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A MOVING-BOUNDARY MODEL OF REACTIVE SETTLING IN
WASTEWATER TREATMENT∗

RAIMUND BÜRGER† , JULIO CAREAGA‡ , STEFAN DIEHL‡ , AND ROMEL PINEDA†

Abstract. Reactive settling is the process of sedimentation of small solid particles in a fluid
with simultaneous reactions between the components of the solid and liquid phases. This process is
important in sequencing batch reactors (SBRs) in wastewater treatment plants. In that application
the particles are biomass (bacteria; activated sludge) and the liquid contains substrates (nitrogen,
phosphorus) to be removed through reactions with the biomass. The operation of an SBR in cycles
of consecutive fill, react, settle, draw, and idle stages is modeled by a system of spatially one-
dimensional, nonlinear, strongly degenerate parabolic convection-diffusion-reaction equations. This
system is coupled via conditions of mass conservation to transport equations on a half line, whose
origin is located at a moving boundary and that model the effluent pipe. A monotone and invariant-
region-preserving finite difference scheme is proposed and applied to simulate operating cycles and
the denitrification process within an SBR.

Key words. convection-diffusion-reaction PDE, degenerate parabolic PDE, moving boundary,
numerical scheme, sedimentation, activated sludge, wastewater treatment, sequencing batch reactor
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1. Introduction.

1.1. Scope. We present a one-dimensional model of reactive sedimentation in a
tank (with a possibly varying cross-sectional area). At the bottom, the tank has a
controlled outlet. At the surface of the mixture, a floating device allows for controlled
fill or extraction of mixture; see Figure 1.1 (a). The settling particles consist of several
components, which react with other dissolved material components. We also present
a numerical method for the simulation of such a general process, which can handle
any feed or extraction condition where the volume of mixture in the tank may vary
between zero (surface at the bottom) and maximal (surface at the top). The specific
application we have in mind is a sequencing batch reactor (SBR), which is commonly
used for wastewater treatment, where batch operations of reactions and sedimentation
are applied in sequence in time, with fill and draw (extraction) operations between or
during these stages; see Figure 1.2. In an SBR, the particles are biomass (bacteria;
activated sludge) and the dissolved materials are substrates (nitrogen, phosphorus,
etc.) to be removed. Other applications arise, for example, in mineral processing
where mineral powders are flocculated by adding liquid flocculant dissolved in water.

To introduce the governing model, we let A = A(z) denote the cross-sectional
area of the tank that may depend on depth z, where z = 0 at the top of the tank
and z = B at its bottom. The characteristic function γ equals one inside the mixture
and zero otherwise, i.e., γ(z, t) = χ{z̄(t)<z<B}, where χI is the indicator function
which equals one if and only if I is true, and z = z̄(t) is the surface location. The
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Fig. 1.1. (a) Left: Fill at the volume rate Qf(t) > 0 greater than the underflow rate Qu(t) ≥ 0
resulting in a rise of the mixture surface location z = z̄(t). Right: Draw (extraction) of mixture
from the surface at the rate Qe(t) > 0 implies a descending surface. (b) The two phases and their
components for the examples of denitrification in Section 5.
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Fig. 1.2. The five stages of a cycle of an SBR. The tank is first filled with wastewater at the
volumetric flow Qf(t) > 0 and concentrations Cf(t) and Sf(t). During the react stage, biological
reactions take place under complete mixing by an impeller or by aeration. Then batch sedimentation
with reactions occurs and liquid is extracted during the draw stage. During the idle stage, some of
the bottom sludge can be withdrawn and then the fill stage starts again.

unknowns are the vectors C = C(z, t) = (C(1), . . . , C(kC))T of solid concentrations
and of S = S(z, t) = (S(1), . . . , S(kS))T concentrations of soluble components. These
vectors make up the components of the solid and liquid phase, respectively. With
X = X(z, t) = C(1)(z, t) + · · ·+ C(kC)(z, t), the tank can be modeled as the following
system of convection-diffusion-reaction equations, where t > 0 is time:

A(z)∂tC + ∂z
(
A(z)FC(X, z, t)C

)
− ∂z

(
A(z)γ(z, t)(∂zD(X))C

)
= δ
(
z − z̄(t)

)
Qf(t)Cf(t) + γ(z, t)A(z)RC(C,S),

A(z)∂tS + ∂z
(
A(z)FS(X, z, t)S

)
= δ
(
z − z̄(t)

)
Qf(t)Cf(t) + γ(z, t)A(z)RS(C,S).

(1.1)

This system is coupled to a model of the effluent pipe consisting of convective trans-
port equations on a half line x ≥ 0, where x = 0 is attached to the moving bound-
ary z = z̄(t) (cf. Figure 1.1 (a)). The coupling conditions between the systems are
mass-preserving algebraic equations with fluxes on the z- and x-axes. The scalar
functions FC and FS in (1.1) depend nonlinearly on X and represent portions of the
solid- and liquid-phase velocity, respectively. The scalar function D models sediment
compressibility. The terms with the delta function δ(z− z̄(t)) model the operation of
the device floating on the surface for either feed or extraction of mixture. The last
term of each PDE contains the reaction rates (local increase of mass per unit time and
volume) RC and RS . The full PDE model is specified in Section 2. During the react
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stage of an SBR (see Figure 1.2), full mixing occurs and the system of PDEs (1.1)
reduces to a system of ordinary differential equations (ODEs).

The main difficulties for the analysis of the model arise partly from the presence of
a moving boundary where both a source is located and a half-line model attached, and
partly from strong type degeneracy; the function D is zero for X-values on an interval
of positive length. The main purpose of this work is to introduce a numerical scheme
that handles these difficulties and produces approximate solutions that satisfy certain
bounds under a convenient Courant-Friedrichs-Lewy (CFL) condition. In particular,
the scheme is positivity preserving.

1.2. Related work. The SBR technology has been used for hundred years and
been a topic for much research [35]. Its usage for wastewater treatment can be found
in many handbooks (cf., e.g., [12, 16, 30]). Furthermore, it is also employed for re-
covery of selenium [36], radioactively labelled pharmaceuticals [34], nitrogen removal
processes [31], pharmaceutically active compounds [38], synthetic chemical compo-
nents [21], swine manure slurry [28], applications in the petrochemical industry [10],
and saline wastewater treatment [2], among others.

Most treatments in the literature on mathematical models related to SBRs focus
on ODEs modeling the reactions by established activated sludge models [17,20,24,29].
Optimization and control problems are studied in [18, 25, 32, 33, 37] and statistical
methods in [26,27]. Less consideration has been laid on the sedimentation in an SBR
during which reactions occur. Models of reactive settling in continuously operated
secondary settling tanks (SSTs) based on PDEs are presented in [5–7] (see also ref-
erences cited in these works). It is worth pointing out that the SBR model differs
from an SST model. In an SBR, Qu(t), Qf(t) and Qe(t) are given independent con-
trol functions giving rise to a moving surface, whereas in an SST, only two of these
are known and the third, often Qe(t), is defined by the other two and possibly by
volume-changing reactions in the tank; see [8].

The moving-boundary problem (1.1) with a connected half-axis with transport
equations has nonlinear mass-preserving coupling conditions, which do not define the
coupling concentrations uniquely. Such a problem of nonuniqueness arises already for
a scalar conservation law with discontinuous flux, which has been investigated widely;
e.g., [1,3,13,19,22,23]; in particular, in the context of continuous sedimentation [4,9,
11,14,15], where a monotone numerical scheme approximates the correct solutions [9].

1.3. Outline of the paper. In Section 2, we derive the model. Section 3
contains the numerical scheme based in the line of [5] modified to handle the moving
boundary. The fully discrete scheme is presented in Section 3.4 and the CFL condition
and invariant-region property are shown in Section 3.5. Section 4 contains a derivation
of the ODE model for full mixing. In Section 5, we show two numerical examples of
SBR operation with a constant cross-sectional area (cylindrical vessel) and a variable.
Some conclusions are collected in Section 6.

2. Derivation of the model of reactive settling.

2.1. Preliminaries. The solid phase consists of flocculated particles of kC types
with concentrations C(1), . . . , C(kC). The components of the liquid phase are water
of concentration W and kS dissolved substrates of concentrations S(1), . . . , S(kS) (cf.
Figure 1.1 (b)). The total concentrations of solids X and liquid L are

X := C(1) + · · ·+ C(kC), L := W + S(1) + · · ·+ S(kS).(2.1)

All these concentrations depend on z and t, and our notation is the same as in [5].
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For computational purposes, we define a maximum concentration X̂ of solids and
assume that the density of all solids is the same, namely ρX > X̂. Similarly, we
assume that the liquid phase has the density ρL < ρX , typically the density of water.

The reaction terms for all components are collected in the vectors RC(C,S) and
RS(C,S), which model the increase of solid and soluble components, respectively, and
set R̃C(C,S) := R

(1)
C (C,S) + · · ·+R

(kS)
C (C,S) (analogously for R̃S(C,S)). The

water concentration W is not active in any reaction. We assume that without bacte-
ria there is no growth; RC(0,S) = 0, and when there is no substrate, the bacteria
cannot consume any such, however, substrate concentrations may increase due to de-
cay of bacteria. Hence, we assume RS(C,0) ≥ 0, but RS(0,0) = 0, where vector
inequalities are understood component-wise. If one sort of bacteria is not present; no
more such can vanish, i.e.,

R
(k)
C (C,S)

∣∣
C(k)=0

≥ 0 for k = 1, . . . , kC .(2.2)

We let vX and vL denote the velocities of the solid and liquid phases, respectively.
It is assumed that the relative velocity vX − vL =: vrel = vrel(X, ∂zX, z) is given by
a constitutive function of X and its spatial derivative ∂zX, modeling hindered and
compressive settling; see Section 2.3. The following technical assumptions are made
to establish an invariant-region property for the numerical solution:

(2.3) RC(C,S)|X=X̂ = 0, vrel(X̂, ∂zX, z) = 0.

These conditions mean that when the maximum concentration is reached (X = X̂),
biomass cannot grow any more and its relative velocity to the liquid phase is zero.

It is assumed that in the inlet and outlet pipes no reactions take place and all
components have the same velocity. At the bottom, z = B, one can withdraw mixture
at a given volume rate Qu(t) ≥ 0. The underflow region z > B is for simplicity
modelled by setting A(z) := A(B), since we are only interested in the underflow
concentration Cu(t), which is an outcome of the model (analogously for Su(t)).

At the surface of the mixture, z = z̄(t), we model a floating device connected to
a pipe through which one can feed the tank with a given volume rate Qf(t) and given
feed concentrations Cf(t) and Sf(t); see Figure 1.1. This gives rise to a source term
in the model equation with the fluxes Qf(t)Cf(t) and Qf(t)Sf(t). Alternatively, this
floating device allows to extract mixture at a given volume rate Qe(t) > 0 through
the same pipe; hence, one cannot fill and extract simultaneously. If [0, T ] denotes the
total time interval of modeling, we assume that T := Te ∪ Tf , where

Te :=
{
t ∈ R+ : Qe(t) > 0, Qf(t) = 0

}
, Tf :=

{
t ∈ R+ : Qe(t) = 0, Qf(t) ≥ 0

}
.

When t ∈ Te, we model the extraction flow in the effluent pipe by a moving coordinate
system; a half line x ≥ 0, where x = 0 is attached to z = z̄(t). Along this half line, we
denote the solids concentration by C̃ = C̃(x, t). The effluent concentration Ce(t) :=
C̃(0+, t)χ{t∈Te} is also a model outcome (analogously for Se(t)).

It is convenient to define the volume fractions

(2.4) φ := X/ρX , φL := L/ρL, φM := φ+ φL,

where the volume fraction of the mixture satisfies φM = χ{z>z̄(t)}. Below the surface,
φ + φL = 1, or equivalently, L = ρL(1 − X/ρX). The same holds for the feed
concentrations. For known C and S, (2.1) implies the water concentration

(2.5) W = ρL(1−X/ρX)−
(
S(1) + · · ·+ S(kS)

)
.
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This concentration is not part of any reaction and can be computed afterwards.
The volume of the mixture is defined by

V̄ (t) := V
(
z̄(t)

)
, where V (z) :=

∫ B

z

A(ξ) dξ for 0 ≤ z ≤ B.(2.6)

The function V is invertible since V ′(z) = −A(z) < 0; in particular,

V̄ ′(t) = V ′
(
z̄(t)

)
z̄′(t) = −A

(
z̄(t)

)
z̄′(t).(2.7)

2.2. Balance laws. The balance laws for all components in local form imply

∂t
(
A(z)C

)
+ ∂z

(
A(z)vXC

)
= δ
(
z − z̄(t)

)
QfCf + γ(z, t)A(z)RC , z ∈ R,(2.8a)

∂t
(
A(z)S

)
+ ∂z

(
A(z)vLS

)
= δ
(
z − z̄(t)

)
QfSf + γ(z, t)A(z)RS , z ∈ R.(2.8b)

This system along with vrel = vX − vL and (2.4) are kC + kS + 2 equations for the
same number of scalar unknowns, i.e., the components of C and S, plus vX and vL.
It is coupled to the following model of the effluent pipe:

∂tC̃ +Qe∂xC̃ = 0, x > 0,(2.9a)

∂tS̃ +Qe∂xS̃ = 0, x > 0,(2.9b)

−Qe(t)C̃(0+, t) = A(z̄(t)+)
(
vX |z=z̄(t)+ − z̄′(t)

)
C(z̄(t)+, t),(2.9c)

−Qe(t)S̃(0+, t) = A(z̄(t)+)
(
vL|z=z̄(t)+ − z̄′(t)

)
S(z̄(t)+, t).(2.9d)

The coupling equations (2.9c) and (2.9d) preserve mass at the surface during extrac-
tion periods. The purpose of (2.9) is to define the concentrations during periods of
extraction when Qe(t) > 0. The outlet concentrations are given by, for t > 0,

Cu(t) := C(B+, t), Su(t) := S(B+, t),(2.10)

Ce(t) := C̃(0+, t)χ{t∈Te}, Se(t) := S̃(0+, t)χ{t∈Te}.(2.11)

The transport PDEs (2.9a) and (2.9b) are easily solved once the boundary data (2.11)
are known, which in turn have to satisfy (2.9c) and (2.9d). The right-hand sides of
the latter equations are however nonlinear functions of C(z̄(t)+, t) (via vX and vL)
and to obtain unique boundary concentrations on either side of a spatial discontinuity,
an additional entropy condition is needed. Our experience is, however, that correct
concentrations can be obtained by a conservative and monotone numerical method [9].

The volume-average bulk velocity is defined by q(z, t) := (φvX + φLvL)χ{z>z̄(t)}.
Since φM = 0 for z < z̄(t), we have φ = φL = 0 there. Summing all the equations
of (2.8a) and (2.8b), respectively, and using (2.1) and (2.4), we get the scalar PDEs

∂t
(
A(z)ρXφ

)
+ ∂z

(
A(z)ρXφvX

)
= δ
(
z − z̄(t)

)
ρXφfQf + γ(z, t)A(z)R̃C ,

∂t
(
A(z)ρLφL

)
+ ∂z

(
A(z)ρLφLvL

)
= δ
(
z − z̄(t)

)
ρLφL,fQf + γ(z, t)A(z)R̃S .

Dividing away the constant densities and adding the results, we get

∂t
(
A(z)φM

)
+ ∂z

(
A(z)q

)
= δ
(
z − z̄(t)

)
φM,fQf + γ(z, t)A(z)R,(2.12)

where R := R̃C/ρX + R̃S/ρL, and φM,f = 1 by definition. The first term of (2.12) is

∂t
(
A(z)φM

)
= A(z)∂tχ{z>z̄(t)} = −A(z)δ

(
z − z̄(t)

)
z̄′(t).
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The same procedure for the algebraic equations (2.9c) and (2.9d) (t ∈ Ie) yields

−Qe(t) = A
(
z̄(t)+

)(
q(z̄(t)+, t)− z̄′(t)

)
.(2.13)

Integrating (2.12) (with or without the source term) from z ∈ (z̄(t)+, B) to B, we get

A(B)q(B, t)−A(z)q(z, t) =

∫ B

z

A(ξ)R
(
C(ξ, t),S(ξ, t)

)
dξ =: Qreac(z, t;C,S),

where A(B)q(B, t) = Qu(t). Hence, inside the mixture, i.e., in the interval (z̄(t), B),
the volume-average velocity q is given by A(z)q(z, t) = Qu(t) − Qreac(z, t;C,S). In
view of this equation and q = (φvX + φLvL)χ{z>z̄(t)}, we integrate (2.12) from z =
z̄(t)− h to z̄(t) + h and let 0 < h→ 0 to get

−A(z̄(t))z̄′(t) +Qu(t)− Qreac(z, t;C,S)|z=z̄(t) = Qf(t),(2.14)

where the first term can be written V̄ ′(t); see (2.7). For t ∈ Te, (2.13) implies

−Qe(t) = Qu(t)− Qreac(z, t;C,S)|z=z̄(t) + V ′(t).(2.15)

The term Qreac seems to be negligible [7] in the application to wastewater treat-
ment. We set Qreac := 0 from now on, which makes it possible to prove an invariant-
region property of the numerical solutions; see Section 3.5. Consequently, we define

(2.16) q(z, t) :=
(
Qu(t)/A(z)

)
χ{z>z̄(t)}.

Then (2.14) and (2.15) can be written (with Qreac = 0) as

V̄ ′(t) = Q̄(t)−Qu(t), where Q̄(t) =

{
−Qe(t) < 0 if t ∈ Te,

Qf(t) ≥ 0 if t ∈ Tf .
(2.17)

Solving this ODE and utilizing (2.6), we obtain

z̄(t) = V −1

(
V̄ (0) +

∫ t

0

(
Q̄(s)−Qu(s)

)
ds

)
.(2.18)

Alternatively, z̄(t) can be obtained from (see (2.7))

z̄′(t) =
(
Qu(t)− Q̄(t)

)
/A(z̄(t)).(2.19)

2.3. Constitutive functions for hindered and compressive settling. The
surface location z = z̄(t) is now specified, so we may focus on the mixture in z > z̄(t).
For the given functions q and the relative velocity vrel, we set v := (1 − φ)vrel, and
obtain from vrel = vX − vL and q = (φvX + φLvL)χ{z>z̄(t)} the phase velocities

(2.20) vX = q + (1− φ)vrel = q + v and vL = q − φvrel = q − φ

1− φ
v

of the solid and fluid, respectively. We assume that the relative velocity vrel = v/(1−
φ), where φ = X/ρX , and where v is the commonly used expression [8, 9]
(2.21)

v(X, ∂zX, z, t) := γ(z, t)vhs(X)

(
1− ρXσ

′
e(X)

Xg∆ρ
∂zX

)
= γ(z, t)

(
vhs(X)− ∂zD(X)

)
,
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where

D(X) :=

∫ X

Xc

d(s) ds, d(X) := vhs(X)
ρXσ

′
e(X)

gX∆ρ
,

Here, ∆ρ := ρX − ρL, g is the acceleration of gravity, vhs = vhs(X) is the hindered-
settling velocity, which is assumed to be decreasing and satisfy vhs(X̂) = 0, σe = σe(X)
the effective solids stress, which satisfies σ′e(X) = 0 for X ≤ Xc and σ′e(X) > 0 for
X > Xc, where Xc is a critical concentration above which the particles touch each
other and form a network that can bear a certain stress. Note that d(X) = 0 for
X ≤ Xc, which causes the strongly degenerate-type behavior.

2.4. Model equations in final form. With q defined by (2.16), we define and
use (2.20) and (2.21) to write the velocities

FC(X, z, t) := q(z, t) + γ(z, t)vhs(X),

FS(X, z, t) :=
ρXq(z, t)− (q(z, t) + γ(z, t)vhs(X))X

ρX −X
,

(2.22)

and then express the total mass fluxes of the balance laws (2.8) in light of (2.20):

ΦC := ΦC(C, X, ∂zX, z, t) := A(z)vX(X, ∂zX, z, t)C

= A(z)
(
FC(X, z, t)− γ(z, t)∂zD(X)

)
,

ΦS := ΦS(S, X, ∂zX, z, t) := A(z)
ρXq − vXX
ρX −X

S = A(z)FS(X, z, t),

Then we define and rewrite the right-hand side of (2.9c) with (2.19), (2.20) and (2.21):

(2.23)

ΦC,e(t) := A(z̄(t))
(
vX(z̄(t)+, t)− z̄′(t)

)
C(z̄(t)+, t)

=
(
A
(
q + vhs(X)− ∂zD(X)

)
−Qu −Qe

)
C
∣∣∣
z=z̄(t)+

=
(
A
(
vhs(X)− ∂zD(X)

)
−Qe

)
C
∣∣∣
z=z̄(t)+

.

Analogously, we define ΦS,e corresponding to (2.9d):

(2.24)

ΦS,e(t) := A(z̄(t))
(
vL(z̄(t)+, t)− z̄′(t)

)
S(z̄(t)+, t)

=

(
A

(
q − X(vhs(X)− ∂zD(X))

ρX −X

)
− (Qu +Qe)

)
S

∣∣∣∣
z=z̄(t)+

= −
(
A
X(vhs(X)− ∂zD(X))

ρX −X
+Qe

)
S

∣∣∣∣
z=z̄(t)+

.

The final model can now be described as follows. Given the in- and outgoing volu-
metric flows, one computes the surface level by (2.18) or (2.19). The concentrations C
and S are given by the system (2.8), which can be written as

A(z)∂tC + ∂zΦC = δ
(
z − z̄(t)

)
QfCf + γ(z, t)A(z)RC ,(2.25a)

A(z)∂tS + ∂zΦS = δ
(
z − z̄(t)

)
QfSf + γ(z, t)A(z)RS ,(2.25b)

or as (1.1). The water concentration W can always be calculated from (2.5). Note
that W is not present in (1.1), (2.22). The effluent and underflow concentrations are
given by (2.10) and (2.11), respectively. No initial data are needed for the outlet
concentrations, but for the following:

C0 =
(
C(1),0, C(2),0, . . . , C(kC),0

)T
, S0 =

(
S(1),0, S(2),0, . . . , S(kS),0

)T
.
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3. Numerical scheme.

3.1. Spatial discretization and numerical fluxes. We divide the tank into
N computational cells each having depth h = B/N . Assume that the midpoint of
cell j has the coordinate zj , hence, the cell is the interval [zj−1/2, zj+1/2]. The top
cell 1 is thus [z1/2, z3/2] = [0, h], and the bottom location is z = zN+1/2 = B. To
obtain the underflow concentrations, we add one cell below z = B. To obtain the
extraction concentrations, we add one cell on the x-coordinate system; [0,∆x]. To
approximate the cell volumes, we define the average cross-sectional areas

Aj−1/2 :=
1

h

∫ zj

zj−1

A(ξ) dξ and Aj :=
1

h

∫ zj+1/2

zj−1/2

A(ξ) dξ.

The unknowns are approximated by functions that are piecewise constant in each
cell j, i.e. C(k)(z, t) ≈ C(k)

j (t), z ∈ [zj−1/2, zj+1/2], which are collected in the vec-
tor Cj(t). We define j̄(t) := dz̄(t)/he, which is the smallest integer larger than or
equal to z̄(t)/h. Then the surface z = z̄(t) is located in the surface cell j̄(t).

We let γj+1/2(t) := γ(zj+1/2, t) and define the approximate volume-average ve-
locity qj+1/2(t) := q(zj+1/2, t) in accordance with (2.16) with Qreac ≡ 0 via

Aj+1/2qj+1/2(t) := Qu(t)χ{j+1/2>j̄(t)}.

Using the notation a− := min{a, 0} and a+ := max{a, 0}, we define

JC
j+1/2 = JC

j+1/2(Xj , Xj+1) :=
(
D(Xj+1)−D(Xj)

)
/h,

vXj+1/2 = vXj+1/2(Xj , Xj+1, t) := qj+1/2 + γj+1/2

(
vhs(Xj+1)− JC

j+1/2

)
,

FXj+1/2 = FXj+1/2(Xj , Xj+1, t) := (vXX)j+1/2 := vX,−j+1/2Xj+1 + vX,+j+1/2Xj ,

ΦC
j+1/2 := Aj+1/2

(
vX,−j+1/2Cj+1 + vX,+j+1/2Cj

)
,

ΦS
j+1/2 := Aj+1/2

(
(ρXqj+1/2 − FXj+1/2)−

ρX −Xj+1
Sj+1 +

(ρXqj+1/2 − FXj+1/2)+

ρX −Xj
Sj

)
.

(3.1)

In particular, we have ΦC
j+1/2 = ΦS

j+1/2 = 0 for j < j̄(t). We denote by [∆Φ]j :=
Φj+1/2 −Φj−1/2 the flux difference associated with cell j. For the single cell on the
x-axis, the fluxes at x = ∆x are Qe(t)Ce(t) and Qe(t)Se(t); see (2.9a) and (2.9b).

3.2. Time discretization and surface fluxes. We let T denote the total sim-
ulation time, tn, n = 0, 1, . . . , NT , the discrete time points and τ := T/NT the time
step that should satisfy a certain CFL condition; see below. The value of a variable at
time tn is denoted by an upper index, e.g., Cn

j and it is thus assumed to be constant
in time during tn ≤ t < tn+1. The discrete surface index is defined by j̄n := j̄(tn) and
we let z̄n := z̄(tn). For the volumetric flows, we define the averages

Qnf :=
1

τ

∫ tn+1

tn

Qf(t) dt

and assume for simplicity that any of the volumetric flows changes sign at most at the
discrete time points tn. This implies that z̄(t) is monotone on every interval [tn, tn+1].
To ensure that the surface does not travel more than one cell width h during τ , the
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CFL condition has to imply (cf. (2.19))

(3.2) τ max
0≤t≤T

|z̄′(t)| ≤ τ max
0≤t≤T,
0≤z≤B

{
|Qu(t)−Qf(t)|

A(z)
,
|Qu(t) +Qe(t)|

A(z)

}
≤ h.

To show that the cell concentrations Cn
j̄n do not exceed the maximal one X̂, we also

introduce the concentration C̄
n
j̄n obtained when all the mass in the surface cell j̄n is

located below the surface within the cell; cf. Figure 3.1(a). The mass in the cell is

(3.3) C̄
n
j̄nAjα

nh = Cn
j̄nAjh, where αnh := zj̄n+1/2 − z̄n.

We set X̄n
j := C̄

(1),n
j + . . .+ C̄

(kC),n
j . Integrating (2.17) from tn to tn+1, one obtains

(3.4) V
(
z̄(tn+1)

)
− V

(
z̄(tn)

)
= (Q̄n −Qnu)τ.

If the surface stays within one cell between tn and tn+1; then (3.4) is equivalent to

(3.5) Aj(α
n+1 − αn)h = (Q̄n −Qnu)τ

(cf. Figure 3.1(a) and (f)). During extraction, the surface cannot rise and is thus
located somewhere in cells j̄n and j̄n + 1 (cf. Figure 3.1(c), (e) and (f)). In light
of (2.23) and (2.24), we approximate the fluxes, which have to be nonpositive, just
below the surface in the following way:

vX,n
e,j̄n+1/2

:= vhs(X
n
j̄n+1)−D(Xn

j̄n+1)/h−Qne /Aj̄n+1/2,(3.6)

ΦC,n
e,j̄n+1/2

:= Aj̄n+1/2v
X,n,−
e,j̄n+1/2

Cn
j̄n+1,(3.7)

ΦS,n
e,j̄n+1/2

:=

(
−
Aj̄n+1/2X

n
j̄n+1

ρX −Xn
j̄n+1

(
vhs(X

n
j̄n+1)−D(Xn

j̄n+1)/h
)
−Qne

)−
Snj̄n+1.(3.8)

3.3. Derivation of update formulas. We here derive the update formulas
for Cn

j . Analogous formulas hold for Snj when replacing C by S; however, with
different definitions of velocities and fluxes. First come cells that lie below the surface
z = z̄(t) at tn and tn+1. Special treatment is needed for the cells near the surface.
All cells strictly above the surface have zero concentrations. Let κ := τ/h.

Cells away from the surface. Using the integrated form of the balance law on
a rectangle [zj−1/2, zj+1/2]×[tn, tn+1] strictly below the surface; see the blue rectangle
in Figure 3.1(a), we get the update formula (mass per h)

AjC
n+1
j = AjC

n
j + κ

(
−[∆ΦC ]nj +AjR

n
C,j

)
,

and the analogous one for Snj . For cell N + 1, we get in the similar way the update
formula for the underflow concentration; see Section 3.4.

Cells near the surface during fill (t ∈ Tf). To obtain a monotone scheme
with an invariant-region property, we see how the mass in the surface cell and the one
below evolves; see the trapezoids in Figure 3.1. The mass per h at tn is (we use (3.3))

(3.9) mC,n
j̄n

= Ajα
nC̄

n
j̄n +Aj̄n+1C

n
j̄n+1 = Aj̄nC

n
j̄n +Aj̄n+1C

n
j̄n+1.
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tn tn+1z
t

z = z̄(t)

j

j̄n

︷ ︸︸ ︷τ

h

{

zj−1/2

zj+1/2

j̄n+1

ΦC,n
j̄n+3/2

ΦC,n
j−1/2

ΦC,n
j+1/2

z = z̄(t)

j̄n

ΦC,n
j̄n+3/2z

tn tn+1

zj̄+1/2

j̄n − 1

zj̄−1/2

z = z̄(t)

j̄n + 1 j̄n+1

ΦC,n
j̄n+3/2z

tn tn+1

zj̄+3/2

j̄nzj̄+1/2

j̄n + 1 j̄n+1

ΦC,n
j̄n+3/2z

tn tn+1

zj̄+3/2

j̄n

zj̄+1/2

x

tn tn+1

∆x

{
ΦC,n

e,j̄n+1/2

︷ ︸︸ ︷τ
Qn

e C
n
e

(a) (b)

(c)

(e)

(d)

ΦC,n
e,j̄n+1/2

{
αnh

αn+1h

}
j̄n + 1

αn+1h

}

j̄n + 1

j̄n+1

ΦC,n
j̄n+3/2z

tn tn+1

zj̄+3/2

j̄n

zj̄+1/2

(f)
ΦC,n

e,j̄n+1/2

j̄n + 1

Fig. 3.1. Fluxes over cell boundaries shown by grey arrows and the flux at the surface with red
arrows. The surface level z = z̄(t) is drawn with a red dashed line. Plot (d) shows the extraction
pipe cell where the origin of the x-axis located on the red dashed surface z = z̄(t) in plots (e) and (f).

During τ , the feed source along the moving surface is Qnf C
n
f , whereas the outflux is

ΦC,n
j̄n+3/2

. Thus, by the balance law on any trapezoid the mass (per h) at tn+1 is

(3.10) mC,n+1
j̄n

= mC,n
j̄n

+ κΨC,n
f,j̄n

where the in- and outflux and source terms are

(3.11) ΨC,n
f,j̄n

:= Qnf C
n
f −ΦC,n

j̄n+3/2
+ h
(
Aj̄nR

n
C,j̄n +Aj̄n+1R

n
C,j̄n+1

)
.

Fill case j̄n = j̄n+1, Figure 3.1 (a): When the surface does not cross any cell
boundary during τ , the mass (3.10) is distributed among the two cells with respect
to their volumes (below the surface):

(3.12)

Aj̄nC
n+1
j̄n

=
αn+1Aj̄n

αn+1Aj̄n +Aj̄n+1

mC,n+1
j̄n

,

Aj̄n+1C
n+1
j̄n+1

=
Aj̄n+1

αn+1Aj̄n +Aj̄n+1

mC,n+1
j̄n

.

Fill case j̄n = j̄n+1 +1, Figure 3.1 (b): After the balance law is used on the green
trapezoid, the final mass (per h) is distributed among three cells:

Aj̄n−1C
n+1
j̄n−1

=
αn+1Aj̄n−1

αn+1Aj̄n−1 +Aj̄n +Aj̄n+1

mC,n+1
j̄n

,

Aj̄nC
n+1
j̄n

=
Aj̄n

αn+1Aj̄n−1 +Aj̄n +Aj̄n+1

mC,n+1
j̄n

,

Aj̄n+1C
n+1
j̄n+1

=
Aj̄n+1

αn+1Aj̄n−1 +Aj̄n +Aj̄n+1

mC,n+1
j̄n

.

Fill case j̄n = j̄n+1−1, Figure 3.1 (c): The surface moves downwards and crosses
a cell boundary. All the mass ends up in one cell: Aj̄n+1C

n+1
j̄n+1

= mC,n+1
j̄n

.
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Cells near the surface during extraction (t ∈ Te). During extraction, the
surface necessarily moves downwards. The initial mass is (3.9) and the balance law
on a red trapezoid (Figures 3.1 (e) and (f)) gives mC,n+1

j̄n
= mC,n

j̄n
+ κΨC,n

e,j̄n
, where

(3.13) ΨC,n
e,j̄n

:= ΦC,n
e,j̄n+1/2

−ΦC,n
j̄n+3/2

+ h
(
Aj̄nR

n
C,j̄n +Aj̄n+1R

n
C,j̄n+1

)
.

Extraction case j̄n = j̄n+1 − 1, Figure 3.1 (e): All the mass ends up in one cell:
Aj̄n+1C

n+1
j̄n+1

= mC,n+1
j̄n

.
Extraction case j̄n = j̄n+1, Figure 3.1 (f): The surface stays in one cell and we

distribute the mass mC,n+1
j̄n

into two cells with (3.12).

The cell in the extraction pipe. The conservation law for the cell on the
x-axis gives the mass equality (Figure 3.1 (e))

Ae∆xCn+1
e = Ae∆xCn

e + τ
(
−Qne C

n
e −ΦC,n

e,j̄n+1/2

)
,

where the cross-sectional area Ae of the effluent pipe is of less importance, since we
are only interested in Cn

e and may choose any ∆x; we set Ae∆x := A1h.

3.4. Explicit fully discrete scheme. Given data at tn and the values z̄n+1

and j̄n+1, the update formulas for the particulate concentrations are given here and
we distinguish between fill and extraction. We define λj := κ/Aj = τ/(Ajh) and

T num
e :=

{
tn : Qne > 0, Qnf = 0

}
, ηn+1 :=

Aj̄n

αn+1Aj̄n +Aj̄n+1

,

T num
f :=

{
tn : Qne = 0, Qnf ≥ 0

}
, θn+1 :=

Aj̄n

αn+1Aj̄n−1 +Aj̄n +Aj̄n+1

.

Scheme during fill. If tn ∈ T num
f , then Cn+1

e = 0. We compute the numerical
flux (3.7), the fluxes and sources in ΨC,n

f,j̄n
with (3.11) and

ΥC,n
f,j̄n

:= Cn
j̄n + (Aj̄n+1/Aj̄n)Cn

j̄n+1 + λj̄nΨC,n
f,j̄n

,

Cn+1
j =



αn+1θn+1ΥC,n
f,j̄n

for j = j̄n − 1 and j̄n = j̄n+1 + 1,

αn+1ηn+1ΥC,n
f,j̄n

for j = j̄n and j̄n = j̄n+1,

θn+1ΥC,n
f,j̄n

for j = j̄n, j̄n + 1 and j̄n = j̄n+1 + 1,

(Aj̄n/Aj̄n+1)ΥC,n
f,j̄n

for j = j̄n + 1 and j̄n = j̄n+1 − 1,

ηn+1ΥC,n
f,j̄n

for j = j̄n + 1 and j̄n = j̄n+1,

Cn
j − λj [∆ΦC ]nj + τRn

C,j for j = j̄n + 2, . . . , N,

0 otherwise.

Scheme during extraction. If tn ∈ T num
e , then compute the flux (3.8), the

fluxes and sources in ΨC,n
e,j̄n

with (3.13) and

ΥC,n
e,j̄n

:= Cn
j̄n + (Aj̄n+1/Aj̄n)Cn

j̄n+1 + λj̄nΨC,n
e,j̄n

,

Cn+1
j =



αn+1ηn+1ΥC,n
e,j̄n

for j = j̄n and j̄n = j̄n+1,

(Aj̄n/Aj̄n+1)ΥC,n
e,j̄n

for j = j̄n + 1 and j̄n = j̄n+1 − 1,

ηn+1ΥC,n
e,j̄n

for j = j̄n + 1 and j̄n = j̄n+1,

Cn
j − λj [∆ΦC ]nj + τRn

C,j for j = j̄n + 2, . . . , N,

0, otherwise,
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Cn+1
e = Cn

e − λ1

(
Qne C

n
e + ΦC,n

e,j̄n+1/2

)
.

Other concentrations. At every time point tn we have

Cn+1
u = Cn

u + λN+1

(
ΦC,n
N+1/2 −Q

n
uC

n
u

)
.(3.14)

The analogue formulas for the soluble concentrations S are obtained by replacing C
by S and using the corresponding fluxes defined in (3.1) and (3.8). Then one computes

Xn
j = C

(1),n
j + · · ·+ C

(kC),n
j , Wn

j = ρL(1−Xn
j /ρX)−

(
S

(1),n
j + · · ·+ S

(kS),n
j

)
.

3.5. An invariant-region property. It is desirable that the solution vectors
U := (C,S) and Ue := (Ce,Se) of the model (1.1), (2.22) stay in the set

Ω :=
{
U ∈ RkC+kS : 0 ≤ C ≤ X̂, 0 ≤ C(1) + · · ·+ C(kC) ≤ X̂,S ≥ 0

}
.

To prove that Ω is an invariant set for the numerical solutions of the scheme in
Section 3.4, the time step τ has to be bounded. The CFL condition is

(CFL) τ max{β1, β2} ≤ 1,

where the constants β1 and β2 depend on h, h2, and the constitutive functions by

β1 :=
‖Q‖T
Aminh

+
M1

h

(
‖v′hs‖X̂ + vhs(0)

)
+

2M2

h2

(
‖d‖X̂ +D(X̂)

)
+ max{MC , M̃C},

β2 := max{M1, 1}
ρX + X̂

ρX − X̂
‖Q‖T
Aminh

+
X̂M1

ρX − X̂
2vhs(0)

h
+

X̂M2

ρX − X̂
D(X̂)

h2
+MS ,

where the constants are given by (here, ξ represents vhs, v
′
hs or d)

MC := sup
U∈Ω,

1≤k≤kC

∣∣∣∣∣∂R(k)
C

∂C(k)

∣∣∣∣∣ , M̃C := sup
U∈Ω,

1≤k≤kC

∣∣∣∣∣∂R̃(k)
C

∂C(k)

∣∣∣∣∣ , MS := sup
U∈Ω,

1≤k≤kS

∣∣∣∣∣∂R(k)
S

∂S(k)

∣∣∣∣∣ ,
‖ξ‖ := max

0≤X≤X̂
|ξ(X)|, ‖Q‖T := max

0≤t≤T

{
|Qu(t)−Qf(t)|, Qu(t) +Qe(t)

}
,

M1 := max
j=1,...,N

{
Aj+1/2

Aj
,
Aj−1/2

Aj

}
, M2 := max

j=1,...,N

{
Aj+1/2 +Aj−1/2

Aj

}
.

Theorem 3.1. If Un
j := (Cn

j ,S
n
j ) ∈ Ω for all j 6= j̄n, Ūn

j̄n := (C̄
n
j̄n , S̄

n
j̄n) ∈ Ω,

Un
e := (Cn

e ,S
n
e ) ∈ Ω and (CFL) holds, then Un+1

j , Ūn+1
j̄n ,Un+1

e ∈ Ω.

The theorem is proved by the following three lemmas and by the fact that (CFL)
implies (3.2), which we have used in the derivation of the scheme.

Lemma 3.1. If Un
j := (Cn

j ,S
n
j ) ∈ Ω for all j 6= j̄n, Ūn

j̄n := (C̄
n
j̄n , S̄

n
j̄n) ∈ Ω,

Un
e := (Cn

e ,S
n
e ) ∈ Ω and (CFL) holds, then 0 ≤ Xn+1

j , X̄n+1
j̄n
≤ X̂ for all j.

Proof. We write the update formulas as C
(k),n+1
j = Hn,(k)

C,j (Cn
j−1, . . . ,C

n
j+3) for

one component k ∈ {1, . . . , kC} (see Section 3.4). Summing for fixed j all components
of the update formula for Cn+1

j one gets a scalar update formula which is equal to
the one for component k when the vector Rn

C,j is replaced by the scalar R̃nC,j . This
formula, namely Xn+1

j = HnX,j(Xn
j−1, . . . , X

n
j+3), includes for j = N+1 the underflow
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concentrations (3.14). For the update formulas away from the moving surface, we refer
to [5, Theorem 3.1] from which we also collect

vX,n,+j+1/2 =
(
qnj+1/2 + γj+1/2

(
vhs(X

n
j+1)− JC,n

j+1/2

))+ ≤ Qnu/Aj+1/2 + vhs(0) +D(X̂)/h.

To show the monotonicity for the cells near the surface, we set

χ+ := χ{vX,n

j̄n+1/2
≥0}, χ− := χ{vX,n

j̄n+1/2
≤0}, χ−e := χ{vX,n

e,j̄n+1/2
≤0},

ν1 := X̂
(
‖d‖/h+ vhs(0)

)
+D(X̂)/h, ν2 := X̂(‖d‖/h+ ‖v′hs‖) +D(X̂)/h,

and calculate (where the scalar ΦC,n
j+1/2 is the sum of all components of ΦC,n

j+1/2; simi-
larly for other vectors)

∂vX,n,±j+1/2

∂Xn
j

= χ±
d(Xn

j )

h
,

∂vX,n,±j+1/2

∂Xn
j+1

= v′hs(X
n
j+1)− χ±

d(Xn
j+1)

h
,

∂ΦC,n
j+1/2

∂Xn
j

= Aj+1/2

((
χ−Xn

j+1 + χ+Xn
j

) d(Xn
j )

h
+ vX,n,+j+1/2

)
≤ Aj+1/2ν1 +Qnu ,

∂ΦC,n
j+1/2

∂Xn
j+1

= Aj+1/2

(
vX,n,−j+1/2 +

(
χ−Xn

j+1 + χ+Xn
j

)(
v′hs(X

n
j+1)−

d(Xn
j+1)

h

))
≤ 0,

∂ΨC,n
f,j

∂Xn
j−1

= 0,
∂ΨC,n

f,j

∂Xn
j

= hAj
∂R̃nC,j
∂Xn

j

≥ −AjhM̃C ,

∂ΨC,n
f,j

∂Xn
j+1

= −
∂ΦC,n

j+3/2

∂Xn
j+1

+ hAj+1

∂R̃nC,j+1

∂Xn
j+1

≥ −Aj+3/2ν1 −Qnu −Aj+1hM̃C ,

∂ΨC,n
f,j

∂Xn
j+2

= −
∂ΦC,n

j+3/2

∂Xn
j+2

≥ 0.

In the case tn ∈ T num
f , all the coefficients for ΥC,n

f,j̄n
are positive, so it suffices to

show that the derivatives of this function are positive under (CFL):

∂ΥC,n
f,j

∂Xn
j−1

= λj
∂ΨC,n

f,j

∂Xn
j−1

= 0,
∂ΥC,n

f,j

∂Xn
j+2

= λj
∂ΨC,n

f,j

∂Xn
j+2

≥ 0,

∂ΥC,n
f,j

∂Xn
j

= 1 + λj
∂ΨC,n

f,j

∂Xn
j

≥ 1− λj
(
AjhM̃C

)
= 1− τM̃C ≥ 0,

∂ΥC,n
f,j

∂Xn
j+1

=
Aj+1

Aj
+ λj

∂ΨC,n
f,j

∂Xn
j+1

≥ Aj+1

Aj
− λj

(
Aj+3/2ν1 +Qnu +Aj+1hM̃C

)
≥ Aj+1/Aj

(
1− τ

(
M1ν1/h+ ‖Q‖T /(Aminh) + M̃C

))
≥ 0.

In the case tn ∈ T num
e , we first estimate

∂ΦC,n
e,j+1/2

∂Xn
j+1

= Aj+1/2

(
χ−e

(
v′hs(X

n
j+1)−

d(Xn
j+1)

h

)
Xj+1 + vX,n,−e,j+1/2

)
≥ −Aj+1/2ν2 −Qne .
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This estimation shall be added to the derivatives of ΨC,n
f,j to obtain those for ΨC,n

e,j .
The only derivative that differs from those above is

∂ΥC,n
e,j

∂Xn
j+1

=
Aj+1

Aj
+ λj

∂ΨC,n
e,j

∂Xn
j+1

≥ Aj+1/Aj − λj
(
Aj+1/2ν2 +Qne +Aj+3/2ν1 +Qnu +Aj+1hM̃C

)
≥ Aj+1/Aj

(
1− τ

(
M1(ν1 + ν2)/h+ ‖Q‖T /(Aminh) + M̃C

))
≥ 0.

Next, we write C
n+1,(k)
e = H(k)

Ce
(Cn

e ,C
n
j̄n+1) for the update formula for one component

(they are all equal) of the effluent concentration. Summing all the components, we

obtain Xn+1
e = H(k)

Ce
(Xn

e , X
n
j̄n+1

) for any fixed k ∈ {1, . . . , kC}. This formula is trivial
for tn ∈ T num

f , and for tn ∈ T num
e , we get

∂H(k)
Ce

∂Xn
e

= 1− λ1Q
n
e ≥ 1− τ ‖Q‖T

Aminh
≥ 0,

∂H(k)
Ce

∂Xn
j̄n+1

= −λ1

∂ΦC,n
e,j+1/2

∂Xn
j+1

≥ 0.

To prove the boundedness, the monotonicity in each variable of HnX,j and the
assumptions (2.2) and (2.3) are used to obtain, for tn ∈ T num

f and j = j̄n = j̄n+1,

0 ≤ αn+1ηn+1
j λjQ

n
f X

n
f = HnX,j(0, . . . , 0) ≤ Xn+1

j = HnX,j
(
0, Xn

j , . . . , X
n
j+3

)
≤ HnX,j

(
0, αnX̂, X̂, X̂, X̂

)
= αn+1ηn+1

j

(
αnX̂ + (Aj+1/Aj)X̂ + λj(Q

n
f X

n
f −QnuX̂)

)
≤ αn+1ηn+1

j X̂
(
αn +Aj+1/Aj + λj(Q

n
f −Qnu)

)
(3.5)
= αn+1X̂ηn+1

j

(
Aj+1/Aj + αn+1

)
= αn+1X̂.

For tn ∈ T num
f and j = j̄n−1 = j̄n+1, we first see that (3.4) implies; cf. Figure 3.1(b),

αn+1Aj̄n−1 +Aj̄n − αnAj̄n = (Qnf −Qnu)κ,(3.15)

which we use at the end of the following estimate:

0 ≤ αn+1θn+1λj̄n−1QfX
n
f = HnX,j̄n−1(0, . . . , 0) ≤ Xn+1

j̄n−1
= Xn+1

j̄n+1

= HnX,j̄n−1

(
0, 0, Xn

j̄n , X
n
j̄n+1, X

n
j̄n+2

)
≤ HnX,j̄n−1

(
0, 0, αnX̂, X̂, X̂

)
= αn+1θn+1

(
αnX̂ + (Aj̄n+1/Aj̄n)X̂ + λj̄n(Qnf X

n
f −QnuX̂)

)
≤ αn+1X̂θn+1

(
αn +Aj̄n+1/Aj̄n + αn+1Aj̄n−1/Aj̄n + 1− αn

)
= αn+1X̂.

In the case j = j̄n = j̄n+1 + 1 (cf. Figure 3.1 (b)) we can still use (3.15) to obtain

0 ≤ θn+1λj̄nQfX
n
f = HnX,j̄n(0, . . . , 0) ≤ X(k),n+1

j̄n
= X

(k),n+1

j̄n+1+1

= HnX,j̄n
(
0, 0, Xn

j̄n , X
n
j̄n+1, X

n
j̄n+2

)
≤ HnX,j̄n

(
0, 0, αnX̂, X̂, X̂

)
= θn+1

(
αnX̂ + (Aj̄n+1/Aj̄n)X̂ + λj̄n(Qnf X

n
f −QnuX̂)

)
≤ X̂θn+1

(
αn +Aj̄n+1/Aj̄n + αn+1Aj̄n−1/Aj̄n + 1− αn

)
= X̂.

A similar estimation can be made for the case j = j̄n + 1 = j̄n+1 + 2. For the
case j = j̄n + 1 = j̄n+1; see Figure 3.1(c), we note that (3.4) implies

αn+1Aj̄n+1 − (αnAj̄n +Aj̄n+1) = (Qnf −Qnu)κ,



MODEL OF REACTIVE SETTLING 15

which we use to estimate

0 ≤ (Aj̄n/Aj̄n+1)λj̄nQfX
n
f = HnX,j̄n+1(0, . . . , 0) ≤ Xn+1

j̄n+1
= X

(k),n+1

j̄n+1

= HnX,j̄n+1

(
0, Xn

j̄n , . . . , X
n
j̄n+3

)
≤ HnX,j̄n+1

(
0, αnX̂, X̂, X̂, X̂

)
= (Aj̄n/Aj̄n+1)

(
αnX̂ + (Aj̄n+1/Aj̄n)X̂ + λj̄n(Qnf X

(k),n
f −QnuX̂)

)
≤ (Aj̄n/Aj̄n+1)X̂

(
αn +Aj̄n+1/Aj̄n + αn+1Aj̄n+1/Aj̄n − (αn +Aj̄n+1/Aj̄n)

)
= αn+1X̂.

The remaining fill cases are similar; we omit details. For tn ∈ T num
e , similar estima-

tions apply; the only difference is that QfX
(k),n
f is replaced by ΦC,n

e,j+1/2, which equals
zero when the concentrations are zero, to prove the lower bound. For the upper
bound, one uses (3.4) with Q̄n = −Qne instead of Qnf . For the effluent, we get

0 = H(k)
Ce

(0, 0) ≤ X(k),n+1
e = H(k)

Ce

(
Xn

e , X
n
j̄n+1

)
≤ H(k)

Ce

(
X̂, X̂

)
= X̂ − λ1(Qne +Qnu)X̂ ≤ X̂.

Lemma 3.2. If Un
j := (Cn

j ,S
n
j ) ∈ Ω for all j 6= j̄n, Ūn

j̄n := (C̄
n
j̄n , S̄

n
j̄n) ∈ Ω,

Un
e := (Cn

e ,S
n
e ) ∈ Ω and (CFL) holds, then 0 ≤ Cn+1

j , C̄
n+1
j̄n ,Cn+1

e ≤ X̂ for all j.

Proof. This follows directly, since each component of the update formula for Cn
j

is equal to that of Xn
j if R̃nC,j is replaced in the latter by R

n,(k)
C,j .

Lemma 3.3. If Un
j := (Cn

j ,S
n
j ) ∈ Ω for all j 6= j̄n, Ūn

j̄n := (C̄
n
j̄n , S̄

n
j̄n) ∈ Ω,

Un
e := (Cn

e ,S
n
e ) ∈ Ω and (CFL) holds, then Sn+1

j ≥ 0 for all j and Sn+1
e ≥ 0.

Proof. We start as in the proof of Lemma 3.1, use notation and estimations from
there, and prove monotonicity of each component of the right-hand side Hn,(k)

S,j̄n
of

the update formula for component S
n,(k)
j , which we write as Snj . We also skip the

superscript (k) for components of other vectors. We let ρ̂ := 1/(ρX − X̂) and

ν3 := ρ̂
(
(ρX + X̂)‖Q‖T /Amin + (vhs(0) +D(X̂)/h

)
X̂
)
.

The numerical fluxes are different and we get

∂ΦS,n
j+1/2

∂Snj
= Aj+1/2

(ρXq
n
j+1/2 − F

X,n
j+1/2)+

ρX −Xn
j

≤ Aj+1/2ρ̂
(
ρXq

n
j+1/2 − v

X,n,−
j+1/2 X̂

)
= Aj+1/2ρ̂

(
ρXq

n
j+1/2 + vX,n,+j+1/2 X̂

)
≤ Aj+1/2ρ̂

(
ρXq

n
j+1/2 +

(
qnj+1/2 + vhs(0) +D(X̂)/h

)
X̂
)
≤ Aj+1/2ν3,

∂ΦS,n
j+1/2

∂Snj+1

= Aj+1/2

(ρXq
n
j+1/2 − F

X,n
j+1/2)−

ρX −Xj+1
≤ 0.

Because of the similarities between ΨC,n
f,j and ΨS,n

f,j , we only write the difference here:

∂ΨS,n
f,j

∂Snj+1

= −
∂ΦS,n

j+3/2

∂Snj+1

+ hAj+1

∂RnS,j+1

∂Snj+1

≥ −Aj+3/2ν3 −Aj+1hMS .
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To prove the monotonicity in the case tn ∈ T num
f , we conclude that the estimations

are in fact similar to those in the proof of Lemma 3.2 with the following difference:

∂ΥS,n
f,j

∂Snj+1

≥ Aj+1

Aj

(
1− τ

(
M1ν3

h
+MS

))
≥ 0.

To prove the monotonicity in the case tn ∈ T num
e , we first estimate

∂ΦS,n
e,j+1/2

∂Snj+1

=

(
−
Aj+1/2X

n
j+1

ρX −Xn
j+1

(
vhs(X

n
j+1)−D(Xn

j+1)/h
)
−Qne

)−
≥ −Aj+1/2ρ̂X̂vhs(0)−Qne .

Following the same procedure as in the proof of Lemma 3.2, we now get

∂ΥS,n
e,j

∂Snj+1

=
Aj+1

Aj
+ λj

∂ΨS,n
e,j

∂Snj+1

≥ Aj+1

Aj
− λj

{
Aj+1/2ρ̂XX̂vhs(0) +Qne

+ ρ̂
(

(ρX + X̂)Qnu +Aj+3/2

(
vhs(0) +D(X̂)/h

)
X̂
)

+Aj+1hMS

}
≥ (Aj+1/Aj)

(
1− τ

(
M1(ρ̂XX̂vhs(0) + ν3)/h+MS

))
≥ 0,

For the update of the effluent concentrations, we get the same result for Sne as for Cn
e .

The proof of positivity can be done as in the proof of Lemma 3.2.

4. Application to sequencing batch reactors. An SBR cycle consists of five
stages; see Figure 1.2. During some of these periods, mixing may occur due to aeration
or the movement of an impeller. For the sake of simplicity, we ignore partial mixing
and exemplify the cases of either no mixing or full mixing. The PDE model (2.25)
includes no mixing and we next derive the special case of full mixing.

4.1. Model and numerics during a full mixing react stage. Full mixing
means that the relative velocity vrel is negligible. We set vrel ≡ 0 and assume that
concentrations only depend on t (below the surface). Then vX = vL = q, hence

(4.1) ΦC = A(z)q(z, t)C = Qu(t)χ{z>z̄(t)}C, ΦS = Qu(t)χ{z>z̄(t)}S.

Integrating the PDEs (2.25) from z̄(t)− to B, one gets the governing ODEs. The
integral of the time-derivative term of (2.25a) can, by means of (2.19), be written as∫ B

z̄(t)

dC

dt
A(ξ) dξ =

d

dt

∫ B

z̄(t)

C(t)A(ξ) dξ −
(
−C(t)A(z̄(t))z̄′(t)

)
=

dC(t)

dt
V̄ (t)−C(t)

(
Qu(t)− Q̄(t)

)
.

The spatial-derivative term of (2.25a) becomes, with (4.1),∫ B

z̄(t)

dΦC

dz
dξ = Qu(t)C(t)− 0.

The same can be done for the substrate equations and we obtain the following system
of ODEs for the homogeneous concentrations in z̄(t) < z < B:

V̄ (t)
dC

dt
=
(
Qu(t)− Q̄(t)

)
C +Qf(t)Cf(t) + V̄ (t)RC ,(4.2a)
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V̄ (t)
dS

dt
=
(
Qu(t)− Q̄(t)

)
S +Qf(t)Sf(t) + V̄ (t)RS ,(4.2b)

where all concentrations depend only on time, since they are averages (below the
surface). As before, W can be obtained afterwards from (2.5). In the region 0 < z <
z̄(t) all concentrations are zero. Because of (2.9c) and (2.23), we have Cu(t) = C(t)
and Ce(t) = C(t)χ{t∈Te} (analogously for S).

Suppose the PDE solution C(z, T0) (or the numerical one) is known at t =
T0 = tn0 when a period of complete mixing starts. The initial concentrations for
the ODEs (4.2) are defined as the averages (for k = 1, . . . , kC ; analogously for S)

C(k)(T0) :=
1

V̄ (T0)

∫ B

z̄(T0)

A(ξ)C(k)(ξ, T0) dξ ≈ h

V̄ (T0)

N∑
i=1

AiC
(k),n0

i =: C(k),n0
aver .

The system (4.2) thus models a completely stirred tank with reactions, possibly a
moving upper boundary because of in- and outflow streams.

If an ODE mixing period ends at t = T = tñ and the PDE model is to be used
thereafter, then the total mass below the surface is distributed among the cells by

C
(k),ñ
j :=


0 for j = 1, . . . , j̄ñ − 1,

αñC
(k),ñ
aver = (zj̄ñ+1/2 − z̄ñ)C

(k),ñ
aver , for j = j̄ñ,

C
(k),ñ
aver , for j = j̄ñ + 1, . . . , N .

5. Numerical examples. To exemplify the entire process, we use the same
model for denitrification as in [6] with two solid components: ordinary heterotrophic
organisms XOHO and undegradable organics XU; and three soluble components: ni-
trate SNO3 , readily biodegradable substrate SS and nitrogen SN2 . Thus, we utilize
C = (XOHO, XU)T and S = (SNO3

, SS, SN2
)T, corresponding to kC = 2 and kS = 3,

respectively. Shortly described, the denitrification process converts nitrate (NO3) to
nitrogen gas (N2) by a series of reactions involving the particulate biomass. The
reaction terms for the solid and liquid phases used for all numerical examples are

RC = XOHOZ(X)
(
µ(S)− b, fPb

)T
,

RS = XOHO

(
−Ȳ µ(S), (1− fp)b− µ(S)/Y, Ȳ µ(S)

)T
, Ȳ = (1− Y )/(2.86Y ),

where Y = 0.67 is a yield factor, b = 6.94×10−6 s−1 is the decay rate of heterotrophic
organisms and fP = 0.2 is the portion of these that decays to undegradable organics.
The continuous function Z(X) must not influence the condition (CFL), be equal to
one for most concentration and satisfy Z(X̂) = 0 because of the technical assump-
tion (2.2). We have used X̂ = 30 kg/m3, a value our simulated solutions never reach,
despite we have simulated with Z(X) ≡ 1. The growth-rate function

µ(S) = µmax
SNO3

KNO3 + SNO3

SS

KS + SS

has the parameters µmax = 5.56 × 10−5 s−1, KNO3 = 5 × 10−4 kg/m3 and KS =
0.02 kg/m3. Adding the components of the reaction terms we get

R̃C = R
(1)
C +R

(2)
C =

(
µ(S)− (1− fP)b

)
XOHOZ(X), R̃S = R

(2)
S .

The constitutive functions used in all simulations are

vhs(X) := v0/
(
1 + (X/X̂)η

)
, σe(X) := αχ{X≥Xc}(X −Xc),
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Table 5.1
Example 1: Time functions for an SBR cycle. ‘Model’ refers to either PDE (2.25) or ODE (4.2).

Stage Time period [h] Qf(t)[m
3/h] Qu(t)[m3/h] Qe(t)[m3/h] Model

Fill 0 ≤ t < 1 790 0 0 PDE
React 1 ≤ t < 3 0 0 0 ODE
Settle 3 ≤ t < 5 0 0 0 PDE
Draw 5 ≤ t < 5.5 0 0 1570 PDE
Idle 5.5 ≤ t < 6 0 10 0 PDE

t [h]
z [m]

t [h]
z [m]

t [h]
z [m]

t [h]
z [m]

t [h]
z [m]

t [h]
z [m]

Fig. 5.1. Example 1: Simulation results (with N = 100, τ = 6/63498) during T = 6 hours.

with v0 = 1.76 × 10−3 m/s, X̂ = 3.87 kg/m3, η = 3.58, Xc = 5 kg/m3 and α =
0.2 m2/s2. Other parameters are ρX = 1050 kg/m3, ρL = 998 kg/m3, g = 9.81 m/s2,
and B = 3 m. The soluble feed concentrations in both examples are

(5.1) Sf(t) ≡ (6.00× 10−3, 9.00× 10−4, 0)T kg/m3.

For visualization purposes, we do not plot zero numerical concentrations above
the surface, but fill this region with grey color.

5.1. Example 1: An SBR cycle. A cylindrical tank with cross-sectional
area A = 400 m2 is simulated during 6 h. The lengths of the five stages are cho-
sen primarily for illustration; see Table 5.1. The initial concentrations are C0(z) =
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Table 5.2
Example 2. Schematic of the truncated cone and time functions for the simulation. ‘Model’

refers to either PDE (2.25) or ODE (4.2).

	✪✪
✪

✪
✪
✪

✪
✪
✪

✪
✪
✪

✪✪✪✪✪✪✪✪✪✪✪✪✪✪✪✪✪✪✪✪
✪
✪✪

✪
✪✪

✪
✪✪

✪
✪✪

✪
✪

♣♣
♣♣
♣

✲

✲
≈ 50◦

❄
z

axis of symmetry✟✟
≈ 12.52m

10m

✻
❄
3m

Time Xf(t) Qf(t) Qu(t) Qe(t)
Model

period [h] [kg/m3] [m3/h] [m3/h] [m3/h]

0 ≤ t < 1 5 790 0 0 PDE
1 ≤ t < 2 0 0 100 0 ODE
2 ≤ t < 3 0 0 0 100 ODE
3 ≤ t < 5 5 100 0 0 PDE
5 ≤ t < 6 0 0 0 790 PDE

X0(z)(5/7, 2/7)T, where

X0(z) = 0 kg/m3, S0(z) = 0 kg/m3 if z < 2.0 m,

X0(z) = 10 kg/m3 S0(z) = (6× 10−3, 9× 10−4, 0)T kg/m3 if z ≥ 2.0 m.

No biomass is fed to the tank; Cf(t) ≡ 0. Figure 5.1 shows the simulation results.
The reactions converting NO3 to N2 start immediately and are fast. (The downwards-
pointing peaks in the SNO3

plot arise since we do not plot zero concentrations above
the surface.) A short time after the react stage has started at t = 1 h, all NO3 has
been consumed. During this short time period, SS decreases slightly when there is
still sufficient NO3, but then increases during the react stage because of the decay of
heterotrophic organisms.

5.2. Example 2. We now choose a truncated cone (cf. Table 5.2) of the same
volume 1200 m3 as the cylinder of Example 1 and demonstrate what the numerical
scheme can handle during extreme cases of fill and draw when solids concentrations
are positive at the surface. We use the same initial data as in Example 1 but with
z̄(0) ≈ 1.8429 m to obtain the same initial volume of mixture as in Example 1. The fill
and draw periods are specified in Table 5.2. The feed concentrations of the substrates
are given by (5.1) and those of the biomass by Cf(t) = Xf(t)(5/7, 2/7)T, where the
piecewise constant function Xf(t) follows from Table 5.2.

Figure 5.2 shows the simulated concentrations. During the first hour, there is a
discontinuity in the solids concentration X rising with a lower speed than the surface.
Then full mixing occurs during two hours and the surface is lowered because of the
outlet flows at the bottom and top. At t = 3 h, the mixing stops and the solids settle
again. During 3 h < t < 5 h, the tank is filled up again with solids and substrates. The
solids feed concentration Xf = 5 kg/m3 is the same as during the first hour, but now
the feed flow Qf is much lower, and hence the mass flow much lower. The results is a
very low concentration X below the surface during 3 h < t < 5 h. Since also XOHO is
low, there are hardly any reactions and most of the fed NO3 remains in the mixture
above the sludge blanket of the solids. At the surface level around t = 3 h, there is
also biomass present and a high production of N2 occurs. However, the sludge blanket
drops and the high concentration of N2 remains at this height until it is extracted
through the effluent during the last hour. The latter is shown in Figure 5.3, which
also shows that solids are extracted.

6. Conclusions. A general model of multi-component reactive settling of floc-
culated particles given by a quasi-one-dimensional PDE system with moving bound-
ary (1.1), (2.22) and a numerical scheme (Section 3.4) for its simulation are introduced.
Fill and draw of mixture at the moving surface can be made at any time and a spe-
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t [h]
z [m]

t [h]
z [m]

t [h]
z [m]

t [h]
z [m]

t [h]
z [m]

t [h]
z [m]

Fig. 5.2. Example 2: Simulated results during T = 6 hours.
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Fig. 5.3. Example 2: Simulated effluent concentrations, all in kg/m3, during t ∈ [4.8 h, 6 h]
obtained by the discretizations (number of cells within the tank) N = 25, 50, 100, and 200.

cific application is the SBR process. The unknowns are concentrations of solids and
soluble substrates, and the PDE model can (via its reaction terms) be combined with
well-established models for the biochemical reactions in wastewater treatment.

The moving boundary can be precomputed with the ODE (2.19) containing the
volumetric flows in and out of the tank. The numerical scheme is designed to ensure
conservation of mass across the surface during fill and draw. The main result is an
invariant-region property (Theorem 3.1) for the numerical solution; all concentrations
are nonnegative and the solids concentrations never exceed the maximal packing one.
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An indication of the convergence of the numerical scheme as the mesh size is reduced is
given by the results shown in Figure 5.3. A proof of convergence of the method (as h→
0) to a suitably defined weak or entropy weak solution, as well as the corresponding
well-posedness (existence and uniqueness) analysis, are still pending. That said, we
point out that available convergence analyses for related strongly degenerate, scalar
PDEs with discontinuous flux (cf., e.g., [9, 22, 23]) rely on the monotonicity of the
underlying scheme as well as a uniform bound on the numerical solution, among
other properties. Theorem 3.1 and its proof may be therefore viewed as a partial
result to prove convergence of the numerical scheme presented herein.

Given a moving boundary and a fixed spatial discretization for the numerical
scheme, local mass balances have been used to obtain correct update formulas for
numerical cells near the surface. This results in a scheme (see Section 3.4) with
several cases depending on the surface movement. A certain limitation of the explicit
numerical scheme is the restrictive CFL condition (where the time step is proportional
to the square of the cell size), implying that very small time steps are needed if accurate
approximations on a fine spatial mesh are sought. An alternative approach would be
to transform the PDE system and have a fixed number of cells below the moving
surface. Such a scheme could possibly also be easier to generalize to a high-order
scheme or a more efficient one with semi-implicit time discretization. The advantage
of the present fixed-cell-size numerical scheme is, however, that the model can more
easily be generalized to include further sources or sinks at fixed locations, a desirable
feature in applications to wastewater treatment.

With the present model, investigations and optimization of the SBR process can
be made, and the usage of several SBRs coupled in series or in parallel with syn-
chronized stages so that, e.g., a continuous stream of effluent of certain quality is
obtained. Furthermore, more accurate comparisons are possible between SBRs and
continuously operated SSTs, since one or the other may be preferred depending on
the plant size and other practical considerations [16].
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[1] Adimurthi, J. Jaffré, and G. D. V. Gowda, Godunov-type methods for conservation laws
with a flux function discontinuous in space, SIAM J. Numer. Anal., 42 (2004), pp. 179–208.

[2] M. M. Amin, M. H. Khiadani (Hajian), A. Fatehizadeh, and E. Taheri, Validation of linear
and non-linear kinetic modeling of saline wastewater treatment by sequencing batch reactor
with adapted and non-adapted consortiums, Desalination, 344 (2014), pp. 228–235.

[3] B. Andreianov, K. H. Karlsen, and N. H. Risebro, A theory of L1-dissipative solvers for
scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201 (2011),
pp. 1–60.

[4] R. Bürger, J. Careaga, and S. Diehl, A simulation model for settling tanks with varying
cross-sectional area, Chem. Eng. Commun., 204 (2017), pp. 1270–1281.

[5] R. Bürger, J. Careaga, and S. Diehl, A method-of-lines formulation for a model of reactive
settling in tanks with varying cross-sectional area, IMA J. Appl. Math., in press (2021).

[6] R. Bürger, J. Careaga, S. Diehl, C. Mej́ıas, I. Nopens, E. Torfs, and P. A. Vanrol-
leghem, Simulations of reactive settling of activated sludge with a reduced biokinetic model,
Computers Chem. Eng., 92 (2016), pp. 216–229.

[7] R. Bürger, S. Diehl, and C. Mej́ıas, A difference scheme for a degenerating convection-
diffusion-reaction system modelling continuous sedimentation, ESAIM: Math. Modelling
Numer. Anal., 52 (2018), pp. 365–392.

[8] R. Bürger, S. Diehl, and I. Nopens, A consistent modelling methodology for secondary
settling tanks in wastewater treatment, Water Res., 45 (2011), pp. 2247–2260.

[9] R. Bürger, K. H. Karlsen, and J. D. Towers, A model of continuous sedimentation of floc-
culated suspensions in clarifier-thickener units, SIAM J. Appl. Math., 65 (2005), pp. 882–
940.
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2

MA)

PRE-PUBLICACIONES 2021

2021-04 Gabriel N. Gatica, Salim Meddahi, Ricardo Ruiz-Baier: An Lp spaces-based
formulation yielding a new fully mixed finite element method for the coupled Darcy and
heat equations

2021-05 Raimund Bürger, Arbaz Kahn, Paul E. Méndez, Ricardo Ruiz-Baier:
Divergence-conforming methods for transient doubly-diffusive flows: A priori and a
posteriori error analysis

2021-06 Raimund Bürger, Gerardo Chowell, Ilja Kröker, Leidy Y. Lara-Diaz:
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