three unknowns from our formulation we can recast the standard minimisation problem as a
constrained minimisation of (2.7) subject to the constraints

Π =
∂Ψ(I +∇U)

∂(I +∇U)
(I +∇U)t − P I,

det(I +∇U) = 1.

On the other hand, an augmented Lagrangian formulation is obtained by including a constraint in the
minimisation formulation and writing the constraints in weak form. Therefore we minimise the functional

1

2

∫
Ω

Ψ(I +∇U) + γ‖ det(I +∇U)− 1‖20,Ω −M(U), (2.8)

(where γ ≥ 0 is the augmentation parameter that also influences the convergence of nonlinear solvers),
subject to the constraints defined by equations (2.6a) and (2.6c).

Therefore the constrained minimisation results in the modified Euler-Lagrange equations∫
Ω

[
Π− ∂Ψ

∂∇U
(I +∇U)t + P I

]
: τ = 0 ∀τ ∈ L4

sym(Ω), (2.9a)∫
Ω

Π(I +∇U)−t : ∇v + γ

∫
Ω

[det(I +∇U)− 1][det(I +∇v)− 1] = M(v) ∀v ∈ H1
D(Ω), (2.9b)∫

Ω

[det(I +∇U)− 1] q = 0 ∀q ∈ L4(Ω). (2.9c)

3 Consistent linearisation and solvability

Apart from the discussion in Section 2.4, we do not address in detail the solvability of (2.4), but rather refer
to the literature complementing the general theory for well-posedness of hyperelasticity found in e.g. [29,30].
Nevertheless, we briefly address some properties of the Fréchet derivative of the solution operator to the
original problem, at a smooth regular exact solution.
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3.1 Definition

Consider the following set of coupled PDEs written in mixed form, and arising from a Newton–Raphson
linearisation of the equations of hyperelasticity in weak form (2.6): Starting from a sufficiently regu-
lar initial guess (Πk=0,Uk=0, P k=0), for k = 0, 1, . . ., find stress, displacement and pressure increments
(πk+1,uk+1, pk+1) such that∫

Ω

[
πk+1 − 2 sym

(
∂Ψk

∂Fk
(∇uk+1)t

)
+ pk+1I

]
: τ =

∫
Ω

RRkΠ : τ ∀τ ∈ L2
sym(Ω), (3.1a)∫

Ω

[
πk+1(Fk)−t −Πk(Fk)−t[∇uk+1]t(Fk)−t

]
: ∇v =

∫
Ω

Rk
U · v ∀v ∈ H1

D(Ω), (3.1b)∫
Ω

(
Jk(Fk)−t : ∇uk+1

)
q =

∫
Ω

RkP q ∀q ∈ L2(Ω), (3.1c)

then update
Πk+1 = Πk + πk+1, Uk+1 = Uk + uk+1, P k+1 = P k + pk+1,

and stop once either the increments or the residuals, in absolute or relative norms, drop below a given
tolerance.

Here RRkΠ,R
k
U,RkP are tensor, vector, and scalar residuals associated with the Newton–Raphson lin-

earisation at the previous step k (including the body load term), and we have used the auxiliary notation
Fk = I + ∇Uk, Jk = det Fk and sym(τ ) = (τ + τ t)/2 for a given tensor τ . These terms are supposed
to be regular enough. In (3.1b)-(3.1c) we have also used the following relations that arise from taking the
Gâteaux derivatives of the solution operator in the direction of the displacement increments u

d

d∇U
(I +∇U)−t

∣∣
u

= −(Fk)−t[∇u]t(Fk)−t,

d

d∇U
det(I +∇U)

∣∣
u

= Jk
(
(Fk)−t : ∇u

)
I.

The boundary conditions associated with the linearisation of the strong form (2.4) translate into zero
incremental displacement on ∂ΩD and zero linearised normal stress on ∂ΩN . Note also that in (3.1a)-(3.1c)
the incremental solutions should now possess the following regularity

(πk+1,uk+1, pk+1) ∈ L2
sym(Ω)×H1

D(Ω)× L2(Ω).

Using the strong form of (3.1a) and the symmetry of τ we can write

∇uk+1 =

[
2
∂Ψk

∂Fk

]−1

(πk+1 + pk+1I−RRkΠ), (3.2)

which implies that it is possible to rewrite (3.1c) as follows∫
Ω

(
Jk(Fk)−t :

[
2
∂Ψk

∂Fk

]−1

(πk+1 + pk+1I)

)
q =

∫
Ω

RkP q +

∫
Ω

(
Jk(Fk)−t :

[
2
∂Ψk

∂Fk

]−1

RRkΠ
)
q ∀q ∈ L2(Ω).

(3.3)
As in [26, 31] one can suppose that after each Newton step the quantities from the previous iteration and
the overall residuals have enough regularity so that the integrals in (3.3) are well-defined.

We cannot continue much further without specifying the form of the strain energy density. In order to
make ideas more precise we will focus in the rest of the section on the case of neo-Hookean materials defined
by ΨNH (cf. (2.1)). Then, for the term in (2.6a), we have

∂ΨNH

∂∇U
= µ(I +∇U).
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Moreover, the linearisation procedure was done starting from a generic initial guess of the Newton iterates.
In case one commences with the stress-free and motionless initial guess, that is,

(Πk=0,Uk=0, P k=0) = (0,0, 0), (3.4)

we can simplify further by characterising the following bilinear forms and linear functionals

a1(π, τ ) =
1

2µ

∫
Ω

π : τ , a3(p, q) =
d

2µ

∫
Ω

pq, b1(u, τ ) = −
∫

Ω

∇u : τ , b2(p, τ ) =
1

2µ

∫
Ω

p tr(τ ),

F1(τ ) =

∫
Ω

RRΠ : τ , F2(v) =

∫
Ω

RU · v, F3(q) =

∫
Ω

RP q +
1

2µ

∫
Ω

trRRΠ q,

so that the first iteration of (3.1) (for a neo-Hookean material) reduces to the symmetric variational problem:
Find (π,u, p) ∈ L2

sym(Ω)×H1
D(Ω)× L2(Ω) such that

a1(π, τ ) + b1(u, τ )+ b2(p, τ ) = F1(τ ) ∀τ ∈ L2
sym(Ω),

b1(v,π) = F2(v) ∀v ∈ H1
D(Ω), (3.5)

b2(q,π) + a3(p, q) = F3(q) ∀q ∈ L2(Ω),

where we have dropped the iteration index and employed the symmetry of τ . We recall that in displacement-
pressure formulations for hyperelasticity one also ends up with symmetric tangent problems (see e.g. [6,29]).

The system (3.5) results from exploiting the linearised counterpart of (3.2), that is

π − 2µ sym(∇u) + pI = M,

(which implies tr(π) − 2µdivu + d p = tr M), where M contains any additional linearisation terms and
therefore (tr M)I is absorbed as part of RRΠ and appears in F3(q), exactly as in (3.3). Otherwise, in the last
equation in (3.5) instead of b2(q,π) and a3(p, q), we should have (as we do have in (3.1c)) a block associated
with a bilinear form b3(u, q) =

∫
Ω
q divu, which would make the problem not block-symmetric:

a1(π, τ ) + b1(u, τ )+ b2(p, τ ) = F1(τ ) ∀τ ∈ L2
sym(Ω),

b1(v,π) = F2(v) ∀v ∈ H1
D(Ω), (3.6)

b3(u, q) = F3(q) ∀q ∈ L2(Ω).

Note also that system (3.6) corresponds to the weak form of the Navier equations written in terms of the
Cauchy stress, the displacement, and the pressure

π − 2µ sym(∇u) + pI = RRΠ,

−div π = RU, (3.7)

divu = RP .

It is important to remark that if instead of the stress-free initial state (3.4) we take only a motionless
state (representing for instance a residual stress present in the system, as typical in soft tissue applications),
e.g.

(Πk=0,Uk=0, P k=0) = (I,0, 0),

then an additional term appears in (3.7), resulting in the system

π − 2µ sym(∇u) + pI = RRΠ,

−div(π −∇ut) = RU, (3.8)

divu = RP .

And similarly as above, after defining the bilinear form

a2(u,v) =

∫
Ω

(∇u)t : ∇v = 2

∫
Ω

sym(∇u) : sym(∇v)−
∫

Ω

∇u : ∇v,

7
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the weak forms (3.5) and (3.6) are modified as

a1(π, τ ) + b1(u, τ )+ b2(p, τ ) = F1(τ ) ∀τ ∈ L2
sym(Ω),

b1(v,π) + a2(u,v) = F2(v) ∀v ∈ H1
D(Ω), (3.9)

b2(q,π) + a3(p, q) = F3(q) ∀q ∈ L2(Ω),

and

a1(π, τ ) + b1(u, τ )+ b2(p, τ ) = F1(τ ) ∀τ ∈ L2
sym(Ω),

b1(v,π) + a2(u,v) = F2(v) ∀v ∈ H1
D(Ω), (3.10)

+ b3(u, q) = F3(q) ∀q ∈ L2(Ω),

respectively.

3.2 Solvability analysis for a linearised and simplified problem

In this section we prove the well-posedness of (3.5). To that end, after simple computations we first observe
that (3.5) can be rewritten as:

â1(π, τ ) + b1(u, τ ) +
1

2µ

∫
Ω

(
1

d
tr(π) + p

)
tr(τ ) = F1(τ ) ∀τ ∈ L2

sym(Ω),

b1(v,π) = F2(v) ∀v ∈ H1
D(Ω),

1

2µ

∫
Ω

(
1

d
tr(π) + p

)
q =

1

d
F3(q) ∀q ∈ L2(Ω),

with

â1(π, τ ) =
1

2µ

∫
Ω

πd : τ d,

where, for a given tensor field τ , τ d is its deviatoric part, that is, τ d = τ − 1
d tr(τ )I. For a given c ∈ R,

(π,u, p) = (cI,0,−c) is a solution to the homogeneous version of (3.5), and as a result the system does not
have a unique solution. To fix this from now on we seek the unknown π in L2

0,sym(Ω), defined by

L2
0,sym(Ω) :=

{
τ ∈ L2

sym(Ω) :

∫
Ω

tr(τ ) = 0

}
,

which satisfies L2
sym(Ω) = L2

0,sym(Ω)⊕ RI. Then, since tr(L2
0,sym(Ω)) = L2

0(Ω), with

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω

q = 0

}
,

satisfying L2(Ω) = L2
0(Ω) ⊕ R, we readily obtain that, after restricting the trial and test spaces associated

with the unknown π to L2
0,sym(Ω), (3.5) is equivalent to the problem: Find (π,u) ∈ L2

0,sym(Ω) ×H1
D(Ω)

such that

â1(π, τ ) + b1(u, τ ) = F1(τ )− 1

d
F3(tr(τ )) ∀τ ∈ L2

0,sym(Ω),

b1(v,π) = F2(v) ∀v ∈ H1
D(Ω). (3.11)

We prove that (3.11) is well-posed to prove the well-posedness of (3.5). To do that, we establish the following
technical result.

Lemma 3.1 There exists C > 0 such that

‖τ d‖0,Ω ≥ C‖τ‖0,Ω, ∀τ ∈ Ker(b1) := {τ ∈ L2
0,sym(Ω) :

∫
Ω

∇v : τ = 0 ∀v ∈ H1
D(Ω)}. (3.12)

8
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Proof. We proceed similarly to the proof of [21, Lemma 2.3]. In fact, we let τ ∈ Ker(b1) and observe that
since

∫
Ω

tr(τ ) = 0, there exists z ∈ H1
D(Ω) such that (see [22, Corollary 2.4])

div z = − tr(τ ) in Ω and ‖z‖1,Ω ≤ C‖ tr(τ )‖0,Ω.

It follows that

‖ tr(τ )‖20,Ω =

∫
Ω

tr(τ ) div z =

∫
Ω

∇z : (tr(τ )I).

Then, since tr(τ )I = d(τ − τ d) and
∫

Ω
∇z : τ = 0, it readily follows that

‖ tr(τ )‖20,Ω =

∫
Ω

∇z : τ d ≤ ‖z‖1,Ω‖τ d‖0,Ω ≤ C‖ tr(τ )‖0,Ω‖τ d‖0,Ω,

which together with the fact that ‖z‖1,Ω ≤ C‖ tr(τ )‖0,Ω, implies

‖ tr(τ )‖0,Ω ≤ C‖τ d‖0,Ω.

This estimate, and the identity ‖τ‖20,Ω = ‖τ d‖20,Ω + 1
d‖ tr(τ )‖20,Ω, imply the result. �

Now we are in position of proving the well-posedness of (3.5).

Theorem 3.1 There exists a unique solution (π,u, p) ∈ L2
0,sym(Ω)×H1

D(Ω)× L2(Ω) to (3.5).

Proof. According to the above, in what follows we prove equivalently that problem (3.11) is well-posed by
means of the Babuška-Brezzi theory.

We begin by noticing that the ellipticity of â1(π, τ ) on Ker(b1) is a direct consequence of Lemma 3.1.
Now, given v ∈ H1

D(Ω), we let τ̃ = −sym(∇v) and observe that∫
Ω

tr(τ̃ ) = −
∫

Ω

div v = −
∫
∂Ω

v · n = 0,

which implies that τ̃ ∈ L2
0,sym(Ω). In addition, the well-known Korn and Poincaré inequalities (see, e.g., [13,

Corollaries 9.2.22, 9.2.25 and Proposition 5.3.5]) imply that

‖τ̃‖0,Ω = ‖sym(∇v)‖0,Ω ≥ C‖v‖1,Ω. (3.13)

Then observing that τ̃ : ∇v = −τ̃ : τ̃ , it follows that

sup
τ∈L2

0,sym(Ω)

τ 6=0

b1(v, τ )

‖τ‖0,Ω
≥ b1(v, τ̃ )

‖τ̃‖0,Ω
= ‖τ̃‖0,Ω

which together with (3.13) implies that b1 satisfies the required inf-sup condition, thus finishing the proof.
�

We end this section by observing that if we employ the same techniques used to establish well-posedness
of (3.9) to study (3.10), then the results hold under a restriction on the bulk modulus.

4 Mixed finite element scheme and preconditioner

4.1 A Galerkin method

Let us denote by Th a regular partition of Ω into simplices (triangles or tetrahedra) K of maximum diameter
hK , and define the mesh size as h := max{hK : K ∈ Th}. The set of facets (the skeleton of the mesh)
will be denoted Eh. In the lowest-order case, the specific finite element method we choose here is based

9
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on solving the discrete weak form of the hyperelasticity equations using piecewise constant approximations
of the symmetric Kirchhoff stress tensor, piecewise linear approximation of displacements, and piecewise
constant approximation of solid pressure. More generally, for ` ≥ 0 we use the finite dimensional spaces
Hh⊂L2

sym(Ω), Vh ⊂ H1(Ω), Qh ⊂ L2(Ω) defined as follows:

Hh := {τh ∈ L2
sym(Ω) : τh|K ∈ P`(K)d×d ∀K ∈ Th},

Vh := {vh ∈ H1(Ω) : vh|K ∈ P`+1(K)d ∀K ∈ Th, vh|∂ΩD
= 0},

Qh := {qh ∈ L2(Ω) : qh|K ∈ P`(K)∀K ∈ Th},
(4.1)

where Pr(R) denotes the space of polynomial functions of degree s ≤ r defined on the set R.

The Galerkin scheme associated with (3.9) is then defined as

a1(πh, τh) + b1(uh, τh) + b2(ph, τh) = F1(τh) ∀τh ∈ Hh,
b1(vh,πh) + a2(uh,vh) = F2(vh) ∀vh ∈ Vh, (4.2)

b2(qh,πh) + a3(ph, qh) + β
∑
e∈Eh

∫
e

he [[ph]] [[qh]] = F3(qh) ∀qh ∈ Qh,

where the discrete spaces correspond to those defined in (4.1) and where β is a positive, pressure stabilisation
parameter independent of the mesh size, required in this simplicial counterpart of the finite element method
for quadrilaterals studied in [15]. The symbol [[q]] denotes the jump of the generic scalar field q over a given
facet e ∈ Eh.

4.2 An augmented Lagrangian preconditioner

The discrete form of the general tangent problem (3.1) can be written as

M

πhuh
ph

 =

A1 B1 B2

B̃1 A2 O

B̃2 O A3

πhuh
ph

 =

F1

F2

F3

 . (4.3)

In order to fit (4.3) into the preconditioning framework described previously in Section 1, it is desirable to
rearrange M as a 2× 2 block matrix. We therefore treat (πh,uh) together as one field and ph as another.

The linear system after splitting becomes

A
(
Uh

ph

)
=

(
κ

b̃

)
, (4.4)

where [
A B
C D

]
:= A, (4.5)

with A being a 2× 2 block matrix, B being a 2× 1 block matrix, C being a 1× 2 block, D = A3, and

Uh =

(
πh
uh

)
, κ =

(
F1

F2

)
, b̃ = F3.

We recall that the constraint imposed on the mechanical problem is J − 1 = 0, so the augmentation added
to the weak form of the variational formulation is the Fréchet derivative of the term

γ

2

∫
Ω

(J − 1)2. (4.6)

The larger the value we take for γ, the more we penalise violation of the constraint. In fact, if γ is taken
large enough, it provides an alternative to the use of the Lagrange multiplier p for enforcing the constraint,

10
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although the augmented Lagrangian approach is preferable to this pure penalty formulation. Following
from the similar ideas in [19], the linear system (4.4) after discrete augmentation then becomes

Aγ
(
Uh

ph

)
=

[
Aγ B
C D

](
Uh

ph

)
=

(
κ

b̃

)
, (4.7)

where
Aγ = A+ γBM−1

p C, (4.8)

and Mp is the pressure mass matrix. We construct the preconditioner based on the block factorisation
formula

P−1 =

[
I −Â−1

γ B
0 I

] [
Â−1
γ 0

0 Ŝ−1
γ

] [
I 0

−CÂ−1
γ I

]
. (4.9)

The smaller sparse linear system associated with the top-left block Âγ (i.e. the approximation of Aγ) is

solved directly by the standard LU factorisation. The dense Schur complement approximation Ŝγ , on the
other hand, requires more consideration. Following from the definition of the Schur complement, Sγ can be
expressed as

Sγ = D − CA−1
γ B

= D − C(A+ γBM−1
p C)−1B,

(4.10)

and can be simplified by the Sherman-Morrison-Woodbury inverse formula [2]:

Sγ = D + (−(CA−1B)−1 − γM−1
p )−1. (4.11)

By increasing the value of γ we are able to capture the dominating term in the expression of Sγ . An

adequate approximation Ŝγ is thus obtained simply by neglecting the dominated terms. The resulting
Schur complement approximation is then given by

Ŝγ = D + (−γM−1
p )−1

= − 1

γ
Mp +D.

(4.12)

The processes of solving the separate linear systems associated with Âγ and Ŝγ are known as the inner
solves, and the process of solving the overall coupled system after preconditioning is called the outer solve.
We adopt a single GMRES iteration preconditioned by direct factorisations of Âγ and Ŝγ for the inner
solves, and use standard FGMRES iteration for the outer solve [37].

5 Numerical examples

In this section we present a set of computational tests that serve as verification of the convergence of the
mixed method in the linear and nonlinear cases. We also explore the applicability of the formulation in
computing some benchmark solutions [7]. All routines have been implemented using the finite element
libraries FEniCS [1] and Firedrake [34].

5.1 Accuracy verification

On the domain Ω = (0, 1)2 we consider the following closed-form displacement and pressure solving the
nonlinear problem (2.4)

U = 0.1(y2, y3)t, P = x4 − y4,

11
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DoF h ‖Π−Πh‖0,Ω rate ‖U−Uh‖1,Ω rate ‖P − Ph‖0,Ω rate

neo-Hookean with ` = 0

51 0.707 65.20 – 0.057 – 32.22 –
179 0.353 27.81 1.229 0.029 0.997 12.31 1.388
675 0.176 12.61 1.143 0.014 1.002 5.222 1.237
2,627 0.088 6.004 1.069 0.007 1.002 2.412 1.114
10,371 0.044 2.938 1.031 0.003 1.001 1.165 1.050
41,219 0.022 1.455 1.014 0.001 1.000 0.573 1.023

neo-Hookean with ` = 1

147 0.707 3.483 – 0.005 – 1.035 –
547 0.353 0.795 2.130 0.001 2.047 0.143 2.848
2,115 0.176 0.193 2.042 3.5e-4 2.012 0.023 2.624
8,323 0.088 0.047 2.014 8.7e-5 2.003 0.004 2.345
33,027 0.044 0.011 2.005 2.1e-5 2.001 0.001 2.143
131,587 0.022 0.004 2.001 5.1e-6 2.000 2.5e-4 2.056

Holzapfel–Ogden with ` = 0

51 0.707 0.966 – 0.058 – 0.512 –
179 0.353 0.434 1.154 0.029 0.992 0.213 1.259
675 0.176 0.198 1.133 0.014 1.012 0.093 1.191
2,627 0.088 0.093 1.084 0.007 1.009 0.043 1.115
10,371 0.044 0.045 1.045 0.004 1.005 0.021 1.059
41,219 0.022 0.022 1.022 0.002 1.003 0.010 1.029

Holzapfel–Ogden with ` = 1

147 0.707 0.164 – 0.006 – 0.088 –
547 0.353 0.041 2.007 0.001 2.001 0.021 2.074
2,115 0.176 0.010 1.999 3.7e-4 2.082 0.005 2.021
8,323 0.088 0.002 2.001 8.9e-5 2.062 0.001 2.007
33,027 0.044 6.3e-4 2.001 2.2e-5 2.025 3.2e-4 2.004
131,587 0.022 1.6e-4 1.999 5.2e-6 2.001 7.9e-5 2.002

Table 5.1: Test 1: Error history for Kirchhoff stress, displacement, and pressure; associated with the mixed
finite element method using different polynomial degrees ` ∈ {0, 1} and for neo-Hookean and Holzapfel–
Ogden material laws.

and Π is computed with these solutions using (2.3). We consider both neo-Hookean and Holzapfel–Ogden
materials and prescribe the interpolant of the exact displacement on the whole boundary. The mean value of
pressure is fixed through a real Lagrange multiplier. These solutions satisfy the incompressibility constraint,
and the body load is manufactured from the exact solutions and (2.4b). The material parameter for the
neo-Hookean energy is µ = 100, whereas the model parameters for the Holzapfel–Ogden energy are

a = 0.496, b = 0.041, af = 0.193, bf = 0.176, as = 0.123, bs = 0.209,

afs = 0.162, bfs = 0.166, f0 = (1, 0)t, s0 = (0,−1)t.

The stabilisation parameter in the neo-Hookean test is β = 10−4 and in the Holzapfel–Ogden case is
β = 10−2.

We implement a Newton–Raphson method that stops whenever a residual absolute tolerance of 10−8

is attained, and where at each iteration the discrete version of the linear system (3.1) is solved with the
Multifrontal Massively Parallel Sparse direct Solver (MUMPS). We then do uniform mesh refinement and
on each level we compute errors between approximate and exact solutions and record the absolute errors
and convergence rates in Table 5.1, which indicate optimal error decay for the first- and second-order cases.

We also conduct an experimental convergence test for the linearised Galerkin scheme (4.2). Now the
exact solutions satisfying (3.8) are

u = 0.1(y2, y3)t, p = x4 − y4, π = 2µsym(∇u)− pI,
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DoFs h ‖π − πh‖0,Ω rate ‖u− uh‖1,Ω rate ‖p− ph‖0,Ω rate

Linear, block symmetric (4.2) with ` = 0

51 0.707 22.87 – 0.051 – 13.86 –
179 0.353 9.849 1.216 0.025 0.996 5.632 1.299
675 0.176 4.503 1.129 0.012 1.000 2.466 1.192
2,627 0.088 2.151 1.066 0.006 1.000 1.148 1.103
10,371 0.044 1.052 1.032 0.003 1.000 0.553 1.052
41,219 0.022 0.525 1.016 0.001 1.000 0.272 1.026
164,355 0.011 0.259 1.008 8.0e-4 1.000 0.135 1.013

Linear, block symmetric (4.2) with ` = 1

147 0.707 4.358 – 0.004 – 2.843 –
547 0.353 0.806 2.433 0.001 2.022 0.499 2.351
2,115 0.176 0.178 2.177 2.6e-4 2.013 0.107 2.225
8,323 0.088 0.042 2.075 6.5e-5 2.006 0.025 2.099
33,027 0.044 0.010 2.032 1.6e-5 2.003 0.006 2.043
131,587 0.022 0.002 2.015 4.1e-6 2.001 0.001 2.019

Table 5.2: Test 1: Error history for stress, displacement, and pressure in the linear regime (3.8), with
β = 10−4.

and the external load is b = − 1
ρ0

div(π −∇ut). We again take µ = 100 and the error history is displayed

in Table 5.2, where we use β = 10−4. We observe the expected rates of convergence. Unreported numerical
experiments indicate that the discretisation of the nonsymmetric formulation arising from (3.10) obtains
the same results.

5.2 Compression benchmark in 2D

We study the deformation of a rectangular block that undergoes a pressure load (here implemented as a
traction) applied on the centre of the top edge. The domain is Ω = (0, 20) × (0, 10) (in mm2), the shear
modulus is µ = 240.565/(2(1 + 0.4999)) MPa and the applied pressure is P0 = 400 MPa. On the top surface
we prescribe zero tangential displacement, on the bottom we set zero normal displacement, and on the
vertical boundaries we impose zero traction. As in [7], we record the vertical displacement on the centre
of the top boundary for different levels of mesh resolution, for different polynomial degrees, and different
values of the stabilisation parameter. The results are portrayed in the right plot of Figure 5.1. We observe
how the output converges to the value -5.63, which agrees with the results from [7]. We can also see that for
the first and second-order methods, the value β = 0.001 performs best. In the higher-order case the result
is insensitive to the stabilisation, while in the lowest-order case the convergence with e.g. β = 0.1 is very
poor. The number of Newton iterations is not shown as it practically coincides in all cases, and it varies
between 5-6 steps.

5.3 Compression test in 3D

We consider the example of a hollow cylinder deforming under compression and shear in 3D [26, Sect. 5.3.2].
As in the previous example we employ an isotropic and incompressible neo-Hookean material now with shear
modulus µ = 50, and consider a hollow cylinder of height 4 cm, inner radius 0.75 cm and outer radius 1 cm.
The domain is discretised into 23,946 tetrahedral elements yielding, for the lowest-order scheme, a total
of 180,134 DoFs. The stabilisation is set to β = 0.1. The surface defined by z = 0 is clamped and the
surface at z = 4 undergoes an increasing deformation. In contrast with Test 2, here we apply an incremental
load taking 10 intermediate steps and progressively reaching a maximal displacement on the top surface of
magnitude 1.5, and acting only in the directions x and z, equally. On the inner and outer radii we prescribe
zero traction. The deformations induced by shear are seen from Figure 5.2, where we plot Kirchhoff stress
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Figure 5.1: Test 2: compressing a neo-Hookean block. Left: vertical displacement on the top-centre of the
domain according to the number of degrees of freedom and for different values of the pressure stabilisation.
Right: yy−component of the Kirchhoff stress and pressure distribution plotted on the deformed configura-
tion, computed with ` = 0 and β = 0.001. For this case the displacement on the centre of the top edge is
u = (0,−5.71)t.

components and pressure on the deformed domain, showing the undeformed configuration with opacity.
The overall behaviour of the simulation agrees with the results from [26].

5.4 Twist and contraction of left ventricle

Next we conduct a simple test on a patient-specific left ventricular geometry segmented from CT-scans.
The basal region (the top surface) corresponds to ∂ΩD where normal displacements are set to zero, whereas
the epicardium and endocardium constitute ∂ΩN . On the endocardium we set an incremental traction
increasing from 0 to 3n (where n is the normal vector on the boundary), which represents the variation
of endocardial pressure from zero to 3 kPa in a sub-stage of the ejection phase. On the epicardium we
simply set zero traction. The directions of fibre and sheetlet orientation are generated with a Laplace-
Dirichlet rule-based method in mixed form as described in [36], and the resulting muscle fibres have an
orientation varying transmurally from the epicardial surface to the endocardial surface with a difference of
120 degrees, whereas the collagen sheetlets have a radial distribution relative to the ventricular centreline.
This ventricular centreline is aligned with the z−axis, the apex-to-base distance is 10.13 cm, and the maximal
circumferential radius is 3.94 cm. We generate a tetrahedral mesh of 94,269 cells and 22,193 vertices on
which we implement the mixed scheme with ` = 1 and β = 50. We employ the Holzapfel–Ogden material law
with the constitutive parameters used in Example 1. The active contraction of the ventricle is incorporated
through the so-called active strain approach (see e.g. [33]) where the activation function ξ is incremented
together with the endocardial pressure up to a maximal activation of 12%. In order to achieve sufficient
torsion and thickening of the ventricular wall, we also use an algebraic relation between the activation and
the myocyte shortening that models sliding myofilaments of collagen and a transmurally heterogeneous
activation that modulates different values of ξ in each direction (see details in [5, 35])

ξf = ξ, ξn = (1− ζ)k0ξ + ζ[(1− ξ)−1/2 − 1], ξs = (1 + ξ)−1(1 + ξn)−1 − 1,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.2: Test 3: compressing a neo-Hookean hollow cylinder for three incremental loadings (from left
to right), using ` = 0 and β = 0.1. Top: zz−component of the Kirchhoff stress. Middle: displacement
magnitude and arrows. Bottom: pressure distribution plotted on the deformed configuration.

where ζ is a smooth indicator function going from 0 on the endocardium to 1 on the epicardium, and we
choose a mild orthotropic activation parameter of k0 = 3.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Test 4: contraction of an orthotropic cardiac ventricle for two and seven incremental steps of
active strain loading (top and bottom, respectively). The Holzapfel–Ogden material law has been used.
Left: xx− component of the Kirchhoff stress. Middle: displacement magnitude and arrows. Right: pressure
distribution plotted on the deformed configuration.

In Figure 5.3 we plot two snapshots of the obtained solutions, one at the beginning of the diastolic phase
and the second one for the end-diastolic configuration. Stresses and pressure concentrate in the vicinity
of the interface between the basal region and the endocardium, and we see the expected apex-to-base
contraction together with a deformation following the fibre orientation and producing a more pronounced
wall thickening towards the basal epicardium. In some regions the mesh is not visible because the deformed
geometry has moved in the positive x-direction.

It is worth remarking that fine-mesh simulations for realistic and patient-specific geometries is not
possible using only direct solvers due to the excessive memory usage. This issue intensifies in more complex
models such as electromechanical tests. Adopting the augmented Lagrangian strategy, even with direct
solvers for the top-left block, enables larger-scale and more complex computations.

16



Kirchhoff stress formulations for incompressible hyperelasticity P. E. Farrell et al.

(a)

10
4

10
5

10
6

DoFs

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

z
-d
e
fl
e
c
t
io
n
o
f
t
h
e
b
e
a
m

γ = 0.1

γ = 1

γ = 10

(b)

10
4

10
5

10
6

10
7

DoFs

3

3.2

3.4

3.6

3.8

4

4.2

z
-d
e
fl
e
c
t
io
n
o
f
t
h
e
b
e
a
m

β = 0.1

β = 1

β = 10

(c)

Figure 5.4: Test 5. (a) deflection of the beam geometry with pressure distribution; (b) plot of deflection
magnitudes at (10, 0.5, 1) against the number of degrees of freedom (DoFs) for different values of γ at
β = 10; (c) plot of deflection magnitudes at (10, 0.5, 1) against the number of degrees of freedom (DoFs) for
different values of β at γ = 10.

5.5 Performance of the preconditioner

The accuracy and the performance of the preconditioner are validated through a set of computational bench-
mark tests introduced in [28]. Detailed descriptions of the problems can be found therein. Here we simulate
only the first two tests (namely the beam deflection problem and the ellipsoid inflation problem), since the
equivalence of the contraction problem has already been considered in Section 5.4. Quantitative results (i.e.
the deflection and inflation magnitudes), which allow us to validate the accuracy of the discretisation and
preconditioner are given in the recent work [14], and the performance of the preconditioner can be examined
by looking at the average number of outer Krylov iterations per Newton step and total runtime.

The first problem (Test 5) considers a deflecting cuboidal beam whose geometry is defined by x ∈ [0, 10],
y ∈ [0, 1], z ∈ [0, 1] mm, with the fibre direction being constant along the x-axis. To match the benchmark
test in [28], the transversely isotropic constitutive law is characterised by the strain energy density proposed
by Guccione et al. [23]:

ΨGCM = a/2(eQ − 1), (5.1)

with Q = bfE
2
ff + bt(E

2
ss + E2

nn + E2
sn + E2

ns) + bfs(E
2
fs + E2

sf + E2
fn + E2

nf ), where a = 2 kPa, bf = 8,
bt = 2, bfs = 4, and the Eij denote entries of the Green–Lagrange strain tensor E, rotated with respect to
a local coordinate system aligned with f0, s0,n0.

The face x = 0 is fixed in all directions and a pressure of 0.004 kPa is applied to the bottom face z = 0.
The z-coordinate of the end point (10, 0.5, 1.0) after deflection, according to [14], is around 4.15 mm.

The second problem (Test 6) considers the inflation of an ellipsoid-like geometry, simulating the defor-
mation pattern of the left ventricle. As in Test 5, the constitutive relation (5.1) is adopted. The base plane
z = 5 mm is fixed in all directions, and a pressure of 10 kPa is applied to the endocardial surface. Again
by [14], the y-coordinate of the epicardial apex (0,−23, 0) after inflation is around -28.8 mm.

We observe from Figure 5.4 the convergence in deflection magnitudes for different values of penalty
parameter γ and pressure stabilisation constant β. The limits agree with the findings in [14], thus validating
the accuracy of the discretisation and preconditioner. The performance of the preconditioner at different
values of β and γ is illustrated by the following tables.

We observe from Table 5.3 a slight decrease in the number of Krylov iterations as we increase the value
of the stabilisation parameter, indicating that our preconditioner is robust to the pressure stabilisation
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# refinements DoFs stabilisation constant (β)

0.1 1 10

1 1.8× 104 3.55 2.95 2.50
2 1.4× 105 3.86 2.86 2.45
3 4.6× 105 3.96 2.86 2.73
4 1.4× 106 4.29 3.14 2.73

Table 5.3: Test 5. Average number of Krylov iterations per Newton iteration at different values of β, fixing
γ = 10.

# refinements DoFs penalty parameter (γ)

0.1 1 10 100

1 1.2× 104 16.0 6.21 2.50 1.36
2 1.4× 105 17.4 6.60 2.45 NF
3 4.6× 105 18.0 7.20 2.73 NF
4 1.0× 106 18.4 7.60 2.73 NF

Table 5.4: Test 5. Average number of Krylov iterations per Newton iteration at different values of γ, fixing
β = 10, where NF denotes the convergence failure of the outer Newton solve. Increasing γ improves the
approximation of the Schur complement and reduces the number of outer Krylov iterations, but makes the
nonlinear problem more difficult to solve.

degrees of freedom (DoFs)

1.4× 105 4.6× 105 1.4× 106

Direct solver for A 3 min 09 s 24 min 07 s 3 h 12 min 02 s
AL preconditioner with direct solver for A 2 min 25 s 17 min 31 s 1 h 55 min 01 s

Table 5.5: Test 5. Average runtime of solving the problem with LU factorisation (direct solver) applied to
the full system, and using the augmented Lagrangian (AL) preconditioner with LU applied to the top-left
block A, at β = 10 and γ = 10.

employed. On the other hand, Table 5.4 illustrates a large decrease in the number of Krylov iterations as
we increase γ. The failure of Newton solve is a direct consequence of the increasing nonlinearity of the
problem as γ increases, as the constraint is nonlinear.

Table 5.5 allows us to see how the computational efficiency has improved after adopting the augmented
Lagrangian preconditioner. We observe that at each mesh refinement, the average runtime after precon-
ditioning is reduced by roughly 25% (and 40% when DoFs = 1.4 × 106) compared to that of solving the
test problem using LU factorisation. We expect to see a larger amount of time saved for more complex
simulations (i.e. as the number of degrees of freedom increases).

For Test 6, we observe from Figure 5.5 the convergence in inflation magnitudes at the apex for different
values of γ and β. Again, the limits agree with the results obtained in [14], thus validating the accuracy of
the discretisation and preconditioner.

We observe from Table 5.6 a moderate decrease in the iteration count as we take larger stabilisation
parameters, showing that the performance of the preconditioner is robust with respect to the pressure
stabilisation employed. As in Test 5, Table 5.7 shows a considerable reduction in the number of Krylov
iterations as we take larger values of γ.

Table 5.8 illustrates the average runtime of solving test 6 before and after the adoption of the augmented
Lagrangian preconditioner at different mesh refinements. We observe that the computational efficiency of
fine simulations is increased by roughly 10–20% compared to that of applying LU factorisation to the whole
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Figure 5.5: Test 6. (a) inflation of the ellipsoid, pressure is shown by the colour bar; (b) plot of inflation
magnitudes at epicardial apex (0,-23,0) against the number of degrees of freedom (DoFs) for different values
of γ at β = 50; (c) plot of inflation magnitudes at epicardial apex (0,-23,0) against the number of degrees
of freedom (DoFs) for different values of β at γ = 1.

# refinements DoFs stabilisation constant (β)

0.5 5 50

1 5.1× 104 7.26 5.19 4.18
2 1.1× 105 7.55 5.38 4.25
3 3.0× 105 8.65 5.75 4.47
4 6.4× 105 9.02 6.19 4.57

Table 5.6: Test 6. Average number of Krylov iterations per Newton iteration at different values of β, fixing
γ = 1..

# refinements DoFs penalty parameter (γ)

0.1 1 10

1 5.1× 104 14.7 5.19 2.47
2 1.1× 105 15.4 5.38 2.51
3 3.0× 105 16.6 5.75 2.58
4 6.4× 105 17.2 6.19 2.66

Table 5.7: Test 6. Average number of Krylov iterations per Newton iteration at different values of γ, fixing
β = 5.

system. As remarked at the end of Section 5.4, for cardiac electromechanics a much higher mesh resolution
is required, and using solely direct solvers for A is ruled out.

6 Concluding remarks

In this paper we have proposed an extension of a formulation for nonlinear hyperelasticity in the incom-
pressible regime, which uses the Kirchhoff stress as one of the field variables. This formulation presents some
advantages related to imposition of stress symmetry, usability in recent models for stress-assisted diffusion,
and discretisation using classical conforming spaces. We have discussed the solvability and stability of the
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degrees of freedom (DoFs)

1.1× 105 43.0× 105 6.4× 105

Direct solver for A (serial) 27 min 11 s 2 h 27 min 58 s 11 h 23 min 42 s
AL preconditioner with direct solver for A (serial) 24 min 32 s 2 h 10 min 58 s 9 h 59 min 5 s

Direct solver for A (8 cores) 6 min 41 s 34 min 16 s 2 h 37 min 0 s
AL preconditioner with direct solver for A (8 cores) 6 min 3 s 30 min 59 s 2 h 20 min 21 s

Direct solver for A (16 cores) 4 min 24 s 22 min 13 s 1 h 49 min 32 s
AL preconditioner with direct solver for A (16 cores) 4 min 22 s 19 min 51 s 1 h 29 min 59 s

Table 5.8: Test 6. Average runtime of solving the problem with LU factorisation (direct solver) applied to
the full system, and using the augmented Lagrangian (AL) preconditioner with LU applied to the top-left
block A, at β = 50 and γ = 10.

linearised problem, and have proposed an augmented Lagrangian preconditioner. Several numerical exam-
ples have demonstrated the performance of the formulation and the robustness of the preconditioner in the
solution of some benchmark problems and some tests arising in cardiac biomechanics. Ongoing extensions
of this work include the analysis of time-dependent formulations of hyperelasticity and understanding how
the preconditioner should be adapted. We also plan to derive suitable a posteriori error estimators. Another
important extension is the study of inner iterative solvers for the augmented Kirchhoff stress-displacement
block in the preconditioner.
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