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Abstract

We propose and analyze a new mixed finite element method for the nonlinear problem given by the
coupling of the steady Brinkman–Forchheimer and double-diffusion equations. Besides the velocity,
temperature, and concentration, our approach introduces the velocity gradient, the pseudostress
tensor, and a pair of vectors involving the temperature/concentration, its gradient and the velocity,
as further unknowns. As a consequence, we obtain a fully mixed variational formulation presenting
a Banach spaces framework in each set of equations. In this way, and differently from the techniques
previously developed for this and related coupled problems, no augmentation procedure needs to
be incorporated now into the formulation nor into the solvability analysis. The resulting non-
augmented scheme is then written equivalently as a fixed-point equation, so that the well-known
Banach theorem, combined with classical results on nonlinear monotone operators and Babuška-
Brezzi’s theory in Banach spaces, are applied to prove the unique solvability of the continuous
and discrete systems. Appropriate finite element subspaces satisfying the required discrete inf-
sup conditions are specified, and optimal a priori error estimates are derived. Several numerical
examples confirm the theoretical rates of convergence and illustrate the performance and flexibility
of the method.
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1 Introduction

The phenomenon in which two scalar fields, such as heat and concentration of a solute, affect the
density distribution in a fluid-saturated porous medium, referred to as double-diffusive convection, is
a challenging multiphysics problem. This model has numerous applications, among which we highlight
predicting and controlling processes arising in geophysics, oceanography, chemical engineering, and
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energy technology, to name a few areas of interest. In particular, some of them include groundwater
system in karst aquifers, chemical processing, simulation of bacterial bioconvection and thermohaline
circulation problems, convective flow of carbon nanotubes, and propagation of biological fluids (see,
e.g. [1], [4], [9], [22], and [32]). In this regard, we remark that much of the research in porous
medium has been focused on the use of Darcy’s law. However, this constitutive equation becomes
unreliable to model the flow of fluids through highly porous media with Reynolds numbers greater
than one, as in the above applications. To overcome this limitation, a first alternative is to employ
the Brinkman model [8], which describes Stokes flows through a set of obstacles, and therefore can
be applied precisely to that kind of media. Another possible option is the Forchheimer law [23],
which accounts for faster flows by including a nonlinear inertial term. According to the above, the
Brinkman–Forchheimer equation (see, e.g. [16] and [15]), which combines the advantages of both
models, has been used for fast flows in highly porous media. Moreover, this fact has motivated the
introduction of the corresponding coupling with the so called double-diffusion equations (a system of
advection-diffusion equations), through convective terms and the body force.

To the authors’ knowledge, one of the first works analyzing the coupling of the incompressible
Brinkman–Forchheimer and double-diffusion equations is [28], where well-posedness and regularity of
solution for a velocity-pressure-temperature-concentration variational formulation is established by
combining the Galerkin method with a smallness data assumption. Later on, the global solvability of
the coupling of the unsteady double-diffusive convection system under homogeneous Neumann bound-
ary conditions and a linearized version of the Brinkman–Forchheimer equations, was introduced and
analyzed in [29]. In particular, it is proved in [29] that the global solvability in L2-spaces holds true
for the 3-dimensional case. More recently, in [31] a finite volume method was adopted to solve the
coupling of the time-dependent Brinkman–Forchheimer and double-diffusion equations. The focus
of this work was on the validity of the Brinkman–Forchheimer model when various combinations of
the thermal Rayleigh number, permeability ratio, inclination angle, thermal conductivity and buoy-
ancy ratio are considered. This study allowed the evaluation of the control parameters effect on
the flow structure, and heat and mass transfer. Meanwhile, an augmented fully-mixed formulation
based on the introduction of the fluid pseudostress tensor, and the pseudoheat and pseudodiffusive
vectors (besides the velocity, temperature and concentration fields) was analyzed in [13]. In there,
the well-posedness of the problem is achieved by combining a fixed-point strategy, the Lax–Milgram
and Banach–Nečas–Babuška theorems, and the well-known Schauder and Banach fixed-point theo-
rems. The corresponding numerical scheme is based on Raviart–Thomas spaces of order k ≥ 0 for
approximating the pseudostress tensor, as well as the pseudoheat and pseudodiffusive vectors, whereas
continuous piecewise polynomials of degree k+ 1 are employed for the velocity, and piecewise polyno-
mials of degree k for the temperature and concentration fields. Optimal a priori error estimates were
also derived.

We point out that the augmented formulation introduced in [13], and the consequent use of classi-
cal Raviart–Thomas spaces and continuous piecewise polynomials to define the discrete scheme, are
originated by the wish of performing the respective solvability analysis of the Brinkman–Forchheimer
equations within a Hilbertian framework. However, it is well known that the introduction of additional
terms into the formulation, while having some advantages, also leads to much more expensive schemes
in terms of complexity and computational implementation. In order to overcome this, in recent years
there has arisen an increasing development on Banach spaces-based mixed finite element methods to
solve a wide family of single and coupled nonlinear problems in continuum mechanics (see, e.g. [11],
[10], [17], [18], [5], [6], [14], and [15]). This kind of procedures shows two advantages at least: no
augmentation is required, and the spaces to which the unknowns belong are the natural ones arising
from the application of the Cauchy–Schwarz and Hölder inequalities to the terms resulting from the
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testing and integration by parts of the equations of the model. As a consequence, simpler and closer
to the original physical model formulations are obtained.

According to the above bibliographic discussion, the goal of the present paper is to continue ex-
tending the applicability of the aforementioned Banach spaces framework by proposing now a new
fully-mixed formulation, without any augmentation procedure, for the coupled problem studied in [28]
and [13]. To this end, we proceed as in [17] and introduce the velocity gradient and pseudostress tensors
as auxiliary unknowns, and subsequently eliminate the pressure unknown using the incompressibility
condition. In turn, we follow [17, 18] and adopt a dual-mixed formulation for the double-difussion
equations making use of the temperature/concentration gradients and Bernoulli-type vectors as fur-
ther unknowns. Then, similarly to [19] and [17], we combine a fixed-point argument, classical results
on nonlinear monotone operators, Babuška-Brezzi’s theory in Banach spaces, sufficiently small data
assumptions, and the well known Banach fixed-point theorem, to establish existence and uniqueness
of solution of both the continuous and discrete formulations. In this regard, and since the formulation
for the double-diffusion equations is similar to the ones employed in [17, 18], our present analysis
certainly makes use of the corresponding results available there. In addition, applying an ad-hoc
Strang-type lemma in Banach spaces, we are able to derive the corresponding a priori error estimates.
Next, employing Raviart–Thomas spaces of order k ≥ 0 for approximating the pseudostress tensor and
Bernoulli vectors, and discontinuous piecewise polynomials of degree k for the velocity, temperature,
concentration and its corresponding gradients fields, we prove that the method is convergent with
optimal rate.

This work is organized as follows. The remainder of this section describes standard notation and
functional spaces to be employed throughout the paper. In Section 2 we introduce the model problem
and derive the fully-mixed variational formulation in Banach spaces. Next, in Section 3 we establish
the well-posedness of this continuous scheme by means of a fixed-point strategy and Banach’s fixed-
point theorem. The corresponding Galerkin system is introduced and analyzed in Section 4, where
the discrete analogue of the theory used in the continuous case is employed to prove existence and
uniqueness of solution. In Section 5, an ad-hoc Strang-type lemma in Banach spaces is utilized to
derive the corresponding a priori error estimate and the consequent rates of convergence. Finally, the
performance of the method is illustrated in Section 6 with several numerical examples in 2D and 3D,
which confirm the aforementioned rates.

Preliminary notations

Let Ω ⊂ Rn, n ∈ {2, 3}, be a bounded domain with polyhedral boundary Γ, and let n be the outward
unit normal vector on Γ. Standard notation will be adopted for Lebesgue spaces Lp(Ω) and Sobolev
spaces Ws,p(Ω), with s ∈ R and p > 1, whose corresponding norms, either for the scalar, vectorial, or
tensorial case, are denoted by ‖ · ‖0,p;Ω and ‖ · ‖s,p;Ω, respectively. In particular, given a non-negative
integer m, Wm,2(Ω) is also denoted by Hm(Ω), and the notations of its norm and seminorm are
simplified to ‖ · ‖m,Ω and | · |m,Ω, respectively. By M and M we will denote the corresponding vectorial
and tensorial counterparts of the generic scalar functional space M, and ‖ · ‖, with no subscripts,
will stand for the natural norm of either an element or an operator in any product functional space.
In turn, for any vector field v = (vi)i=1,n, we let ∇v and div(v) be its gradient and divergence,
respectively. Furthermore, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div(τ ) be
the divergence operator div acting along the rows of τ , and define the transpose, the trace, the tensor
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inner product, and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n , tr(τ ) :=
n∑
i=1

τii , τ : ζ :=
n∑

i,j=1

τij ζij , and τ d := τ − 1

n
tr(τ ) I ,

where I is the identity matrix in R := Rn×n. In what follows, when no confusion arises, | · | will denote
the Euclidean norm in R := Rn or R. Additionally, we recall that

H(div; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ L2(Ω)

}
,

equipped with the usual norm ‖τ‖2div;Ω := ‖τ‖20,Ω + ‖div(τ )‖20,Ω, is a standard Hilbert space in the

realm of mixed problems. In addition, H1/2(Γ) is the space of traces of functions of H1(Ω) and H−1/2(Γ)
denotes its dual. Also, by 〈·, ·〉Γ we will denote the corresponding product of duality between H−1/2(Γ)
and H1/2(Γ) (and also between H−1/2(Γ) and H1/2(Γ)).

2 The continuous formulation

In this section we introduce the model problem and derive the corresponding weak formulation.

2.1 The model problem

In what follows we consider the model introduced in [28] (see also [13, Section 2]), which is given
by a steady double-diffusive convection system in a fluid saturated porous medium. More precisely,
we focus on solving the coupling of the incompressible Brinkman–Forchheimer and double-diffusion
equations, which reduces to finding a velocity field u, a pressure field p, a temperature field φ1 and a
concentration field φ2, the latter two defining a vector φ := (φ1, φ2), such that

−ν∆u + K−1u + F |u|u +∇p = f(φ) in Ω,

div(u) = 0 in Ω,

−div(Q1∇φ1) + R1 u · ∇φ1 = 0 in Ω,

−div(Q2∇φ2) + R2 u · ∇φ2 = 0 in Ω,

(2.1)

with parameters ν := Da µ̃/µ and F := ϑ Da R1, where Da stands for the Darcy number, µ̃ the viscosity,
µ the effective viscosity, R1 the thermal Rayleigh number, R2 the solute Rayleigh number, and ϑ is a
real number that can be calculated experimentally. In addition, the external force f is defined by

f(φ) := − (φ1 − φ1,r) g +
1

%
(φ2 − φ2,r) g, (2.2)

with g representing the potential type gravitational acceleration, φ1,r the reference temperature, φ2,r

the reference concentration of a solute, and % is another parameter experimentally valued that can
be assumed to be ≥ 1 (see [28, Section 2] for details). The spaces where φ1,r and φ2,r live will be
specified later on. In turn, the permeability, and the thermal diffusion and concentration diffusion
tensors, are denoted by K,Q1 and Q2, respectively, all them living in L∞(Ω). Moreover, the inverse
of K and tensors Q1,Q2, are uniformly positive definite tensors, which means that there exist positive
constants CK, CQ1 , and CQ2 , such that

v ·K−1(x)v ≥ CK |v|2 and v ·Qj(x)v ≥ CQj |v|2 ∀v ∈ Rn, ∀x ∈ Ω, j ∈ {1, 2}. (2.3)
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Equations (2.1) are complemented with Dirichlet boundary conditions for the velocity, the tempera-
ture, and the concentration fields, that is

u = uD, φ1 = φ1,D, and φ2 = φ2,D on Γ, (2.4)

with given data uD ∈ H1/2(Γ), φ1,D ∈ H1/2(Γ) and φ2,D ∈ H1/2(Γ). Owing to the incompressibility
of the fluid and the Dirichlet boundary condition for u, the datum uD must satisfy the compatibility
condition ∫

Γ
uD · n = 0. (2.5)

In addition, due to the first equation of (2.1), and in order to guarantee uniqueness of the pressure,
this unknown will be sought in the space

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

Next, in order to derive a new fully-mixed formulation for (2.1)–(2.5), and unlike [13], we do not
employ any augmentation procedure and simply proceed as in [17] (see also [18]). More precisely, we
now introduce as further unknowns the velocity gradient t, the pseudostress tensor σ, the tempera-
ture/concentration gradient t̃j , and suitable auxiliary variables ρj depending on t̃j , u, and φj , all of
which are defined, respectively, by

t := ∇u, σ := ν t− p I, t̃j := ∇φj ,

ρj := Qj t̃j −
1

2
Rj φj u, ∀ j ∈ {1, 2}, in Ω .

(2.6)

In this way, applying the matrix trace to the tensors t and σ, and utilizing the incompressibility
condition div(u) = 0 in Ω, one arrives at tr(t) = 0 in Ω and

p = − 1

n
tr(σ) in Ω. (2.7)

Hence, replacing back (2.7) in the second equation of (2.6), we find that our model problem (2.1)–(2.4)
can be rewritten, equivalently, as follows: Find (u, t,σ) and (φj , t̃j ,ρj), j ∈ {1, 2}, in suitable spaces
to be indicated below, such that

∇u = t in Ω,

ν t = σd in Ω,

K−1u + F |u|u− div(σ) = f(φ) in Ω,∫
Ω

tr(σ) = 0,

∇φj = t̃j in Ω,

Qj t̃j −
1

2
Rj φj u = ρj in Ω,

1

2
Rj u · t̃j − div(ρj) = 0 in Ω,

u = uD and φ = φD on Γ,

(2.8)

where the Dirichlet datum for φ is certainly given by φD := (φ1,D, φ2,D). At this point we stress that,
as suggested by (2.7), p is eliminated from the present formulation and computed afterwards in terms
of σ by using that identity. This fact justifies the fourth equation in (2.8), which aims to ensure that
the resulting p does belong to L2

0(Ω).

5



2.2 The fully-mixed variational formulation

In this section we follow [17] and [18] to derive a fully-mixed formulation in a Banach spaces framework
for the coupled system given by (2.8). To this end, we first multiply the third equation of (2.8) by a
test function v associated with the unknown u, which formally yields∫

Ω
K−1 u · v + F

∫
Ω
|u|u · v −

∫
Ω

v · div(σ) =

∫
Ω

f(φ) · v . (2.9)

Then, applying the Hölder and Cauchy-Schwarz inequalities, we find that the Forchheimer term, given
by the second expression in (2.9), can be bounded as∣∣∣∣∫

Ω
|u|u · v

∣∣∣∣ ≤ ‖u‖0,2`;Ω ‖u‖0,2`;Ω ‖v‖0,j;Ω ,
where `, j ∈ (1,+∞) are conjugate to each other, that is 1

` + 1
j = 1. In this way, while we could

continue our analysis with arbitrary values of ` and j, and hence with u and v living in the Lebesgue
spaces L2`(Ω) and Lj(Ω), respectively, we prefer for simplicity to make the latter to coincide, that is
such that 2` = j, which gives ` = 3

2 and j = 3, so that both u and v belong to L3(Ω). Consequently,
the fact that L3(Ω) is certainly contained in L2(Ω) and the uniform boundedness of K guarantee that
the first term in (2.9) is bounded as well, whereas for the third and fourth ones to be well-defined we
need to impose that div(σ) and f(φ) lie in L3/2(Ω).

Now, given t ∈ (1,+∞), we introduce the Banach space

H(divt; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lt(Ω)

}
, (2.10)

which is endowed with the natural norm

‖τ‖divt;Ω := ‖τ‖0,Ω + ‖div(τ )‖0,t;Ω ∀ τ ∈ H(divt; Ω) .

Then, proceeding as in [24, eq. (1.43), Section 1.3.4] (see also [11, Section 4.1], [17, Section 3.1]), one
can prove that for each t ≥ 2n

n+2 there holds

〈τn,v〉Γ =

∫
Ω

{
τ : ∇v + v · div(τ )

}
∀ (τ ,v) ∈ H(divt; Ω)×H1(Ω) , (2.11)

which says, in particular, that τn ∈ H−1/2(Γ) for all τ ∈ H(divt; Ω). In turn, we stress that the fact
that L2(Ω) is continuously embedded into Lt(Ω) for each t ∈ (1, 2) implies that for this range of t
there holds H(div; Ω) ⊂ H(divt; Ω).

Next, if we look originally for t in L2(Ω), then from the first equation of (2.8) we would have that
u ∈ H1(Ω), which is embedded in L3(Ω), so that applying (2.11) to τ ∈ H(div3/2; Ω) and u, and
employing the Dirichlet boundary condition on u, we obtain from that equation that∫

Ω
τ : t +

∫
Ω

u · div(τ ) = 〈τn,uD〉Γ . (2.12)

Actually, because of the incompressibility condition satisfied by u (cf. second equation of (2.1)), which
is reconfirmed by the second equation of (2.8), t must be sought in L2

tr(Ω), where

L2
tr(Ω) :=

{
r ∈ L2(Ω) : tr(r) = 0 in Ω

}
.
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Moreover, testing the aforementioned last identity against r ∈ L2
tr(Ω), which requires σ ∈ L2(Ω), thus

yielding σ ∈ H(div3/2; Ω) as well (recall that div(σ) must lie in L3/2(Ω)), we arrive at

ν

∫
Ω

t : r−
∫

Ω
σd : r = 0 . (2.13)

According to the previous analysis, the weak formulation of the Brinkman-Forchheimer part of our
coupled problem (2.8) reduces at first instance to: Find (u, t,σ) ∈ L3(Ω)×L2

tr(Ω)×H(div3/2; Ω) such
that (2.9), (2.12), and (2.13) hold for all (v, r, τ ) ∈ L3(Ω)× L2

tr(Ω)×H(div3/2; Ω).

However, similarly as in [17] (see also [11, 18]), we consider the decomposition

H(div3/2; Ω) = H0(div3/2; Ω)⊕ RI ,

where

H0(div3/2; Ω) :=
{
τ ∈ H(div3/2; Ω) :

∫
Ω

tr(τ ) = 0
}

and RI is a topological supplement for H0(div3/2; Ω). Then, it is clear from the fourth equation of (2.8)
that actually σ ∈ H0(div3/2; Ω). In addition, it is readily seen, using the compatibility condition (2.5),
that both sides of (2.12) explicitly vanish when τ ∈ RI, and hence testing against τ ∈ H(div3/2; Ω) is
equivalent to doing it against τ ∈ H0(div3/2; Ω). Therefore, denoting from now on

~u := (u, t), ~w := (w, s), ~v := (v, r) ∈ L3(Ω)× L2
tr(Ω) ,

and suitably grouping the equations (2.9), (2.12), and (2.13), the aforementioned weak formulation
reads: Find (~u,σ) ∈

(
L3(Ω)× L2

tr(Ω)
)
×H0(div3/2; Ω) such that

[a(~u), ~v] + [b(~v),σ] = [Fφ, ~v] ∀ ~v ∈ L3(Ω)× L2
tr(Ω),

[b(~u), τ ] = [GD, τ ] ∀ τ ∈ H0(div3/2; Ω),
(2.14)

where the nonlinear operator a :
(
L3(Ω) × L2

tr(Ω)
)
→
(
L3(Ω) × L2

tr(Ω)
)′

, the linear and bounded
operator b :

(
L3(Ω)× L2

tr(Ω)
)
→ H0(div3/2; Ω)′, and the functional GD ∈ H0(div3/2; Ω)′, are defined,

respectively, as

[a(~w), ~v] :=

∫
Ω

K−1 w · v + F

∫
Ω
|w|w · v + ν

∫
Ω

s : r , (2.15)

[b(~v), τ ] := −
∫

Ω
v · div(τ )−

∫
Ω
τ : r , (2.16)

and
[GD, τ ] := −〈τn,uD〉Γ , (2.17)

for all ~w, ~v ∈ L3(Ω)×L2
tr(Ω), and for all τ ∈ H0(div3/2; Ω). In turn, given ϕ := (ϕ1, ϕ2) in the spaces

to be indicated below, the functional Fϕ is given by

[Fϕ, ~v] :=

∫
Ω

f(ϕ) · v ∀ ~v ∈ L3(Ω)× L2
tr(Ω) . (2.18)

In all the terms above, [·, ·] denotes the duality pairing induced by the corresponding operators.

On the other hand, for the double-diffusion equations in (2.8) we proceed analogously as for the
derivation of (2.9), (2.12), and (2.13). In fact, multiplying the sixth equation of (2.8) by a test function
r̃j associated with the unknown t̃j , we formally obtain∫

Ω
Qj t̃j · r̃j −

1

2
Rj

∫
Ω
φj u · r̃j −

∫
Ω
ρj · r̃j = 0 . (2.19)
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Then, employing again the Cauchy-Schwarz and Hölder inequalities, we find that the convective term
from the foregoing equation can be bounded as∣∣∣∣∫

Ω
φj u · r̃j

∣∣∣∣ ≤ ‖φj‖0,2r;Ω ‖u‖0,2s;Ω ‖r̃j‖0,Ω ,
where r and s are conjugate to each other. But, knowing already that u is sought in L3(Ω), we are
forced to choose s = 3/2, which yields r = 3, and hence we look for φj in L6(Ω), whereas r̃j lies in
L2(Ω). As a consequence of the latter and the fact that Qj ∈ L∞(Ω), j ∈ {1, 2}, we notice that the
first and third terms of (2.19) are bounded if we look for both t̃j and ρj in L2(Ω). Now, we introduce
the vector version of (2.10), that is for each t ∈ (1,+∞) we set

H(divt; Ω) :=
{
η ∈ L2(Ω) : div(η) ∈ Lt(Ω)

}
.

Then, noting from the fifth equation of (2.8) that φj ∈ H1(Ω), which is embedded in L6(Ω), and
then applying the vector-scalar version of (2.11) to ηj ∈ H(div6/5; Ω) and φj , and using the Dirichlet
boundary condition on φj , it follows from that equation that∫

Ω
t̃j · ηj +

∫
Ω
φj div(ηj) =

〈
ηj · n, φj,D

〉
Γ
. (2.20)

Finally, testing the seventh equation of (2.8) against ψj ∈ L6(Ω), which requires div(ρj) ∈ L6/5(Ω),
thus yielding ρj ∈ H(div6/5; Ω) as well, we get

1

2
Rj

∫
Ω
ψj u · t̃j −

∫
Ω
ψj div(ρj) = 0 . (2.21)

Similarly as before for H(divt; Ω), we notice here that η · n ∈ H−1/2(Γ) for all η ∈ H(divt; Ω),
t ∈ (1,+∞). In addition, for each t ∈ (1, 2) there holds H(div; Ω) ⊂ H(divt; Ω).

Hence, setting from now on

~φj := (φj , t̃j) , ~ϕj := (ϕj , s̃j) , ~ψj := (ψj , r̃j) ∈ L6(Ω)× L2(Ω) ,

and conveniently grouping (2.19), (2.20), and (2.21), the weak formulation of the double-diffusion
equations in (2.8) reads: Find (~φj ,ρj) ∈

(
L6(Ω)× L2(Ω)

)
×H(div6/5; Ω), j ∈ {1, 2}, such that

[ãj(~φj), ~ψj ] + [cj(u)(~φj), ~ψj ] + [̃b(~ψj),ρj ] = 0 ∀ ~ψj ∈ L6(Ω)× L2(Ω),

[̃b(~φj),ηj ] = [G̃j ,ηj ] ∀ηj ∈ H(div6/5; Ω),
(2.22)

where the linear and bounded operators ãj , cj(w) :
(
L6(Ω)×L2(Ω)

)
→
(
L6(Ω)×L2(Ω)

)′
(for a given

w ∈ L3(Ω)), and b̃ :
(
L6(Ω) × L2(Ω)

)
→ H(div6/5; Ω)′, and the bounded linear functional G̃j , are

defined, respectively, as

[ãj(~ϕj), ~ψj ] :=

∫
Ω

Qj s̃j · r̃j , (2.23)

[cj(w)(~ϕj), ~ψj ] :=
1

2
Rj

{∫
Ω
ψj w · s̃j −

∫
Ω
ϕj w · r̃j

}
, (2.24)

[̃b(~ψj),ηj ] := −
∫

Ω
ψj div(ηj)−

∫
Ω
ηj · r̃j , (2.25)
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and
[G̃j ,ηj ] := −

〈
ηj · n, φj,D

〉
Γ
, (2.26)

for all ~ϕj , ~ψj ∈ L6(Ω)× L2(Ω), and for all ηj ∈ H(div6/5; Ω).

Summarizing, the fully-mixed formulation for the coupled problem (2.8) reduces to (2.14) and (2.22),
that is: Find (~u,σ) ∈

(
L3(Ω)×L2

tr(Ω)
)
×H0(div3/2; Ω) and (~φj ,ρj) ∈

(
L6(Ω)×L2(Ω)

)
×H(div6/5; Ω),

j ∈ {1, 2}, such that

[a(~u), ~v] + [b(~v),σ] = [Fφ, ~v] ∀ ~v ∈ L3(Ω)× L2
tr(Ω),

[b(~u), τ ] = [GD, τ ] ∀ τ ∈ H0(div3/2; Ω),

[ãj(~φj), ~ψj ] + [cj(u)(~φj), ~ψj ] + [̃b(~ψj),ρj ] = 0 ∀ ~ψj ∈ L6(Ω)× L2(Ω),

[̃b(~φj),ηj ] = [G̃j ,ηj ] ∀ηj ∈ H(div6/5; Ω).

(2.27)

3 Analysis of the coupled problem

In this section we combine classical results on nonlinear monotone operators and the Babuška-Brezzi
theory in Banach spaces, with the Banach fixed-point theorem, to prove the well-posednees of (2.27)
under suitable smallness assumptions on the data. To that end we first collect some previous results
and notations that will serve for the forthcoming analysis.

3.1 Preliminaries

We begin by establishing the following abstract result.

Theorem 3.1 Let X1, X2 and Y be separable and reflexive Banach spaces, being X1 and X2 uniformly
convex, and set X := X1 ×X2. Let A : X → X ′ be a nonlinear operator, B ∈ L(X,Y ′), and let V be
the kernel of B, that is,

V :=
{
~v = (v1, v2) ∈ X : B(~v) = 0

}
.

Assume that

(i) there exist constants L > 0 and p1, p2 ≥ 2, such that

‖A(~u)−A(~v)‖X′ ≤ L

2∑
j=1

{
‖uj − vj‖Xj +

(
‖uj‖Xj + ‖vj‖Xj

)pj−2‖uj − vj‖Xj
}

for all ~u = (u1, u2), ~v = (v1, v2) ∈ X,

(ii) the family of operators
{
A( ·+ ~z) : V → V ′ : ~z ∈ X

}
is uniformly strongly monotone, that is

there exists α > 0 such that

[A(~u+ ~z)−A(~v + ~z), ~u− ~v] ≥ α ‖~u− ~v‖2X ,

for all ~z ∈ X, and for all ~u,~v ∈ V , and

(iii) there exists β > 0 such that

sup
~v∈X
~v 6=0

[B(~v), τ ]

‖~v‖X
≥ β ‖τ‖Y ∀ τ ∈ Y .
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Then, for each (F ,G) ∈ X ′ × Y ′ there exists a unique (~u, σ) ∈ X × Y such that

[A(~u), ~v] + [B(~v), σ] = [F , ~v] ∀~v ∈ X ,

[B(~u), τ ] = [G, τ ] ∀ τ ∈ Y .
(3.1)

Moreover, there exist positive constants C1 and C2, depending only on L,α, and β, such that

‖~u‖X ≤ C1M(F ,G) (3.2)

and

‖σ‖Y ≤ C2

{
M(F ,G) +

2∑
j=1

M(F ,G)pj−1

}
, (3.3)

where

M(F ,G) := ‖F‖X′ + ‖G‖Y ′ +
2∑
j=1

‖G‖pj−1
Y ′ + ‖A(0)‖X′ . (3.4)

Proof. We begin by noting that the unique solvability of problem (3.1) follows from hypotheses (i)–(iii)
and a direct application of a slight modification of [12, Theorem 3.1]. In fact, it suffices to observe
that this latter result remains valid if the continuity and strict monotonicity hypotheses given by [12,
(ii) and (iii)] are assumed to hold with different pairs (p1, p2). Now, in order to obtain (3.2)–(3.3),
and similarly to [12, Theorem 3.1], we first note that ~u can be decomposed as

~u = ~uV + ~uG , (3.5)

with ~uV ∈ V and ~uG ∈ X satisfying

B(~uG) = G and ‖~uG‖X ≤
1

β
‖G‖Y ′ . (3.6)

We notice that (3.6) is consequence of hypothesis (iii) and the open mapping theorem (cf. [21, Lemmas
A.36 and A.42]). In turn, taking ~v = ~uV ∈ V in the first equation of (3.1), we have

[A(~uV + ~uG)−A(0 + ~uG), ~uV ] = [F , ~uV ]− [A(~uG), ~uV ] .

Then, combining hypothesis (i), (ii) and (3.6), we deduce that

α ‖~uV ‖2X ≤
{
‖F‖X′ + ‖A(~uG)‖X′

}
‖~uV ‖X

≤ c1

{
‖F‖X′ + ‖G‖Y ′ +

2∑
j=1

‖G‖pj−1
Y ′ + ‖A(0)‖X′

}
‖~uV ‖X ,

with c1 > 0 depending only on β and L, which yields

‖~uV ‖X ≤
c1

α

{
‖F‖X′ + ‖G‖Y ′ +

2∑
j=1

‖G‖pj−1
Y ′ + ‖A(0)‖X′

}
. (3.7)

In this way, employing (3.6) and (3.7) in (3.5), we deduce (3.2). On the other hand, from the first
equation of (3.1), and combining hypotheses (iii) and (i), we find that

‖σ‖Y ≤
1

β

{
‖F‖X′ + ‖A(~u)‖X′

}
≤ c2

{
‖F‖X′ + ‖~u‖X +

2∑
j=1

‖~u‖pj−1
X + ‖A(0)‖X′

}
,

(3.8)
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with c2 > 0 depending only on β and L. Then, (3.2) and (3.8) implies (3.3), which ends the proof. �

Next, we establish the stability properties of the operators and functionals involved in (2.27). We
begin by observing that the linear operators b, ãj , and b̃, j ∈ {1, 2}, satisfy the boundedness estimates∣∣[b(~v), τ ]

∣∣ ≤ ‖~v‖ ‖τ‖div3/2;Ω ∀ ~v ∈ H , ∀ τ ∈ H0(div3/2; Ω) , (3.9)∣∣[ãj(~φj), ~ψj ]∣∣ ≤ ‖Qj‖0,∞,Ω ‖~φj‖ ‖~ψj‖ ∀ ~φj , ~ψj ∈ H̃ , (3.10)∣∣[̃b(~ψj),ηj ]∣∣ ≤ ‖~ψj‖ ‖ηj‖div6/5;Ω ∀ ~ψj ∈ H̃ , ∀ηj ∈ H(div6/5; Ω) , (3.11)

where
H := L3(Ω)× L2

tr(Ω) and H̃ := L6(Ω)× L2(Ω) .

In turn, employing the Cauchy–Schwarz and Hölder inequalities, and recalling the definition of f (cf.
(2.2)), it is readily seen that, given ϕ ∈ L6(Ω), the functionals GD, Fϕ and G̃j (cf. (2.17), (2.18) and
(2.26)) verify ∣∣[GD, τ ]

∣∣ ≤ CD ‖uD‖1/2,Γ‖τ‖div3/2;Ω ∀ τ ∈ H(div3/2; Ω) , (3.12)∣∣[Fϕ, ~v]
∣∣ ≤ ‖g‖0,Ω (‖ϕ‖0,6;Ω + ‖φr‖0,6;Ω

)
‖~v‖ ∀ ~v ∈ H , (3.13)∣∣[G̃j ,ηj ]∣∣ ≤ C̃D‖φj,D‖1/2,Γ ‖ηj‖div6/5;Ω ∀ηj ∈ H(div6/5; Ω) , (3.14)

where φr := (φ1,r, φ2,r) ∈ L6(Ω), and CD and C̃D are positive constants depending on ‖ip‖, the norm
of the injection of H1(Ω) into Lp(Ω), with p equal to 3 and 6, respectively (see [11, eq. (4.4)] and [10,
Lemma 3.4] for details).

We end this section by collecting the inf-sup conditions for the operators b and b̃ (cf. (2.16) and
(2.25)), and by stating some fundamental properties of the operator cj(w) (cf. (2.24)), whose proofs
follow from a slight adaptation of [17, Lemma 3.3 and Lemma 3.4], respectively, reason why details
are omitted.

Lemma 3.2 There exist positive constants β and β̃, such that

sup
~v∈H
~v 6=0

[b(~v), τ ]

‖~v‖
≥ β ‖τ‖div3/2;Ω ∀ τ ∈ H0(div3/2; Ω) (3.15)

and

sup
~ψ∈H̃
~ψ 6=0

[̃b(~ψ),η]

‖~ψ‖
≥ β̃ ‖η‖div6/5;Ω ∀η ∈ H(div6/5; Ω) . (3.16)

Lemma 3.3 The operator cj(w) : H̃→ H̃′, j ∈ {1, 2}, is bounded for each w ∈ L3(Ω) with bounded-
ness constant given by Rj‖w‖0,3;Ω, and there hold the following additional properties

[cj(w)(~ψj), ~ψj ] = 0 ∀ ~ψj ∈ H̃ , (3.17)∣∣[cj(w)(~φj)− cj(z)(~φj), ~ψj ]
∣∣ ≤ Rj‖w − z‖0,3;Ω‖~φj‖‖~ψj‖ ∀w, z ∈ L3(Ω), ∀ ~φj , ~ψj ∈ H̃ . (3.18)
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3.2 A fixed point strategy

In what follows we proceed similarly to [19] (see also [13, 17, 18]) and utilize a fixed point strategy to
prove the well-posedness of (2.27). Let us first define the operator S : L6(Ω)→ L3(Ω) as

S(ϕ) := u ∀ϕ ∈ L6(Ω) , (3.19)

where (~u,σ) :=
(
(u, t),σ

)
∈ H×H0(div3/2; Ω) is the unique solution (to be confirmed below) of the

problem
[a(~u), ~v] + [b(~v),σ] = [Fϕ, ~v] ∀ ~v ∈ H ,

[b(~u), τ ] = [GD, τ ] ∀ τ ∈ H0(div3/2; Ω) .
(3.20)

In turn, for each j ∈ {1, 2} we let S̃j : L3(Ω)→ L6(Ω) be the operator given by

S̃j(w) := φj ∀w ∈ L3(Ω) , (3.21)

where (~φj ,ρj) :=
(
(φj , t̃j),ρj

)
∈ H̃ ×H(div6/5; Ω) is the unique solution (to be confirmed below) of

the problem

[ãj(~φj), ~ψj ] + [cj(w)(~φj), ~ψj ] + [̃b(~ψj),ρj ] = 0 ∀ ~ψj ∈ H̃ ,

[̃b(~φj),ηj ] = [G̃j ,ηj ] ∀ηj ∈ H(div6/5; Ω) .
(3.22)

Then, we can introduce S̃(w) :=
(
S̃1(w), S̃2(w)

)
∈ L6(Ω) for all w ∈ L3(Ω). Consequently, we set

the operator T : L3(Ω)→ L3(Ω) as

T(w) := S
(
S̃(w)

)
∀w ∈ L3(Ω) , (3.23)

and realize that solving (2.27) is equivalent to finding u ∈ L3(Ω) such that

T(u) = u . (3.24)

3.3 Well-definiteness of the fixed point operator

In this section we show that the uncoupled problems (3.20) and (3.22) are well-posed, which means,
equivalently, that S and S̃ (cf. (3.19) and (3.21)) are indeed well-defined. We begin with the operator
S. To this end, we first observe that, given ϕ ∈ L6(Ω), the problem (3.20) has the same structure
of the one in Theorem 3.1. Therefore, in order to apply this abstract result, we notice that, thanks
to the uniform convexity and separability of Lp(Ω) for p ∈ (1,+∞), all the spaces involved in (3.20),
that is, L3(Ω), L2

tr(Ω) and H0(div3/2; Ω), share the same properties.

We continue our analysis by proving that the nonlinear operator a (cf. (2.15)) satisfies hypothesis
(i) of Theorem 3.1 with p1 = 3 and p2 = 2.

Lemma 3.4 Let us define LBF := max
{
|Ω|1/3 ‖K−1‖0,∞,Ω, F, ν

}
. Then, there holds

‖a(~u)− a(~v)‖H′ ≤ LBF

{
‖u− v‖0,3;Ω + ‖t− r‖0,Ω +

(
‖u‖0,3;Ω + ‖v‖0,3;Ω

)
‖u− v‖0,3;Ω

}
, (3.25)

for all ~u = (u, t), ~v = (v, r) ∈ H.

12



Proof. It follows straightforwardly from the definition of a (cf. (2.15)), along with the triangle,
Cauchy–Schwarz, and Hölder’s inequalities. Further details are omitted. �

Now, let us look at the kernel of the operator b (cf. (2.16)), that is

V :=
{
~v = (v, r) ∈ H : [b(~v), τ ] = 0 ∀ τ ∈ H0(div3/2; Ω)

}
,

which, proceeding similarly to [17, eq. (3.34)], reduces to

V :=
{
~v = (v, r) ∈ H : ∇v = r and v ∈ H1

0(Ω)
}
. (3.26)

The following lemma establishes hypothesis (ii) of Theorem 3.1 for a.

Lemma 3.5 The family of operators
{
a( ·+~z) : V→ V′ : ~z ∈ H

}
is uniformly strongly monotone,

that is, there exists αBF > 0, such that

[a(~u + ~z)− a(~v + ~z), ~u− ~v] ≥ αBF ‖~u− ~v‖2 , (3.27)

for all ~z = (z, s) ∈ H, and for all ~u = (u, t), ~v = (v, r) ∈ V.

Proof. Let ~z = (z, s) ∈ H and ~u = (u, t), ~v = (v, r) ∈ V. Bearing in mind the definition of a (cf.
(2.15)), and using (2.3), we obtain

[a(~u + ~z)− a(~v + ~z), ~u− ~v]

≥ CK ‖u− v‖20,Ω + F

∫
Ω

(
|u + z|(u + z)− |v + z|(v + z)

)
· (u− v) + ν ‖t− r‖20,Ω .

(3.28)

Hence, thanks to [3, Lemma 2.1, eq. (2.1b)] with p = 3, there exists c1(Ω) > 0, depending only on
|Ω|, such that ∫

Ω

(
|u + z|(u + z)− |v + z|(v + z)

)
· (u− v) ≥ c1(Ω) ‖u− v‖30,3;Ω ,

which, together with (3.28), yields

[a(~u + ~z)− a(~v + ~z), ~u− ~v] ≥ CK ‖u− v‖20,Ω + c1(Ω) F ‖u− v‖30,3;Ω + ν ‖t− r‖20,Ω . (3.29)

Next, bounding below the second term on the right hand side of (3.29) by 0, employing the fact that
t− r = ∇(u−v) in Ω and u−v ∈ H1

0(Ω) (cf. (3.26)), and using the continuous injection i3 of H1(Ω)
into L3(Ω) (see, e.g., [30, Theorem 1.3.4]), we deduce that

[a(~u + ~z)− a(~v + ~z), ~u− ~v] ≥ min
{
CK,

ν

2

}{
‖u− v‖21,Ω + ‖t− r‖20,Ω

}
≥ min

{
CK,

ν

2

}{
‖i3‖−2‖u− v‖20,3;Ω + ‖t− r‖20,Ω

}
,

which yields (3.27) with αBF := min
{
CK,

ν
2

}
min

{
1, ‖i3‖−2

}
. �

As a corollary of Lemma 3.5, taking in particular ~u− ~v, 0 ∈ V and ~z = ~v ∈ H in (3.27), we arrive
at

[a(~u)− a(~v), ~u− ~v] ≥ αBF ‖~u− ~v‖2 , (3.30)

for all ~u, ~v ∈ H such that ~u− ~v ∈ V.

We now establish the unique solvability of the nonlinear problem (3.20).
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Lemma 3.6 For each ϕ ∈ L6(Ω), the problem (3.20) has a unique solution (~u,σ) :=
(
(u, t),σ

)
∈

H×H0(div3/2; Ω). Moreover, there exists a positive constant CS, independent of ϕ, such that

‖S(ϕ)‖0,3;Ω ≤ ‖~u‖ ≤ CS

{
‖g‖0,Ω

(
‖ϕ‖0,6;Ω + ‖φr‖0,6;Ω

)
+ ‖uD‖1/2,Γ + ‖uD‖21/2,Γ

}
. (3.31)

Proof. Given ϕ ∈ L6(Ω), we first recall from (3.9), (3.12) and (3.13) that b,GD and Fϕ are all linear
and bounded. Thus, bearing in mind Lemmas 3.4 and 3.5, and the inf-sup condition of b given by
(3.15) (cf. Lemma 3.2), a straightforward application of Theorem 3.1, with p1 = 3 and p2 = 2, to
problem (3.20) completes the proof. In particular, noting from (2.15) that a(0) is the null functional,
we get from (3.4) that

M(Fϕ, GD) = ‖Fϕ‖ + 2‖GD‖ + ‖GD‖2 ,

and hence the a priori estimate (3.2) yields

‖~u‖ ≤ C1

{
‖Fϕ‖+ ‖GD‖+ ‖GD‖2

}
,

with a positive constant C1 depending only on LBF, αBF, and β. The foregoing inequality together
with the bounds of ‖GD‖ and ‖Fϕ‖ (cf. (3.12) and (3.13)) imply (3.31) with CS depending only on
‖i3‖, LBF, αBF, and β, thus completing the proof. �

For later use in the paper we note here that, applying (3.3), and using again the bounds (3.12) and
(3.13) for ‖GD‖ and ‖Fϕ‖, respectively, the a priori estimate for the second component of the solution
to the problem defining S (cf. (3.20)) reduces to

‖σ‖div3/2;Ω ≤ Cσ

2∑
j=1

{(
‖g‖0,Ω

(
‖ϕ‖0,6;Ω + ‖φr‖0,6;Ω

)
+ ‖uD‖1/2,Γ + ‖uD‖21/2,Γ

)j}
, (3.32)

with Cσ depending only on ‖i3‖, LBF, αBF, and β.

Next, we aim to proving the well-posedness of problem (3.22), or, equivalently, the well-definedness
of the operator S̃ (cf. (3.21)), for which, following [17, Lemma 3.6], we first establish the corresponding
hypotheses required by the Babuška–Brezzi theory in Banach spaces. In this way, and similarly to
(3.26) and [17, eq. (3.35)], we first let Ṽ be the kernel of the operator b̃ (cf. (2.25)), that is

Ṽ :=
{
~ψ = (ψ, r̃) ∈ H̃ : ∇ψ = r̃ and ψ ∈ H1

0(Ω)
}
. (3.33)

Then the Ṽ-ellipticity of the operator ãj is stated as follows.

Lemma 3.7 There exists a positive constant α̃j such that

[ãj(~ψj), ~ψj ] ≥ α̃j ‖~ψj‖2 ∀ ~ψj := (ψj , r̃j) ∈ Ṽ . (3.34)

Proof. We proceed as in [17, Lemma 3.2]. In fact, given ~ψj := (ψj , r̃j) ∈ Ṽ, we know from (3.33)
that ∇ψj = r̃j and ψj ∈ H1

0(Ω). Hence, using the fact that Qj is a uniformly positive definite tensor
(cf. (2.3)), and resorting to the Poincaré inequality with positive constant cP , and to the continuous
injection i6 of H1(Ω) into L6(Ω) (see, e.g., [30, Theorem 1.3.4]), we obtain

[ãj(~ψj), ~ψj ] ≥ CQj ‖r̃j‖20,Ω =
CQj

2

{
‖r̃j‖20,Ω + ‖∇ψj‖20,Ω

}
≥

CQj

2

{
‖r̃j‖20,Ω + c−1

P ‖i6‖
−2‖ψj‖20,6;Ω

}
,
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which gives (3.34) with α̃j :=
CQj

2
min

{
1, c−1

P ‖i6‖−2
}

. �

We are now in position to provide the announced result. More precisely, denoting

‖Q‖0,∞;Ω := ‖Q1‖0,∞;Ω + ‖Q2‖0,∞;Ω and ‖φD‖1/2,Γ := ‖φ1,D‖1/2,Γ + ‖φ2,D‖1/2,Γ ,

we have the following lemma.

Lemma 3.8 For each w ∈ L3(Ω), and j ∈ {1, 2}, problem (3.22) has a unique solution (~φj ,ρj) :=(
(φj , t̃j),ρj

)
∈ H̃ ×H(div6/5; Ω). Moreover, there exists a positive constant C

S̃
, independent of w,

such that

‖S̃(w)‖0,6;Ω ≤
2∑
j=1

‖~φj‖ ≤ C
S̃

(
1 + ‖Q‖0,∞;Ω + ‖w‖0,3;Ω

)
‖φD‖1/2,Γ . (3.35)

Proof. We proceed as in [17, Lemma 3.5]. In fact, given w ∈ L3(Ω) and j ∈ {1, 2}, we introduce the
operator Aj(w) : H̃→ H̃′ defined by

[Aj(w)(~φj), ~ψj ] := [ãj(~φj), ~ψj ] + [cj(w)(~φj), ~ψj ] ∀ ~φj , ~ψj ∈ H̃ , (3.36)

where ãj and cj(w) are the operators defined in (2.23) and (2.24), respectively. Then, the problem

(3.22) can be reformulated as: Find (~φj ,ρj) ∈ H̃×H(div6/5; Ω) such that

[Aj(w)(~φj), ~ψj ] + [̃b(~ψj),ρj ] = 0 ∀ ~ψj ∈ H̃ ,

[̃b(~φj),ηj ] = [G̃j ,ηj ] ∀ηj ∈ H(div6/5; Ω) .
(3.37)

Next, we observe from (3.10) and Lemma 3.3 that Aj(w) is bounded, that is there holds∣∣[Aj(w)(~φj), ~ψj ]
∣∣ ≤ (‖Qj‖0,∞;Ω + Rj‖w‖0,3;Ω

)
‖~φj‖ ‖~ψj‖ ∀ ~φj , ~ψj ∈ H̃ . (3.38)

In addition, it is clear from (3.34) and (3.17) that Aj(w) is elliptic on Ṽ (cf. (3.33)) with the

same constant α̃j from (3.34). In turn, recalling that the bounded linear operator b̃ satisfies the

inf-sup condition (3.16) (cf. Lemma 3.2) and that G̃j is a bounded linear functional (cf. (3.14)), a
direct application of the Babuška–Brezzi theory in Banach spaces guarantees that (3.37) is well-posed.
Moreover, the corresponding a priori estimate provided by that theory (cf. [21, eq. (2.30), Theorem
2.34]), and the continuity bounds of G̃j and Aj(w) (cf. (3.14), (3.38)), imply

‖~φj‖ ≤
C̃D

β̃

(
1 +
‖Qj‖0,∞;Ω + Rj‖w‖0,3;Ω

α̃j

)
‖φj,D‖1/2,Γ , (3.39)

which yields (3.35) with C
S̃

:= max{C
S̃1
, C

S̃2
} and C

S̃j
:= α̃−1

j β̃−1C̃D max{1, α̃j , Rj}. �

Similarly as for the derivation of (3.32), we notice that, applying the second a priori estimate
from [21, eq. (2.30), Theorem 2.34], and employing (3.14) and (3.38) to bound ‖G̃j‖ and ‖Aj(w)‖,
respectively, the second component of the solution to the problem defining S̃j (cf. (3.22)) can be
bounded as

‖ρj‖div6/5;Ω ≤
C̃D

β̃2

(
‖Qj‖0,∞;Ω + Rj ‖w‖0,3;Ω

)(
1 +
‖Qj‖0,∞;Ω + Rj ‖w‖0,3;Ω

α̃j

)
‖φj,D‖1/2,Γ . (3.40)
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3.4 Solvability analysis of the fixed-point equation

Having proved the well-posedness of the uncoupled problems (3.20) and (3.22), which ensures that the
operators S, S̃ and T are well defined, we now aim to establish the existence of a unique fixed-point
of the operator T. For this purpose, in what follows we will verify the hypothesis of the Banach
fixed-point theorem. We begin by providing suitable conditions under which T maps a ball into itself.

Lemma 3.9 Given r > 0, let W be the closed ball in L3(Ω) with center at the origin and radius r,
and assume that the data satisfy

‖g‖0,Ω
(
(1 + ‖Q‖0,∞;Ω)‖φD‖1/2,Γ + ‖φr‖0,6;Ω

)
+ ‖uD‖1/2,Γ + ‖uD‖21/2,Γ ≤

r

C(r)
, (3.41)

where C(r) := CS max
{

1, C
S̃

}
(1 + r), and CS and C

S̃
are the constants specified in Lemmas 3.6 and

3.8, respectively. Then, there holds T(W) ⊆W.

Proof. Given w ∈ L3(Ω), from the definition of T (cf. (3.23)) and the a priori estimate for S (cf.
(3.31)), we first obtain

‖T(w)‖0,3;Ω = ‖S(S̃(w))‖0,3;Ω

≤ CS

{
‖g‖0,Ω

(
‖S̃(w)‖0,6;Ω + ‖φr‖0,6;Ω

)
+ ‖uD‖1/2,Γ + ‖uD‖21/2,Γ

}
.

Then, using (3.35) to bound ‖S̃(w)‖0,6;Ω in the foregoing inequality, noting that ‖w‖0,3;Ω ≤ r, and
performing some minor algebraic manipulations, we arrive at

‖T(w)‖0,3;Ω

≤ C(r)
{
‖g‖0,Ω

(
(1 + ‖Q‖0,∞;Ω)‖φD‖1/2,Γ + ‖φr‖0,6;Ω

)
+ ‖uD‖1/2,Γ + ‖uD‖21/2,Γ

}
,

(3.42)

which, thanks to the assumption (3.41), yields ‖T(w)‖0,3;Ω ≤ r and ends the proof. �

We now aim to prove that the operator T is Lipschitz continuous, for which, according to its
definition (cf. (3.23)), it suffices to show that both S and S̃ satisfy this property. We begin with the
corresponding result for S.

Lemma 3.10 Let αBF be given by (3.27). Then, there holds

‖S(φ)− S(ψ)‖0,3;Ω ≤
1

αBF
‖g‖0,Ω ‖φ−ψ‖0,6;Ω ∀φ, ψ ∈ L6(Ω) . (3.43)

Proof. Given φ, ψ ∈ L6(Ω), we let (~u,σ) :=
(
(u, t),σ

)
and (~u0,σ0) :=

(
(u0, t0),σ0

)
∈ H ×

H0(div3/2; Ω) be the corresponding solutions of (3.20), so that u := S(φ) and u0 := S(ψ). Then,
subtracting the corresponding problems from (3.20), we obtain

[a(~u)− a(~u0), ~v] + [b(~v),σ − σ0] = [Fφ − Fψ, ~v] ∀ ~v ∈ H ,

[b(~u− ~u0), τ ] = 0 ∀ τ ∈ H0(div3/2; Ω) .
(3.44)

We note from the second equation of (3.44) that ~u− ~u0 ∈ V (cf. (3.26)). Hence, taking ~v := ~u− ~u0

in the first equation of (3.44), and applying (3.30) with ~u, ~u0 ∈ H, we obtain

αBF ‖~u− ~u0‖2 ≤ [a(~u)− a(~u0), ~u− ~u0] = [Fφ − Fψ, ~u− ~u0] . (3.45)
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In turn, recalling the definitions of Fφ (cf. (2.18)) and f (cf. (2.2)), employing Hölder’s inequality,
and using that % ≥ 1, we find that

[Fφ − Fψ, ~u− ~u0] =

∫
Ω

{
(ψ1 − φ1)− 1

%
(ψ2 − φ2)

}
g ·
(
u− u0

)
≤ ‖g‖0,Ω ‖φ−ψ‖0,6;Ω ‖~u− ~u0‖ ,

(3.46)

which, replaced back into (3.45), yields (3.43) and completes the proof. �

We now establish the Lipschitz-continuity of S̃.

Lemma 3.11 There exists a positive constant L
S̃

, depending on Rj , α̃j, and β̃, j ∈ {1, 2}, such that

‖S̃(w)− S̃(z)‖0,6:Ω ≤ L
S̃

(
1 + ‖Q‖0,∞;Ω + ‖w‖0,3;Ω

)
‖φD‖1/2,Γ ‖w − z‖0,3;Ω , (3.47)

for all w, z ∈ L3(Ω).

Proof. We proceed similarly to [17, Lemma 3.8]. In fact, given w, z ∈ L3(Ω), for each j ∈ {1, 2} we
let (~φj ,ρj) :=

(
(φj , t̃j),ρj

)
, (~ϕj , ξj) :=

(
(ϕj , s̃j), ξj

)
∈ H̃×H(div6/5; Ω) be the respective solutions of

(3.22), so that (φ1, φ2) = (S̃1(w), S̃2(w)) = S̃(w) and (ϕ1, ϕ2) = (S̃1(z), S̃2(z)) = S̃(z). It follows from
the corresponding second equations of (3.22) that ~φj − ~ϕj ∈ Ṽ (cf. (3.33)), and then the Ṽ-ellipticity

of ãj (cf. (3.34)) and the first equations of (3.22) applied to both S̃j(w) and S̃j(z), yield

α̃j ‖~φj − ~ϕj‖2 ≤ [ãj(~φj)− ãj(~ϕj), ~φj − ~ϕj ] = −[cj(w)(~φj)− cj(z)(~ϕj), ~φj − ~ϕj ] .

In turn, adding and subtracting [cj(z)(~φj), ~φj− ~ϕj ], and using the properties (3.17) and (3.18) satisfied
by cj , we deduce from the foregoing inequality that

α̃j‖~φj − ~ϕj‖2 ≤ −[cj(w − z)(~φj), ~φj − ~ϕj ]− [cj(z)(~φj − ~ϕj), ~φj − ~ϕj ]

≤ Rj ‖~φj‖ ‖w − z‖0,3;Ω ‖~φj − ~ϕj‖ ,

which, together with the a priori estimate (3.35), implies (3.47) with L
S̃

:= C
S̃

max
{
α̃−1

1 R1, α̃
−1
2 R2

}
and concludes the proof. �

As a consequence of Lemmas 3.10 and 3.11, we provide next the Lipschitz continuity of T.

Lemma 3.12 Let us define LT := α−1
BF LS̃

, with αBF and L
S̃

satisfying (3.27) and (3.47), respectively.
Then, there holds

‖T(w)−T(z)‖0,3;Ω ≤ LT

(
1 + ‖Q‖0,∞;Ω + ‖w‖0,3;Ω

)
‖g‖0,Ω ‖φD‖1/2,Γ ‖w − z‖0,3;Ω , (3.48)

for all w, z ∈ L3(Ω).

Proof. Let w, z ∈ L3(Ω). Then, from the definition of T (cf. (3.23)), and Lemma 3.10 (cf. (3.43)),
we deduce that

‖T(w)−T(z)‖0,3;Ω = ‖S
(
S̃(w)

)
− S

(
S̃(z)

)
‖0,3;Ω ≤

1

αBF
‖g‖0,Ω ‖S̃(w)− S̃(z)‖0,6;Ω .

Hence, using the Lipschitz-continuity of the operator S̃ (cf. (3.47)), we find that

‖T(w)−T(z)‖0,3;Ω ≤
L
S̃

αBF

(
1 + ‖Q‖0,∞;Ω + ‖w‖0,3;Ω

)
‖g‖0,Ω ‖φD‖1/2,Γ‖w − z‖0,3;Ω ,

which yields (3.48) and ends the proof. �

We are now in position to establish the main result concerning the solvability of (2.27).
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Theorem 3.13 Given r > 0, let W be the closed ball in L3(Ω) with center at the origin and radius
r, and assume that the data satisfy (3.41) and

LT

(
1 + ‖Q‖0,∞;Ω + r

)
‖g‖0,Ω ‖φD‖1/2,Γ < 1 . (3.49)

Then the operator T has a unique fixed point u ∈ W. Equivalently, the coupled problem (2.27) has
a unique solution (~u,σ) ∈ H × H0(div3/2; Ω) and (~φj ,ρj) ∈ H̃ × H(div6/5; Ω), j ∈ {1, 2}, with
u ∈ W. Moreover, there exist positive constants Ci, i ∈ {1, 2, 3, 4}, depending on r, |Ω|, LBF, αBF, β,
‖Qj‖0,∞;Ω, Rj , α̃j, and β̃, such that the following a priori estimates hold

‖~u‖ ≤ C1

{
‖g‖0,Ω

(
‖φD‖1/2,Γ + ‖φr‖0,6;Ω

)
+ ‖uD‖1/2,Γ + ‖uD‖21/2,Γ

}
, (3.50)

‖σ‖div3/2;Ω ≤ C2

2∑
j=1

{(
‖g‖0,Ω

(
‖φD‖1/2,Γ + ‖φr‖0,6;Ω

)
+ ‖uD‖1/2,Γ + ‖uD‖21/2,Γ

)j}
, (3.51)

‖~φj‖ ≤ C3 ‖φj,D‖1/2,Γ , and (3.52)

‖ρj‖div6/5;Ω ≤ C4 ‖φj,D‖1/2,Γ . (3.53)

Proof. We begin by recalling from Lemma 3.9 that, under the assumption (3.41), T maps the ball W
into itself, and hence, for each w ∈W we have that both ‖w‖0,3;Ω and ‖T(w)‖0,3;Ω are bounded by
r. In turn, it is clear from Lemma 3.12 and Hypotheses (3.49) that T is a contraction. Therefore, the
Banach fixed-point theorem provides the existence of a unique fixed point u ∈W of T, equivalently,
the existence of a unique solution (~u,σ) ∈ H × H0(div3/2; Ω) and (~φj ,ρj) ∈ H̃ × H(div6/5; Ω),
j ∈ {1, 2}, of the coupled problem (2.27), with u ∈ W. In addition, it is clear that the estimates
(3.52) and (3.53) follow straightforwardly from (3.39) and (3.40), respectively, whereas proceeding as
in (3.42), that is, combining (3.31) (respectively (3.32)) with (3.35), we obtain (3.50) (respectively
(3.51)), which finishes the proof. �

4 The Galerkin scheme

In this section we introduce and analyze the corresponding Galerkin scheme for the fully-mixed for-
mulation (2.27). The solvability of this scheme is addressed following basically the same techniques
employed throughout Section 3.

4.1 Preliminaries

We first let
{
Th
}
h>0

be a regular family of triangulations of Ω by triangles K (respectively tetrahedra

K in R3), and set h := max
{
hK : K ∈ Th

}
. In turn, given an integer l ≥ 0 and a subset S of Rn,

we denote by Pl(S) the space of polynomials of total degree at most l defined on S. Hence, for each
integer k ≥ 0 and for each K ∈ Th, we define the local Raviart–Thomas space of order k as

RTk(K) := Pk(K) ⊕ P̃k(K) x ,

where x := (x1, . . . , xn)t is a generic vector of Rn, P̃k(K) is the space of polynomials of total degree
equal to k defined on K, and, according to the convention in Section 1, we set Pk(K) := [Pk(K)]n

18



and Pk(K) := [Pk(K)]n×n. In this way, introducing the finite element subspaces:

Hu
h :=

{
vh ∈ L3(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
,

Ht
h :=

{
rh ∈ L2

tr(Ω) : rh|K ∈ Pk(K) ∀K ∈ Th
}
,

Hσh :=
{
τ h ∈ H0(div3/2; Ω) : ctτ h|K ∈ RTk(K) ∀ c ∈ Rn, ∀K ∈ Th

}
,

Hφ
h :=

{
ψh ∈ L6(Ω) : ψh|K ∈ Pk(K) ∀K ∈ Th

}
,

Ht̃
h :=

{
r̃h ∈ L2(Ω) : r̃h|K ∈ Pk(K) ∀K ∈ Th

}
,

Hρ
h :=

{
ηh ∈ H(div6/5; Ω) : ηh|K ∈ RTk(K) ∀K ∈ Th

}
,

(4.1)

and denoting from now on φh := (φ1,h, φ2,h),ϕh := (ϕ1,h, ϕ2,h) ∈ Hφ
h := Hφ

h ×Hφ
h, and

~uh := (uh, th), ~vh := (vh, rh), ~u0,h := (u0,h, t0,h) ∈ Hh := Hu
h ×Ht

h ,

~φj,h := (φj,h, t̃j,h), ~ψj,h := (ψj,h, r̃j,h) ∈ H̃h := Hφ
h ×Ht̃

h ,

the Galerkin scheme for (2.27) reads: Find (~uh,σh) ∈ Hh×Hσh and (~φj,h,ρj,h) ∈ H̃h×Hρ
h, j ∈ {1, 2},

such that

[a(~uh), ~vh] + [b(~vh),σh] = [Fφh , ~vh] ∀ ~vh ∈ Hh ,

[b(~uh), τ h] = [GD, τ h] ∀ τ h ∈ Hσh ,

[ãj(~φj,h), ~ψj,h] + [cj(uh)(~φj,h), ~ψj,h] + [̃b(~ψj,h),ρj,h] = 0 ∀ ~ψj,h ∈ H̃h ,

[̃b(~φj,h),ηj,h] = [G̃j ,ηj.h] ∀ηj,h ∈ Hρ
h .

(4.2)

We now develop the discrete analogue of the fixed-point approach utilized in Section 3.2. To this
end, we first consider the operator Sh : Hφ

h → Hu
h defined by

Sh(ϕh) := uh ∀ϕh ∈ Hφ
h , (4.3)

where (~uh,σh) :=
(
(uh, th),σh

)
∈ Hh×Hσh is the unique solution (to be confirmed below) of the first

two equations of (4.2) with the given ϕh ∈ Hφ
h in place of φh, that is:

[a(~uh), ~vh] + [b(~vh),σh] = [Fϕh , ~vh] ∀ ~vh ∈ Hh ,

[b(~uh), τ h] = [GD, τ h] ∀ τ h ∈ Hσh .
(4.4)

In turn, for each j ∈ {1, 2} we let S̃j,h : Hu
h → Hφ

h be the operator given by

S̃j,h(wh) := φj,h ∀wh ∈ Hu
h , (4.5)

where (~φj,h,ρj,h) :=
(
(φj,h, t̃j,h),ρj,h

)
∈ H̃h ×Hρ

h is the unique solution (to be confirmed below) of
the last two equations of (4.2) with the given wh ∈ Hu

h in place of uh, that is:

[ãj(~φj,h), ~ψj,h] + [cj(wh)(~φj,h), ~ψj,h] + [̃b(~ψj,h),ρj,h] = 0 ∀ ~ψj,h ∈ H̃h ,

[̃b(~φj,h),ηj,h] = [G̃j ,ηj,h] ∀ηj,h ∈ Hρ
h .

(4.6)

19



Then, we set S̃h(wh) :=
(
S̃1,h(wh), S̃2,h(wh)

)
∈ Hφ

h for all wh ∈ Hu
h . Hence, introducing the operator

Th : Hu
h → Hu

h as

Th(wh) := Sh
(
S̃h(wh)

)
∀wh ∈ Hu

h , (4.7)

we realize that solving (4.2) is equivalent to seeking a fixed point of Th, that is: Find uh ∈ Hu
h such

that
Th(uh) = uh . (4.8)

4.2 Solvability Analysis

We begin by proving that (4.4) is well posed, or equivalently that Sh (cf. (4.3)) is well defined. Indeed,
we remark in advance that the respective proof, being the discrete analogue of the one of Lemma 3.6,
makes use again of the abstract result given by Theorem 3.1. Hence, we first set the discrete kernel
of b, which is given by

Vh :=
{
~vh = (vh, rh) ∈ Hh :

∫
Ω
τ h : rh +

∫
Ω

vh · div(τ h) = 0 ∀ τ h ∈ Hσh
}
. (4.9)

Then, following the approach from [17, Section 5], we now prove the discrete inf-sup condition for b
and an intermediate result that will be used to show later on the strong monotonicity of a on Vh.

Lemma 4.1 There exist positive constants βd and Cd such that

sup
~v∈Hh
~v 6=0

[b(~vh), τ h]

‖~vh‖
≥ βd ‖τ h‖div3/2;Ω ∀ τ h ∈ Hσh , (4.10)

and
‖rh‖0,Ω ≥ Cd ‖vh‖0,3;Ω ∀ ~vh = (vh, rh) ∈ Vh . (4.11)

Proof. We proceed as in [6, Lemma 4.2]. In fact, we begin by introducing the discrete space Z0,h

defined by

Z0,h :=
{
τ h ∈ Hσh : [b(vh,0), τ h] =

∫
Ω

vh · div(τ h) = 0 ∀vh ∈ Hu
h

}
,

which, using from (4.1) that div(Hσh ) ⊆ Hu
h , becomes

Z0,h =
{
τ h ∈ Hσh : div(τ h) = 0 in Ω

}
.

Next, by using the abstract equivalence result provided by [17, Lemma 5.1] with the setting X = Hu
h ,

Y = Y1 = Ht
h, Y2 =

{
0
}

, V = Vh, Z = Hσh , and Z0 = Z0,h, where X,Y, Y1, Y2, V, Z, and Z0

correspond to the notations employed there, we deduce that (4.10) and (4.11) are jointly equivalent
to the existence of positive constants β1 and β2, independent of h, such that there hold

sup
τh∈Hσ

h
τh 6=0

[b(vh,0), τ h]

‖τ h‖div3/2;Ω
= sup
τh∈Hσ

h
τh 6=0

∫
Ω

vh · div(τ h)

‖τ h‖div3/2;Ω
≥ β1 ‖vh‖0,3;Ω ∀vh ∈ Hu

h (4.12)

and

sup
rh∈Ht

h
rh 6=0

[b(0, rh), τ h]

‖rh‖0,Ω
= sup

rh∈Ht
h

rh 6=0

∫
Ω

rh : τ h

‖rh‖0,Ω
≥ β2 ‖τ h‖div3/2;Ω ∀ τ h ∈ Z0,h . (4.13)
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Then, we observe that (4.12) follows from a slight adaptation of [17, eq. (5.45)]. Furthermore, recalling
from [24, Lemma 2.3] that there exists a constant c1 > 0, depending only on Ω, such that

c1 ‖τ‖20,Ω ≤ ‖τ d‖20,Ω + ‖div(τ )‖20,Ω ∀ τ ∈ H0(div; Ω) ,

and using the fact that τ d
h ∈ Ht

h, we easily get (4.13) with β2 = c
1/2
1 . �

We now establish the discrete strong monotonicity and continuity properties of a (cf. (2.15)).

Lemma 4.2 The family of operators
{
a(· + ~zh) : Vh → V′h : ~zh ∈ Hh

}
is uniformly strongly

monotone, that is, there exists αBF,d > 0, such that

[a(~uh + ~zh)− a(~vh + ~zh), ~uh − ~vh] ≥ αBF,d ‖~uh − ~vh‖2, (4.14)

for all ~zh = (zh, sh) ∈ Hh, and for all ~uh = (uh, th), ~vh = (vh, rh) ∈ Vh (cf. (4.9)). In addition, the
operator a : Hh → H′h is continuous in the sense of (3.25), with the same constant LBF.

Proof. We follow an analogous reasoning to the proof of Lemma 3.5. In fact, let ~zh = (zh, sh) ∈ Hh

and ~uh = (uh, th), ~vh = (vh, rh) ∈ Vh. Then, according to the definition of a (cf. (2.15)), and using
(2.3) and [3, Lemma 2.1, eq. (2.1b)] with p = 3, we obtain, similarly to (3.29)

[a(~uh +~zh)−a(~vh +~zh), ~uh−~vh] ≥ CK‖uh−vh‖20,Ω + c1(Ω) F ‖uh−vh‖30,3;Ω + ν ‖th− rh‖20,Ω . (4.15)

Next, bounding below the first and second terms on the right hand side of (4.15) by 0, and employing
the fact that ~uh − ~vh := (uh − vh, th − rh) ∈ Vh in combination with the estimate (4.11), we get

[a(~uh + ~zh)− a(~vh + ~zh), ~uh − ~vh] ≥ ν

2
min

{
1, C2

d

}{
‖uh − vh ‖20,3;Ω + ‖th − rh‖20,Ω

}
,

which gives (4.14) with αBF,d :=
ν

2
min

{
1, C2

d

}
. Furthermore, we now observe that for ~uh = (uh, th),

~vh = (vh, rh) ∈ Hh there certainly holds

‖a(~uh)− a(~vh)‖H′h ≤ ‖a(~uh)− a(~vh)‖H′ ,

whence the required continuity property of a : Hh → H′h follows directly from (3.25). �

We are now in position of establishing the discrete analogue of Lemma 3.6.

Lemma 4.3 For each ϕh ∈ Hφ
h, the problem (4.4) has a unique solution (~uh,σh) =

(
(uh, th),σh

)
∈

Hh ×Hσh . Moreover, there exists a positive constant CS,d, depending only on LBF, αBF,d, and βd, and
hence independent of ϕh, such that

‖Sh(ϕh)‖0,3;Ω ≤ ‖~uh‖ ≤ CS,d

{
‖g‖0,Ω

(
‖ϕh‖0,6;Ω + ‖φr‖0,6;Ω

)
+ ‖uD‖1/2,Γ + ‖uD‖21/2,Γ

}
. (4.16)

Proof. According to Lemma 4.2 and the discrete inf-sup condition for b provided by (4.10) (cf. Lemma
4.1), the proof follows from a direct application of Theorem 3.1, with p1 = 3 and p2 = 2, to the discrete
setting represented by (4.4). In particular, the a priori bound (4.16) is consequence of the abstract
estimate (3.2) applied to (4.4), which makes use of the bounds for GD and Fϕh given by (3.12)–(3.13).

�

We remark here that, proceeding similarly to the derivation of (3.32), we obtain

‖σh‖div3/2;Ω ≤ Cσ,d

2∑
j=1

{(
‖g‖0,Ω

(
‖ϕh‖0,6;Ω + ‖φr‖0,6;Ω

)
+ ‖uD‖1/2,Γ + ‖uD‖21/2,Γ

)j}
, (4.17)
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with Cσ,d depending only on LBF, αBF,d, and βd.

Next, we aim to show that the discrete operator S̃h is well defined. To this end, we now let Ṽh be
the discrete kernel of b̃, that is

Ṽh :=
{
~ψh = (ψh, r̃h) ∈ H̃h :

∫
Ω
ηh · r̃h +

∫
Ω
ψh div(ηh) = 0 ∀ηh ∈ Hρ

h

}
.

Thus, we can establish a preliminary lemma, whose proof follows almost verbatim the one of Lemma
4.1 (see also [6, Lemma 4.2]).

Lemma 4.4 There exist positive constants β̃d and C̃d such that

sup
~ψj,h∈H̃h

~ψj,h 6=0

[̃b(~ψj,h),ηj,h]

‖~ψj,h‖
≥ β̃d ‖ηj,h‖div6/5;Ω ∀ηj,h ∈ Hρ

h , (4.18)

and
‖r̃j,h‖0,Ω ≥ C̃d ‖ψj,h‖0,6;Ω ∀ ~ψj,h = (ψj,h, r̃j,h) ∈ Ṽh . (4.19)

The discrete analogue of Lemma 3.8 is established next.

Lemma 4.5 For each wh ∈ Hu
h , and j ∈ {1, 2}, problem (4.6) has a unique solution (~φj,h,ρj,h) =(

(φj,h, t̃j,h),ρj,h
)
∈ H̃h×Hρ

h. Moreover, there exists a positive constant C
S̃,d

, independent of wh, such
that

‖S̃h(wh)‖0,6;Ω ≤
2∑
j=1

‖~φj,h‖ ≤ CS̃,d

(
1 + ‖Q‖0,∞;Ω + ‖wh‖0,3;Ω

)
‖φD‖1/2,Γ . (4.20)

Proof. We proceed as in Lemma 3.8. In fact, given wh ∈ Hu
h , we first recall from (3.36) and (3.38)

that Aj(wh) is bounded. Then, given ~ψj,h := (ψj,h, r̃j,h) ∈ Ṽh, we easily deduce from (2.3), (4.19),
and simple algebraic manipulations, that

[ãj(~ψj,h), ~ψj,h] =

∫
Ω

Qj r̃j,h · r̃j,h ≥ α̃j,d ‖~ψj,h‖2 , with α̃j,d :=
CQj

2
min

{
1, C̃2

d

}
, (4.21)

which, together with the fact that [cj(wh)(~ψj,h), ~ψj,h] = 0 (cf. (3.17)), yields the Ṽh-ellipticity of both

ãj and Aj(wh) with constant α̃j,d (cf. (4.21)). In addition, the operator b̃ satisfies the discrete inf-sup
condition (4.18) (cf. Lemma 4.4). Thus, we conclude by a direct application of the Babuška–Brezzi
theory in Banach spaces that (4.6) is well-posed for each j ∈ {1, 2}. In addition, the a priori estimate
(4.20) follows similarly to (3.35) with C

S̃,d
depending only on Rj , α̃j,d, and β̃d. �

On the other hand, we notice that, following the same arguments yielding (3.40), we are able to
show that

‖ρj,h‖div6/5;Ω ≤
C̃D

β̃2
d

(
‖Qj‖0,∞;Ω + Rj ‖wh‖0,3;Ω

)(
1 +
‖Qj‖0,∞;Ω + Rj ‖wh‖0,3;Ω

α̃j,d

)
‖φj,D‖1/2,Γ . (4.22)

In what follows we analyze the fixed-point equation (4.8). We begin with the discrete version of
Lemma 3.9, whose proof, being a simple translation of the arguments proving that lemma, is omitted.
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Lemma 4.6 Given r > 0, let Wh be the closed ball in Hu
h with center at the origin and radius r, and

assume that the data satisfy

‖g‖0,Ω
((

1 + ‖Q‖0,∞;Ω

)
‖φD‖1/2,Γ + ‖φr‖0,6;Ω

)
+ ‖uD‖1/2,Γ + ‖uD‖21/2,Γ ≤

r

Cd(r)
, (4.23)

where Cd(r) := CS,d max
{

1, C
S̃,d

}
(1 + r). Then Th(Wh) ⊆Wh.

Next, we address the discrete counterparts of Lemmas 3.10 and 3.11, whose proofs, being almost
verbatim of the continuous ones, are omitted. We just remark that Lemma 4.7 below is derived using
the strong monotonicity of a on Vh (cf. (4.14)), whereas the Ṽh-ellipticity of ãj (cf. (4.21)) and
properties (3.17)–(3.18) are employed to obtain Lemma 4.8. Thus, we simply state the corresponding
results as follows.

Lemma 4.7 Let αBF,d be given by (4.14). Then, there holds

‖Sh(φh)− Sh(ψh)‖0,3;Ω ≤
1

αBF,d
‖g‖0,Ω ‖φh −ψh‖0,6;Ω ∀φh, ψh ∈ Hφ

h .

Lemma 4.8 There exists a positive constant L
S̃,d

, depending only on Rj , α̃j,d, and β̃d, j ∈ {1, 2}, such
that

‖S̃h(wh)− S̃h(zh)‖0,6:Ω ≤ L
S̃,d

(
1 + ‖Q‖0,∞;Ω + ‖wh‖0,3;Ω

)
‖φD‖1/2,Γ ‖wh − zh‖0,3;Ω , (4.24)

for all wh, zh ∈ Hu
h .

As a straightforward consequence of Lemmas 4.7 and 4.8, we now state the Lipschitz-continuity of
the operator Th (cf. Lemma 3.12).

Lemma 4.9 Let us define LT,d := α−1
BF,d LS̃,d

, with αBF,d and L
S̃,d

satisfying (4.14) and (4.24), respec-
tively. Then, there holds

‖Th(wh)−Th(zh)‖0,3;Ω ≤ LT,d

(
1 + ‖Q‖0,∞;Ω + ‖wh‖0,3;Ω

)
‖g‖0,Ω ‖φD‖1/2,Γ ‖wh − zh‖0,3;Ω , (4.25)

for all wh, zh ∈ Hu
h .

We are now in position of establishing the well-posedness of (4.2).

Theorem 4.10 Given r > 0, let Wh be the closed ball in Hu
h with center at the origin and radius r,

and assume that the data satisfy (4.23) and

LT,d

(
1 + ‖Q‖0,∞;Ω + r

)
‖g‖0,Ω ‖φD‖1/2,Γ < 1 . (4.26)

Then the operator Th has a unique fixed point uh ∈Wh. Equivalently, the coupled problem (4.2) has a
unique solution (~uh,σh) ∈ Hh×Hσh and (~φj,h,ρj,h) ∈ H̃h×Hρ

h, j ∈ {1, 2}, with uh ∈Wh. Moreover,
there exist positive constants Ci,d, i ∈ {1, 2, 3, 4}, depending on r, |Ω|, LBF, αBF,d, βd, ‖Qj‖0,∞;Ω, Rj , α̃j,d,

and β̃d, such that the following a priori estimates hold

‖~uh‖ ≤ C1,d

{
‖g‖0,Ω

(
‖φD‖1/2,Γ + ‖φr‖0,6;Ω

)
+ ‖uD‖1/2,Γ + ‖uD‖21/2,Γ

}
, (4.27)

‖σh‖div3/2;Ω ≤ C2,d

2∑
j=1

{(
‖g‖0,Ω

(
‖φD‖1/2,Γ + ‖φr‖0,6;Ω

)
+ ‖uD‖1/2,Γ + ‖uD‖21/2,Γ

)j}
, (4.28)

‖~φj,h‖ ≤ C3,d ‖φj,D‖1/2,Γ , and (4.29)

‖ρj,h‖div6/5;Ω ≤ C4,d ‖φj,D‖1/2,Γ . (4.30)
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Proof. It follows similarly to the proof of Theorem 3.13. Indeed, we first notice from Lemma 4.6 that
Th maps the ball Wh into itself. Next, it is easy to see from (4.25) (cf. Lemma 4.9) and (4.26) that
Th is a contraction, and hence the existence and uniqueness results follow from the Banach fixed-point
theorem. In addition, it is clear that the estimates (4.29) and (4.30) follow straightforwardly from
(4.20) and (4.22), respectively, whereas combining (4.16) (respectively (4.17)) with (4.20) we obtain
(4.27) (respectively (4.28)), which ends the proof. �

5 A priori error analysis

In this section we derive the Céa estimate for our Galerkin scheme (4.2) with the finite element sub-
spaces given by (4.1) (cf. Section 4.1), and then use the approximation properties of the latter to
establish the corresponding rates of convergence. In fact, let (~u,σ) = ((u, t),σ) ∈ H×H0(div3/2; Ω)

and (~φj ,ρj) = ((φj , t̃j),ρj) ∈ H̃ × H(div6/5; Ω), j ∈ {1, 2}, with u ∈ W, be the unique solu-

tion of the coupled problem (2.27), and let (~uh,σh) = ((uh, th),σh) ∈ Hh × Hσh and (~φj,h,ρj,h) =

((φj,h, t̃j,h),ρj,h) ∈ H̃h×Hρ
h, j ∈ {1, 2}, with uh ∈Wh, be the unique solution of the discrete coupled

problem (4.2). Then, we are interested in obtaining an a priori estimate for the global error

‖(~u,σ)− (~uh,σh)‖ +
2∑
j=1

‖(~φj ,ρj)− (~φj,h,ρj,h)‖ .

For this purpose, we establish next an ad-hoc Strang-type estimate. Hereafter, given a subspace Xh

of a generic Banach space (X, ‖ · ‖X), we set as usual dist (x,Xh) := inf
xh∈Xh

‖x− xh‖X for all x ∈ X.

Lemma 5.1 Let X1, X2 and Y be separable and reflexive Banach spaces, being X1 and X2 uniformly
convex, and set X := X1 ×X2. Let A : X → X ′ be a nonlinear operator and B ∈ L(X,Y ′), such that
A and B satisfy the hypotheses of Theorem 3.1 with respective constants L,α and β. Furthermore,
let {X1,h}h>0, {X2,h}h>0 and {Yh}h>0 be sequences of finite dimensional subspaces of X1, X2, and Y ,
respectively, set Xh := X1,h ×X2,h, and for each h > 0 consider a nonlinear operator Ah : X → X ′,
such that Ah|Xh : Xh → X ′h and B|Xh : Xh → Y ′h satisfy the hypotheses of Theorem 3.1 as well, with
constants Ld, αd, and βd, all of them independent of h. In turn, given F ∈ X ′, G ∈ Y ′, and a sequence
of functionals {Fh}h>0, with Fh ∈ X ′h for each h > 0, we let (~u, σ) = ((u1, u2), σ) ∈ X × Y and
(~uh, σh) = ((u1,h, u2,h), σh) ∈ Xh × Yh be the unique solutions, respectively, to the problems

[A(~u), ~v] + [B(~v), σ] = [F , ~v] ∀~v ∈ X ,

[B(~u), τ ] = [G, τ ] ∀ τ ∈ Y ,
(5.1)

and
[Ah(~uh), ~vh] + [B(~vh), σh] = [Fh, ~vh] ∀~vh ∈ Xh ,

[B(~uh), τh] = [G, τh] ∀ τh ∈ Yh .
(5.2)

Then, there exists a positive constant CST , depending only on p1, p2, Ld, αd, βd, and ‖B‖, such that

‖~u− ~uh‖X + ‖σ − σh‖Y ≤ CST C1(~u, ~uh)
{
C2(~u) dist (~u,Xh) +

2∑
j=1

dist (~u,Xh)pj−1

+ dist (σ, Yh) + ‖F − Fh‖X′h + ‖A(~u)−Ah(~u)‖X′h
}
,
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where

C1(~u, ~uh) := 1 +

2∑
j=1

(
‖uj‖Xj + ‖uj,h‖Xj

)pj−2
and C2(~u) := 1 +

2∑
j=1

‖uj‖
pj−2
Xj

. (5.3)

Proof. It is basically a suitable modification of the proof of [17, Lemma 6.1] (see also [25, Theorem
B.2]), which in turn, is a modification of [24, Theorem 2.6]. We omit further details and just stress
that the continuity bound and inf-sup condition of the respective linear operator Ah from [17, Lemma
6.1] are now replaced by the corresponding continuity bound and strong monotonicity property of the
present nonlinear operator Ah (cf. hypotheses (i) and (ii) of Theorem 3.1), respectively. �

In order to apply Lemma 5.1, we now observe that the problems (2.27) and (4.2) can be rewritten
as two pairs of corresponding continuous and discrete formulations of the type defined by (5.1) and
(5.2), namely

[a(~u), ~v] + [b(~v),σ] = [Fφ, ~v] ∀ ~v ∈ H ,

[b(~u), τ ] = [GD, τ ] ∀ τ ∈ H0(div3/2; Ω) ,

[a(~uh), ~vh] + [b(~vh),σh] = [Fφh , ~vh] ∀ ~vh ∈ Hh ,

[b(~uh), τ h] = [GD, τ h] ∀ τ h ∈ Hσh ,

(5.4)

and

[Aj(u)(~φj), ~ψj ] + [̃b(~ψj),ρj ] = 0 ∀ ~ψj ∈ H̃ ,

[̃b(~φj),ηj ] = [G̃j ,ηj ] ∀ηj ∈ H(div6/5; Ω) ,

[Aj(uh)(~φj,h), ~ψj,h] + [̃b(~ψj,h),ρj,h] = 0 ∀ ~ψj,h ∈ H̃h ,

[̃b(~φj,h),ηj,h] = [G̃j ,ηj,h] ∀ηj,h ∈ Hρ
h ,

(5.5)

where the operators Aj(u) and Aj(uh) are defined as in (3.36).

The following lemma provides a preliminary estimate for the error ‖(~u,σ)− (~uh,σh)‖.

Lemma 5.2 There exists a positive constant ĈST (r), independent of h, such that

‖(~u,σ)− (~uh,σh)‖

≤ ĈST (r)
{

dist (~u,Hh) + dist (~u,Hh)2 + dist (σ,Hσh ) + ‖g‖0,Ω ‖φ− φh‖0,6;Ω

}
.

(5.6)

Proof. We begin by observing that the continuous and discrete systems of (5.4) satisfy the hypotheses
of Theorem 3.1, with p1 = 3 and p2 = 2, and constants ‖b‖ ≤ 1, LBF, αBF, β, αBF,d, and βd (cf. (3.9),
proofs of Lemmas 3.2, 3.4, 3.5, and Lemmas 4.1 and 4.2). Therefore, applying Lemma 5.1 to the
context given by (5.4), we deduce the existence of a constant CST > 0, depending only on LBF, αBF,d,
and βd, such that

‖(~u,σ)− (~uh,σh)‖ ≤ CST C1(~u, ~uh)
{
C2(~u) dist (~u,Hh) + dist (~u,Hh)2

+ dist (σ,Hσh ) + ‖Fφ − Fφh‖H′h
}
.

(5.7)

In turn, proceeding as in (3.46), we get

‖Fφ − Fφh‖H′h ≤ ‖g‖0,Ω‖φ− φh‖0,6;Ω . (5.8)
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Finally, replacing (5.8) back into (5.7), and using the fact that u ∈ W and uh ∈ Wh, we readily
obtain (5.6) with ĈST (r) := CST (1 + 2 r)(1 + r), which ends the proof. �

Next, we have the following result concerning ‖(~φj ,ρj)− (~φj,h,ρj,h)‖.

Lemma 5.3 There exists a positive constant C̃ST (r), independent of h, such that

2∑
j=1

‖(~φj ,ρj)− (~φj,h,ρj,h)‖ ≤ C̃ST (r)

{ 2∑
j=1

(
dist (~φj , H̃h) + dist (ρj ,H

ρ
h)
)

+
(
1 + ‖Q‖0,∞;Ω + r

)
‖φD‖1/2,Γ ‖u− uh‖0,3;Ω

}
.

(5.9)

Proof. It proceeds similarly to the proof of [17, eq. (6.18)]. Indeed, we first observe that, with u ∈W
and uh ∈Wh given, the continuous and discrete systems of (5.5) satisfy the hypotheses of Theorem
3.1, with p1 = p2 = 2 and constants ‖b̃‖ ≤ 1, L = Ld = ‖Qj‖0,∞;Ω + Rj r, α̃j , β̃, α̃j,d, and β̃d (cf. (3.11),
(3.38), (3.34), (3.16), (4.21), and (4.18)). Hence, applying Lemma 5.1 to the context given by (5.5),
we deduce the existence of a constant CjST (r) > 0, depending only on r, ‖Qj‖0,∞;Ω, Rj , α̃j,d, and β̃d,
such that

‖(~φj ,ρj)− (~φj,h,ρj,h)‖

≤ CjST (r)
{

dist (~φj , H̃h) + dist (ρj ,H
ρ
h) + ‖Aj(u)(~φj)−Aj(uh)(~φj)‖H̃′h

}
.

(5.10)

In turn, in order to bound the last term on the right-hand side of (5.10), we notice that the definition
of Aj(w) (cf. (3.36)) and the estimate (3.18) (cf. Lemma 3.3) give∣∣[Aj(u)(~φj)−Aj(uh)(~φj), ~ψj,h]

∣∣ =
∣∣[cj(u)(~φj)− cj(uh)(~φj), ~ψj,h]

∣∣
≤ Rj ‖~φj‖ ‖u− uh‖0,3;Ω ‖~ψj,h‖ ,

which, together with (5.10), the bound of ‖~φj‖ (cf. (3.39)), and the fact that u ∈W, yields

‖(~φj ,ρj)− (~φj,h,ρj,h)‖

≤ CjST (r)
{

dist (~φj , H̃h) + dist (ρj ,H
ρ
h) + C

S̃j
Rj
(
1 + ‖Qj‖0,∞;Ω + r

)
‖φj,D‖1/2,Γ ‖u− uh‖0,3;Ω

}
.

The foregoing inequality leads to (5.9) with C̃ST (r) := max{C̃1
ST (r), C̃2

ST (r)}, where

C̃jST (r) := CjST (r) max
{

1, C
S̃j
Rj
}

∀ j ∈ {1, 2} ,

thus concluding the proof. �

The required Céa estimate will now follow from (5.6) and (5.9). In fact, bounding ‖φ−φh‖0,6;Ω in
(5.6) by the right hand side of (5.9), we find that

‖(~u,σ)− (~uh,σh)‖ ≤ ĈST (r)
{

dist (~u,Hh) + dist (~u,Hh)2 + dist (σ,Hσh )
}

+ CST (r) ‖g‖0,Ω
2∑
j=1

(
dist (~φj , H̃h) + dist (ρj ,H

ρ
h)
)

+ CST (r)
(
1 + ‖Q‖0,∞;Ω + r

)
‖g‖0,Ω ‖φD‖1/2,Γ ‖u− uh‖0,3;Ω,

(5.11)
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where CST (r) := ĈST (r) C̃ST (r). In turn, imposing the constant multiplying ‖u−uh‖0,3;Ω in (5.11) to
be sufficiently small, say ≤ 1/2, we derive the a priori error estimate for ‖(~u,σ)− (~uh,σh)‖. Hence,
employing this latter estimate to bound the last term on the right-hand side of (5.9), we deduce

the corresponding upper bound for
2∑
j=1

‖(~φj ,ρj) − (~φj,h,ρj,h)‖. More precisely, we have proved the

following result.

Theorem 5.4 Given r > 0, assume that the datum φD satisfy

CST (r)
(
1 + ‖Q‖0,∞;Ω + r

)
‖g‖0,Ω‖φD‖1/2,Γ ≤

1

2
.

Then, there exists a positive constant C, independent of h, but depending on r, LBF, αBF,d, βd, Rj, αj,d,

β̃d, ‖Qj‖0,∞;Ω, ‖g‖0,Ω, j ∈ {1, 2}, and the datum φD, such that

‖(~u,σ)− (~uh,σh)‖+

2∑
j=1

‖(~φj ,ρj)− (~φj,h,ρj,h)‖

≤ C

{
dist (~u,Hh) + dist (~u,Hh)2 + dist (σ,Hσh ) +

2∑
j=1

(
dist (~φj , H̃h) + dist (ρj ,H

ρ
h)
)}

.

In order to establish the rate of convergence of our Galerkin scheme (4.2), we recall next the

approximation properties of the finite element subspaces Hu
h ,Ht

h,Hσh ,H
φ
h,H

t̃
h, and Hρ

h (cf. (4.1)),
whose derivations can be found in [24], [7], [21], [26], and [11, Section 3.1] (see also [17, Section 5]).

(APu
h): there exists C > 0, independent of h, such that for each l ∈ [0, k+1], and for each v ∈Wl,3(Ω),

there holds
dist (v,Hu

h) := inf
vh∈Hu

h

‖v − vh‖0,3;Ω ≤ C hl ‖v‖l,3;Ω .

(APt
h): there exists C > 0, independent of h, such that for each l ∈ [0, k + 1], and for each r ∈

Hl(Ω) ∩ L2
tr(Ω), there holds

dist (r,Ht
h) := inf

rh∈Ht
h

‖r− rh‖0,Ω ≤ C hl ‖r‖l,Ω .

(APσh ): there exists C > 0, independent of h, such that for each l ∈ (0, k + 1], and for each τ ∈
Hl(Ω) ∩H0(div3/2; Ω) with div(τ ) ∈Wl,3/2(Ω), there holds

dist (τ ,Hσh ) := inf
τh∈Hσ

h

‖τ − τ h‖div3/2;Ω ≤ C hl
{
‖τ‖l,Ω + ‖div(τ )‖l,3/2;Ω

}
.

(APφ
h): there exists C > 0, independent of h, such that for each l ∈ [0, k+1], and for each ψ ∈Wl,6(Ω),

there holds
dist (ψ,Hφ

h) := inf
ψh∈Hφh

‖ψ − ψh‖0,6;Ω ≤ C hl ‖ψ‖l,6;Ω .

(APt̃
h): there exists C > 0, independent of h, such that for each l ∈ [0, k+ 1], and for each r̃ ∈ Hl(Ω),

there holds
dist (r̃,Ht̃

h) := inf
r̃h∈Ht̃

h

‖r̃− r̃h‖0;Ω ≤ C hl ‖r̃‖l,Ω .
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(APρh): there exists C > 0, independent of h, such that for each l ∈ (0, k + 1], and for each η ∈
Hl(Ω) ∩H(div6/5; Ω) with div(η) ∈Wl,6/5(Ω), there holds

dist (η,Hρ
h) := inf

ηh∈H
ρ
h

‖η − ηh‖div6/5;Ω ≤ C hl
{
‖η‖l,Ω + ‖div(η)‖l,6/5;Ω

}
.

Now we are in a position to provide the theoretical rate of convergence of our Galerkin scheme (4.2).

Theorem 5.5 In addition to the hypotheses of Theorems 3.13, 4.10, and 5.4, assume that there exists
l ∈ (0, k + 1] such that u ∈ Wl,3(Ω), t ∈ Hl(Ω) ∩ L2

tr(Ω), σ ∈ Hl(Ω) ∩ H0(div3/2; Ω), div(σ) ∈
Wl,3/2(Ω), and for each j ∈ {1, 2}, φj ∈ Wl,6(Ω), t̃j ∈ Hl(Ω), ρj ∈ Hl(Ω) ∩ H(div6/5; Ω), and

div(ρj) ∈Wl,6/5(Ω). Then, there exists a positive constant C, independent of h, such that

‖(~u,σ)− (~uh,σh)‖+

2∑
j=1

‖(~φj ,ρj)− (~φj,h,ρj,h)‖ ≤ C hl
{
‖u‖l,3;Ω + ‖t‖l,Ω + ‖u‖2l,3;Ω + ‖t‖2l,Ω

+ ‖σ‖l,Ω + ‖div(σ)‖l,3/2;Ω +
2∑
j=1

(
‖φj‖l,6;Ω + ‖t̃j‖l,Ω + ‖ρj‖l,Ω + ‖div(ρj)‖l,6/5;Ω

)}
.

Proof. The result follows from a direct application of Theorem 5.4 and the approximation properties
of the finite element subspaces. Further details are omitted. �

6 Numerical results

In this section we present three examples illustrating the performance of our fully-mixed finite element
method (4.2) on a set of quasi-uniform triangulations of the respective domains, and considering
the finite element subspaces defined by (4.1) (cf. Section 4.1). In what follows, we refer to the
corresponding sets of finite element subspaces generated by k = 0 and k = 1, as simply P0 − P0 −
RT0−P0−P0−RT0 and P1−P1−RT1−P1−P1−RT1, respectively. Our implementation is based on a
FreeFem + + code [27], in conjunction with the direct linear solver UMFPACK [20]. A Newton–Raphson
algorithm with a fixed tolerance tol = 1E− 6 is used for the resolution of the nonlinear problem (4.2).
As usual, the iterative method is finished when the relative error between two consecutive iterations
of the complete coefficient vector, namely coeffm+1 and coeffm, is sufficiently small, that is,

‖coeffm+1 − coeffm‖
‖coeffm+1‖

≤ tol ,

where ‖ · ‖ stands for the usual Euclidean norm in RDOF with DOF denoting the total number of degrees

of freedom defining the finite element subspaces Hu
h ,Ht

h,Hσh ,H
φ
h,H

t̃
h, and Hρ

h (cf. (4.1)).

We now introduce some additional notation. The individual errors are denoted by:

e(u) := ‖u− uh‖0,3;Ω , e(t) := ‖t− th‖0,Ω , e(σ) := ‖σ − σh‖div3/2;Ω , e(p) := ‖p− ph‖0,Ω ,

e(φj) := ‖φj − φj,h‖0,6;Ω , e(t̃j) := ‖t̃j − t̃j,h‖0;Ω , e(ρj) := ‖ρj − ρj,h‖div6/5;Ω, j ∈ {1, 2} ,

where ph stands for the post-processed pressure suggested by the identity (2.7), that is

ph = − 1

n
tr(σh) . (6.1)
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It follows that

‖p− ph‖0,Ω =
1

n
‖tr(σ − σh)‖0,Ω ≤

1√
n
‖σ − σh‖div3/2;Ω ,

which shows that the rate of convergence for p is at least the one for σ, which is indeed confirmed
below by the numerical results reported. Next, as usual, for each ? ∈

{
u, t,σ, p, φj , t̃j ,ρj

}
we let r(?)

be the experimental rate of convergence given by

r(?) :=
log
(
e(?)/ê(?)

)
log(h/ĥ)

,

where h and ĥ denote two consecutive meshsizes with errors e and ê, respectively.

The examples to be considered in this section are described next. In all of them, for the sake of
simplicity, we take ν = 1, % = 1, R1 = 1, R2 = 1 and φr = (0, 0) . In turn, in the first two examples
the tensors K, Q1, and Q2 are taken as the identity matrix I, which satisfy (2.3). In addition, the
mean value of tr(σh) over Ω is fixed via a Lagrange multiplier strategy (adding one row and one
column to the matrix system that solves (4.4) for uh, th, and σh).

Example 1: 2D domain with different values of the parameter F

In our first example, inspired by [13, Section 6], we corroborate the rates of convergence in a two-
dimensional domain and also study the performance of the numerical method with respect to the
number of Newton iterations required to achieve certain tolerance when different values of the parame-
ter F are given. The domain is the square Ω = (−1, 1)2. We consider the potential type gravitational
acceleration g = (0,−1)t, and choose the data f (cf. (2.2)) such that the exact solution is given by

u(x1, x2) =

(
sin(πx1) cos(πx2)
− cos(πx1) sin(πx2)

)
, p(x1, x2) = cos(πx1) exp(x2) ,

φ1(x1, x2) = 0.5 + 0.5 cos(x1x2) , and φ2(x1, x2) = 0.1 + 0.3 exp(x1x2) .

The model problem is then complemented with the appropriate Dirichlet boundary conditions. Tables
6.1 and 6.3 show the convergence history for a sequence of quasi-uniform mesh refinements, including
the number of Newton iterations when F = 10. Notice that we are able not only to approximate the
original unknowns but also the pressure field through the formula (6.1). The results confirm that
the optimal rates of convergence O(hk+1) predicted by Theorem 5.5 are attained for k = 0, 1. The
Newton method exhibits a behavior independent of the meshsize, converging in five iterations in all
cases. In Figure 6.1 we display the solution obtained with the fully-mixed P1−P1−RT1−P1−P1−
RT1 approximation with meshsize h = 0.0284 and 39, 102 triangle elements (actually representing
2, 074, 454 DOF). On the other hand, in Table 6.2 we show the behaviour of the iterative method as
a function of the parameter F ∈ {100, 101, 102, 103, 104, 105}, considering polynomial degree k = 0,
different meshsizes h, and a tolerance tol = 1E − 06. Here we observe that the higher the parameter
F the higher the number of Newton iterations required.

Example 2: Convergence against smooth exact solutions in a 3D domain

In our second example we consider the cube domain Ω = (0, 1)3. The solution is given by

u(x1, x2, x3) =

 sin(πx1) cos(πx2) cos(πx3)
−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

 , p(x1, x2, x3) = cos(πx1) exp(x2 + x3) ,

φ1(x1, x2, x3) = 0.5 + 0.5 cos(x1x2x3) , and φ2(x1, x2, x3) = 0.1 + 0.3 exp(x1x2x3) .
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Similarly to the first example, we consider F = 10 and g = (0, 0,−1)t, whereas the data f is computed
from (2.2) using the above solution. The numerical solutions are shown in Figure 6.2, which were built
using the fully-mixed P0 − P0 − RT0 − P0 −P0 −RT0 approximation with meshsize h = 0.0643 and
63, 888 tetrahedral elements (actually representing 1, 867, 272 DOF). The convergence history for a set
of quasi-uniform mesh refinements using k = 0 is shown in Table 6.4. Again, the mixed finite element
method converges optimally with order O(h), as it was proved by Theorem 5.5.

Example 3: Flow through porous media with channel network

In our last example, inspired by [2, Section 5.2.4], we focus on flow through porous media with
channel network. We consider the square domain Ω = (−1, 1)2 with an internal channel network
denoted as Ωc (see the first plot of Figure 6.3 below), and boundary Γ, whose left, right, upper and
lower parts are given by Γleft = {−1} × (−1, 1),Γright = {1} × (−1, 1),Γtop = (−1, 1) × {1}, and
Γbottom = (−1, 1) × {−1}, respectively. We consider the coupling of the Brinkman–Forchheimer and
double-diffusion equations (2.8) in the whole domain Ω with Q1 = 0.5 I and Q2 = 0.125 I, but with
different values of the parameters F and K = α I for the interior and the exterior of the channel, that
is,

F =

{
10 in Ωc

1 in Ω \ Ωc

and α =

{
1 in Ωc

0.001 in Ω \ Ωc

.

The parameter choice corresponds to increased inertial effect (F = 10) in the channel and a high
permeability (α = 1), compared to reduced inertial effect (F = 1) in the porous media and low
permeability (α = 0.001). In addition, the boundaries conditions are

u · n = 0.2 , u · t = 0 on Γleft , σ n = 0 on Γ \ Γleft ,

φ1 = 0.3 on Γbottom , φ1 = 0 on Γtop , ρ1 · n = 0 on Γleft ∪ Γright ,

φ2 = 0.2 on Γbottom , φ2 = 0 on Γtop , ρ2 · n = 0 on Γleft ∪ Γright .

In particular, the first row of boundary equations corresponds to inflow on the left boundary and
zero stress outflow on the rest of the boundary. We stress here that, using similar arguments to those
employed in [14], we are able to extended our analysis to the present case of mixed boundary conditions
for the double-diffusion equations. In Figure 6.3, we display the computed magnitude of the velocity,
velocity gradient, pseudostress tensor, and gradients of the temperature and concentration, and the
temperature and concentration fields, which were built using the fully-mixed P0 − P0 − RT0 − P0 −
P0−RT0 approximation on a mesh with 27, 287 triangle elements (actually representing 475, 313 DOF).
As expected, we observe faster flow through the channel network, with a significant velocity gradient
across the interface between the porous media and the channel. The pseudostress tensor is more
diffused, since it includes the pressure field. In turn, the temperature and concentration are zero
on the top of the domain and goes increasing towards the bottom of the square domain, which
is consistent with the behavior observed in the magnitude of the temperature and concentration
gradients. This example illustrates the ability of the coupling of the Brinkman–Forchheimer and
double-diffusion equations to handle heterogeneous media using spatially varying parameters. The
example is particularly challenging, due to the strong jump discontinuity of the parameters across
the two regions, which are handled very well by our numerical method. We stress that the mesh
used in this example was built by considering an appropriate refinement around the interface that
couple the porous media with the channel network. Nevertheless, this refinement can be automatized
by employing a suitable a posteriori error indicator that capture the aforementioned discontinuities
of parameters. The corresponding a posteriori error analysis and numerical implementation will be
addressed in a future work.
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DOF h iter e(u) r(u) e(t) r(t) e(σ) r(σ) e(p) r(p)

644 0.7454 5 0.6265 – 3.5704 – 20.4886 – 1.7848 –
2818 0.3667 5 0.2928 1.072 1.7526 1.003 9.1580 1.135 0.6221 1.486

10464 0.1971 5 0.1527 1.049 0.9061 1.063 4.7110 1.071 0.3118 1.113
41124 0.1036 5 0.0760 1.085 0.4593 1.057 2.3581 1.077 0.1521 1.117

164698 0.0554 5 0.0384 1.087 0.2288 1.111 1.1832 1.100 0.0758 1.109
665758 0.0284 5 0.0191 1.049 0.1130 1.059 0.5862 1.053 0.0367 1.088

e(φ1) r(φ1) e(t̃1) r(t̃1) e(ρ1) r(ρ1) e(φ2) r(φ2) e(t̃2) r(t̃2) e(ρ2) r(ρ2)

0.0450 – 0.1839 – 0.5943 – 0.0759 – 0.2101 – 0.4794 –
0.0227 0.962 0.1236 0.560 0.2962 0.982 0.0387 0.952 0.1023 1.014 0.2247 1.068
0.0129 0.907 0.0712 0.890 0.1585 1.007 0.0214 0.950 0.0541 1.026 0.1148 1.082
0.0069 0.977 0.0360 1.061 0.0796 1.071 0.0114 0.978 0.0278 1.040 0.0588 1.040
0.0036 1.051 0.0183 1.080 0.0402 1.090 0.0062 0.987 0.0140 1.094 0.0294 1.105
0.0018 1.018 0.0091 1.053 0.0199 1.055 0.0030 1.055 0.0069 1.066 0.0144 1.068

Table 6.1: Example 1, Number of degrees of freedom, meshsizes, Newton iteration count, errors, and
rates of convergence for the fully-mixed P0−P0−RT0−P0−P0−RT0 approximation for the coupling
of the Brinkman–Forchheimer and double-diffusion equations with F = 10 .

F

h
0.7454 0.3667 0.1971 0.1036 0.0554 0.0284

100 4 4 4 4 4 4
101 5 5 5 5 5 5
102 7 7 7 7 7 7
103 8 8 8 8 8 8
104 9 9 9 8 8 8
105 8 9 9 9 9 8

Table 6.2: Example 1, performance of the iterative method (number of iterations) upon variations of
the parameter F with polynomial degree k = 0 .
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DOF h iter e(u) r(u) e(t) r(t) e(σ) r(σ) e(p) r(p)
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Table 6.3: Example 1, Number of degrees of freedom, meshsizes, Newton iteration count, errors, and
rates of convergence for the fully-mixed P1−P1−RT1−P1−P1−RT1 approximation for the coupling
of the Brinkman–Forchheimer and double-diffusion equations with F = 10 .

Figure 6.1: Example 1, Computed magnitude of the velocity, velocity gradient component, pseu-
dostress tensor component, and pressure field (top plots); temperature field, magnitude of the tem-
perature gradient, concentration field, and magnitude of the concentration gradient (bottom plots).
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DOF h iter e(u) r(u) e(t) r(t) e(σ) r(σ) e(p) r(p)
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e(φ1) r(φ1) e(t̃1) r(t̃1) e(ρ1) r(ρ1) e(φ2) r(φ2) e(t̃2) r(t̃2) e(ρ2) r(ρ2)
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Table 6.4: Example 2, Number of degrees of freedom, meshsizes, Newton iteration count, errors, and
rates of convergence for the fully-mixed P0−P0−RT0−P0−P0−RT0 approximation for the coupling
of the Brinkman–Forchheimer and double-diffusion equations with F = 10.

Figure 6.2: Example 2, Computed magnitude of the velocity, velocity gradient component, pseu-
dostress tensor component, and pressure field (top plots); temperature field, magnitude of the tem-
perature gradient, concentration field, and magnitude of the concentration gradient (bottom plots).
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Concepción, Chile, (2020).

[7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series in Com-
putational Mathematics, 15. Springer-Verlag, New York, 1991.

[8] H.C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm
of particles. Appl. Sci. Res. 1 (1949), 27–34.

[9] R. Bürger, P.E. Méndez, and R. Ruiz-Baier, On H(div)-conforming methods for double-
diffusion equations in porous media. SIAM J. Numer. Anal. 57 (2019), no. 3, 1318–1343.
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