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Rafael Ordoñez, Luis M. Villada

PREPRINT 2020-26

SERIE DE PRE-PUBLICACIONES





Manuscript submitted to doi:10.3934/xx.xx.xx.xx
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

A MULTICLASS LIGHTHILL-WHITHAM-RICHARDS TRAFFIC

MODEL WITH A DISCONTINUOUS VELOCITY FUNCTION

Raimund Bürger

CI2MA and Departamento de Ingenieŕıa Matemática,
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and Departamento de Matemáticas, Universidad del B́ıo-B́ıo, Concepción, Chile

(Communicated by the associate editor name)

Abstract. The well-known Lighthill-Whitham-Richards (LWR) kinematic mo-
del of tra�c flow models the evolution of the local density of cars by a non-
linear scalar conservation law. The transition between free and congested flow
regimes can be described by a flux or velocity function that has a discontinuity
at a determined density. A numerical scheme to handle the resulting LWR
model with discontinuous velocity was proposed in [J.D. Towers, A splitting
algorithm for LWR tra�c models with flux discontinuities in the unknown, J.
Comput. Phys., 421 (2020), article 109722]. A similar scheme is constructed
by decomposing the discontinuous velocity function into a Lipschitz continu-
ous function plus a Heaviside function and designing a corresponding splitting
scheme. The part of the scheme related to the discontinuous flux is handled by
a semi-implicit step that does, however, not involve the solution of systems of
linear or nonlinear equations. It is proved that the whole scheme converges to a
weak solution in the scalar case. The scheme can in a straightforward manner
be extended to the multiclass LWR (MCLWR) model, which is defined by a
hyperbolic system of N conservation laws for N driver classes that are distin-
guished by their preferential velocities. It is shown that the multiclass scheme
satisfies an invariant region principle, that is, all densities are nonnegative and
their sum does not exceed a maximum value. In the scalar and multiclass cases
no flux regularization or Riemann solver is involved, and the CFL condition is
not more restrictive than for an explicit scheme for the continuous part of the
flux. Numerical tests for the scalar and multiclass cases are presented.
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1. Introduction.

1.1. Scope. The multiclass Lighthill-Whitham-Richards (MCLWR) model is a gen-
eralization of the well-known Lighthill-Whitham-Richards (LWR) model [24, 27]
to multiple classes of drivers and was formulated independently by Wong and
Wong [30] and Benzoni-Gavage and Colombo [1]. The model is given by the follow-
ing system of conservation laws in one space dimension, where the sought unknowns
are the densities �i = �i(x, t) of vehicles of class i, i = 1, . . . , N , as a function of
distance x and time t [1, 30]:

@t�i + @x

�
�ivi(�)

�
= 0, i = 1, . . . , N. (1.1)

Here � = �1+· · ·+�N denotes the total density of vehicles. The velocity function vi

is assumed to depend on �, where we assume that

vi(�) = v
max
i V (�), i = 1, . . . , N, (1.2)

where v
max
1 < v

max
2 < . . . < v

max
N are the maximum velocities of the N classes of

vehicles and V is a hindrance function that models the drivers’ attitude to reduce
speed in the presence of other cars. This function is usually assumed to be con-
tinuous and piecewise smooth on an interval [0,�max], where �max > 0 denotes a
maximum vehicle density, with

V (0) = 1, V
0(�) < 0, V (�max) = 0.

The simplest function having all these properties is the linear interpolation V (�) =
1��/�max. However, equation (1.1) is studied herein under the assumption that V is
piecewise continuous with one decreasing jump at a density value �⇤ 2 (0,�max),
that is

V (�) =

(
Vf(�) for 0 6 � 6 �

⇤,

Vc(�) for �⇤ < � 6 �max,
Vf 2 C

1[0,�⇤], Vc 2 C
1[�⇤,�max],

Vf(0) = 1, V
0
f (�) 6 0 on [0,�⇤], V

0
c (�) 6 0 on [�⇤,�max], Vf(�max) = 0,

↵V := Vf(�
⇤)� Vc(�

⇤) > 0.

(1.3)

We consider (1.1) on the domain ⇧T := (�L,L)⇥ (0, T ), where L > 0 and T > 0,
along with the initial and boundary conditions

�i(x, 0) = �i,0(x) 2 [0,�max], x 2 (�L,L),

�i(�L, t) = ri(t) 2 [0,�max], t 2 (0, T ),

�i(L, t) = si(t) 2 [0,�max], t 2 (0, T ), i = 1, . . . , N ;

(1.4a)

F(t) 2 (vmax)Ts(t)Ṽ
�
s(t)

�
, t 2 (0, T ); vmax := (vmax

1 , . . . , v
max
N )T. (1.4b)

The non-standard boundary condition (1.4b) on the total density is required in case
that s(t) = �

⇤
, where s(t) := (s1(t), . . . , sN (t))T and s(t) = s1(t)+ · · ·+sN (t). This

implies that we assign values to F(t) according to

F(t) =

(
(vmax)Ts(t)V (�⇤�) if the tra�c ahead of x = L is free-flowing,

(vmax)Ts(t)V (�⇤+) if the tra�c ahead of x = L is congested.
(1.5)

This assumption is motivated in a wider sense by models of phase transitions
between free and congested tra�c flow regimes [13, 14], and more specifically by
treatments of the single-class scalar version of (1.1)–(1.4). In the scalar case the
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model can be formulated following initial-boundary value problem for a scalar con-
servation law defined on ⇧T :

@t�+ @xf(�) = 0, (x, t) 2 ⇧T f(�) = v
max

�V (�),

�(x, 0) = �0(x) 2 [0,�max], x 2 (�L,L),

�(�L, t) = r(t) 2 [0,�max], t 2 (0, T ),

�(L, t) = s(t) 2 [0,�max], F(t) 2 f̃
�
s(t)

�
t 2 (0, T ).

(1.6)

with a jump in V (�) or equivalently, in the flux f(�), see [28,29], where f̃ denotes the
multivalued version of f and F(t) 2 f̃(s(t)) represents the non-standard boundary
condition of the flux discontinuity, see [28].

It is the purpose of the present contribution to introduce a numerical scheme
for the MCLWR model with discontinuous flux (1.1)–(1.3) that is based on the
available treatment [28] of the scalar model (1.6). The scalar version of the scheme
slightly di↵ers from that of [28] but we prove that it produces approximations that
also converge to a weak solution. Numerical experiments provide evidence that
it approximates the same solutions as the scheme of [28]. In the multiclass case
we prove satisfaction of an invariant region principle, that is, numerical solutions
assume values in

D :=
�
(�1, . . . ,�N )T 2 RN : �1 > 0, . . . ,�N > 0, � = �1 + · · ·+ �N 6 �max

 

under corresponding assumptions on the initial and boundary data.

1.2. Related work. The MCLWR model (1.1) has been studied intensively in re-
cent years. The system (1.1), (1.2) has some interesting properties and in particular
admits a separable entropy function for an arbitrary number of driver classes. We
refer to [1, 2, 5, 7, 9–11, 19, 20, 30–36] for numerical and analytical treatments and
emphasize that to our knowledge a velocity function discontinuous in the unknowns
has not been considered so far for the MCLWR model.

Conservation laws with discontinuous flux function arise in many physical ap-
plications including flow in porous media [22], sedimentation [8, 18], and the LWR
tra�c model [25, 29]. Here we limit the discussion to analyses where the flux is
a discontinuous function of the unknown (as opposed to the more widely studied
discontinuous dependence on spatial position). This property implies that standard
numerical methods cannot be applied directly due to the presence of waves that
travel at infinite speed, namely so-called zero waves. These waves carry informa-
tion about the flux but this value is transported instantaneously, which excludes
applying explicit schemes due to the lack of regularity of the flux. Gimse [21] was
the first to present a solution to this problem. He studied a conservation law where
the flux function has a single jump. He discussed the existence of the zero wave, gen-
eralized the method of convex hull construction, and solved the Riemann problem
using a front tracking algorithm.

Carrillo [12] studied conservation laws with a discontinuous flux function where
the flux is allowed to have discontinuities on a finite subset of real numbers. The
proof of existence of solutions is based on the comparison principle and an entropy
inequality involving a version of semi-Kružkov entropies. Dias and Figueira [15]
studied a related problem by using a mollification technique to smooth out discon-
tinuities. They showed that solutions to a suitably regularized problem converge to
solutions of the original problem in the limit. They also defined the notions of weak
solution and weak entropy solution. The mollification technique was implemented
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in [16, 17]. Moreover, Dias and Figueira [16] proposed a numerical scheme for Rie-
mann problem. Specifically, they introduced a procedure to obtain a new Lipschitz
continuous flux function with the same lower convex envelope of the original flux,
and then a standard Lax-Friedrichs method is employed.

Martin and Vovelle [26] considered the problem of numerical approximation in
the Cauchy-Dirichlet problem for a scalar conservation law with a flux function
having finitely many discontinuities. The well-posedness of this problem had been
proved by Carrillo. An implicit finite volume scheme is constructed in [26] and
Newton’s method is employed to solve the resulting system of nonlinear equations.
Furthermore, convergence to the unique entropy solution is shown.

Lu et al. [25] explicitly constructed the entropy solutions for the LWR tra�c
flow model with a piecewise quadratic flow-density relationship. Their approach is
based on constructions of entropy solutions to a sequence of approximate problems
in which the flow-density relationship is continuous but tends to the discontinuous
flux when a small parameter in this sequence tends to zero.

Buĺıček et al. [3] introduced new concepts of entropy weak and measure-valued
solutions that are consistent with the standard ones if the flux is continuous. They
identified a given discontinuous flux function with a continuous curve that consists
of the graph of this flux and abscissae that fill the jumps. Consequently, instead of a
discontinuous flux function of the unknown, they deal with an implicit relation that
represents a curve. One has one degree of freedom to set up the “optimal” unknown
(independent variable). These ideas are combined in [4], where the authors treat the
case of a flux function discontinuous in spatial position and the unknown. Through
appropriate estimates for entropy measure-valued solutions well-posedness is shown.

Wiens et al. [29] applied Dias and Figueira’s mollification approach to solving
a conservation law with a piecewise linear flux function in which there is a single
discontinuity at a critical point. They introduced a mollified function and then the
analytical solution to the corresponding Riemann problem is derived in the limit.
Furthermore they constructed a Riemann solver that forms the basis for a high-
resolution finite volume scheme of Godunov type and used an alternate approach
that eliminates the severe CFL constraint by incorporating the e↵ect of zero waves
directly into the local Riemann solver.

Towers [28] presented a finite di↵erence scheme that implement a splitting con-
sistent with the decomposition the flux f(u) = p(u) + g(u), where p is a Lipschitz
continuous function and g is a function of Heaviside type that includes the jumps
of f . The scheme has the form (see [28, Eq. (3.11)])

8
><

>:

(
U

n+1/2
j = G̃

�1
�
U

n
j � �g

n+1/2
j+1

�
, j = M,M � 1, . . . , 1,

g
n+1/2
j =

�
U

n+1/2
j � U

n
j + �g

n+1/2
j+1

�
/�, j = M,M � 1, . . . , 1,

U
n+1
j = U

n+1/2
j � ���p̃

�
U

n+1/2
j+1 � U

n+1/2
j

�
, j = 1, . . . ,M,

(1.7)

which can be written in conservation form as follows:

U
n+1/2
j = U

n
j � �

�
g
n+1/2
j+1 � g

n+1/2
j

�
,

U
n+1 = U

n+1/2
j � ���p̃

�
U

n+1/2
j+1 , U

n+1/2
j

�
.

The first part of the scheme is implicit and consistent with ut + g(u)x = 0, but
the resulting equations can be solved by evaluation of a piecewise linear function.
Hence, an iterative solver like Newton’s method is not required. The second part
of the scheme is consistent with ut + p(u)x = 0 and is explicit, and can be solved
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Figure 1. (a) Piecewise continuous velocity function V (�) with
discontinuity at � = �

⇤, (b) continuous and discontinuous portions
pV (�) (solid line) and gV (�) (dashed line).

by any scheme suitable for a scalar conservation law with Lipschitz continuous flux.
Towers [28] focused on the Godunov flux for the explicit part but also presented a
simple flux-limited Lax-Wendro↵-type modification to the Godunov scheme.

1.3. Outline of the paper. The remainder of the paper is organized as follows.
In Section 2 we present a numerical scheme for the LWR tra�c flow model. We
first introduce some assumptions and the notion of weak solution in Section 2.1.
Next, Section 2.2 is devoted to the presentation of our scheme for the scalar case
(N = 1) and we imposed the appropriate CFL condition. Then, in Section 2.3, we
prove that under the CFL condition it satisfies uniform L

1 and TVD properties.
Moreover we prove some kind time continuity estimates and to the end this section
we prove the convergence of our numerical solution converge to weak solution in
sense of Definition 2.1. In Section 3 we extend the algorithm to the multiclass case
(N > 1) and prove that the scheme preserves the invariant region D. In Section 4
we present several numerical examples to confirm all the results mentioned before.
Section 5 collects some conclusions.

2. Construction of the numerical scheme in the scalar case. Before describ-
ing the numerical scheme we introduce some assumptions and the definition of weak
solutions proposed in [16], which is employed herein.

2.1. Preliminaries. To outline the basic idea, and to make the comparison with
[28] transparent, we define the functions

gV (�) := ↵V H(�⇤ � �), pV (�) := V (�)� gV (�), (2.1)

where pV is a Lipschitz continuous, piecewise smooth and decreasing function, while
gV (�) is a non-negative and decreasing function, see Figure 1. Furthermore, as
in [28], we can equivalently specify

G(t) 2 g̃V

�
s(t)

�
, (2.2)
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where g̃V denotes the multivalued version of gV . With respect to the initial and
boundary data we assume that the initial density function �0 satisfies

�0(x) 2 [0,�max] for x 2 (�L,L), �0 2 BV ([�L,L]), gV (�0) 2 BV ([�L,L]).

The boundary functions r and s are assumed to satisfy

r(t), s(t) 2 [0,�max] for t 2 [0, T ], r, s 2 BV ([0, T ]).

We also assume that G(t) 2 [0,↵V ] for all t 2 [0, T ], and G 2 BV ([0, T ]).

Definition 2.1 (Weak solution [16]). A function � 2 L
1(⇧T ) is said to be a

weak solution to the initial-boundary value problem (1.6) if there exists a function
q 2 L

1(⇧T ) satisfying q(x, t) 2 f̃(�(x, t)) a.e. such that for all test functions
 2 C

1
0

�
[�L,L]⇥ [0, T )

�
,

Z T

0

Z L

�L

�
� t + q x

�
dx dt+

Z L

�L
�0(x) (x, 0) dx = 0.

2.2. Numerical scheme. The domain ⇧T is discretized as follows. We choose a
partition {Ij}

M
j=1 of [�L,L] composed of uniform cells Ij = [xj�1/2, xj+1/2), where

xj+1/2 = xj +�x/2, that are centered in xj and have length |Ij | = �x = 2L/M .
Then, for �t > 0, we let t

n = n�t for n = 0, . . . ,N , where N is an integer such
that T 2 [tN , t

N +�t). The unknowns �nj approximate the cell average of the exact
solution �(·, tn) in the cell Ij . The initial condition is discretized by

�
0
j =

1

�x

Z

Ij

�0(x) dx, j = 1, . . . ,M,

and the boundary conditions with F(t) 2 f̃(s) are discretized as follows:

�
n+1/2
0 = �

n
0 = r(tn) = t

n
, �

n+1/2
M+1 = �

n
M+1 = s(tn) = s

n
,

r
n
2 [0,�max], s

n
2 [0,�max], g

n+1/2
M+1 2 [0,↵V ],

g
n+1/2
M+1 = g

n
M+1 = G(sn)

=

8
>>><

>>>:

↵V if sn < �
⇤
,

↵V if sn = �
⇤ and tra�c ahead of x = L is free-flowing,

0 if sn = �
⇤ and tra�c ahead of x = L is congested,

0 if sn > �
⇤.

(2.3)

Before proposing our scheme we recall that the basic idea of a splitting scheme
consists in solving within each time step, first the PDE

@t�+ @x

�
v
max

�gV (�)
�
= 0, (2.4)

followed by the solution of the conservation law with continuous flux

@t�+ @x

�
v
max

�pV (�)
�
= 0. (2.5)

Note that in the scalar case the constant vmax is immaterial. For the remainder of
the analysis of the scalar case we assume that t or x are rescaled so that vmax = 1.

Based on the form of the flux function of equations (2.4) and (2.5) and the
properties of the functions gV and pV , we may write a numerical scheme for (1.6)
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Figure 2. (a) function z 7! G̃V (z;�) given by (2.9a) with �vmax =
1/2, ↵V = 0.3, and � = 0.8, (b) its inverse z 7! G̃

�1
V (z;�) given by

(2.9b).

that is motivated by Scheme 4 of [6] in the following form:

�
n+1/2
j = �

n
j � �

�
�
n
j g

n+1/2
V,j+1 � �

n
j�1g

n+1/2
V,j

�
,

�
n+1
j = �

n+1/2
j � �

�
�
n+1/2
j pV

�
�
n+1/2
j+1

�
� �

n+1/2
j�1 pV

�
�
n+1/2
j

��
,

j = 1, . . . ,M.

(2.6)

The first half-step in (2.6) is semi-implicit and is consistent with (2.4) whereas the
second half-step is explicit and consistent with (2.5).

In order to evaluate the first line in (2.6), we start by computing the values
g
n+1/2
V,j from j = M + 1 to j = 1 (in decreasing order). This is motivated by the
following argument, where we start from the semi-implicit equation

�
n+1/2
j = �

n
j � �

�
�
n
j gV

�
�
n+1/2
j+1

�
� �

n
j�1gV

�
�
n+1/2
j

��
(2.7)

along with a known value G(�n+1/2
M+1 ) arising from the boundary condition. Next,

we write gV (�
n+1/2
j+1 ) as gn+1/2

V,j+1 and then rearrange (2.7) as

�
n+1/2
j � ��

n
j�1gV

�
�
n+1/2
j

�
= �

n
j � ��

n
j g

n+1/2
V,j+1 . (2.8)

Let us now define the function

GV (z;�) := z � ��gV (z), z,� 2 [0,�max]

along with its multivalued version (with respect to z) G̃V (·;�). Then G̃V is strictly
increasing and has a unique inverse z 7! G̃

�1
V (z;�), see Figure 2. Explicitly, we get

G̃V

�
z;�

�
:=

8
><

>:

z � �↵V � for z 2 [0,�⇤),

[�⇤ � �↵V �,�
⇤] for � = �

⇤,

z for z 2 [�⇤,�max],

(2.9a)

G̃
�1
V

�
z;�

�
:=

8
><

>:

z + �↵V � for z 2 [��↵V �,�
⇤
� �↵V �),

�
⇤ for z 2 [�⇤ � �↵V �,�

⇤],

z for z 2 [�⇤,�max].

(2.9b)
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Consequently, we may express (2.8) as

G̃V

�
�
n+1/2
j ;�nj�1

�
= �

n
j � ��

n
j g

n+1/2
V,j+1 ,

which allows us to obtain �n+1/2
j by applying G̃

�1
V (z;�) to both sides, that is

�
n+1/2
j = G̃

�1
V

�
�
n
j � ��

n
j g

n+1/2
V,j+1 ;�

n
j�1

�
. (2.10)

Now that �n+1/2
j is available, we solve for gn+1/2

V,j the equation

�
n+1/2
j = �

n
j � �

�
�
n
j g

n+1/2
V,j+1 � �

n
j�1g

n+1/2
V,j

�
, (2.11)

provided that �nj�1 > 0. If �nj�1 = 0, we define directly

g
n+1/2
V,j = gV

�
�
n+1/2
j

�
.

The numerical scheme can be summarized in Algorithm 2.1:

Algorithm 2.1 (BCOV scheme, scalar case).

Input: approximate solution vector {�
n
j }

M
j=1 for t = t

n

g
n+1/2
V,M+1  G(�n+1/2

M+1 ) (using (2.3))
do j = M,M � 1, . . . , 1

�
n+1/2
j  G̃

�1
V

�
�
n
j � ��

n
j g

n+1/2
V,j+1 ;�

n
j�1

�

if �nj�1 6= 0 then

g
n+1/2
V,j  

�
n+1/2
j � �

n
j + �g

n+1/2
V,j+1 �

n
j

��
n
j�1

else
g
n+1/2
V,j  gV (�

n+1/2
j )

endif
enddo
do j = 1, 2, . . . ,M

�
n+1
j  �

n+1/2
j � �

�
�
n+1/2
j pV

�
�
n+1/2
j+1

�
� �

n+1/2
j�1 pV

�
�
n+1/2
j

��

enddo
Output: approximate solution vector {�

n+1
j }

M
j=1 for t = t

n+1 = t
n +�t

Next, we demonstrate that the numerical scheme (2.11) is consistent with (2.4).

Lemma 2.1. Assume that �
n+1/2
j 2 [0,�max] for all j. Then g

n+1/2
V,j 2 g̃V (�

n+1/2
j )

for all j. In particular g
n+1/2
V,j 2 [0,↵V ] for all j.

Proof. Let us first assume that �j�1 = 0. Then the result follows from the definition
of the function gV (z) and the corresponding assignment to g

n+1/2
V,j in Algorithm 2.1.

If �j�1 6= 0, then (2.10) and (2.9) imply that

�
n+1/2
j � ��

n
j�1g

n+1/2
V,j 2 G̃V

�
�
n+1/2
j ;�nj�1

�
.

Therefore, by a straightforward case-by-case study (of the cases arising in (2.9)) we
conclude that gn+1/2

V,j 2 g̃V (�
n+1/2
j ).

Now, to derive CFL conditions, we write the scheme (2.6) in incremental form

�
n+1/2
j = �

n
j + C

n+1/2
g,j+1/2�+�

n+1/2
j �D

n+1/2
g,j�1/2���

n
j , (2.12a)

�
n+1
j = �

n+1/2
j + C

n+1/2
p,j+1/2�+�

n+1/2
j �D

n+1/2
p,j�1/2���

n+1/2
j (2.12b)
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with the spatial di↵erence operators �+Vj := Vj+1 � Vj and ��Vj := Vj � Vj�1

and the incremental coe�cients

C
n+1/2
g,j+1/2 :=

8
><

>:
��

n
j

gV (�
n+1/2
j )� gV (�

n+1/2
j+1 )

�
n+1/2
j+1 � �

n+1/2
j

if �n+1/2
j+1 6= �

n+1/2
j ,

0 otherwise,

D
n+1/2
g,j�1/2 := �gV (�

n+1/2
j ),

C
n+1/2
p,j+1/2 :=

8
><

>:
��

n+1/2
j

pV (�
n+1/2
j )� pV (�

n+1/2
j+1 )

�
n+1/2
j+1 � �

n+1/2
j

if �n+1/2
j+1 6= �

n+1/2
j ,

0 otherwise,

D
n+1/2
p,j�1/2 := �pV (�

n+1/2
j ).

To have an L
1 estimate (Lemma 2.2 below) and the Total Variation Decreasing

(TVD) property (Lemma 2.3 below ) su�cient conditions are

0 6 D
n+1/2
p,j�1/2, C

n+1/2
p,j+1/2 6 1

2
, C

n+1/2
g,j+1/2 > 0, 0 6 D

n+1/2
g,j�1/2 6 1 for all j.

First, we observe the following fact about g̃V . If z1, z2 2 [0,�max] and z1 6= z2, then

gV,1 2 g̃V (z1), gV,2 2 g̃V (z2) =)
gV,2 � gV,1

z2 � z1
6 0. (2.13)

This property and Lemma 2.1 imply that

D
n+1/2
g,j�1/2, C

n+1/2
g,j+1/2 > 0 for all j.

Next, the properties of the function pV ensure that

C
n+1/2
p,j+1/2, D

n+1/2
p,j�1/2 > 0 for all j.

Finally, to enforce the inequalities

D
n+1/2
p,j�1/2, Cp,j+1/2 6 1

2
and D

n+1/2
g,j�1/2 6 1 for all j,

we impose the CFL conditions

�

⇣
�max max

16j6M

��p0V (�j)
��+ max

16j6M
pV (�j)

⌘
6 1

2
, �↵V 6 1. (2.14)

2.3. Convergence of the scalar scheme. The goal is to prove convergence of
approximate solution to a weak solution of (1.6). The discrete solutions {�

n+1/2
j }

constructed via the scheme (2.6) are extended to the whole domain ⇧T by defining
the piecewise constant function

�
�(x, t) =

NX

n=0

MX

j=1

�j(x)�
n(t)�n+1/2

j (2.15)

where � = (�x,�t) and �j(x) and �n(t) are the characteristic functions of cell Ij
and the time interval [tn, tn + �t), respectively. The ratio � = �t/�x is always
kept constant, so the limits �t! 0, �x! 0, and �! 0 are equivalent.

We start by proving an L
1 estimate on ��. In the remainder of this section it

is always assumed that the CFL condition (2.14) is in e↵ect.
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Lemma 2.2. If �
0
j 2 [0,�max] for j = 1, . . . ,M , then

�
n
j ,�

n+1/2
j 2 [0,�max] for all j = 1, . . . ,M and n = 1, . . . ,N . (2.16)

Proof. Taking n = 0 and j = M in (2.10) yields

�
1/2
M = G̃

�1
V

�
�
0
M � ��

0
Mg

1/2
V,M+1;�

0
M�1

�
. (2.17)

The boundary condition g
1/2
V,M+1 = G(t0) ✓ [0,↵V ] together with the assumption

implies that

��↵V �
0
M 6 �

0
M � ��

0
Mg

1/2
V,M+1 6 �max.

Since G̃�1
V (·;�) is a nondecreasing function and maps [��↵V �,�max] onto [0,�max],

(2.17) implies that �1/2M 2 [0,�max]. It follows from (2.1) that g1/2V,M 2 [0,↵V ]. Rea-
soning in this way for j = M�1,M�2, . . . , 1 yields �1/2j 2 [0,�max] for j = 1, . . . ,M .
Since �1/20 ,�

1/2
M+1 2 [0,�max] by (2.3), and taking into account (2.12), we find that

�
1
j is a convex combination of �1/2j�1, �

1/2
j and �

1/2
j+1. Thus, �1j 2 [0,�max] for

j = 1, . . . ,M . Repeating this argument inductively for n = 1, . . . ,N we obtain
(2.16).

Lemma 2.3. The discrete approximate solutions generated by the scheme (2.12)
satisfy the following spatial variation bounds:

MX

j=0

���nj+1 � �
n
j

�� 6 TV(�0) + TV(r) + TV(s),

MX

j=0

���n+1/2
j+1 � �

n+1/2
j

�� 6 TV(�0) + TV(r) + TV(s).

(2.18)

Proof. Applying the operator �+ to (2.12a) and rearranging yields
�
1 + C

n+1/2
g,j+1/2

�
�+�

n+1/2
j

=
�
1�D

n+1/2
g,j+1/2

�
�+�

n
j + C

n+1/2
g,j+3/2�+�

n+1/2
j+1 +D

n+1/2
g,j�1/2�+�

n
j�1.

Taking absolute values, summing over j = 1, . . . ,M � 1 and using (2.14) we get

M�1X

j=1

�
1 + C

n+1/2
g,j+1/2

����+�
n+1/2
j

��

6
M�1X

j=1

�
1�D

n+1/2
g,j+1/2

����+�
n
j

��+
M�1X

j=1

C
n+1/2
g,j+3/2

���+�
n+1/2
j+1

��

+
M�1X

j=1

D
n+1/2
g,j�1/2

���+�
n
j�1

��.

Cancelling telescoping terms we obtain
M�1X

j=1

���+�
n+1/2
j

��+ C
n+1/2
g,3/2

���+�
n+1/2
1

��

6
M�1X

j=1

���+�
n
j

���D
n+1/2
g,M�1/2

���+�
n
M�1

��+ C
n+1/2
g,M+1/2

���+�
n+1/2
M

��

+D
n+1/2
g,1/2

���+�
n+1/2
0

��.

(2.19)
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The boundary condition implies

�+�
n+1/2
0 =

�
1�D

n+1/2
g,1/2

�
�+�

n
0 + C

n+1/2
g,3/2 �+�

n+1/2
1 ,

�
1 + C

n+1/2
g,M+1/2

�
�+�

n+1/2
M = �+�

n
M +D

n+1/2
g,M�1/2�+�

n+1/2
1 .

After taking absolute values in the two previous equations, we get
���+�

n+1/2
0

�� 6
�
1�D

n+1/2
g,1/2

����+�
n
0

��+ C
n+1/2
g,3/2

���+�
n+1/2
1

��,
�
1 + C

n+1/2
g,M+1/2

����+�
n+1/2
M

�� 6
���+�

n
M

��+D
n+1/2
g,M�1/2

���+�
n+1/2
M�1

��.
(2.20)

From (2.19) and (2.20)

MX

j=0

���+�
n+1/2
j

�� 6
MX

j=0

���+�
n
j

��. (2.21)

Reasoning in the same way as the proof of Lemma 5.2 in [28] we find that

MX

j=0

���+�
n+1
j

�� 6
MX

j=0

���+�
n
j

��+ |r
n+1
� r

n
|+ |s

n+1
� s

n
|.

It follows by induction that

MX

j=0

���nj+1 � �
n
j

�� 6 TV(�0) + TV(r) + TV(s). (2.22)

From (2.21) and (2.22) we get (2.18).

Now, we prove some time continuity estimates. The proof of the first of them is
very similar to that of [28, Lemma 5.5], so we omit the details.

Lemma 2.4. The following discrete L
1
time continuity estimate holds for n > 0:

M+1X

j=0

|�
n+1
j � �

n+1/2
j | 6 ⌦1, ⌦1 := TV(�0) + TV(r) + TV(s) + 2�max.

Lemma 2.5. The following estimate holds:

MX

j=1

���1/2j � �
0
j

�� 6 ⌦2, ⌦2 :=
MX

j=1

��gV
�
�
0
j+1

�
� gV

�
�
0
j

���+TV(�0) + �max. (2.23)

Proof. We define g
0
V,j = gV (�0j ). The first equation in (2.6) with n = 0 implies

�
1/2
j � �

0
j

= ��
0
j�1

�
g
1/2
V,j � g

0
V,j

�
� ��

0
j

�
g
1/2
V,j+1 � g

0
V,j+1

�
� ��

0
j

�
�+g

0
V,j

�
� �g

0
V,j

�
�+�

0
j�1

�
.

Thus

�
1/2
j � �

0
j � ��

0
j�1

�
g
1/2
V,j � g

0
V,j

�

= ��
0
j

�
g
1/2
V,j+1 � g

0
V,j+1

�
� �

�
�
0
j�+g

0
V,j + g

0
V,j�+�

0
j�1

�
.

(2.24)

Taking absolute values in (2.24) and using (2.13) we find that
���1/2j � �

0
j

��+ ��
0
j�1

��g1/2V,j � g
0
V,j

��

6 ��
0
j

��g1/2V,j+1 � g
0
V,j+1

��+ ��
0
j

���+g
0
V,j

��+ �g
0
V,j

���+�
0
j�1

��.
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Summing over j = 1, . . . ,M and cancelling telescoping terms yields

MX

j=1

���1/2j � �
0
j

��+ ��
0
0

��g1/2V,1 � g
0
V,1

��

6 ��
0
M

��g1/2V,M+1 � g
0
V,M+1

��+ �

MX

j=1

�
0
j

���+g
0
V,j

��+ �

MX

j=1

g
0
V,j

���+�
0
j�1

��.

(2.25)

Applying the boundary condition in (2.25), Lemmas 2.1, 2.2, and the CFL condition
(2.14) we get (2.23).

Lemma 2.6. There exists a constant ⌦3 that is independent of � such that the

following time continuity estimate holds:

M+1X

j=0

���n+1/2
j � �

n�1/2
j

�� 6 ⌦3 for n > 1.

Proof. For n > 2 and subtracting from the first half-step of (2.6) the corresponding
formula for �n�1/2

j and rearranging terms we get

�
n+1/2
j � �

n�1/2
j � ��

n�1
j�1

�
g
n+1/2
V,j � g

n�1/2
V,j

�

=
�
1� �gn+1/2

V,j+1

�
(�nj � �

n�1
j ) + �g

n+1/2
V,j (�nj�1 � �

n�1
j�1 )� ��

n�1
j

�
g
n+1/2
V,j+1 � g

n�1/2
V,j+1

�
.

Taking absolute values and applying the CFL condition (2.14) yields
���n+1/2

j � �
n�1/2
j � ��

n�1
j�1

�
g
n+1/2
V,j � g

n�1/2
V,j

���

6
�
1� �gn+1/2

V,j+1

����nj � �n�1
j

��+ �g
n+1/2
V,j

���nj�1 � �
n�1
j�1

��

+
����n�1

j

�
g
n+1/2
V,j+1 � g

n�1/2
V,j+1

���.

From (2.13) we get
���n+1/2

j � �
n�1/2
j

��+
����n�1

j�1

�
g
n+1/2
V,j � g

n�1/2
V,j

���

6
�
1� �gn+1/2

V,j+1

����nj � �n�1
j

��+ �g
n+1/2
V,j

���nj�1 � �
n�1
j�1

��

+ |��
n�1
j

�
g
n+1/2
V,j+1 � g

n�1/2
V,j+1

���.

(2.26)

Summing over j and cancelling telescoping terms we obtain

MX

j=1

���n+1/2
j � �

n�1/2
j

��

6
MX

j=1

���nj � �n�1
j

��+ �g
n+1/2
V,1 |�

n
0 � �

n�1
0 |+ ��

n�1
M

��gn+1/2
V,M+1 � g

n�1/2
V,M+1

��

� �g
n+1/2
V,M+1

���nM � �n�1
M

��.

The last inequality implies

MX

j=1

���n+1/2
j � �

n�1/2
j

�� 6
MX

j=1

���nj � �n�1
j

��+ |r
n
� r

n�1
|+

��G(tn)� G(tn�1)
��.
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We observe that

�
n
j � �

n�1
j =

�
1�B

n�1
j+1/2 �A

n�1
j�1/2

��
�
n�1/2
j � �

n�3/2
j

�

+A
n�1
j+1/2

�
�
n�1/2
j+1 � �

n�3/2
j+1

�
+B

n�1
j�1/2

�
�
n�1/2
j�1 � �

n�3/2
j�1

�
,

(2.27)

where

A
n�1
j+1/2 = ��

Z 1

0
@1'

�
✓�

n�1/2
j+1 + (1� ✓)✓�n�3/2

j+1 , ✓�
n�1/2
j+1 + (1� ✓)✓�n�3/2

j+1

�
d✓,

B
n�1
j+1/2 = �

Z 1

0
@2'

�
✓�

n�1/2
j+1 + (1� ✓)✓�n�3/2

j+1 , ✓�
n�1/2
j+1 + (1� ✓)✓�n�3/2

j+1

�
d✓.

Herein '(�j+1,�j) = �jpV (�j+1) and @i' denotes the partial derivative of ' with
respect to the i-th argument (i = 1, 2). Since �, pV (�) > 0 and p

0
V (�) 6 0, the

function '(�j+1,�j) is nonincreasing with respect to �j+1 and nondecreasing with
respect to �j . This implies (together with the CFL condition)

0 6 A
n�1
j+1/2, B

n�1
j+1/2 6 1

2
. (2.28)

The remainder of the proof is similar to the proof of Lemma 5.6 in [28]. Details are
omitted.

Now, we are ready to prove the convergence of �� as �! 0.

Lemma 2.7. The functions �� defined by (2.15) converge in L
1(⇧T ) and boundedly

a.e. a along subsequence to a limit function � 2 C([0, T ], L1(�L,L)) \ L
1(⇧T )).

Proof. The proof is a standard argument using the L
1 estimate (Lemma 2.2), the

uniform spatial variation bound (Lemma 2.3), and the L
1 Lipschitz continuity in

time estimate (Lemma 2.6).

In order to show that the limit function � identified in Lemma 2.7 is a weak
solution in the sense of Definition 2.1, we must also prove the convergence of the
flux approximations. Instead of showing that the approximations {gn+1/2

V,j } converge
we show that the approximations {hn+1/2

j } converge, where we define

h
n+1/2
j := �

n+1/2
j g

n+1/2
V,j for all j = 1, . . . ,M and n = 0, . . . ,N ,

and extend these quantities to functions defined on ⇧T by

h
�(x, t) :=

NX

n=0

MX

j=1

�j(x)�
n(t)hn+1/2

j .

Now, we require additional time continuity estimates, which is the contents of the
following lemma. Its proof is very similar to that of Lemmas 5.8 and 5.9 in [28],
and is therefore omitted.

Lemma 2.8. The following uniform estimates hold for n > 1, where the constant

⌦4 is independent of �:

MX

j=1

���n+1
j � �

n
j

�� 6 ⌦4, ⌦4 := ⌦2 +TV(s) + TV(r), (2.29)

MX

j=1

���n+1/2
j � �

n
j

�� 6 ⌦1 + ⌦4. (2.30)
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The following lemma is needed to establish a spatial variation bound on the
approximations hn+1/2

j .

Lemma 2.9. There exists a constant ⌦5 that is independent of � such that

MX

j=1

�
n
j

���+g
n+1/2
V,j

�� 6 ⌦5.

Proof. From the first half-step of the scheme we get

�
n+1/2
j � �

n
j = ��

�
�
n
j �+g

n+1/2
V,j + g

n+1/2
V,j �+�

n
j�1

�
,

which can be rerranged as

��
n
j �+g

n+1/2
V,j = �

�
�
n+1/2
j � �

n
j

�
� �g

n+1/2
V,j �+�

n
j�1.

Taking absolute values and summing over j = 1, . . . ,M we get

�

MX

j=1

�
n
j

���+g
n+1/2
V,j

�� 6
MX

j=1

���n+1/2
j � �

n
j

��+ �

MX

j=1

g
n+1/2
V,j

���+�
n
j�1

��.

From Lemma 2.1 and the CFL condition (2.14) we have

MX

j=1

�
n
j

���+g
n+1/2
V,j

�� 6 1

�

MX

j=1

���n+1/2
j � �

n
j

��+
MX

j=1

���+�
n
j�1

��.

The result is obtained from (2.30) in Lemma 2.8 and Lemma 2.3.

We are now ready to bound the spatial variation of the approximations hn+1/2
j .

Lemma 2.10. There exists a constant ⌦6 that is independent of � such that

MX

j=1

|h
n+1/2
j+1 � h

n+1/2
j | 6 ⌦6. (2.31)

Proof. The first part of scheme (2.6) can be written as

�
n+1/2
j = �

n
j � �

�
�
n
j g

n+1/2
V,j+1 + g

n+1/2
V,j

�
�
n+1/2
j � �

n
j�1

��
+ ��

n+1/2
j g

n+1/2
V,j .

Applying the spatial di↵erence operator to the above equation we get

�+�
n+1/2
j =

�
1� �gn+1/2

V,j+1

�
�+�

n
j + ��+h

n+1/2
j � ��

n
j+1�+g

n+1/2
V,j+1

� ��+g
n+1/2
V,j

�
�
n+1/2
j � �

n
j

�
+ �g

n+1/2
V,j �+�

n
j�1 � �g

n+1/2
V,j+1 �+�

n+1/2
j .

Thus

��+h
n+1/2
j = �+�

n+1/2
j �

�
1� �gn+1/2

V,j+1

�
�+�

n
j + ��

n
j+1�+g

n+1/2
V,j+1

+ ��+g
n+1/2
V,j

�
�
n+1/2
j � �

n
j

�
+ �g

n+1/2
V,j �+�

n
j�1 + �g

n+1/2
V,j+1 �+�

n+1/2
j .

After taking absolute values and using |�+g
n+1/2
V,j | 6 ↵V , Lemma 2.1 and the CFL

condition (2.14) we get

�
���+h

n+1/2
j

��

6 2
���+�

n+1/2
j

��+
���+�

n
j

��+ ��
n
j+1

���+g
n+1/2
V,j+1

��+
���n+1/2

j � �
n
j

��+
���+�

n
j�1

��.
Summing over j = 1, . . . ,M we get
MX

j=1

���+h
n+1/2
j

��
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6 2

�

MX

j=1

���+�
n+1/2
j

��+ 2

�

MX

j=1

���+�
n
j

��+ 1

�

MX

j=1

���n+1/2
j � �

n
j

��+
MX

j=1

�
n
j+1

���+g
n+1/2
V,j+1

��.

Finally, the result follows from Lemma 2.3, (2.30) in Lemma 2.8, and Lemma 2.9.

The following lemma is required to prove the L1 Lipschitz continuity in time and
spatial variation bounds on {h

n+1/2
j }.

Lemma 2.11. There exists a constant ⌦7 that is independent of � such that

�x

MX

j=1

NX

n=1

�
n�1
j

��gn+1/2
V,j+1 � g

n�1/2
V,j+1

�� 6 ⌦7. (2.32)

Proof. From (2.26) we get

��
n�1
j

��gn+1/2
V,j+1 � g

n�1/2
V,j+1

�� 6
�
1� �gn+1/2

V,j+2

����nj+1 � �
n�1
j+1

��+ �g
n+1/2
V,j+1

���nj � �n�1
j

��

�
���n+1/2

j+1 � �
n�1/2
j+1

��+ ��
n�1
j+1

��gn+1/2
V,j+2 � g

n�1/2
V,j+2

��.

By induction we obtain

��
n�1
j

��gn+1/2
V,j+1 � g

n�1/2
V,j+1

�� 6
MX

k=j+1

���nk � �n�1
k

��+
��gn+1/2

V,M+1 � g
n�1/2
V,M+1

��

�

MX

k=j+1

���n+1/2
k � �

n�1/2
k

��+
���nj � �n�1

j

��.

(2.33)

Recalling (2.27) we have

MX

k=j+1

���nk � �n�1
k

��

6
MX

k=j+1

�
1�B

n�1
k+1/2 �A

n�1
k�1/2

����n�1/2
k � �

n�3/2
k

��

+
MX

k=j+1

A
n�1
k+1/2

���n�1/2
k+1 � �

n�3/2
k+1

��+
MX

k=j+1

B
n�1
k�1/2

���n�1/2
k�1 � �

n�3/2
k�1

��.

Cancelling telescoping terms and applying (2.28) yields

MX

k=j+1

���nk � �n�1
k

��

6
MX

k=j+1

���n�1/2
k � �

n�3/2
k

��+ 1

2

���n�1/2
M+1 � �

n�3/2
M+1

��+ 1

2

���n�1/2
j � �

n�3/2
j

��.

Then (2.33) becomes

��
n�1
j

��gn+1/2
V,j+1 � g

n�1/2
V,j+1

��

6
MX

k=j+1

���n�1/2
k � �

n�3/2
k

���
MX

k=j+1

���n+1/2
k � �

n�1/2
k

��+ 1

2

���n�1/2
M+1 � �

n�3/2
M+1

��
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+
1

2

���n�1/2
j � �

n�3/2
j

��+
���nj � �n�1

j

��+
��gn+1/2

V,M+1 � g
n�1/2
V,M+1

��.

Summing over n > 2 and j = 1, . . . ,M, cancelling telescoping terms and multiplying
the result by �x we get

�x

MX

j=1

NX

n=2

�
n�1
j

��gn+1/2
V,j+1 � g

n�1/2
V,j+1

�� 6 S1 + · · ·+ S5,

where we define

S1 :=
2L

�

MX

j=1

���3/2j � �
1/2
j

��, S2 :=
L

�

NX

n=2

��sn�1/2
� s

n�3/2
��,

S3 :=
�x

�

MX

j=1

NX

n=2

���nj � �n�1
j

��, S4 :=
2L

�

NX

n=2

��gn+1/2
V,M+1 � g

n�1/2
V,M+1

��,

S5 :=
�x

2�

MX

j=1

NX

n=2

���n�1/2
j � �

n�3/2
j

��.

In view of the bounds established so far, there holds

S1 6 2L

�
⌦3, S2 6 L

�
TV(s), S3 6 ⌦4T, S4 6 2L

�
TV(G), S5 6 ⌦3

2
T.

These bounds in conjunction with |g
3/2
V,j � g

1/2
V,j | 6 ↵V imply that there exists a con-

stant ⌦7 such that (2.32) is valid.

Lemma 2.12. There exists a constant ⌦8 that is independent of � such that

�t

NX

n=0

MX

j=1

��hn+1/2
j+1 � h

n+1/2
j

��+�x

NX

n=1

MX

j=1

��hn+1/2
j � h

n�1/2
j

�� 6 ⌦8. (2.34)

Proof. In light of the spatial variation bound (2.31) we find that

�t

NX

n=0

MX

j=1

��hn+1/2
j+1 � h

n+1/2
j

�� 6 ⌦6T.

The first part of (2.6) implies

�
n+1/2
j � �

n�1/2
j

=
�
1� �gn+1/2

V,j+1

��
�
n
j � �

n�1
j

�
+ �

�
h
n+1/2
j � h

n�1/2
j

�
� �g

n+1/2
V,j

�
�
n+1/2
j � �

n
j�1

�

+ �g
n�1/2
V,j

�
�
n�1/2
j � �

n�1
j�1

�
� ��

n�1
j

�
g
n+1/2
V,j+1 � g

n�1/2
V,j+1

�

=
�
1� �gn+1/2

V,j+1

��
�
n
j � �

n�1
j

�
+ �

�
h
n+1/2
j � h

n�1/2
j

�
� �g

n+1/2
V,j

�
�
n+1/2
j � �

n
j

�

� �g
n+1/2
V,j �+�

n
j�1 + �g

n�1/2
V,j �+�

n�1
j�1 + �g

n�1/2
V,j

�
�
n�1/2
j � �

n�1
j

�

� ��
n�1
j

�
g
n+1/2
V,j+1 � g

n�1/2
V,j+1

�
.

Consequently,

�
�
h
n+1/2
j � h

n�1/2
j

�

=
�
�
n+1/2
j � �

n�1/2
j

�
�
�
1� �gn+1/2

V,j+1

��
�
n
j � �

n�1
j

�
+ �g

n+1/2
V,j

�
�
n+1/2
j � �

n
j

�

+ �g
n+1/2
V,j �+�

n
j�1 � �g

n�1/2
V,j �+�

n�1
j�1 � �g

n�1/2
V,j

�
�
n�1/2
j � �

n�1
j

�
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+ ��
n�1
j

�
g
n+1/2
V,j+1 � g

n�1/2
V,j+1

�
.

Taking absolute values and using the CFL condition (2.14) we get

�
��hn+1/2

j � h
n�1/2
j

��

6
���n+1/2

j � �
n�1/2
j

��+
���nj � �n�1

j

��+
���+�

n
j�1

��+
���+�

n�1
j�1

��

+
���n+1/2

j � �
n
j

��+
���n�1/2

j � �
n�1
j

��+ ��
n�1
j

��gn+1/2
V,j+1 � g

n�1/2
V,j+1

��.
Multiplying this inequality by �x and summing over j and n we get

�x

NX

n=1

MX

j=1

��hn+1/2
j � h

n�1/2
j

�� 6 U1 + · · ·+ U5,

where we define

U1 :=
�x

�

NX

n=1

MX

j=1

���n+1/2
j � �

n�1/2
j

��, U2 :=
�x

�

NX

n=1

MX

j=1

���nj � �n�1
j

��,

U3 :=
2�x

�

NX

n=1

MX

j=1

���+�
n
j�1

��, U4 :=
2�x

�

NX

n=1

MX

j=1

���n+1/2
j � �

n
j

��,

U5 := �x

NX

n=1

MX

j=1

�
n�1
j

��gn+1/2
V,j+1 � g

n�1/2
V,j+1

��.

From (2.30), (2.29), (2.18), (2.30) and (2.32) we have

U1 6 ⌦3T, U2 6 ⌦4T, U3 6 2
�
TV(�0) + TV(s) + TV(r)

�
T,

U4 6 2
�
⌦1 + ⌦4

�
T, U5 6 ⌦7.

Combining these bounds we see that there exists a constant ⌦8 that is independent
of � such that (2.34) is valid.

Lemma 2.13. The functions h
�

converge in L
1(⇧T ) and boundedly a.e. along

subsequence to some limit function w 2 L
1(�L,L) \ L

1(�L,L). Moreover, by

a suitable choice of a subsequence, we have w(x, t) 2 Q̃(�(x, t)) a.e. in ⇧T , where

�(x, t) is the limit of Lemma 2.7.

Proof. We observe that |h
n+1/2
j | 6 �max↵V . Then by Helly’s theorem [23] there

exists a function w 2 L
1(⇧T ) such that h�

! w along a subsequence in L
1(⇧T ) and

boundedly a.e. in ⇧T . To prove the second assertion, we define Q(�) := �gV (�) and
Q̃ denote the multivalued version of Q. Assume (by extracting further subsequences
if necessary) that �� ! �, h

�
! w in L

1(⇧T ) and fix a point (x, t) 2 ⇧T where
�
�(x, t) ! �(x, t) and h

�(x, t) ! w(x, t) as � ! 0. First, we consider the case
�(x, t) = �

⇤. Lemma 2.1 implies that 0 6 h
�(x, t) 6 ↵V �

�(x, t). Then passing to
the limit in the above inequality we obtain

w(x, t) 2 [0,↵V �
⇤] = Q̃(�⇤).

In case �(x, t) 6= �
⇤ first we consider �(x, t) < �

⇤
, then Q̃(�(x, t)) = ↵V �(x, t).

For su�ciently small � the inequality ��(x, t) < �
⇤ implies that �n+1/2

j < �
⇤ and

g̃V (�
n+1/2
j ) = {↵V }. Then, by Lemma 2.1 we get

h
�(x, t) =

NX

n=0

MX

j=1

�j(x)�
n(t)hn+1/2

j = ↵V

NX

n=0

MX

j=1

�j(x)�
n(t)�n+1/2

j = ↵V �
�(x, t).
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Thus w(x, t) = limh
�(x, t) = ↵V lim�

�(x, t) = ↵V �(x, t) = Q̃(�(x, t)).
In the case �(x, t) > �

⇤ there holds Q̃(�(x, t)) = 0. In this case it is necessary
extend {g

n+1/2
V,j } to functions defined on ⇧T by

g
�
V (x, t) =

NX

n=0

MX

j=1

�j(x)�
n(t)gn+1/2

V,j ,

and we need to utilize the following consequence of Lemma 2.1:

g
�
V (x, t) 2 g̃V (�

�(x, t)), (x, t) 2 ⇧T .

For su�ciently small �, ��(x, t) > �
⇤ implies that g̃V (��(x, t)) = {0}, hence

g
�
V (x, t) = 0. Finally observe that 0 6 h

�(x, t) 6 �
�(x, t) · g�V (x, t) = 0 for

su�ciently small �. Hence w(x, t) = Q̃(�(x, t)) = 0.

Theorem 2.14 (Main result). The functions �� converge in L
1(⇧T ) and boundedly

a.e. along subsequence to some � 2 C([0, T ], L1(�L,L)) \ L
1(⇧T ). The limit

function �(x, t) is a weak solution in sense of Definition 2.1.

Proof. The convergence is ensured by Lemma 2.7. It remains to prove that the
limit � is a weak solution. Let us fix a point (x, t) 2 ⇧T , then Lemma 2.13 implies
that w(x, t) 2 Q̃(�(x, t)) a.e. in ⇧T . If �(x, t) 6= �

⇤, then Q̃(�(x, t)) = Q(�(x, t)).
Thus w(x, t) = Q(�(x, t)), then we define q(x, t) = �pV (�)+Q(�(x, t)) = f(�(x, t)).
In the case where �(x, t) = �

⇤ we take w(x, t) 2 [0,↵V �
⇤] and define

q(x, t) = �
⇤
pV (�

⇤) + w(x, t) 2 [�⇤pV (�
⇤),�⇤pV (�

⇤) + ↵V �
⇤] = f̃(�⇤).

In either case q(x, t) 2 f̃(�(x, t)).
We note that the two steps of (2.6) imply

�
n+1
j ��

n
j +�

�
�
n
j g

n+1/2
V,j+1 ��

n
j�1g

n+1/2
V,j +�n+1/2

j p
n+1/2
V,j+1 ��

n+1/2
j�1 p

n+1/2
V,j

�
= 0. (2.35)

We now choose a test function  2 C
1
0 ((�L,L)⇥ [0, T )) and define  n

j :=  (xj , t
n).

Multiplying (2.35) by �x 
n
j and summing the result over j and n yields

�x�t

NX

n=0

MX

j=1

�
n+1
j � �

n
j

�t
 
n
j +�x�t

NX

n=0

MX

j=1

�
n
j g

n+1/2
V,j+1 � �

n
j�1g

n+1/2
V,j

�x
 
n
j

+�x�t

NX

n=0

MX

j=1

�
n+1/2
j p

n+1/2
V,j+1 � �

n+1/2
j�1 p

n+1/2
V,j

�x
 
n
j = 0.

A summation by parts yields

�x�t

NX

n=0

MX

j=1

�
n+1
j

 
n+1
j �  

n
j

�t
+�x

MX

j=1

�
0
j 

0
j

+�x�t

NX

n=0

MX

j=1

 
n
j+1 �  

n
j

�x
�
n
j g

n+1/2
V,j+1

+�x�t

NX

n=0

MX

j=1

 
n
j+1 �  

n
j

�x
�
n+1/2
j p

n+1/2
V,j+1 = 0.

(2.36)
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An application of (2.12) yields, as �x,�t! 0,

�x�t

NX

n=0

MX

j=1

�
n+1
j

 
n+1
j �  

n
j

�t
= �x�t

NX

n=0

MX

j=1

�
n+1/2
j

 
n+1
j �  

n
j

�t
+O(�x).

This equation and Lemma 2.3 imply that the two first sums in (2.36) converge to
Z T

0

Z L

�L
� t dx+

Z L

�L
�0(x) (x, 0) dx dt

Concerning the last term in (2.36), we get

�x�t

NX

n=0

MX

j=1

 
n
j+1 �  

n
j

�x
�
n+1/2
j p

n+1/2
V,j+1

= �x�t

NX

n=0

MX

j=1

 
n
j+1 �  

n
j

�x
�
n+1/2
j p

n+1/2
V,j

+�x�t

NX

n=0

MX

j=1

 
n
j+1 �  

n
j

�x

�
�
n+1/2
j p

n+1/2
V,j+1 � �

n+1/2
j p

n+1/2
V,j

�
.

By properties of the function pV we get the estimate

�
n+1/2
j p

n+1/2
V,j+1 � �

n+1/2
j p

n+1/2
V,j = �

n+1/2
j

�
p
n+1/2
V,j+1 � p

n+1/2
V,j

�
6 �maxkp

0
V k1�x.

Thus ������x�t

NX

n=0

MX

j=1

�
 
n
j+1 �  

n
j

�

�x

�
�
n+1/2
j p

n+1/2
V,j+1 � �

n+1/2
j p

n+1/2
V,j

�
�����

6 2MT�max�xk@t k1kp
0
V k1,

which goes to zero as �x! 0. Therefore the last term in (2.36) converges to
Z T

0

Z L

�L
�pV (�) x dx dt

as �x! 0. The second term in (2.36) can be written as

�x�t

NX

n=0

MX

j=1

 
n
j+1 �  

n
j

�x
�
n
j g

n+1/2
V,j+1

= �x�t

NX

n=0

MX

j=1

 
n
j+1 �  

n
j

�x
�
n+1/2
j g

n+1/2
V,j +�x�t

NX

n=0

MX

j=1

 
n
j+1 �  

n
j

�x
�
n
j �+g

n+1/2
V,j

+�x�t

NX

n=0

MX

j=1

 
n
j+1 �  

n
j

�x
g
n+1/2
V,j

�
�
n
j � �

n+1/2
j

�
.

Using Lemmas 2.9, 2.1, and 2.8 we get
������x�t

NX

n=0

MX

j=1

 
n
j+1 �  

n
j

�x
�
n
j �+g

n+1/2
V,j

����� 6 �xk@x k1⌦5T,

������x�t

NX

n=0

MX

j=1

 
n
j+1 �  

n
j

�x
g
n+1/2
V,j

�
�
n
j � �

n+1/2
j

�
����� 6 ↵V �xk@x k1

�
⌦1 + ⌦4

�
T.
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Consequently, as �x! 0,

�x�t

NX

n=0

MX

j=1

 
n
j+1 �  

n
j

�x
�
n
j �+g

n+1/2
V,j ! 0,

�x�t

NX

n=0

MX

j=1

 
n
j+1 �  

n
j

�x
g
n+1/2
V,j

�
�
n
j � �

n+1/2
j

�
! 0.

Then substituting g�V (xj , t
n) = g

n+1/2
V,j and applying the dominated convergence the-

orem we obtain that the second term in (2.36) converges to
Z T

0

Z L

�L
w x dx dt.

Collecting the previous results we get
Z T

0

Z L

�L
(� t + q x) dx dt+

Z L

�L
�0(x) (x, 0) dx = 0,

so � is a weak solution in sense of Definition 2.1.

3. Extension to the MCLWR model. Algorithm 2.1 cannot be applied directly
in a component-wise manner for each class i in the multiclass case (1.1)–(1.4), but
we can first solve for the total density � and then update the densities �1, . . . ,�N
for each class. The multiclass version of the scalar scheme (1.6) can be written as

�
n+1/2
i,j = �

n
i,j � �v

max
i

�
�
n
i,jgV

�
�
n+1/2
j+1

�
� �

n
i,j�1gV

�
�
n+1/2
j

��
,

�
n+1
i,j = �

n+1/2
i,j � �v

max
i

�
�
n+1/2
i,j pV

�
�
n+1/2
j+1

�
� �

n+1/2
i,j�1 pV

�
�
n+1/2
j

��
,

i = 1, . . . , N,

(3.1)

where the following quantity is an approximate value of the total density �:

�
n+1/2
j := �

n+1/2
1,j + · · ·+ �

n+1/2
N,j .

In order to solve (3.1), we need to impose the non-standard boundary condition
(1.4b). Recalling that V (�) = gV (�) + pV (�) we can equivalently specify for the
multiclass case the condition (2.2). The correspondence when s(t) = �

⇤ is

F(t) = (vmax)Ts(t)V (�⇤�), G(t) = ↵V ,

F(t) = (vmax)Ts(t)V (�⇤+), G(t) = 0.
(3.2)

Coming back to (3.1), we define �n
j := (�n1,j , . . . ,�

n
N,j)

T. Summing over i = 1, . . . , N ,
assuming that gV is evaluated at the new time step, and replacing gV (�

n+1/2
j+1 ) by

g
n+1/2
V,j+1 , we get

�
n+1/2
j = �

n
j � �(v

max)T
�
g
n+1/2
V,j+1 �

n
j � gV

�
�
n+1/2
j

�
�n

j�1

�
. (3.3)

This can be rearranged as

�
n+1/2
j � �(vmax)T�n

j�1gV

�
�
n+1/2
j

�
= �

n
j � �(v

max)T�n
j g

n+1/2
V,j+1 . (3.4)

Let us now define the function

GV (z;�) := z � �(vmax)T�gV (z)

and denote by G̃V (·;�) its multivalued version (with respect to z). Then G̃ is
strictly increasing and has a unique inverse z 7! G̃

�1
V (z;�). Expressing (3.4) as

G̃V

�
�
n+1/2
j ;�n

j�1

�
= �

n
j � �(v

max)T�n
j g

n+1/2
V,j+1 (3.5)



MULTICLASS TRAFFIC WITH DISCONTINUOUS VELOCITY 21

which allows us to obtain �n+1/2
j by applying G̃

�1
V (z;�) to both sides, that is

�
n+1/2
j = G̃

�1
V

�
�
n
j � �(v

max)T�n
j g

n+1/2
V,j+1 ;�

n
j�1

�
.

Now that �n+1/2
j is available, we solve for gn+1/2

V,j the equation

�
n+1/2
j = �

n
j � �(v

max)T
�
g
n+1/2
V,j+1 �

n
j � g

n+1/2
V,j �n

j�1

�

(cf. (3.3)). This yields

g
n+1/2
V,j =

�
n+1/2
j � �

n
j + �g

n+1/2
V,j+1 (v

max)T�n
j

�(vmax)T�n
j�1

,

provided that �n
j�1 6= 0. If �n

j�1 = 0 then we set gn+1/2
V,j = gV (�

n+1/2
j ). The nume-

rical scheme for the multiclass model can be summarized in the following algorithm.

Algorithm 3.1 (BCOV scheme, multiclass case).

Input: approximate solution vector {�
n
i,j}

M
j=1, i = 1, . . . , N for t = t

n

g
n+1/2
V,M+1  G(�n+1/2

M+1 ) (using (2.3) and (3.2))
do j = M,M � 1, . . . , 1

�
n+1/2
j  G̃

�1
V

�
�
n
j � �g

n+1/2
V,j+1 (v

max)T�n
j ;�

n
j�1

�

if �n
j�1 6= 0 then

g
n+1/2
V,j  

�
n+1/2
j � �

n
j + �g

n+1/2
V,j+1 (v

max)T�n
j

�(vmax)T�n
j�1

else
g
n+1/2
V,j  gV (�

n+1/2
j )

endif
enddo
do j = 1, . . . ,M

do i = 1, . . . , N

�
n+1/2
i,j  �

n
i,j � �v

max
i

�
�
n
i,jg

n+1/2
V,j+1 � �

n
i,j�1g

n+1/2
V,j

�

enddo
enddo
do j = 1, . . . ,M

do i = 1, . . . , N

�
n+1
i,j  �

n+1/2
i,j � �v

max
i

�
�
n+1/2
i,j pV

�
�
n+1/2
j+1

�
� �

n+1/2
i,j�1 pV

�
�
n+1/2
j

��

enddo
enddo
Output: approximate solution vectors {�

n+1
i,j }

M
j=1, i = 1, . . . , N for t = t

n+1 =
t
n +�t

Remark 3.1. We recall that the boundary condition g
n+1/2
V,M+1 = G(�n+1/2

M+1 ) that
appears in Algorithm 3.1 is defined using (2.3) for the total density �n+1/2

M+1 . We
illustrate this boundary condition in Section 4.5.

The problem of interest to us is to show that D is an invariant region of the
scheme. To this end we first consider the evolution of the total density �. Summing
over i = 1, . . . , N the second equation in (3.1) yields

�
n+1
j = �

n+1/2
j � �(vmax)T

�
pV

�
�
n+1/2
j+1

�n+1/2
�n+1/2

j � pV

�
�
n+1/2
j

�
�n

j�1

�
.

The above equation can be written in incremental form as

�
n+1
j = �

n+1/2
j + C

n+1/2
j+1/2 �+�

n+1/2
j �D

n+1/2
j�1/2���

n+1/2
j , (3.6)
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where we define

C
n+1/2
j+1/2 :=

8
>><

>>:

�(vmax)T�n+1/2
j

pV (�
n+1/2
j )� pV (�

n+1/2
j+1 )

�
n+1/2
j+1 � �

n+1/2
j

if �n+1/2
j+1 6= �

n+1/2
j ,

0 if �n+1/2
j+1 = �

n+1/2
j ,

D
n+1/2
j�1/2 :=

8
>><

>>:

�pV (�
n+1/2
j )

(vmax)T
�
�n+1/2

j � �n+1/2
j�1

�

�
n+1/2
j � �

n+1/2
j�1

if �n+1/2
j 6= �

n+1/2
j�1 ,

0 if �n+1/2
j = �

n+1/2
j�1 .

Since pV (�) is a non-increasing positive function we have C
n+1/2
j+1/2 , D

n+1/2
j�1/2 > 0. To

ensure that |Cn+1/2
j+1/2 | 6 1/2 and |D

n+1/2
j�1/2 | 6 1/2 we impose the CFL condition

��max max
16j6M

��p0V (�nj )
�� · max

16i6N
v
max
i 6 1

2
, � max

16j6M
p(�nj ) · max

16i6N
v
max
i 6 1

2
. (3.7)

Lemma 3.1. Assume that

�0
j 2 D for j = 1, . . . ,M . (3.8)

Then �n
j ,�

n+1/2
j 2 D for j = 1, . . . ,M .

Proof. We claim that

�n+1/2
j 2 D for all j = 1, . . . ,M

) g
n+1/2
V,j 2 [0,↵V ] for all j = 1, . . . ,M .

(3.9)

We consider first the case �n
j�1 = 0. Then the result follows from the definition of

the function gV (z) and (2.1). Let �n
j�1 6= 0. Summing over i = 1, . . . , N the first

equation in (3.1) yields

�
n+1/2
j = G̃

�1
V

�
�
n
j � �(v

max)T�n
j g

n+1/2
V,j+1 ;�

n
j�1

�
.

Using (3.5) and (3.3) we find that

�
n+1/2
j � �(vmax)T�n

j�1g
n+1/2
V,j 2 G̃V

�
�
n+1/2
j ;�n

j�1

�
.

Thus, a straightforward case-by-case study and (3.5) prove that (3.9) is valid. The
remainder of the proof is similar to the proof of Lemma 2.2.

4. Numerical examples. We now present some numerical simulations to illus-
trate the behaviour of solutions to system (1.1) by using Algorithms 2.1 and 3.1 for
the scalar and multiclass case, respectively. In the scalar case, we compare numer-
ical approximations with those generated by the scheme (1.7) proposed by Towers
in [28]. To this end we choose the discontinuous velocity function

V (�) =

(
1� �/�max for 0 6 � 6 �

⇤,

�wf(1� �max/�) for �⇤ < � 6 �max,

where �⇤ = 0.5, wf = 0.2, �max = 1, and ↵V = 0.3.
In all numerical experiments computations are performed on a finite interval

[�1, 1] that is subdivided into M subintervals of length �x = 2/M , and the
time step is computed by �t = �x/2 in the scalar case (N = 1) and �t =
�x/(2max{vmax

1 , . . . , v
max
N }) in the multiclass case N > 2. These choices ensure

that the respective CFL conditions (2.14) and (3.7) are satisfied.
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Figure 3. Example 1: numerical solution with M = 800 and
comparison with the exact solution of the Riemann problem (a)
with �L = 0.3 and �R = 0.9 at simulated time T = 1.8, (b) with
�L = 0.9 and �R = 0.3 at simulated time T = 1.5. Here and in
Figures 4 and 5 we label with ‘Towers scheme’ the scheme (1.7) pro-
posed in [28] and by ‘BCOV scheme’ the scheme of Algorithm 2.1
advanced in the present work.

4.1. Example 1: scalar Riemann problem (N = 1). We consider the Riemann
problem for the scalar equation @t�+ @x(�V (�)) = 0 with initial data

�0(x) =

(
�L for x < 0.2,

�R for x > 0.2
(4.1)

(no boundary conditions are involved). For �L = 0.3 and �R = 0.9, the solution
consists of two shock waves with negative velocities of propagation, namely a shock
wave connecting �L with �

⇤ that travels velocity �1 = �0.55 and another shock
wave connecting �

⇤ with �R with velocity �2 = �0.2. Figure 3 (a) shows the
numerical approximations to the solution of this problem computed with M = 800
for both schemes at simulated time T = 1.8.

For �L = 0.9 and �R = 0.3, the solution consists of a shock wave connecting �L
with �⇤ that travels at velocity �1 = �0.575 and a rarefaction wave connecting �⇤

with �R. In Figure 3 (b) we display the numerical solutions computed withM = 800
for both schemes at simulated time T = 1.5. In both scenarios, all waves are
approximated correctly by both schemes.

4.2. Example 2: scalar problem (N = 1), smooth initial datum. In this
example we compare numerical approximations for equation (1.1) obtained by both
schemes (Towers scheme (1.7) and Algorithm 2.1), starting from the initial function
�0(x) = exp(�(x + 0.2)2/(0.04)) for x 2 [�1, 1]. Numerical approximations are
computed at simulated times T = 0.1 and T = 0.3 with discretizationsM = 100⇥2l,
l = 0, 1, . . . , 4. Table 1 displays the corresponding approximate L

1 errors obtained
by utilizing a reference solution computed by the Towers scheme with Mref = 12800,
We observe that the approximate L

1 errors decrease as the grid is refined. In
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T = 0.1 T = 0.3

Towers BCOV Towers BCOV

M eM (��) eM (��) eM (��) eM (��)

100 1.32e-2 1.76e-2 1.63e-2 2.39e-2
200 6.55e-3 9.22e-3 8.59e-3 1.31e-2
400 3.29e-3 4.46e-3 4.25e-3 6.46e-3
800 1.72e-3 2.403-3 2.12e-3 3.31e-3
1600 8.00e-4 1.18e-3 9.29e-4 1.563-3

Table 1. Example 2: approximate L
1 errors eM (u) with �x = 2/M .
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Figure 4. Example 2: numerical solutions for M = 100 at simu-
lated times (a) T = 0.1, (b) T = 0.3.

Figure 4 where we display the numerical approximations forM = 100 and compared
with the reference solution.

4.3. Example 3: scalar problem (N = 1), non-standard boundary condi-
tion. This example comes from [28, Example 6.2] and is designed to illustrate that
when s(tn) = �

⇤, the solutions depend on the boundary condition F(t) 2 f̃(�⇤). For
this example we consider the Riemann problem with initial data (4.1) with �L = 1/4
and �R = 1/2. We compute the solution twice, once using G(t) = ↵V (equivalently,
F(t) = 1/2), and the second time using G(t) = 0 (equivalently, F(t) = 1/4). As
shown in Figure 5, in the first case the solution corresponds to a shock wave con-
necting �L with �R with speed of propagation � = 1, and in the second case the
solution corresponds to a stationary shock (� = 0) connecting �L with �R.

4.4. Example 4: multiclass case (N = 3), preservation of invariant region.
To illustrate the invariant region property of the proposed scheme (Lemma 3.1), we
consider the case N = 3 and the Riemann initial data

�0(x) =

(
(0.1, 0.1, 0.1)T for x < 0.5,

(0.4, 0.5, 0.1)T for x > 0.5,
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Figure 5. Example 3: numerical solutions depending on the
boundary conditions F(t) 2 f̃(�⇤) with M = 1600 at simulated
time T = 0.5, with (a) F(t) 2 f̃(�⇤�) (free flow), (b) F(t) 2
f̃(�⇤+) (congested flow).
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Figure 6. Example 4: density profiles simulated with M = 1600
at (a) T = 0.2, (b) T = 0.4, (c) T = 0.6.

with velocities vmax = (1, 3, 10)T. The solution consists of a stationary shock plus
two shock waves that travel with negative velocities. The numerical simulation at
three simulated times is displayed in Figure 6. The profile for each class and the
total density are displayed in this figure. Furthermore we can see that the profile
of the total density in Figure 6 looks like the profile of Figure 3 (a).

4.5. Example 5: multiclass case (N = 3), non-standard boundary condi-
tion. It is the purpose of this example to illustrate the boundary condition

g
n+1/2
V,M+1 = G

�
�
n+1/2
M+1

�
, (4.2)

where G(·) is specified in (2.3), that appears within Algorithm 3.1. To this end
consider N = 3 and the velocities and Riemann initial data

vmax = (1, 3, 6)T, �(x, 0) = �0(x) =

(
�L = (0.05, 0.08, 0.12)T for x < 0,

�R = (0.14, 0.16, 0.12)T for x > 0.
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-0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

�1

�3

�2

�

�1 �0.5 0 0.5 1x

�1

�3

�2

�

0 0.1 0.2 0.3x

�1

�3

�2

�

0 0.1 0.2 0.3x

(a) (b) (c)

Figure 7. Example 5: numerical solution for a free-flow regime
(G(t) = ↵V ): (a) initial condition, (b, c) density profiles with M =
1600 at simulated time (b) T = 0.1, (c) T = 0.2.
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Figure 8. Example 5: simulated total density computed with
BCOV scheme with N = 3 and M = 1600: (a) free flow (G(t) =
↵V ), (b) congested flow (G(t) = 0).

Observe that �R = �
⇤ = s(t), where �R is the total density of the right state �R.

As for Example 3 we show that the solution depends on the boundary condition
F(t) 2 (vmax)Ts(t)Ṽ (s(t)).We start with the initial condition shown in Figure 7 (a)
and compute the solution twice, once using G(t) = ↵V , and the second time using
G(t) = 0. In Figures 7 (b) and (c) we display the profile for each class and total
density for the first case G(t) = ↵V at two di↵erent simulated times. We can see
that in this case a free-flow regime is produced, which is verified in Figure 8 (a).
In Figure 9 we display the profiles for each class and total density for the second
case G(t) = 0 at two di↵erent simulation time. In contrast to the previous cases, a
congested flow regime is produced, as is illustrated in Figure 8 (b).

4.6. Example 6: multiclass case (N = 5), smooth initial condition. In this
example we consider N = 5, the velocities vmax = (1, 2, 3, 4, 5)T, and the initial
condition

�(x, 0) = �0(x) = (0.15, 0.2, 0.3, 0.2, 0.15)T (x),  (x) = exp
�
�50(x+ 2)2/3

�
.
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Figure 9. Example 5: numerical solution for a congested flow
regime (G(t) = 0): density profiles with M = 1600 at simulated
time (a) T = 0.1, (b) T = 0.2. The initial condition is the same as
in Figure 7 (a).

T = 0.02 T = 0.12

M eM (��) eM (��)

100 1.39e-2 3.87e-2
200 7.90e-3 2.47e-2
400 4.20e-3 1.55e-2
800 2.00e-3 9.20e-3

1600 1.00e-3 5.10e-3

Table 2. Example 6: approximate L
1 errors eM (u) with �x = 2/M .

We display in Figure 10 numerical approximation computed with M = 1600 at
simulation time T = 0.02 and T = 0.12. We observe the dynamics of each individ-
ual densities �i and the total density �, which exhibits a shock wave due to the
discontinuity in the flux. This behaviour is similar to that presented in Figure 4. In
Figure 11 we display the evolution of ��(·, t) for t 2 [0, 0.12], and we compare the
solution with the approximation of the continuous problem (where ↵V = 0). For
the discontinuous case the shock is more clearly observed than in the continuous
case. In Figures 12 and 13 we compare the numerical approximation computed
with M = 100, with a reference solution at simulated times T = 0.02 and T = 0.12.
In Table 1 we compute the approximate L

1 error based on a reference solution ob-
tained by the BCOV scheme with Mref = 12800. We observe that the approximate
L
1 errors decrease as the grid is refined.

4.7. Example 7: multiclass case (N = 5), bimodal smooth initial condi-
tion. In this example we considerN = 5, the velocity vector vmax = (1, 1.5, 2, 6, 7)T,
and the initial condition

�(x, 0) = �0(x) = (0.17, 0.17, 0.16, 0, 0)T 1(x) + (0, 0, 0, 0.245, 0.245)T 2(x),
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Figure 10. Example 6: numerical solutions obtained with BCOV
scheme with N = 5 and M = 1600 at simulated times (a) T = 0.02,
(b) T = 0.12.
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Figure 11. Example 6: simulated total density obtained with
BCOV scheme with N = 5 and M = 1600: (a) discontinuous
problem, (b) continuous problem.

where we define

 1(x) = exp
�
�10(x� 2)2

�
,  2(x) = exp

�
�50(x� 1)2/4

�

for x 2 [0, 5]. We compute numerical approximation at simulated times T = 0.1,
T = 0.2 and T = 0.3 with di↵erent discretizations by using M = 100 ⇥ 2l and
l = 0, 1, . . . , 4. In Table 4.7 we compute the L

1 error comparing with respect to
a reference solution computed by the BCOV scheme with Mref = 12800. We ob-
serve that the approximate L

1 errors decrease as the grid is refined. Again, this
behaviour is similar to that observed in Figure 4. Figure 14 shows results for
M = Mref = 12800. The numerical results of Figure 14 indicate that jumps in the
total density � only occur from smaller to higher values in an increasing x-direction.
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Figure 12. Example 6: comparison of reference solution (Mref =
12800) with approximate solutions computed by BCOV scheme
with M = 100 at simulated time T = 0.02.

T = 0.1 T = 0.2 T = 0.3

M eM (��) eM (��) eM (��)
100 7.42e-2 9.50e-2 1.06e-1
200 4.12e-2 5.50e-2 6.49e-2
400 2.27e-2 3.34e-2 3.88e-2
800 1.24e-2 1.97-2 2.35e-2

1600 6.50e-3 1.10e-2 1.35e-2

Table 3. Example 7: Approximate L
1 errors eM (u) with �x = 5/M .

This phenomenon occurs because the speeds of the last two classes are greater than
the first three. Furthermore, in Figure 15 we show the simulated total density
computed by the BCOV scheme with N = 5 and M = 1600.

5. Conclusions. We have proposed a numerical scheme for a multiclass Lighthill-
Whitham-Richards model with a velocity function that is discontinuous in the so-
lution variable. The treatment is motivated and in part based on the numerical
scheme proposed by Towers [28]. However, in contrast to that approach we have
assume that the discontinuity is present in the velocity function (not in the flux);
this observation makes it possible to and construct an alternative scheme based on
Scheme 4 of [6]. Furthermore, we have seen that our scheme can be easily extended
to the multiclass case. We have proved for the scalar case that the numerical ap-
proximations convergence to a weak solution and for the multiclass case that the
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Figure 13. Example 6: comparison of reference solution (Mref =
12800) with approximate solutions computed by BCOV scheme
with M = 100 at simulated time T = 0.12.
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Figure 14. Example 7: numerical solution computed with BCOV
scheme with N = 5 and M = 12800 at simulated times (a) T = 0.1,
(b) T = 0.2 and (c) T = 0.3.

scheme preserves an invariant region. Examples 1 to 3 indicate that the scheme
converges to the same weal solution as that of [28], and all numerical examples
indicate that our scheme converges in both the scalar and multiclass cases.

The present analysis and numerical method can be extended in several directions.
Concerning the model itself, at the moment a certain shortcoming is the limitation
to the initial-boundary value problem on a fixed road segment. This is due to the
particular boundary condition (1.5). It seems desirable to obtain a formulation for
a closed road with periodic boundary conditions (a configuration that is commonly
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Figure 15. Example 7: simulated total density computed with
BCOV scheme with N = 5 and M = 1600.

studied in tra�c modeling to analyze, say, the formation of stop-and-go waves; cf.,
e.g., [5,11]). However, it is not obvious whether the way the boundary condition is
posed allows “gluing together” the ends of the computational domain to create a
“seamless” closed circuit. Open issues also include the incorporation of discontinu-
ities in spatial position (akin to the treatment in [9]), and the discussion of the notion
of entropicity. In fact, the issue of convergence to an entropy solution is an open
problem even in the scalar case for both the scheme advanced in [28] as well as the
present approach. Likewise, we recall that for general N the MCLWR model with a
Lipschitz continuous function V admits a separable entropy function (see [1,2]) that
can be utilized, for instance, to construct entropy stable schemes [10]. It remains to
be explored whether these concepts are meaningful for the MCLWR model with a
discontinuous velocity function V . Finally, it is clear that the numerical method is
formally first-order accurate and can possibly improved by known techniques (e.g.,
weighted essentially non-oscillatory (WENO) reconstructions in combination with
higher-order time integrators).
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[3] M. Buĺıček, P. Gwiazda, J. Málek, and A. Świerczewska-Gwiazda, On scalar hyperbolic con-
servation laws with a discontinuous flux, Math. Models Methods Appl. Sci., 21 (2011), 89–113.
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