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Abstract

In this paper we extend the utilization of the Banach spaces-based formulations, usually employed
for solving diverse nonlinear problems in continuum mechanics via primal and mixed finite ele-
ment methods, to the virtual element method (VEM) framework and its respective applications.
More precisely, we propose and analyze an LP spaces-based mixed virtual element method for a
pseudostress-velocity formulation of the two-dimensional Navier-Stokes equations with Dirichlet
boundary conditions. To this end, a dual-mixed approach determined by the introduction of a
nonlinear tensor linking the usual pseudostress for the Stokes equations with the convective term,
is employed. As a consequence, this new tensor, say o, and the velocity u of the fluid constitute
the unknowns of the formulation, whereas the pressure is computed via a postprocessing formula.
The simplicity of the resulting VEM scheme is reflected by the absence of augmented terms, on the
contrary to previous works on this and related models, and by the incorporation in it of only the
projector onto the piecewise polynomial tensors and the usual stabilizer depending on the degrees
of freedom of the virtual element subspace approximating o. In turn, the non-virtual but explicit
subspace given by the piecewise polynomial vectors of degree < k, is employed to approximate u.
The corresponding solvability analysis is carried out by using appropriate fixed-point arguments,
along with the discrete versions of the Babuska-Brezzi theory and the Banach-Necas-Babuska theo-
rem, both in subspaces of Banach spaces. A Strang-type lemma is applied to derive the a priori
error estimates for the virtual element solution as well as for the fully computable approximation
of o, the postprocessed pressure, and a second postprocessed approximation of o. Finally, several
numerical results illustrating the performance of the mixed-VEM scheme and confirming the rates
of convergence predicted by the theory, are reported.

Key words: Navier-Stokes problem, pseudostress-velocity formulation, Banach spaces, mixed virtual
element method, high-order approximations
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1 Introduction

The numerical solution of diverse linear and nonlinear problems in fluid mechanics via the virtual
element method (VEM) is becoming nowadays a very active research area. The models studied
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include, among others, Stokes, Navier-Stokes, Brinkman, Stokes-Darcy, and quasi-Newtonian Stokes
flows, whereas the approaches employed usually consider primal and dual-mixed formulations, as well
as some variants of them. In particular, regarding the application of a VEM technique to the classical
velocity-pressure formulation of the Stokes equations, we refer to [2], [6], [8], [11], [23], [26], [27], [28],
and [44], where stream function-based, divergence free, and non-conforming virtual element methods
are proposed. In addition, corresponding p and hp versions, associated eigenvalue problems, and the
application to the Stokes-Darcy model are analyzed in [29], [43], [24], and [25], respectively. In turn,
virtual element methods based on dual-mixed variational formulations have also been developed for
the Stokes and related linear models. Indeed, we first recall that a mixed-VEM for the pseudostress-
velocity formulation of the Stokes problem, with the pressure being computed via a postprocessing
formula, was introduced and analized in [15]. The corresponding extension of this work to the two-
dimensional Brinkman problem was presented in [16], in which the pseudostress becomes the only
unknown of the resulting dual-mixed formulation.

Furthermore, regarding the applicability of VEM to nonlinear problems, and particularly to the
Navier-Stokes equations, we begin by highlighting that [9] constitutes the first work developing an H'-
conforming VEM for the velocity-pressure formulation of this model. In fact, the authors consider there
the two-dimensional case and basically extend the approach from [8] to this nonlinear situation, whence
pointwise divergence-free discrete velocities are obtained as well. The underlying Stokes complex
structure of the virtual element methods introduced in [8] and [9] is addressed later on in [11]. In
turn, an H! but non-conforming VEM for the Navier-Stokes equations was proposed in [47].

On the other hand, in [38] we considered the same dual-mixed variational formulation from [21]
(see also [19], [20]), and developed, up to our knowledge, the first mixed virtual element method for
the Navier Stokes equations. More precisely, the approach in [38] is based on the incorporation as
unknown of the nonlinear tensor that arises after adding the convective term to the usual pseudostress
for Stokes (cf. [15]). In addition, and in order to be able to address the analysis in a Hilbertian
framework, Galerkin type consistent terms arising from the constitutive and equilibrium equations, and
the Dirichlet boundary condition, all them multiplied by suitable stabilization parameters, are added to
the resulting continuous formulation, thus yielding an augmented scheme. As for the discrete setting,
the main novelty of [38] lies on the simultaneous use, for the first time, of virtual element subspaces of
H! and H(div) approximating the velocity and the nonlinear pseudostress tensor, respectively. The
extension of the analysis and results from [38] to the Boussinesq model is provided in [39]. Needless
to say, we stress that one of the main advantages of employing the pseudostress and the velocity
as main unknowns, lies on the fact that further variables of physical meaning, and hence of wide
interest in applications, can be computed by simple postprocessing formulae and without any loss
of accuracy. Other contributions dealing with VEM for nonlinear models include [7], [17], [22], [37],
and [47]. In particular, a virtual element method for quasilinear elliptic problems is studied in [22],
whereas the approaches from [15] and [16] are extended in [17] and [37] to derive mixed-VEM schemes
for quasi-Newtonian Stokes flows and for nonlinear Brinkman models of porous media flow.

Going back to [38], we emphasize that the augmented formulation introduced there, and the con-
sequent use of two different types of virtual element subspaces to define the discrete scheme, are
originated by the wish of performing the respective solvability analysis within a Hilbertian framework.
However, it is well known that the introduction of additional terms into the formulation, while having
some advantages, also leads to much more expensive schemes in terms of complexity and computa-
tional implementation. In the particular case of the usual mixed finite element method, there is an
increasing development in recent years on Banach spaces-based approaches to solve a wide family
of nonlinear problems in continuum mechanics (see, e.g. [12], [18], [30], [32], [40], and the references
therein). This kind of procedures shows two advantages at least: no augmentation is required, and



the spaces to which the unknowns belong are the natural ones arising from the application of the
Cauchy-Schwarz and Hoélder inequalities to the terms resulting from the testing and integration by
parts of the equations of the model. As a consequence, simpler and closer to the original physical
model formulations are obtained.

According to the previous discussion, our long-term objective is to continue extending the appli-
cability of the Banach spaces-based analysis, but now to address the solvability, via mixed virtual
element methods, of diverse nonlinear problems in continuum mechanics. In the present paper we
begin to contribute to the achievement of this goal by considering as a model the two-dimensional
Navier Stokes equations. The rest of the paper is organized as follows. In Section 2 we resort to [18] to
set the model of interest, recall the associated dual-mixed variational formulation with the unknowns
o and u living in suitable Banach spaces, and state the main result establishing its well-posedness.
The mixed virtual element scheme is introduced and analyzed in Section 3. Some preliminaries on
the VEM methodology, which includes the orthogonal projectors onto polynomial spaces and their
associated approximation properties, are provided first. Then, the finite dimensional subspaces to be
employed and the VEM scheme itself, are defined. In Section 4 we apply a fixed-point strategy to
analyze the solvability of our discrete formulation. Besides the usual estimates concerning the bilin-
ear and trilinear forms involved, a key step of our analysis is a local stability bound for the virtual
interpolation operator, thanks to which a fundamental discrete inf-sup condition can be proved. The
classical Banach fixed-point theorem allows to conclude the main result. A priori error estimates for
the full solution of the virtual element scheme, as well as for computable postprocessed approximations
of o and the pressure p, are derived in Section 5. Finally, several examples examples confirming the
predicted performance of the method, are described in Section 6.

We end this section with some notations to be used along the paper, including those already
employed above. Firstly, for any vector fields v = (v;)i=12 and w = (w;);=1,2 we set the gradient,
divergence and tensor product operators as

Vv = (8%) , div(v) := Z 9y and VW= (VW) =12,
Ox; i,j=1,2 j

respectively. In addition, denoting by I the identity matrix of R**?, and given T := (7;;), ¢ == (¢;j) €
R?*2, we write as usual

2 2
1
0= (151), tr(7):= E 1 Ti, TS =T — §tr(7')]l, and T7:(:= E 171-]-(1-]-7
1= )=

which corresponds, respectively, to the transpose, the trace, and the deviatoric tensor of 7, and to
the tensorial product between 7 and . Next, given a Lipschitz-continuous domain O with boundary
I', we adopt standard notations for Lebesgue spaces L!(O) and Sobolev spaces W!(0) with £ > 0
and t € [1,4+00), whose corresponding norms and seminorm, either for the scalar or vectorial case, are
denoted by || - [lot:0, || - [le:0 and | - .0, respectively. Note that W(O) = L{(0), and if t = 2 we
write Hf(O) instead of W%2(Q), with the corresponding norm and seminorm denoted by || - ||l,,0 and
| - le,0, respectively. Furthermore, given a generic scalar functional space M, we let M and M be its
vectorial and tensorial counterparts, respectively, with norms and seminorms denoted exactly as those
of M, examples of which are L{(O) := [LY{(0)]", W51(0) := [W5(0)]?, and HY(O) := [H{(Q)]"*".
On the other hand, letting div be the usual divergence operator div acting along the rows of a given
tensor, and given p € (1,4+00), we introduce the Banach space

H(divy; Q) = {r € L*Q) : div(r) € L’(Q)},



endowed with the natural norm
[Tlldaiv,:.2 == [ITlloe + ldiv(T)llope V7€ H(divy; Q).

Finally, we employ C and c, with or without subscripts, bars, tildes or hats, to denote generic positive
constants independent of the discretisation parameters, which may take different values at different
places.

2 The model and its continuous formulation

In this section we recall the mixed variational formulation introduced in [18] for the two-dimensional
steady-state Navier-Stokes equations with constant viscosity pu > 0 and Dirichlet boundary conditions.
To this end, we first let Q be a bounded polygonal domain in R := R? with boundary I' and respective
unit outward normal denoted by n. Then, given a volume force f € L* 3(Q) and a Dirichlet datum
up € H'/? (T"), we seek a velocity vector field u and a pressure scalar field p such that

—pAu + (Vu)u +Vp = f in Q, div(u) = 0 in 9,

(2.1)
u =up on I, and /p:O.
Q

Note from the incompressibility condition that up is required to satisfy the compatibility condition
Jrup-m =0. Next, we define the constant

1 1 9
— _ t - 2.2
Cu 2|Q’ /{; r(u®u) 2‘9’”11”0,9’ ( )
and the pseudostress tensor
o= pVu—u®u— (p+ecy)l in Q (2.3)

where T is the identity matrix of R := R**2. Taking the matrix trace in (2.3), and then solving for
the pressure, we arrive at

p = —% {tr(a) + tr(u®U)} — ¢y in Q, (24)

which allows us to eliminate the pressure variable from the rest of the formulation. In fact, applying
the deviatoric operator to (2.3), and realizing, thanks to the incompressibility condition, that

div(e) = pAu — (Vu)u — Vp,

we can rewrite (2.1) as the equivalent system: Find the pseudostress o and the velocity u such that

o = pVu — (u®u)? in Q, div(e) = —f in Q,
(2.5)
u=mup on I, and /tr(a) = 0.
Q
In this way, we now introduce the spaces
H = Ho(divy,s; ) := {7’ € H(divy/s;9Q) : /tr(T) = O} , (2.6)
Q



and
Q = LY(9),

(2.7)

so that, following [18], the variational formulation of (2.5) reads: Find (o,u) € H x Q such that

a(o, ) + b(T,u) + c(wsu,7) = F(1) Vr1el,
b(o,v) = G(v) VveQ,

(2.8)

where the bilinear forms ¢ : H x H — R and b : H x Q — R, the trilinear form c¢: Q x Q x H — R,

and the functionals F': H — R and G : Q — R are defined, respectively, as

a(C7) = i/ﬁcd:rd,

1
F(t) := (tn,up)r,
and
G(v) = —/ f-v,
Q
for all {, 7 € H and for all z, v € Q. Note that a and b are clearly bounded with

1
lall = = and [jb] = 1.
I

In addition, we know from [18, Lemma 3.5] that there hold

[F(T)] < Crllupllijr [Tllaiv, a0

where CF is a positive constant depending only on €2, and
GV < fllo.a/3:0 IV]o4a0 -

The unique solvability of (2.8) is established as follows.

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

Theorem 2.1. Let v be the positive constant arising from the global inf-sup condition for the left hand

side of (2.8) (cf. [18, eq. (3.29)]), define the ball

S = {z cQ: |zlloan < %}

and assume that the data satisfy

4
A Crluplher + I

0,4/3;9} < 1.

Then, there exists a unique (o,u) € H x Q solution of (2.8) with u € S, and there holds

2
o laivy 0 + oo < ~{Crllupllor + ooy

Proof. It is a slight modification of the proof of [18, Theorem 3.8].

(2.17)

(2.18)



3 The virtual element method

In this section we introduce a mixed virtual element scheme for (2.8). The corresponding solvability
analysis is provided later on in Section 4. We begin with some preliminary definitions and results to
be employed in what follows.

3.1 Preliminaries

As usual in the VEM philosophy, we begin by letting {75}1~0 be a family of decompositions of 2 in
polygonal elements. Then, given K € T, we denote its barycenter, diameter, and number of edges
by xx, hi, and dg, respectively, and set, as usual, h := max{hx : K € T,}. Additionally, we assume
that there exists a constant C7 > 0 such that for each decomposition 73 and for each K € 7T}, there
hold:

(i) the ratio between the shortest edge and the diameter hx of K is bigger than Cr, and

(ii) K is star-shaped with respect to a ball B of radius Crhg and center xp € K, that is , for each
xo € B, all the line segments joining zg with any x € K are contained in K, or equivalently, for
each z € K, the closed convex hull of {x} U B is contained in K.

It is not difficult to see that the above hypotheses guarantee that each K € 7Ty, is simply connected,
and that there exists an integer N7 (depending only on C'r), such that dx < Ny VK € Tj. On
the other hand, given an integer ¢ > 0 and U C R?, we let P¢(U) be the space of polynomials on
U of degree up to ¢, so that, according to the notation introduced at the end of Section 1, we set
P,(U) = [Py(U)]? and Py(U) := [Py(U)]?>*2. Also, throughout the rest of the paper we use the
multi-index notation, that is, given x := (x1,22)* € R and a := (a1, a2)*, with non-negative integers
aq, ag, we define x® := z{"25? and |a| := a1 + a2. In this way, for each K € Tj, and for each edge
e C 0K with barycenter x. and diameter h., we introduce the sets of normalized monomials on e and
K given, with generic vectors z € e and x € K, by

oo - {(52)),, e - (52,

which constitute basis of Py(e) and P;(K), respectively. In turn, the corresponding vectorial versions
are denoted by By(e) and By(K), that is

Bue) = {(@.0": qeBe)}u{(0,0": qeBie)},

and

Bu(K) = {(@0°: aeB(k)}u{(0.a: aqeBi(K)}.

Furthermore, for each integer £ > 0 we now let P/ : L'(K) — Py(K) be the usual orthogonal
projector with respect to the L?(K)-inner product, that is, given v € L}(K), PE(v) is the unique
element in Py(K) satisfying

/Pf(v)qz/vq Vg €eP(K). (3.1)
K K

Similarly, we let P{ : L(K) — Py(K) and P : LY(K) — Py(K) be the vectorial and tensorial
versions of P}, which are characterized by the analogue identities to (3.1).



Then, resorting to the analysis and results provided in [38, Section 3.4], we are able to establish next
the approximation properties of the projectors PKK , 'Pf , and ”PeK , with respect to general Sobolev
semi-norms.

Lemma 3.1. Let K € Ty, p > 1, and £, s, m be integers such that £ > 0 and 0 < m < s < £+ 1.
Then, there exists a constant Cy > 0, depending only on £, and hence independent of K, such that

v —PEO) mprx < Cohic™vlspx Vv e WHP(K), (3.2)

IV = PEW)mpre < Cohls™Vlspx Vv e WP (K), (3.3)
and

T — 7P£K(T)‘m,p;K < G h?m’T‘s,p;K Ve WWP(K). (3.4)

Proof. The proof of (3.2) follows from [38, Lemma 3.7] by noting that the arguments employed there
for p > 2 are valid for p € (1,2) as well. Then, (3.3) and (3.4) are straightforward consequences of
(3.2). 0

We remark now that Lemma 3.1 implies the boundedness of P (cf. [38, Lemma 3.8]), as well as
that of ’Pf and 7PEK , with respect to the above Sobolev semi-norms. In other words, given p > 1, and
{, s, m integers such that £ > 0 and 0 < m < s < ¢+ 1, there exists a constant My > 1, depending
only on ¢, and hence independent of K, such that for each K € Tj there hold

’PZK(UHS,IJ;K < Mé ‘U’S,p;K Voe Ws,p(K) ) (35)

"Pf(v)’s,p;K < M, ‘V’s,p;K Vve WSW(K) ) (3'6)
and

|7PZK(T)‘S,]J;K < M, |T‘s,p;K VT1e WS7P(K) . (37)

We end this section by stressing that all the above properties of PgK , ’Pf and 7P£K , extend to their
respective global counterparts

PlLYQ) = Pu(Th), PI:-LYQ) = Pu(Th), and PP LYQ) = Py(Th),

where

Pu(Th) = {v ELNQ): |k € PuK) VK € n}, (3.8)
and analogue definitions hold for P,(7y) and Py(7y).

3.2 The discrete subspaces

In this section we introduce a suitable virtual element subspace approximating the continuous space H
(cf. (2.6)), and define an explicit (non-virtual) finite element subspace approximating Q (cf. (2.7)). In
fact, given an integer k > 0 and K € Ty, for the former we follow [39, Section 3.2] (see also [38, Section
3.3]) and consider the local virtual element subspace of order k (cf. [5]):

HE .= {7’ € H(divy/3; K) NH(rot; K) :  7nl. € Prle) Vedgee CIK,
(3.9)
div(t) € Py(K), and  rot(r) € Pk_l(K)} ,



where P_;(K) := {0}, and rot(7) := (0p, 712 — OuyT11, Ony T2z — Oz, 721)F. It is well-known (see [4])
that the tensors T € HkK are uniquely determined by the local degrees of freedom given by

mé{n(ﬂ = /Tn'q Vqe Bgle), VedgeeCIK,
mianlr) = [ Ti¥a Vae B\ {(L0] 0.0)7, (3.10)
m{)(,rot(T) = / R Vpegk(K),
K

where Gy (K) is a basis of (VPry1(K))*t NPy(K), the L2(K)-orthogonal of VP (K) in Py(K).
Alternatively, it would suffice to choose G (K) as a basis of any space IF’k(K ), not necessarily orthogonal
to VPj,1(K), such that Py(K) = VP11 (K) ® P,(K). In any case, we stress that for each T € HE,
the projection P/ (7) is explicitly calculable in terms of the degrees of freedom given by (3.10) (see,
e.g. [16, Section 3.3]).

We now denote by nkK the amount of local degrees of freedom from (3.10), and gather them in

K
n
the set {mZK }k . Then, proceeding analogously to [38, Section 3.3], we introduce the interpolation

i=1
operator IIFX : Wh1(K) — HX, which is defined for each 7 € Wh!(K) as the unique IIX () € HE
such that
mf(r -1 (1)) =0  Vie{l,....nj }. (3.11)

Regarding the approximation properties of IIX | we first recall from [5, eq. (3.19)] that for each
integer s € [1,k + 1] there exists a constant C' > 0, independent of K, such that

I — T (1)

0.8k < Chiltls i VreH(K). (3.12)
In turn, similarly to [16, eq. (3.14)]), and employing the identities given by (3.11), we easily find that
div(IT¥ (7)) = PE(div(r)) V7 e Whi(K), (3.13)

which, together with (3.3), imply that for each integer s € [0,k + 1] there exists a constant C' > 0,
independent of K, such that

Hdiv(T — HkK(T))

0,4/3:8 = |[div(T) — P (div(T)) llo,a/z:6 < C hie |div(T)|54/3.5 (3.14)

for all 7 € WH(K) with div(T) € Ws*/3(K).

Having established the above, we now introduce the virtual element subspace of H given by
Hh::{TEH: |k € HE VKeTh}. (3.15)
In turn, we consider P (73) (cf. (3.8)) as the finite dimensional subspace of Q, that is

Q, = {veQ: vk € Py(K) VKeTh}. (3.16)

On the other hand, given integers s, m > 0, and given p > 1, we introduce the broken semi-norms

1/2
|T]|sp.0 = { Z |T|§K} V1 e L}(Q) such that 7|x € H¥(K) VK €Ty, (3.17)
KeTy



and

1/p
[VImppo = { Z \Vﬁw;K} Vv eLP(Q) such that vix e W™P(K) VK eT,. (3.18)
KeTy

In this way, according to (3.12), (3.14), and (3.3), the approximation properties of Hj and Q
reduce, respectively, to:

(AP7) for each integer s € [1,k + 1] there exists C' > 0, independent of h, such that
dist(r,H) = _inf |7 = Tallaivy 0 < OB {Imlo0 + [div(r)oa/sna b
ThEH,

for all T € H such that 7| € H*(K) and div(T)|x € W*3(K) for all K € Tj, and

(AP} for each integer s € [0, k + 1] there exists C' > 0, independent of h, such that

dist(v,Qp) == inf |[v—wpllosn < Ch°|V]sapa,
vhEQy
for all v € L4(Q) such that v|x € W**(K) for all K € Tj,.

3.3 The virtual element scheme

We begin by observing, according to the definitions of the discrete spaces Hy, (cf. (3.9), (3.15)) and
Q, (cf. (3.16)) that the bilinear form b (cf. (2.10) ) is explicitly calculable for each (7,v) € Hj x Qy,

N b(r,v) = /Q vodiv(r) = 3 /K v-div(r).

KeTh

On the contrary, and since 7 € Hj, is unknown on each K € T, the bilinear form a (cf. (2.9)) and the
trilinear form ¢ (cf. (2.11)) are not explicitly calculable due to both terms in the former and the third
term only in the latter. According to it, we now define a calculable discrete version of a depending on

nK
the local degrees of freedom {mZK}kl (cf. (3.11)) and the projectors P, K € Tj,. Indeed, we first

let Sff : H{f X HkK — R be the bilinear form associated to the identity matrix in R™ X" with respect
to the canonical basis of HkK determined by the aforementioned degrees of freedom, that is

K
"
SE(CT) =) mf(Qmi(r) V¢ TeH. (3.19)
i=1
Then, we introduce for each K € 7T}, the calculable local discrete version of a as

aK(Cr) = 1{ / (Plf(C))d:(71’;5(7))‘1+5§(C—7P5(C),T—7P5(T))} Ve e HE (3.20)
wJK

and set the calculable discrete version of a as the bilinear form ay, : Hj, x H;, — R defined by

an(¢,7) = Y af (g, TK) V¢ T EH, (3.21)
KeTy



where, given ¢ € Hy, and K € Ty, (i € HkK denotes the restriction of ¢ to K. Similarly, we let
cht Qp X (Qh X ]I-]Ih) — R be the trilinear form defining the calculable discrete version of ¢, that is

cn(z;v, ) = ; Z /K(z @v)d: PE(T) V(z,(v,7)) € Q) x (Q) x Hy) . (3.22)

KeTh

Note that the discrete form cy, is also defined in Q x (Q X H), which will be employed below in Lemmas
4.5 and 4.6. Finally, since the functionals F' (cf. (2.12)) and G (cf. (2.13)) are calculable as well on
Hj, and Qy,, respectively, which follows again from the definitions of these discrete spaces (cf. (3.9),
(3.15), (3.16)), we propose the following virtual element scheme for (2.8): Find (op,up) € Hy x Qy,
such that

an(On, Th) + b(Th,up) + cp(upiup, ) = F(ry) V71 € Hy,

b(O'h,Vh) = G(Vh) Y vy € Qh . (323)

We end this section by remarking that our virtual element scheme (3.23) presents two important
advantages as compared with the previous scheme proposed in [38]. Indeed, on one hand, augmented
terms increasing the complexity of the method are not needed anymore, and on the other hand, only
one virtual element subspace is required, which significantly simplifies the approach from [38], in which
a virtual element subspace for H'-conforming elements is additionally employed. As a consequence,
we now obtain a much cleaner and easier computational implementation.

4 Solvability analysis

In this section we follow a similar fixed-point strategy to the one employed in [18] (see also [20], [21],
[30], and [31]) to analyze the solvability of our discrete formulation (3.23). We begin by collecting
some useful results concerning the bilinear forms aj and cp,.

4.1 Preliminaries on the discrete bilinear forms

We first recall from [38, Lemma 4.1] a key estimate on S¥.

Lemma 4.1. There exist constants ¢y, ¢1 > 0, depending only on Cy, such that

Gliclen < Sp(6¢) <@alclon  VCeHT, ¥KeT. (4.1)
Proof. See [5, egs. (3.36) and (6.2)] (see also [14, eq. (5.8)] and [15, Lemma 4.5]). O

The estimate (4.1) and the well-known boundedness properties of the .?(K)-orthogonal projector
7P,€( , namely

1P ()

are utilized in what follows. Note that we could also employ the bounds arising from (3.7) with s =0
and p = 2, but the ones in the foregoing equation are certainly sharper.

ok < ltllox  and T =PE()ox < lITlox VT ELX(K),  (42)

We begin with the following lemma concerning aX (cf. (3.20)).

Lemma 4.2. There exist constants ay, ag > 0, independent of h, such that

laf (¢, 7)] < asl¢ ok V¢TeHE VKeT, (4.3)

lo.ic I

and
arlC B x < ar(¢.¢) < aallKldx  VCEHE, VKET,. (4.4)
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Proof. While this proof is standard (see [15, Lemma 4.6]), we provide it below for sake of completeness.
In fact, applying the Cauchy-Schwarz inequality to SX, and then employing the upper bound from
(4.1), we first obtain

/ /
sten) < {sfc o} sten} " <alchulrlon Ve reHf. (45

Hence, according to the definition of aX (cf. (3.20)), we utilize the Cauchy-Schwarz inequality again,
and the estimate (4.5), to deduce that

1 ~
o € < 5 (Il 7o + @¢ = PElo I7 = PEDIos}  ¥6 < HE,
which, taking into account (4.2), gives (4.3) with ag := %(1 +¢1) > 0. Next, concerning (4.4), it is

clear that the corresponding upper bound follows straightforwardly from (4.3). In turn, adding and
subtracting (P/ (¢ ))d, and applying the lower estimate from (4.1), we find that

16418, < 201 (PE@) gse + 2016 = PE@)I5 i
<2|[(PEO) i + 2 SK(¢-PE©.C-PE©)

<opmax{1 2 af(c.)  veenf,

&Y
which yields the lower bound of (4.4) with a; := i min {1, }. O

As a consequence of (3.21) and (4.3), we conclude the boundedness of the bilinear form ay, that is
lan (6, 7)| < azllClloqliTlloe < azliClaiv, s ITlldivy 50 VE 7 € Ha. (4.6)

We now aim to establish the ellipticity of a; on the discrete kernel Vj, of the bilinear form b, that is
Vy, = {T eHy: b(r,v):= / v-div(t)=0 Vve Qh}.
Q

To this end, we first observe from the definitions of Hy, (cf. (3.9), (3.15)) and Q, (cf. (3.16)) that
there holds div(Hjy) € Qp,, which implies that

V= {r cH,: div(r)=0 in Q} (4.7)

Then, the announced result on ay, is established as follows.

Lemma 4.3. There exists a constant ag > 0, independent of h, such that
an(¢,€) > aq ”CH?iiv4/3;Q Ve e V. (4.8)

Proof. Given ¢ € Vj, and bearing in mind the definitions of a (cf. (3.20)) and ay, (cf. (3.21)), a
direct application of the lower bound from (4.4) yields

an(¢,¢) = a1 ll¢f5.q-

11



On the other hand, the estimate given by [18, Lemma 3.2] (see also [30, eq. (3.43)]), which is a slight
generalization of [35, Lemma 2.3], establishes the existence of a constant ¢; > 0, depending only on
Q, such that

I3 a + 1div(T) 450 = cllTlfe V7 € Ho(divys; Q).
Hence, the foregoing two equations and the fact that ¢ is divergence free, imply the required estimate

(4.8) with ag = a1 ¢;. O

In order to state the next result, we now recall from Section 3.1 that P! : L1(Q) — Px(7y) is the
global counterpart of P : L}(K) — Py (K), which means that

Pk = PE(T|lk) VKT, VYrell(Q).

Then, we have the following lemma establishing a stability estimate for the difference between the
bilinear forms a and ay,.

Lemma 4.4. There exist a constant C, > 0, independent of h, such that
(¢, 7) = an(¢, )| < Call¢=Pi(Oloalrlloe V¢ T eH. (4.9)

Proof. Given ¢, T € Hj,, we first observe, thanks to the orthogonality property satisfied by 7P,’§ , which
follows from those of the local projectors ”P,f , that

[ Pyt s Py = [ PR P = [ (PRO) T
Q Q

Q

and then, according to the definitions of a (cf. (2.9)) and ap, (cf. (3.20), (3.21)), we find that
a¢r) —anl6.r) = 5 [ (¢=PhO) T = 3 S PEQ). T - P ().

H KeTs,

In this way, employing the triangle and Cauchy-Schwarz inequalities, and the estimate (4.5), we obtain
1 ~
(¢, 7) —an(C, 7)| < ;{HC = Pi(QloglITlloe + al¢ —PEC)lloe T - W’;?(T)Ilo,n} :

which, thanks to (4.2), gives (4.9) with C, := i(l +7c1). O

We end this section with a couple of simple estimates concerning the trilinear form ¢, (cf. (3.22)).
In particular, its boundedness is established as follows.

Lemma 4.5. There holds
1
len(z; v, T)| < m Izlloga Vioaa ITloe  V(z (v,7)) € Q x (Q x H). (4.10)

Proof. 1t follows from the definition of ¢, (cf. (3.22)), the Cauchy-Schwarz and Holder inequalities,
and (4.2). O

In turn, a stability estimate for the difference between ¢ and ¢j, is provided next.

Lemma 4.6. There holds

le(z; v, T) — ep(z;v,T)] < ; [zev)—Przav)|oalTle Y (z(v,7) € Qx (QxH). (4.11)
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Proof. Let (z,(v,7)) € Q x (Q x H). Then, having in mind the definitions of ¢ (cf. (2.11)) and ¢,
(cf. (3.22)), and employing the orthogonality property satisfied by 7P,§( , we deduce that

"”7'—CZ'V’7':l ZVd'T— KT
o(z:v,7) — en(z;v,7) MZ/K<®>.{ PE(r))

KeTy,

- ;Kz; [ {zovri-@E@ov)’}: (- Pl (1.12)
1 d

— MK%/K{(z®v)—7P,§(z®v)} AT =P},

from which, applying Cauchy-Schwarz’s inequality and (4.2), we arrive at (4.11) and end the proof. [

4.2 The discrete inf-sup condition for b

In order to establish the discrete inf-sup condition for the bilinear form b we need two preliminary
results, the second being consequence of the first as well as the one to be finally employed for the
aforementioned purpose. Indeed, we begin with a stability estimate for the local interpolation operator
Hf when applied to the space

WUL(K) = {T e Wh(K) - /KT - 0}, (4.13)

for which we follow basically [3] and make use of some techniques and results from [10].

Lemma 4.7. There erists a constant C > 0 such that
I (P)llox < Clrhax  ¥Yre WHH(K), VK eT,. (4.14)

Proof. Given T € Wl’l(K), we denote T, 1= IIX(7) € HE, and let p := (p1,p2) € HY(K) be the
unique solution of the boundary value problem

Ap = div(ty) in K, Vpn=1,n on 0K, / p=0. (4.15)
K
It follows that div(7; — Vp) =0 in K, and hence a straightforward application of [41, Theorem 3.1,

Section 3.1, Chapter I] implies the existence of v := (1b1,1,) € H!(K) such that there holds the
Helmholtz decomposition

Ty = curl(y) + Vp in K, (4.16)
where
% _%
curl(ep) := ( &:Z 82; ) :
Oz Om1

Applying rot to (4.16), and making use of the Neumann boundary condition satisfied by p, we deduce,
respectively, that rot(r,) = rot (curl(’t,b)) = A in K and curl(y)n = 0 on 0K. Thus, since the
latter indicates that 1) is a constant vector on 0K, we can assume without loss of generality that 1
vanishes on 0K, whence 9 becomes the unique solution of the boundary value problem

Ay = rot(ty) in K, =0 on O0K. (4.17)
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Next, integrating by parts, and denoting by (-,-)gx the duality pairing between H™Y/2(0K) and
H!/2(0K), we find that

/ curl(y)) : Vp = —/ p - div(curl(e)) + (curl(yp) n, p)ox =0,
K K

which shows that curl(e) and Vp are L?(K)-orthogonal, and thus

14l x = leurl($)[§ x +IVol « - (4.18)

Now, integrating by parts again, denoting by s the unit tangential vector to 0K, employing (4.17),
and applying the Cauchy-Schwarz and Poincaré inequalities, we get

chrl('z,b)||(2)’K = /Kcurl(w) ceurl(y) = — /sz . rot(curl('l,b)) + (curl(y) - s, ¥)ox

- _/ voAY = _/ Y -rot(7h) < [[Ylo,x [[rot(Ta)lo,x (4.19)
K K

Chi %)k [[rot(Th)lox = Chk [|curl(y)

IN

0,5 [[rot(74)lo,x

from which it follows
leurl() 3 x < C hi [[rot(T4)|5 s - (4.20)

Similarly, but using now (4.15) instead of (4.17), we obtain
HVpHﬁ,K - _/ p-Ap+(Vpn,plox = —/ P'div(Th)+/ TP
K K oK
lo,0K (4.21)

IN

lello.x Idiv(Ta)llox + ITanlloox o

IN

Clplusc {huc Idivirn)lo + byl Inmloox |

where, besides the Poincaré inequality, the last estimate makes use of the fact (cf. [10, Lemma 2.1, eq.
(2)]) that ||plloax < C’h}{/2 |pl1.x, which holds precisely because p € H!(K) has zero average on K.

In this way, we easily conclude from (4.21) that

IVolE s < C {Wk ldiv(mn) & + b ITaml o } (4.22)

which, together with (4.18) and (4.20), yield
Imnlidic < € {mkllaiv(mn) I & + bk rot(ra) I3 s + e a3 o } - (4.23)

We now proceed to estimate each one of the terms on the right hand side of (4.23) by using that
the degrees of freedom defined by (3.10) obviously coincide for 7 and 75, = IIX (7). Indeed, as a
consequence of this fact, we first observe that

hic ldiv(Ti)[§ x = h%«/ div(7y) - div(r) < hi[|div(s)llo,ccix | div(T)llo,1xc
K

so that, applying a polynomial inverse inequality to div(7y), we get

hic |div(ta) | x < C hxc||div(Ts)

\O,K |7'\1,1;K )

which leads to

hic |div(ta)[§ x < Clr1x - (4.24)
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An analogous reasoning allows to prove that
hic rot(Ta)llgx < Ol 1 - (4.25)

In turn, for the boundary term we have

hi | 2 o = hic /a T < huc oo 7 losor

from which, employing that |7 n|/p 006 < C hl}l/ 2 |lTh 10,0k, invoking the scaled trace inequality
ITllo.0x < C {7k + hit 7|01,k }» and performing some algebraic manipulations, we arrive at

hic Il or < C {1 + Al 17 i | -

Hence, using that for 7 € Wl’l(K) the Poincaré inequality establishes that |7]o1,x < Chk |T|1,1:K,
we conclude from the foregoing equation that

11K (4.26)

Finally, replacing (4.24), (4.25), and (4.26) back into (4.23), we get (4.14) and end the proof. O

hi lThnl§ o < Clr

We now let II? : WL1(Q) — Hy, be the global counterpart of ITX : Whi(K) — HE| that is
(1) = O (T|lk) VKeT, VYreW-(Q).
Then, as a consequence of Lemma 4.7, we can prove the following stability estimate for HZ.
Lemma 4.8. For each p € (1,2) there exists a constant Csa > 0 such that
k(D)o < CswallTlhipe Y7 e WH(Q). (4.27)

Proof. We begin by recalling that the Sobolev embedding Theorem (cf. [1, Theorem 4.12], [33, Corol-
lary B.43], [46, Theorem 1.3.4]) guarantees the continuous injection of W'?(Q) into L?(Q2), which
means that there exists C}, > 0 such that

ITlloo < CpllTlhpo VT e WhP(Q). (4.28)

Next, given 7 € WHP(2), we consider the local decompositions
Tk = Tk + Tk VK €Ty, (4.29)
where

TK = |I1(‘/KT € Py(K) and TK GWI’Z’(K) = {CEWLP(K): /KC:O}.

Note that HTH%K = H‘FKH(%,K + H?KH&K- Then, using that IIX preserves tensors in Py(K), applying
the estimate (4.14), and observing that |Tx |1 1.k = |T]1,1,8 < |K|1_1/p"7'|17p;K < |71 p:K, we find

I (OIS = 175 + I F) I« < 2175

‘%,K +2 HHkK(;K)Hg,K

< 2|rlfx +20% Frlik < 2l7lex +2C°E Tl
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from which, summing up over all K € 7, and employing (4.28), we obtain

HHZHg,Q < 205 ||TH%,p;Q +2CQ CQ Z ’Tﬁ,p;K' (430)
KeTy

Finally, invoking the sub-additive property with exponent £ € (0,1), we get

) ) p/2\ 2/p )
Z |7"1,p;K: <{ Z |7'|1,p;K} ) < ‘T|1,p;Q7

KeTy KeTn
which replaced back into (4.30) yields (4.27) and ends the proof. O
We are now in a position to establish the discrete inf-sup condition for the bilinear from b. More
precisely, we have the following lemma.

Lemma 4.9. There exists 84 > 0, independent of h, such that

b(ty, vy,
sup _b(Th: va)_ > Balvalloasn  VvieQy. (4.31)
rne, [|Thlldivy 50
Th#O

Proof. 1t proceeds analogously to the proof of [15, Lemma 5.3] by employing some tools from [30,
Lemma 5.5]. In fact, since it was already shown in [18, Lemma 3.4] that b satisfies the continuous
inf-sup condition, that is that there exists a constant 8 > 0 such that
b(r,
sup 2T V)

> Blvlose  YVveq, (4.32)
TcH HT||div4/3;Q
T#0

it suffices to apply Fortin’s Lemma (cf. [35, Lemma 2.6]), which is valid in Banach spaces as well,
to conclude that b verifies the discrete version of (4.32). This means that we need to construct a

sequence of uniformly bounded operators {GZ}h . C L(H,Hyp), such that b(T — @2(7’), vh) = 0 for
>

all 7 € H, and for all v, € Q,,. To this end, we now let O be a convex bounded domain containing €2,
so that, given 7 € H, we set
div(r) in Q,
&= 0 in O\Q,
which certainly belongs to L3(0) and satisfies Igllo,4/3:0 = I1div(T)[[0.4/3:0- It follows from [34,
Corollary 1] that there exists a unique z € W(l)’4/ 3((’)) N W24/3(0) solution of

Az = g in O, z =0 on 00, (4.33)

and there exists a constant Creg > 0, depending only on O, such that

HZ||2,4/3;O < Creg lg 0,4/3;0 = Creg HdiV(T)HOA/S;Q- (4.34)
Next, we let ¢ := Vz|g € WH4/3(Q) and observe from (4.33) and (4.34) that
div(() = div(r) in @  and ¢l < Cregldiv(T)los/s0- (4.35)

Then, recalling that I is the identity matrix in R, we define our Fortin’s operator by
1
OR(7) = TI(¢) — {Q / HZ(C)}H, (4.36)
21| Jo
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which clearly belongs to Hy, and notice, thanks to (4.27) (with p = 4/3) and the inequality from
(4.35), that

10%(T) o0 < ITI(C)

l0,0 < CstallCll14/3:0 < Csta Creg |div(T)l0.4/3:0 - (4.37)

In turn, recalling from Section 3.1 that ’P’,;” is the global counterpart of ’P,f , applying the respective
global version of (3.13), and using the identity from (4.35), we obtain

div(0}(r)) = div(I}(¢)) = Pr(div(¢)) = P (div(r)) . (4.38)
In this way, making use of the boundedness property given by (3.6) (with s = 0 and p = 4/3), we get
14iv (0% (7)) lloasza = 1PE(Aiv(T)) loasza < My [|div(T)]loa/s0,

which, together with (4.37), confirms the uniform boundedness of ©F. Finally, according to (4.38) and
the fact that 'PZ projects precisely into Qp, we find that for each vy, € Qp, there holds

b(@Z(T),vh) = /th . ’PZ(div('r)) = /th ~div(T) = b(T,vp),

which completes the proof. O

4.3 The fixed-point strategy

In this section we study the solvability of the virtual element scheme (3.23) by means of an equivalent
fixed-point operator equation. Indeed, we let T}, : Q;, — Q;, be the operator defined for each z;, € Q,
as Tp(zp) = up, where (o, up,) € Hy, x Qp, is the unique solution (to be confirmed below) of (3.23)
with z; instead of uy in the first component of the trilinear form ¢, that is

an(Oh, Th) + b(Th, Un) + cn(zn;Un, Tn) = F(7rp) V71, € Hy, (4.39)
b(on,vp) = G(vp) Vv, eQ.
Then, it is easy to see that solving (3.23) reduces to seeking u;, € Q, such that
Th(uy) = uy. (4.40)

In order to analyze the solvability of this fixed-point equation, we first address in what follows
the well-posedness of (4.39), equivalently the well-definedness of the operator T}, by employing the
discrete versions of the Babuska-Brezzi theorem (cf. [13, Corollary 2.2] and [33, Proposition 2.42]) and
the Banach-Necas-Babuska theorem (cf. [33, Theorem 2.22]), both with finite dimensional subspaces
of Banach spaces. The respective continuous versions can be found in [13, Theorem 2.1, Corollary 2.1,
Section 2.1] and [33, Theorem 2.34] for the former, and in [33, Theorem 2.6] for the latter.

We begin by letting A : (Hp x Qy,) x (Hp x Q) — R be the bounded bilinear form arising after
adding the left-hand sides of the equations of (4.39), but without including the form ¢, that is

Ap((Cnowh), (Thyvi)) = an(CpyTh) + b(Ths Wa) + b(Chy Vi) (4.41)

for all (¢, wn), (Th,vy) € Hy x Qp. Note that the boundedness of A is consequence of those of ay,
with |lap]] = ag (cf. (4.6)), and b with ||b]] = 1 (cf. (2.14)). Hence, bearing additionally in mind
the ellipticity of ay, in the discrete kernel Vj, of b (cf. Lemma 4.3), and the discrete inf-sup condition
satisfied by b (cf. Lemma 4.32), a straightforward application of [13, Corollary 2.2] (or [33, Proposition
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2.42]) yields the inf-sup condition for Ay in Hj, x Q. More precisely, there exists a positive constant
@, depending only on ag, 84, and ||ap||, such that

sup An((Cnswh), (Th,va))

(ravm)eEnxQ,  1(Th Va)[[ExQ
(Th,vh)#0

= allCpwilluxq VY (Cpywa) €Hp xQp. (442)

Now, we notice that (4.39) can be reformulated as: Find (o, 1) € Hy, x Qp, such that
By, ((Gh,0n), (Th,v)) = F(Ta) + G(vi)  V(Th,vh) € Hy x Qy, (4.43)
where
By, ((Shswh), (Thy Vi) i= An((Chy Wh), (Thy Vi) + ca(Zn; Wi, Th) (4.44)

for all (¢, wn), (Th,va) € Hj, x Q. Hence, employing (4.42) and the boundedness estimate (4.10)
for ¢, we readily obtain that

B (C 7Wh)7(7-h7vh) ~ 1
Sub Zh( - ) = (@ = —lznlloae ) 1(Ch, wha)lluxq (4.45)
(Th,vi)EHL X Qy, [(Th, Vi) lExQ "
(Th,vi)#0

for all (¢, wr) € Hy x Qp, from which we conclude that for each z;, € Qy, such that ||z, |0.4.0 < %,

there holds
sup By, (S wn), (T, Vi) > &
(Th,vh)EHLXQy, H(ThJVh)HHXQ 2
(Th:vi) #0
for all (¢, wr) € Hy x Q),. We stress here that we could have also chosen any § € (0,1) and imposed
the condition ||z4||04;0 < dapu. In this case, the closer d to 1, the larger the range for z;, but then
the constant on the right hand side of (4.46) becomes much smaller. Conversely, the closer § to 0, the
larger the aforementioned constant, but then the range for zj is too restrictive. According to this, it
seems more reasonable to simply choose the midpoint of the range of J, as we just did.

(> Wh)llExQ (4.46)

In this way, we are now able to prove the following lemma establishing the well-posedness of (4.39),
which, as already mentioned, is equivalent to the well-definedness of T},.

Lemma 4.10. For each zj, € Qy, such that ||zpjo 4.0 < %, there exists a unique (op,up) € Hy x Qy,

solution to (4.39). In addition, there holds

~ o~ 2
ITw()loae = [Tnllose < 1@n @n)laxa < = {Crlluplhjor + Ifoysa}.  (447)

Proof. In virtue of the inf-sup condition (4.46) satisfied by B,, for each z;, € Q), as stated, the unique
solvability of (4.39) follows from a straightforward application of the discrete Banach-Necas-Babuska
theorem (cf. [33, Theorem 2.22]). In turn, the corresponding continuous dependence result reads
~ 2
1@n ) laxq < = {IFls + IGla )
which, along with (2.15) and (2.16), yields (4.47). O
Having proved that T}, is well-defined, we now analyze the solvability of the fixed-point equation

(4.40) by means of the classical Banach theorem. We begin by identifying a sufficient condition under
which T}, maps a closed ball of Qy, into itself. In fact, we now define

a
Sni={zneQu: lzlosn < 5}, (4.48)

and prove the following result.
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Lemma 4.11. Assume that the data satisfy

4
s Or luplhyar + I8

0,4/3;9} <1 (4.49)
Then Ty(Sn) C Sh.
Proof. Tt follows directly from Lemma 4.10 and the a priori estimate provided by (4.47). O

Next, we establish the Lipschitz-continuity of T},.
Lemma 4.12. There holds

[Th(zn) — Thlys)l

4
a0 < AP Ipliyor + [Bloazso o = valoae Von i €S (4.50)

Proof. Given zyp, y, € Sp, we let Tp(zp) := up € Qi and Ty(y;,) := up € Qp, where (o, u;) and
(h,0p), both in Hy, x Qp, are the unique solutions of (4.39) (equivalently (4.43)) with zj itself and
with z, =y}, respectively. It follows from (4.43) that

By, ((Gh,0p), (Th,vh)) = By, ((&h, k), (Th; Vi)
for all (74,vp,) € Hy, x Qp, which, according to the definitions of B,, and By, (cf. (4.44)), becomes
An((on,un) — (6,un), (Th: Vi) = ca(yn; Un, Th) — (2 Un, Th) 5
and hence
By, ((Gh,up) — (&,0p), (Th,vh)) := Ap((&h, ap) — (6, 04), (Th, Vi) + ca(zh; U — Up, Th)
= cn(Yn; Un, Th) — ca(Zn; Un, Th) + cp(2p; Op — Up, Th) = cn(Yh — Zh; Un, Th)

for all (7p,vy) € Hp x Qp. Therefore, applying (4.46) to ({p, wn) = (oh,un) — (6,10y), and then
employing the foregoing identity and the estimate (4.10) for ¢, we arrive at

Qe - _ ch(Yn — Zh; Un, Th 1 _
C@ni) - @ m)lg < sp D < 2~ Yo 8o
(Th,Vh)EHhXQh H(Th?vh)HHXQ 2
(Th,Vh)#O
whence, using the a priori bound (4.47) for ||up|lo.4.0 = [|Th(yn)llo,4.0, and observing that certainly
I'Th(zn) — Tr(yn)lloao < [[(oh, an) — (6,0p)|HxqQ, We arrive at (4.50) and end the proof. O

Consequently, we are now in position to state the main result of this section.

Theorem 4.1. Assume that the data satisfy

4
s Cr luplhyar + It

0,4/3;9} < 1. (4.51)

Then, the mized virtual element scheme (3.23) has a unique solution (op,uy) € Hy, x Q;, with up, € Sp,
and there holds

2
lonwn)llsxa < = {Crlluplier + [oasa} - (4.52)

Proof. We first notice from (4.49) (cf. Lemma 4.11) and (4.50) (cf. Lemma 4.12) that the assumption
(4.51) guarantees both that T}, maps Sy, into itself and that T}, is a contraction. Hence, the equivalence
between (3.23) and (4.40), and a direct application of the Banach fixed-point theorem, imply the
existence of a unique solution (o, up) of (3.23) with u, € S. Finally, the stability result (4.52)
follows directly from (4.47). O
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5 A priori error analysis

In this section we derive a priori error estimates for the solution of the virtual element scheme (3.23),
for computable approximations of the pseudostress o and the pressure p, and for a postprocessed
approximation of o.

5.1 The main error estimate

We begin by establishing a Céa type estimate for the error

l(o;u) = (oh, ) |[Exq = o = Ohlldiv,/z0 + [0 = anllosa,

where, under the assumptions of Theorems 2.1 and 4.1, (o,u) € H x Q and (op,up,) € Hy, x Qp, are
the unique solutions of (2.8) (with u € S) and (3.23) (with up € S},), respectively. To this end, and
aiming to employ next a suitable Strang estimate, we rewrite (2.8) and (3.23) as the following pair of
a continuous formulation and its associated discrete one, that is

a(o,T) + b(T,u) = Fu(1) VTeH,
b(o,v) = G(v) VveQ, (5.1)
ah(ah,rh) + b(Th,uh) = Fuh(Th) VTh EHh, ‘
b(oh, Vh) = G(va) Vv €Qp,
where
Fu(1) := F(1) — c(u;u, 1) VreH, (5.2)
and
Fu, () == F(mp) — cp(up;up, mn) V7 € Hy. (5.3)
In what follows, given a subspace X}, of a generic Banach space (X, | - ||x), we set for each x € X
dist(z, Xp) := inf ||z —aplx.
:L‘hEXh

Then, applying the Strang a prior: error estimate for dual mixed formulations in Banach spaces
(see, e.g. [12, Lemma 5.2] or [33, Lemma 2.27] for a more general case) to the context given by (5.1),

we deduce that there exists a constant Cs¢ > 0, depending only on aq, B4, |lan|| = a2, and ||b]| = 1,
such that
F, Th) — F, Th .
[(o,u) = (o, un)[mxq < Cst{ sup u(7h) = Fu, (72) + dist(u, Qp)
e, |1 Thlldivy 50
) — () 64
: a(Cp,mh) —an(Ch, T
+ inf <||0'—ChHH + sup by Zh WSy Th )}
¢nely T €H ||Th||div4/3;ﬂ
‘l'h7£0

We now proceed to estimate the terms on the right hand side of (5.4). In fact, adding and subtracting
suitable evaluations of the form ¢j,, and then employing the estimates (4.11) (cf. Lemma 4.6) and
(4.10) (cf. Lemma 4.5), we obtain

[Fu(Th) = Fu, (Th)| = [e(w;u, 71) = cn(an; up, 74)]
< fe(wu, 74) = cp(wu, 7a) |+ [en(wu —up, 7h)[ + [ep (@ — up; up, 7))

1
;{H(u @u) = Pruewloo + (lufose + u

IN

0.4:2) lu — uh||0,4;9} I Trllog
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from which, using the a priori estimates for ||ullp4,0 and ||[up||o.4;,0 provided by (2.18) and (4.52),

respectively, and defining the constant Cat i= %(% + %) max {CF, 1}, we conclude that
Fu(my) — Fu, (Th 1
sup DT =EnlT) < L) - Pl wlos
Tp€H 1v H
<y s (5.5)

+ Cor {lupllijor + [8lo.a/sn b I = wnlloso

In turn, applying (4.9) (cf. Lemma 4.4), we find that

a(Ch Th) = an(Cpy mh)| < CallGy = PR(CH 00 IThllog

from which, adding and subtracting o and P () in the first factor, and using (4.2), we arrive at

|a(Chy Tr) = an(Cps Th)| < Ca {Hcr = Pi()]lo0 +llo = Cullog + 1P (e — Cp)

0@ JImnllos

< Cu{llo - Pi(o)

0.0+ 2|l — ChHO,Q}HTthiV4/3§Q :

Then, replacing this bound into the supremum within the infimum of (5.4), and noting that certainly
o = Culloe < [lo = Chlldiv, 50, we get

inf <||0- — ¢l + sup a(Cp, Th) — ah(Ch,;'rh))

CreHy ThEH ||7'h||div4/3;Q
Th750

< (1+2C,)dist(o, Hy,) + C, |lo — Po)

(5.6)

0,82 -

Hence, employing the upper bounds provided by (5.5) and (5.6) in (5.4), and reordering the resulting
terms, we get

1
(o) = (on, un)[mxq < Cst{Ca lo = P (e)lloe + L ueu) - Pr(u@ oo

(5.7)
+ (1 +2C,) dist(o, Hj,) + dist(u, Qp) + Cst {HuD||1/2,r + [If 0,4/3;0} u— uhHDA;Q}-
Consequently, we are now in a position to state the announced Céa type estimate.
Theorem 5.1. Assume that the data satisfy
~ 1
Cst Cst {”uDHl/Z,F + ”fHO,4/3;Q} <5 (5.8)
Then there exists a constant C > 0, depending only on Csy, Cq, and i, such that
[(o,u) = (oh, w)[Hxq = lo = ohlldiv, 50 + [[u—unfose
(5.9)

< {llo = PL(o) oo + (e w) — Pluowle + dist((,w), Hy x Q) }.

Proof. It suffices to use the assumption (5.8) in (5.7), bound |[u—upljo4;0 by |[(o, 1) — (oh, up)|lHxQ,
and then subtract this resulting expression from the left-hand side. ]

Having established Theorem 5.1, and recalling the definitions of the broken seminorms given by
(3.17) and (3.18), we now provide the corresponding rates of convergence.
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Theorem 5.2. Let (o,u) € Hx Q and (op,u) € Hy, x Q;, be the unique solutions of the continuous
and discrete schemes (2.8) and (3.23), respectively. Assume that for integers r € [1,k + 1] and
s € [0,k + 1] there hold o|x € H'(K), (u®u)|x € H(K), flx = —div(e)|x € W/3(K), and
ulg € W5’4(K), for each K € Ty. Then, there exists a positive constant C, independent of h, such

that
H(O’, u) - (aha uh)HHXQ

. (5.10)
< ¢ pmin{rs) {|Ur;b,9 +u®@ulspo+1div(o)|ra/30.0 + !u\5,4;b,9} :

Proof. It reduces to apply Theorem 5.1, for which we need to bound the terms on the right hand side
of (5.9). Indeed, thanks to the global version of (3.4) we readily obtain

lo = Pr(o)llo.o < Ch" |o]rp0
and
@) - Puewle < Ch* ue ulmo.
The foregoing estimates and the approximation properties (AP¢) and (AP}}) complete the proof. []

5.2 Computable approximations of o and p

We now propose computable approximations ¢ and p of the pseudostress tensor o and the pressure
p of the fluid, respectively, and provide the corresponding a priori error estimates, as well as the
resulting rates of convergence. In fact, proceeding as in [38, Section 5.3, eq. (5.32)], we define

oy = Pl(op) (5.11)

and

1 ~ 1
pr = 5 {tr(ah) + tr(uy, ®uh)} + 30 /Qtr(uh ®up) . (5.12)

Note, in particular, that (5.12) is suggested by (2.2) and (2.4).
Next, adding and subtracting P,?(O'), and employing the triangle inequality and the global version
of (4.2), we get

0.0 < llo=Pi()loe + IPL(e —on)loe

o —Ghlloe = o —Pl(on)
(5.13)
< llo—=Pio)log + llo—anlog-

In turn, proceeding analogously to [38, Theorem 5.5, egs. (5.38) and (5.39)], we deduce the existence
of a constant C' > 0, depending on the data, but independent of h, such that

Ip=Bnloe < € {llo = Gnllog + Iu—ulosal}- (5.14)

In this way, as a direct consequence of (5.13) and (5.14), we are able to state the following result.

Theorem 5.3. There exists a positive constant C' > 0, independent of h, such that

lo = Gnlloe + I —Bulloa < € {llo = Pi@)lloe + (@ w) = (@, w)axa} (5.15)

The corresponding rates of convergence are established as follows.
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Theorem 5.4. Let (o,u) € H x Q be the unique solution of the continuous scheme (2.8), and
let &, and py be the discrete approximations introduced in (5.11) and (5.12), respectively. Assume
that for integers r € [1,k + 1] and s € [0,k + 1] there hold o|x € H'(K), (u® u)|x € H*(K),
flx = —div(o)|x € W*3(K), and u|x € W(K), for each K € Tj,. Then, there exists a positive
constant C, independent of h, such that

lo—anlloa + |lp—Dullogo

. (5.16)
< C pmin{rs} {’U‘r;b@ +u® u‘S;b,Q + ]div(a)]M/g;b@ + ‘u|8,4;b,9} :

Proof. Tt follows from Theorem 5.3, the rates of convergence provided by Theorem 5.2, and the
approximation property of 7}3’,? (global version of (3.4)). O

5.3 A second postprocessed approximation of o

Here we assume that o|x € H(div; K) for all K € T, and adopt a similar approach to that in [36]
and [38] for introducing a second approximation o}, defined in terms of &, of the pseudostress
tensor o. In addition, we show that o} yields an optimal rate of convergence in the broken norm of
H(div; Q) = H(divg; Q) given by

1/2
|7\l divb.o = { > Hr\fﬁv;K} V7 € L?(Q) such that 7| € H(div; K) VK €T,. (5.17)
KeTy,

More precisely, following [36, eq. (3.7)], for each K € T, we let (-, )aiv.x be the usual inner product of
H(div; K) with induced norm || - ||giv; i, and set o[k 1= o7, € Pry1(K), where o7 ;- is the unique
solution of the local problem:

(U;Z,KaTh)div;K = / on:TH — / f-diV(Th) VT GIP]C+1(K). (518)
K K

We stress that o, ;- can be explicitly (and efficiently) calculated for each K € T}, independently.

The following result establishes an a priori error estimate for a;’ K-

Theorem 5.5. There holds
lo = oh llaivie < llo=nllox + o =P (@)laivie VK €T (5.19)

Proof. Tt is an adaptation of the proof of [36, Lemma 3.1]. We first let ITX. : H(div; K) — Pj11(K)
be the orthogonal projector with respect to (-, -)div;x, Which, given ¢ € H(div; K), is characterized
by the orthogonality condition

(¢ —T50 Q) Th)divie = 0 V1), € Py (K) . (5.20)

Then, using (5.18) and recalling from (2.5) that div(e) = —f, we find that

(U_UZ,K>Th)div;K = /(a—&h):Th VT}LGPk_H(K),
K

which, according to (5.20) with ¢ = o, becomes

(M (0) = 0 s Th)divik = / (—on):mh  VThePrp(K). (5.21)
K
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Next, taking 7, := II§ (o) — 07 ;c € Pry1(K) in (5.21), and using the Cauchy-Schwarz inequality,
we get
My (0) = o7 llaivie < llo = Fnllo,

which, along with the triangle inequality, yields

lo = o} kllaivic < llo =iy () laivix + TGy () — 0%k llaivii

< o =1y (@) laivic + o= Fnllox -

The foregoing inequality and the fact that |0 —II5, () laivix < |0 — Pr1(0)||aiv; i give (5.19) and

finish the proof. O

The rate of convergence for o7 is stated as follows.

Theorem 5.6. Let (o,u) € H x Q be the unique solution of the continuous scheme (2.8), and let
oy, and oy, be the discrete approzimations of o introduced in (5.11) and (5.18), respectively. Assume
that for integers v € [1,k + 1] and s € [0,k + 1] there hold o|x € HT(K), (u®u)|g € H¥(K),
flx = —div(o)|x € W*3(K), and u|x € W(K), for each K € Tj,. Then, there exists a positive
constant C, independent of h, such that

o — ohllaivee < C pminirs} {‘U’r-H;b,Q +u@ulsp0+[div(e)]. 450 + ’u’874;b79} - (522)

Proof. According to (5.19) (cf. Theorem 5.5), the rates of convergence for the terms |jo — |0,k and
o — Piy1(0) |l div;ic imply that of |0 — 0% [|divib0- Those for the former are provided by (5.16) (cf.
Theorem 5.4), for which it suffices to assume that o|x € H"(K) for each K € T, and keep the rest of
the present regularities for the other unknowns. In turn, for the latter we first notice that

lo = P @ llawvire < CLllo = PEL@) ok + o = P (@)}

and then apply the approximation property of 7P,£_1 (cf. (3.4)). Note that in order to maintain an
O(h™) for | — PE ,(o)]1,k we need to assume now that o|x € H'™'(K) for each K € Tj. Further
details are omitted. O

6 Numerical results

In this section we present three numerical experiments illustrating the performance of the mixed
virtual element scheme (3.23) introduced and analyzed in Sections 3, 4, and 5. More precisely, in all
the computations we consider the specific virtual element subspaces Hj, and Q, (cf. (3.15)-(3.16))
with k£ € {0,1,2}. Furthermore, as it is suggested in [16, Section 6], the zero mean condition for
tensors in the space Hj, is imposed via a real Lagrange multiplier, which means that, instead of (3.23),
we actually solve the modified discrete scheme given by: Find (o, up, &) € Hy, x Q;, x R such that

an(on, Th) + b(Th,un) + cp(upiup, 1) + fh/ﬂtl‘(Th) = F(ry) VY7,eH,,
b(oh, va) = Gvi)  VYvi€Qn,  (6.1)
Tlh/tf(ah) =0 Vo, €R,

Q
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where

b, = {TEH(div4/3;Q): |k € HE VKeTh}

and &, is an artificial null unknown introduced just to make (6.1) symmetric. Concerning the decom-
positions of ) employed in our computations, we consider quasi-uniform triangles, distorted squares
and distorted hexagons. We refer to Figures 6.1 up to 6.4 below for visualizing in advance the kind of
meshes to be utilized.

We now introduce additional notations. In what follows, NV stands for the total number of degrees
of freedom (unknowns) of (6.1), that is

N := 2(k+ 1) x {number of edges e € T, }
+ (k+2)(3k 4+ 1) x {number of elements K € T,} + 1.

Also, the individual errors are defined by

e(d) = |lo—aullogn, el) = |lu—wplosn, el = |p—Dulogo,

and
e(a'*) = Ho'_a';(LHdiv;b,Q;

where &', pp, and o} are computed according to (5.11), (5.12) and (5.18), respectively. In turn, the
associated experimental rates of convergence are given by

log (e(%) / ¢' (%))

) = T et )

V% e {U,u,p,a*},

where e and e’ denote the corresponding errors for two consecutive meshes with sizes h and A/,
respectively.

The nonlinear algebraic system arising from (6.1) is solved by the Newton method with a tolerance
of 1079 and taking as initial iteration the solution of the associated linear Stokes problem. The latter
is obtained by eliminating the convective term (Vu)u in (2.1), which turns out to the removal of
the trilinear form cp in (6.1). We stress that the well-possessedness of the resulting linear discrete
formulation is guaranteed by the global discrete inf-sup condition satisfied by the bilinear form Ay, (cf.
(4.42)). In turn, we notice in advance that four iterations are required to achieve the given tolerance
in Examples 1 and 2, whereas two iterations are required in Example 3, all them described next.

In EXAMPLE 1, we consider Q := (0,1)2, u = %, and choose the data f and up such that the exact
solution is given by

B 23 exp(—z1)(1 + z2) (2sin(l + z2) + (1 + x2) cos(1 + z2))
ux) = < z1(z1 — 2) exp(—x1)(1 + 22)? sin(1 + x2) )
and
p(x) = sin(27zy)sin(27ze) ,
for all x := (z1,72)* € Q.
In EXAMPLE 2 we consider  := (—0.5,1.5) x (0,2), & = 15, and adequately manufacture the data

so that the exact solution is given by the flow from [42], that is

1 — exp(Azxy) cos(2mxs)
uix) = ie (Ax1) sin(2mx)
o Xp 1 L2
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and
pi) = sexpAan) — o {exp(3N) — exp(-)}

for all x := (z1,72)" € Q, where A := £ — RT62 + 472 and Re := ! = 10 is the Reynolds number.

In EXAMPLE 3 we follow [15] and [16], and consider the L-shaped domain  := (—1,1)% \ [0, 1]?,
p =1, and the terms on the right-hand sides are adjusted so that the exact solution is given by the

functions
Lo

2
u(x) = ( 2 > and  p(x) = (¢f +23)"° — po,
— 2
for all x := (z1,22)* € Q, where py € R is such that pr = 0 holds. Observe in this example that the
partial derivatives of p, and hence, in particular div(e), are singular at the origin. More precisely,
because of the power 1/3, there holds o € HY/3¢(Q) and div(o) € H¥375(Q) for cach & > 0.

In Tables 6.1 up to 6.3, and Tables 6.4 up to 6.6, we summarize the convergence history of the
mixed virtual element scheme (3.23) as applied to Examples 1 and 2, respectively. In both cases
we observe that the theoretical rates of convergence O(h*+1) predicted by Theorems 5.4 and 5.6 with
r = s = k41, are attained by all the unknowns, for triangular as well as for quadrilateral and hexagonal
meshes. On the other hand, in Tables 6.7 up to 6.9 we display the corresponding convergence history
for Example 3, where, as suggested by the regularity of the exact solution, we note that the orders
O(h™in{k+15/3}) and O(h%/3) are attained by (65, p,) and o7, respectively. In turn, we see here that
uy, shows a convergence rate of O(h™{#.7/6}+1) " These sub-optimal rates of convergence suggest the
need of incorporating an adaptive strategy based on a proper a posteriori error estimator (as done
for instance in [45]), which we plan to address in a separate work. We end this paper by displaying
some components of the approximate solutions for Examples 2 and 3, in Figures 6.1 to 6.4. They
all correspond to those obtained with the second mesh of each kind (triangles, quadrilaterals and
hexagons, respectively) and for the polynomial degree k = 2.

F] | N | el0) (0] e @] o) ()] elc) z(o")
0.0643 4929 1.11e-01 —— | 3.40e-02 —— | 5.19¢-02 —— | 4.51e-01 ——
0.0488 8527 8.38¢-02 1.02 | 2.57e-02 1.02 | 3.84e-02 1.09 | 3.42¢-01 1.00
0] 0.0248 | 32719 | 4.22e-02 1.01 | 1.30e-02 1.01 | 1.89¢-02 1.05 | 1.74e-01 1.00
0.0166 | 72591 | 2.83e-02 1.01 | 8.72¢-03 1.00 | 1.25e-02 1.02 | 1.17e-01 1.00
0.0129 | 121441 | 2.18e-02 1.00 | 6.74e-03 1.00 | 9.65e¢-03 1.01 | 9.03e-02 1.00
0.0643 | 17601 | 4.79¢-03 —— | 9.16e-04 —— | 2.67e-03 —— | 2.38e-02 ——
0.0488 | 30509 | 2.79e-03 1.97 | 5.25e-04 2.01 | 1.53e-03 2.01 | 1.37e-02 1.99
1| 0.0248 | 117421 | 7.30e-04 1.98 | 1.35e-04 2.01 | 3.96e-04 2.00 | 3.55e-03  2.00
0.0166 | 260781 | 3.29¢-04 1.99 | 6.09¢-05 2.00 | 1.78-04 2.00 | 1.60e-03  2.00
0.0129 | 436481 | 1.97e-04 1.99 | 3.63e-05 2.00 | 1.06e-04 2.00 | 9.55e-04 2.00
0.0643 | 36081 | 1.75e-04 —— | 1.20e-05 —— | 1.10e-04 —— | 9.55e-04 ——
0.0488 | 62583 | 7.62e-05 3.00 | 5.03e-06 3.14 | 4.81e-05 3.00 | 4.17e-04  3.00
2 10.0248 | 241111 | 1.00e-05 3.00 | 6.37e-07 3.06 | 6.32e-06 3.00 | 5.50e-05  3.00
0.0166 | 535671 | 3.02¢-06 3.00 | 1.91e-07 3.02 | 1.91e-06 3.00 | 1.66e-05  3.00
0.0129 | 896721 | 1.39e-06 3.00 | 8.77e-08 3.01 | 8.79e-07 3.00 | 7.65e-06  3.00

Table 6.1: Example 1, history of convergence using triangles.

Acknowledgements. We express our deep gratitude to Professor Lourenco Beirdao da Veiga for
providing through [3] and [10] most details regarding the local stability result given by Lemma 4.7.
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F 7 [ N | o0 (0] e @] e ()] elc) z(o")
0.0538 | 5521 | 7.96e-02 —— | 3.19e-02 —— | 4.66e-02 —— | 4.02e-01 ——
0.0404 | 9761 | 5.83e-02 1.08 | 2.38¢-02 1.01 | 3.42¢-02 1.07 | 3.02e-01  1.00

0 | 0.0215 | 34051 | 3.02e-02 1.05 | 1.26e-02 1.01 | 1.77e-02 1.05 | 1.61e-01  1.00
0.0147 | 73041 | 2.04e-02 1.02 | 8.57e-03 1.01 | 1.20e-02 1.02 | 1.10e-01  1.00
0.0111 | 126731 | 1.54e-02 1.01 | 6.51e-03 1.00 | 9.05e-03 1.01 | 8.32¢-02  1.00
0.0538 | 18241 | 3.27e-03 —— | 6.11e-04 —— | 2.23e-03 —— | 1.98e-02 ——
0.0404 | 32321 | 1.84e-03 2.00 | 3.43e-04 2.01 | 1.26e-03 1.99 | 1.12e-02  1.99

1] 0.0215 | 113101 | 5.24e-04 2.00 | 9.85e-05 1.98 | 3.58¢-04 2.00 | 3.18e-03  2.00
0.0147 | 242881 | 2.43e-04 2.00 | 4.56e-05 2.01 | 1.66e-04 2.00 | 1.48e-03  2.00
0.0111 | 421661 | 1.40e-04 2.00 | 2.63e-05 2.00 | 9.56e-05 2.00 | 8.52¢-04  2.00
0.0538 | 36361 | 1.11e-04 —— | 6.95¢-06 —— | 7.80e-05 —— | 6.79e-04 ——
0.0404 | 64481 | 4.67e-05 3.02 | 2.93e-06 3.01 | 3.27e-05 3.02 | 2.88e-04  2.98

21 0.0215 | 225901 | 7.04e-06 3.01 | 4.43e-07 3.00 | 4.93e-06 3.01 | 4.38¢-05  3.00
0.0147 | 485321 | 2.23e-06 3.00 | 1.40e-07 3.01 | 1.56e-06 3.00 | 1.39e-05  3.00
0.0111 | 842741 | 9.73e-07 3.00 | 6.11e-08 3.00 | 6.81e-07 3.00 | 6.05¢-06  3.00

Table 6.2: Example 1, history of convergence using quadrilaterals.

k| h N e() ()| em) r(u)| elp) x(p)| e(c*) r(o¥)
0.0488 | 8147 | 7.06e-02 —— | 2.94e-02 —— | 4.19e-02 —— | 3.79e-01 ——
0.0377 | 13563 | 5.44e-02 1.01 | 2.28e-02 0.97 | 3.23e-02 1.01 | 2.94e-01  0.98

0 | 0.0277 | 24579 | 4.01e-02 1.00 | 1.70e-02 0.97 | 2.38¢-02 1.00 | 2.17e-01  1.00
0.0197 | 48603 | 2.83e-02 1.01 | 1.20e-02 1.01 | 1.68e-02 1.01 | 1.54e-01  1.00
0.0146 | 88637 | 2.09e-02 1.00 | 8.95e-03 0.98 | 1.24e-02 1.00 | 1.14e-01  1.00
0.0488 | 24437 | 2.50e-03 —— | 5.43e-04 —— | 1.72e-03 —— | 1.54e-02 ——
0.0377 | 40757 | 1.50e-03 1.97 | 3.30e-04 1.92 | 1.03e-03 1.97 | 9.24e-03  1.97

1] 0.0277 | 73733 | 8.16e-04 1.99 | 1.80e-04 1.99 | 5.61e-04 1.99 | 5.02¢-03  2.00
0.0197 | 145805 | 4.11e-04 1.99 | 9.00e-05 2.02 | 2.83e-04 1.99 | 2.53e-03  2.00
0.0146 | 266089 | 2.26e-04 1.99 | 4.99¢-05 1.96 | 1.55e-04 1.99 | 1.39¢-03 1.99
0.0488 | 46835 | 8.36e-05 —— | 5.37e-06 —— | 5.60e-05 —— | 4.50e-04 ——
0.0377 | 78175 | 3.88e-05 2.96 | 2.53e-06 2.89 | 2.60e-05 2.95 | 2.08e-04 2.97

21 0.0277 | 141319 | 1.55e-05 3.00 | 1.01e-06 3.03 | 1.04e-05 3.01 | 8.34e-05 2.99
0.0197 | 279457 | 5.53e-06 3.00 | 3.56e-07 3.02 | 3.70e-06 3.00 | 2.99¢-05 2.99
0.0146 | 510153 | 2.25e-06 2.99 | 1.46e-07 2.97 | 1.51e-06 2.99 | 1.22e-05 2.99

Table 6.3: Example 1, history of convergence using hexagons.
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F[ h [ N [ o) r0)] ew rw] e )] elo) oY)
0.1230 | 5383 | 5.13e+00 —— | 1.36e+00 —— | 3.23e4+00 —— | 8.04e+00 ——
0.0943 | 9121 | 3.57e+00 1.36 | 8.50e-01 1.76 | 2.27e+00 1.32 | 5.97e+00 1.12

0] 0.0488 | 33873 | 1.35e+00 1.48 | 2.74e-01 1.72 | 7.72e-01 1.64 | 2.83e+00 1.13
0.0354 | 64321 | 8.66e-01 1.38 | 1.64e-01 1.59 | 4.46e-01 1.70 | 2.00e+00 1.08
0.0283 | 100401 | 6.50e-01  1.29 | 1.18e¢-01 1.49 | 3.09¢-01 1.65 | 1.59e+00 1.05
0.1230 | 19229 | 2.94e-01 —— | 6.03e-02 —— | 2.04e-01 —— | 4.95e-01 ——
0.0943 | 32641 | 1.57e-01 2.36 | 2.95e-02 2.69 | 9.92¢-02 2.71 | 2.83e-01  2.10

1] 0.0488 | 121569 | 3.72e-02  2.18 | 5.59e-03 2.53 | 1.92e-02 2.49 | 7.37e-02 2.04
0.0354 | 231041 | 1.92e-02 2.06 | 2.63e-03 2.34 | 9.26e-03 2.27 | 3.86e-02  2.01
0.0283 | 360801 | 1.22e-02 2.03 | 1.60e-03 2.24 | 5.70e-03 2.17 | 2.46e-02  2.01
0.1230 | 39423 | 1.99e-02 —— | 2.75e-03 —— | 9.56e-03 —— | 2.62e-02 ——
0.0943 | 66961 | 8.75e-03  3.09 | 1.03e-03 3.68 | 4.02e-03 3.26 | 1.17e-02  3.04

21 0.0488 | 249633 | 1.18e-03 3.04 | 1.04e-04 3.49 | 5.04e-04 3.15 | 1.60e-03  3.02
0.0354 | 474561 | 4.46e-04  3.02 | 3.62e-05 3.27 | 1.88e-04 3.07 | 6.09e-04  3.01
0.0283 | 741201 | 2.28e-04 3.01 | 1.78¢-05 3.18 | 9.50e-05 3.05 | 3.11e-04  3.01

Table 6.4: Example 2, history of convergence using triangles.

F[ h [ N [ el0) ro)] ew x| e )] el (o)
0.1008 | 6273 | 5.27e+00 —— | 1.55e+00 —— | 3.53e+00 —— | 7.63e+00 ——
0.0787 | 10251 | 3.89e4+00 1.23 | 1.01le4+-00 1.74 | 2.64e4+00 1.17 | 5.83e+00 1.08

0 | 0.0404 | 38721 | 1.35e+00 1.58 | 3.03e-01 1.79 | 8.94e-01 1.62 | 2.61e4+00 1.20
0.0307 | 66571 | 8.54e-01 1.69 | 1.89e¢-01 1.74 | 5.41e-01 1.84 | 1.90e+00 1.16
0.0229 | 119851 | 5.35e-01  1.58 | 1.17e-01 1.63 | 3.16e-01 1.82 | 1.38¢+00 1.10
0.1008 | 20737 | 3.19e-01 —— | 7.38e-02 —— | 2.60e-01 —— | 4.20e-01 ——
0.0787 | 33949 | 1.68e-01  2.58 | 3.79e-02  2.69 | 1.30e-01 2.79 | 2.39e-01  2.28

1 10.0404 | 128641 | 3.14e-02  2.51 | 6.48¢-03 2.64 | 1.93e-02 2.86 | 5.47e-02  2.21
0.0307 | 221341 | 1.67e-02 2.32 | 3.29¢-03 2.50 | 9.12¢-03 2.75 | 3.09e-02  2.10
0.0229 | 398749 | 8.72¢-03  2.21 | 1.62e-03 2.40 | 4.20e-03 2.63 | 1.68e-02  2.06
0.1008 | 41345 | 1.62e-02 —— | 2.75e-03 —— | 8.41le-03 —— | 1.84e-02 ——
0.0787 | 67733 | 7.39e-03  3.18 | 1.17e-03 3.44 | 3.53e-03 3.50 | 8.52e-03  3.11

2 1 0.0404 | 256961 | 8.98e-04 3.15 | 1.16e-04 3.46 | 3.43e-04 3.49 | 1.07e-03  3.11
0.0307 | 442261 | 3.89e-04  3.08 | 4.65e-05 3.36 | 1.40e-04 3.29 | 4.64e-04  3.06
0.0229 | 796933 | 1.58e-04 3.06 | 1.75e-05 3.32 | 5.42e-05 3.22 | 1.89e-04  3.04

[4] L. BEIRAO DA VEIGA, F. BREzz1, L. MARINI, G. MANZINI AND A. Russo, H(div) and H(curl)-

Table 6.5: Example 2, history of convergence using quadrilaterals.

conforming virtual element method. Numer. Math., 133 (2016), no. 2, 303-332.

[5] L. BEIRAO DA VEIGA, F. BREzzI, L. MARINI AND A. RUSsO, Mized virtual element methods
for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer.

Anal., 50 (2016), no. 3, 727-747.

[6] L. BEIRAO DA VEIGA, F. DAsst AND G. VAccA, The Stokes complex for virtual elements in

three dimensions. Math. Models Methods Appl. Sci. 30 (2020), no. 3, 477-512.

[7] L. BEIRAO DA VEIGA, C. LOVADINA AND D. MORA, A wvirtual element method for elastic and
inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Engrg. 295 (2015), 327-346.

28




[ N [ oo )] ew @] @ x| o) (o)
0.0959 | 8459 | 3.40e+00 —— | 8.88e-01 —— |2.04e4+00 —— | 5.75e+00 ——
0.0732 | 14315 | 2.44e+00 1.24 | 5.94e-01 1.49 | 1.49e+00 1.15 | 4.37e+00 1.02
0.0527 | 27373 | 1.46e+00 1.56 | 3.43e-01 1.67 | 8.52¢e-01 1.71 | 3.05e4+00 1.09
0.0390 | 49507 | 9.07e-01 1.59 | 2.13e-01 1.60 | 4.88e-01 1.85 | 2.22e4+00 1.07
0.0301 | 82899 | 6.34e-01 1.38 | 1.46e-01 1.44 | 3.12e-01 1.73 | 1.69e+00 1.05
0.0959 | 25429 | 1.66e-01 —— | 3.87e-02 —— | 7.80e-02 —— | 2.90e-01 ——
0.0732 | 42941 | 9.61e-02  2.03 | 2.04e-02 2.37 | 4.28¢-02 2.23 | 1.71e-01  1.96
0.0527 | 82217 | 4.88e¢-02 2.06 | 9.72e-03 2.26 | 1.91e-02 2.45 | 9.07e-02  1.93
0.0390 | 148517 | 2.68e-02  2.00 | 5.06e-03 2.18 | 9.78e-03 2.23 | 5.04e-02 1.95
0.0301 | 248869 | 1.58e-02  2.04 | 2.90e-03 2.14 | 5.43e-03 2.26 | 2.99e-02  2.01
0.0959 | 48783 | 1.57e-02 —— | 1.71e-03 —— | 6.20e-03 —— | 1.80e-02 ——
0.0732 | 82301 | 7.23e-03 2.86 | 7.13e-04 3.24 | 2.84e-03 2.89 | 8.25e-03  2.89
0.0527 | 157665 | 2.76e-03  2.93 | 2.57e-04 3.10 | 1.06e-03 3.01 | 3.17e-03  2.91
0.0390 | 284655 | 1.14e-03  2.95 | 1.02e-04 3.09 | 4.39e-04 2.93 | 1.31e-03  2.95
0.0301 | 477143 | 5.26e-04  2.98 | 4.64e-05 3.03 | 2.02e-04 2.98 | 6.03e-04  2.99

Table 6.6: Example 2, history of convergence using hexagons.

h N e(d) r(o)| e(m) r(u)| e(p) r(p)| ele*) x(o¥)
0.0832 | 8807 | 1.33e-01 —— | 3.42e-02 —— | 3.28¢-02 —— | 1.60e-01 ——
0.0589 | 17473 | 9.34e-02 1.03 | 2.42e-02 1.00 | 2.08e-02 1.32 | 1.17e-01  0.91
0.0471 | 27241 | 7.44e-02 1.02 | 1.94e-02 1.00 | 1.58e-02 1.23 | 9.61e-02 0.89
0.0404 | 37031 | 6.37e-02 1.01 | 1.66e-02 1.00 | 1.32¢-02 1.18 | 8.40e-02  0.87
0.0363 | 45943 | 5.71e-02 1.01 | 1.49e-02 1.00 | 1.17e-02 1.15 | 7.65e-02  0.86
0.0329 | 55815 | 5.17e-02 1.01 | 1.35e-02 1.00 | 1.05e-02 1.12 | 7.04e-02  0.86
0.0307 | 63849 | 4.83e-02 1.01 | 1.26e-02 1.00 | 9.70e-03 1.11 | 6.64e-02  0.85
0.0289 | 72423 | 4.54e-02 1.01 | 1.19e-02 1.00 | 9.05e-03 1.10 | 6.30e-02  0.85
0.0832 | 31485 | 2.03e-03 —— | 3.93e-04 —— | 8.89¢-04 —— | 2.97e-02 ——
0.0589 | 62593 | 1.06e-03 1.89 | 1.97e-04 2.00 | 4.78¢-04 1.80 | 2.36e-02  0.67
0.0471 | 97681 | 6.95e-04 1.88 | 1.26e-04 2.00 | 3.21e-04 1.78 | 2.03e-02  0.67
0.0404 | 132861 | 5.21e-04 1.87 | 9.26e-05 2.00 | 2.44e-04 1.78 | 1.83e-02  0.67
0.0363 | 164893 | 4.26e-04 1.86 | 7.46e-05 2.00 | 2.02e-04 1.77 | 1.70e-02  0.67
0.0329 | 200381 | 3.55e-04 1.86 | 6.13e-05 2.00 | 1.70e-04 1.76 | 1.60e-02  0.67
0.0307 | 229265 | 3.13e-04 1.86 | 5.36e-05 2.00 | 1.51e-04 1.76 | 1.53e-02  0.67
0.0289 | 260093 | 2.79e-04 1.85 | 4.72e-05 2.00 | 1.35e-04 1.76 | 1.46e-02  0.67
0.0832 | 64567 | 2.02e-04 —— | 9.58e-06 —— | 1.39e-04 —— | 1.70e-02 ——
0.0589 | 128449 | 1.13e-04 1.68 | 4.54e-06 2.17 | 7.81e-05 1.67 | 1.35e-02  0.67
0.0471 | 200521 | 7.81e-05 1.67 | 2.80e-06 2.17 | 5.38¢-05 1.67 | 1.16e-02  0.67
0.0404 | 272791 | 6.04e-05 1.67 | 2.00e-06 2.17 | 4.16e-05 1.67 | 1.05e-02  0.67
0.0363 | 338599 | 5.04e-05 1.67 | 1.59e-06 2.17 | 3.47e-05 1.67 | 9.76e-03  0.67
0.0307 | 470857 | 3.83e-05 1.67 | 1.11e-06 2.17 | 2.64e-05 1.67 | 8.75e-03  0.67
0.0329 | 411511 | 4.28e-05 1.67 | 1.28¢-06 2.17 | 2.95e-05 1.67 | 9.15e-03  0.67
0.0289 | 534199 | 3.45e-05 1.67 | 9.67e-07 2.17 | 2.38¢-05 1.67 | 8.38e-03  0.67

Table 6.7: Example 3, history of convergence using triangles.
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8]

[9]

[10]

[11]

[12]

[13]

[14]

F] | N | el0) t(0)] ew | e r()] ele) x(a")

0.0589 | 10561 | 9.49e-02 —— | 2.94e-02 —— | 3.13e-02 —— | 1.31le-01 ——
0.0404 | 22331 | 6.25e-02 1.11 | 2.01e-02 1.00 | 1.76e-02 1.53 | 9.45e-02  0.87
0.0329 | 33627 | 5.01e-02 1.07 | 1.64e-02 1.00 | 1.30e-02 1.45 | 7.97e-02  0.83
0 | 0.0289 | 43611 | 4.36e-02 1.06 | 1.44e-02 1.00 | 1.08e-02 1.40 | 7.16e-02  0.81
0.0257 | 54891 | 3.87e-02 1.05 | 1.28e-02 1.00 | 9.27e-03 1.36 | 6.53e-02  0.80
0.0236 | 65281 | 3.53e-02 1.04 | 1.17e-02 1.00 | 8.26e-03 1.33 | 6.10e-02  0.79
0.0218 | 76571 | 3.25e-02 1.04 | 1.08e-02 1.00 | 7.44e-03 1.30 | 5.73e-02  0.78
0.0205 | 86251 | 3.06e-02 1.03 | 1.02e-02 1.00 | 6.90e-03 1.28 | 5.47e-02  0.78

0.0589 | 34945 | 1.37e-03 —— | 2.55e-04 —— | 7.16e-04 —— | 3.86e-02 ——
0.0404 | 74061 | 6.88e-04 1.83 | 1.20e-04 2.00 | 3.76e-04 1.71 | 3.00e-02  0.67
0.0329 | 111629 | 4.74e-04 1.81 | 7.92e-05 2.00 | 2.65e-04 1.70 | 2.62e-02  0.67
1] 0.0289 | 144845 | 3.74e-04 1.80 | 6.10e-05 2.00 | 2.12e-04 1.70 | 2.40e-02  0.67
0.0257 | 182381 | 3.04e-04 1.80 | 4.84e-05 2.00 | 1.75e-04 1.69 | 2.22e-02  0.67
0.0236 | 216961 | 2.60e-04 1.79 | 4.07e-05 2.00 | 1.51e-04 1.69 | 2.10e-02  0.67
0.0218 | 254541 | 2.26e-04 1.79 | 3.46e-05 2.00 | 1.32e-04 1.69 | 1.99e-02  0.67
0.0205 | 286765 | 2.03e-04 1.78 | 3.07e-05 2.00 | 1.19e-04 1.69 | 1.91e-02  0.67

0.0589 | 69697 | 2.51e-04 —— | 7.63e-06 —— | 1.71le-04 —— | 2.66e-02 ——
0.0404 | 147841 | 1.34e-04 1.67 | 3.37e-06 2.17 | 9.13e-05 1.67 | 2.07e-02  0.67
0.0329 | 222913 | 9.50e-05 1.67 | 2.16e-06 2.17 | 6.48e-05 1.67 | 1.81e-02  0.67
21 0.0289 | 289297 | 7.64e-05 1.67 | 1.63e-06 2.16 | 5.21e-05 1.67 | 1.65e-02  0.67
0.0257 | 364321 | 6.31e-05 1.67 | 1.26e-06 2.17 | 4.30e-05 1.67 | 1.53e-02  0.67
0.0236 | 433441 | 5.45e-05 1.67 | 1.05e-06 2.16 | 3.72e-05 1.67 | 1.45e-02  0.67
0.0218 | 508561 | 4.77e-05 1.67 | 8.8le-07 2.17 | 3.25e-05 1.67 | 1.37e-02  0.67
0.0205 | 572977 | 4.32e-05 1.67 | 7.74e-07 2.17 | 2.94e-05 1.67 | 1.32e-02  0.67

Table 6.8: Example 3, history of convergence using quadrilaterals.

L. BEIRAO DA VEIGA, C. LOVADINA AND G. VACCA, Divergence free virtual elements for the
Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. 51 (2017), no. 2, 509—
535.

L. BEIRAO DA VEIGA, C. LOVADINA AND G. VAccCA, Virtual elements for the Navier-Stokes
problem on polygonal meshes. STAM J. Numer. Anal. 56 (2018), no. 3, 1210-1242.

L. BEIRAO DA VEIGA AND L. MASCOTTO, Interpolation and stability properties of low order
face and edge virtual element spaces. arXiv:2011.12834, (2020).

L. BEIRAO DA VEIGA, D. MORA AND G. VACCA, The Stokes complex for virtual elements with
application to Navier-Stokes flows. J. Sci. Comput. 81 (2019), no. 2, 990-1018.

G.A. BENAVIDES, S. CAucAO, G.N. GaTicAa AND A. HOPPER, A Banach spaces-based analy-

sis of a new mized-primal finite element method for a coupled flow-transport problem. Comput.
Methods Appl. Mech. Engrg. 371 (2020), 113285, 29 pp.

C. BERNARDI, C. CANUTO AND Y. MADAY, Generalized inf-sup conditions for Chebyshev spec-
tral approximation of the Stokes problem. STAM J. Numer. Anal. 25 (1988), no. 6, 1237-1271.

F. BrEzzl, R.S. FALK AND L.D. MARINI, Basic principles of mized virtual element methods.
ESAIM Math. Model. Numer. Anal. 48 (2014), no. 4, 1227-1240.
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[15]

[16]

[17]

[18]

[19]

[20]

[21]

F] | N | el0) t(0)] ew | e r()] ele) x(a")

0.0621 | 10867 | 1.0le-01 —— | 3.50e-02 —— | 2.57e-02 —— | 1.48e-01 ——
0.0438 | 21501 | 7.04e-02 1.03 | 2.48e-02 0.99 | 1.66e-02 1.26 | 1.08e-01  0.91
0.0361 | 31523 | 5.78e-02 1.01 | 2.05e-02 0.98 | 1.32e-02 1.17 | 8.93e-02  0.96
0 | 0.0311 | 42451 | 4.95e-02 1.04 | 1.76e-02 1.00 | 1.10e-02 1.24 | 7.95e-02  0.78
0.0280 | 52193 | 4.46e-02 0.99 | 1.59¢-02 0.98 | 9.76e-03 1.10 | 7.32¢-02  0.79
0.0257 | 61723 | 4.09e-02 1.04 | 1.46e-02 1.00 | 8.82¢-03 1.21 | 6.86e-02  0.77
0.0238 | 71853 | 3.78e-02 1.01 | 1.35e-02 0.99 | 8.05e-03 1.18 | 6.46e-02  0.78
0.0221 | 82869 | 3.52e-02 1.00 | 1.26e-02 0.99 | 7.46e-03 1.07 | 6.11e-02  0.77

0.0621 | 32597 | 1.77e-03 —— | 4.14e-04 —— | 8.80e-04 —— | 4.83e-02 ——
0.0438 | 64497 | 9.28e-04 1.86 | 2.07e-04 1.99 | 4.76e-04 1.76 | 3.84e-02  0.66
0.0361 | 94629 | 6.45e-04 1.86 | 1.39e-04 2.03 | 3.38¢-04 1.75 | 3.36e-02  0.68
1] 0.0311 | 127349 | 4.88e-04 1.86 | 1.04e-04 1.95 | 2.59e-04 1.78 | 3.04e-02  0.66
0.0280 | 156657 | 4.01e-04 1.86 | 8.38e-05 2.04 | 2.16e-04 1.74 | 2.84e-02 0.6
0.0257 | 185165 | 3.44e-04 1.84 | 7.09e-05 2.00 | 1.87e-04 1.73 | 2.69e-02  0.66
0.0238 | 215649 | 2.97e-04 1.87 | 6.07e-05 2.00 | 1.62e-04 1.81 | 2.55e-02  0.70
0.0221 | 248705 | 2.61e-04 1.82 | 5.26e-05 2.01 | 1.44e-04 1.68 | 2.43e-02  0.66

0.0621 | 62475 | 2.95e-04 —— | 5.28e-06 —— |2.03e-04 —— | 3.77e-02 ——
0.0438 | 123615 | 1.64e-04 1.68 | 2.48e-06 2.17 | 1.13e-04 1.67 | 2.99e-02  0.67
0.0361 | 181423 | 1.18e-04 1.68 | 1.63e-06 2.17 | 8.19e-05 1.67 | 2.62e-02  0.67
2 |1 0.0311 | 244083 | 9.22e-05 1.67 | 1.18e-06 2.17 | 6.39e-05 1.67 | 2.37e-02  0.67
0.0280 | 300325 | 7.74e-05 1.67 | 9.36e-07 2.17 | 5.36e-05 1.67 | 2.21e-02  0.67
0.0257 | 354897 | 6.73e-05 1.67 | 7.81e-07 2.17 | 4.66e-05 1.67 | 2.09e-02  0.67
0.0238 | 413403 | 5.91e-05 1.67 | 6.60e-07 2.17 | 4.09e-05 1.67 | 1.99e-02  0.67
0.0221 | 476767 | 5.25e-05 1.67 | 5.65e-07 2.17 | 3.63e-05 1.67 | 1.89e-02  0.67

Table 6.9: Example 3, history of convergence using hexagons.

E. CACERES AND G.N. GATICA, A mized virtual element method for the pseudostress-velocity
formulation of the Stokes problem. IMA J. Numer. Anal. 37 (2017), no. 1, 296-331.

E. CAcERES, G.N. GATICA AND F.A. SEQUEIRA, A mized virtual element method for the
Brinkman problem. Math. Models Methods Appl. Sci., 27 (2017), no. 4, 707-743.

E. CAceRES, G.N. GATICA AND F.A. SEQUEIRA, A mized virtual element method for quasi-
Newtonian Stokes flows. STAM J. Numer. Anal., 56 (2018), no. 1, 317-343.

J. Camano, C. GARcia AND R. OYARzUA, Analysis of a conservative mized-FEM for
the stationary Navier-Stokes problem. Numer. Methods Partial Differential Equations, DOI:
10.1002/num.22789, to appear.

J. CamaNO, G.N. GaTticA, R. OYARzZUA AND R. RuUIZ-BAIER, An augmented stress-based
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Numer. Methods Partial Differential Equations, 33 (2017), no. 5, 1692-1725.
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method for the Navier-Stokes equations with variable viscosity. SIAM J. Numer. Anal. 54 (2016),
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