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Abstract

In this present paper, we propose and analyze a C1-conforming virtual element method to
solve the so-called one-layer stationary quasi-geostrophic equations (QGE) with applications in
the large scale wind-driven ocean circulation, formulated in terms of the stream-function. This
problem corresponds to a nonlinear fourth order partial differential equation. The C1 virtual
space and the discrete scheme are built in a straightforward way due to the flexibility of the
virtual approach. Under the assumption of small data, we prove well-posedness of the discrete
problem by using a fixed-point strategy and under standard assumptions on the computational
domain, we establish error estimates in H2-norm for the stream-function. Finally, we report
four numerical experiments that illustrate the behaviour of the proposed scheme and confirm
our theoretical results on different families of polygonal meshes.

Key words: virtual element method, quasi-geostrophic equations, stream-function formulation,
error estimates.
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1 Introduction

The quasi-geostrophic equations (QGE) is one of the popular mathematical models employed for
understanding the behavior of the large scale wind-driven ocean circulation [40, 45, 46]. Due
to their important role in the climate system, there has been a growing interest in recent years
towards developing efficient numerical schemes to solve such equations. We are going to consider
the so-called one-layer QGE (also called as the barotropic vorticity equation), where the flow is
assumed to be homogeneous in the vertical direction. Thus, stratification effects are ignored in
this model and a bi-dimensional nonlinear fourth order partial differential equation, in terms of the
stream-function variable, can be written. Despite the simplifications, the model preserves many
of the essential features of the underlying large scale ocean flows. Further details related to the
derivation of these equations can be found in [39, 41]. On the other hand, we note that the QGE
equations can be seen as an extension of the stream-function formulation of the Navier-Stokes
equations (NSE).

Different finite element discretizations have been developed recently for these equations. For
instance, in [27] is presented a conforming finite element based on the Argyris element, optimal
error estimates are obtained and several numerical experiment are reported. In [36] the authors
present a B-spline based conforming finite element method to approximate the stream-function,
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also several numerical simulations are performed. Error estimates for this method are presented
in [33] and a posteriori error analysis has been recently analyzed in [2]. In [35], is presented a
non-conforming C0-discontinuous Galerkin method, the authors introduced the new variational
form of the method and they established consistency and error estimates. In addition, the quasi-
geostrophic equations have been solved by using different finite element methods in terms of the
stream-function and vorticity variables in the following references [16, 26, 42, 43]. Moreover,
finite element methods for the Navier-Stokes equations in stream-function formulation have been
presented in [17, 18, 24, 25, 30].

It is well known that conforming finite element spaces of H2 are of complex implementation
and contain high order polynomials (see [21]). In order to overcome this drawback, in this work, we
extend the virtual element approach proposed in [4] for the numerical solution of the QGE equations
in stream-function formulation, which can be applied to general polygonal meshes and is simple in
terms of degrees of freedom and coding aspects. In fact, it has been shown that the VEM permits
to easily implement highly regular discrete spaces on general polygonal meshes. For instance,
global discrete virtual spaces of H2 to solve fourth order PDEs have been presented in [4, 13, 20]
(see also [9, 44]). Moreover, it has been recently presented in [6] a C1 virtual element method on
polyhedral meshes. The numerical solution by virtual elements of incompressible flow problems
(Stokes, Brinkman, Stokes–Darcy and Navier-Stokes equations) have been recently developed in
the following references [3, 7, 8, 10, 14, 15, 19, 23, 29, 37, 38, 47, 48].

According to the above discussion, in the present contribution, we are interested in keeping
on exploring the flexibility of the VEM to solve the QGE equations with applications in oceanic
circulation. More precisely, we propose and analyze a conforming C1 virtual element discretization
of lowest order, which is based on the virtual space introduced in [4], to solve the quasi-geostrophic
equations in stream-function formulation. We observe that the functions, in the virtual space,
have continuous trace and the trace of the gradient is also continuous; thus, the method delivers
a conforming solution. We write a discrete formulation by using projector operators to construct
discrete version of the local bilinear forms and trilinear form along with a discrete load term. We
prove well-posedness of the discrete virtual formulation by using the Banach fixed-point Theorem
and assuming that the data is in a certain sense small enough. We write error estimates in H2-
norm for the stream-function under rather mild assumptions on the polygonal meshes. Finally, we
point out that, the present analysis for the stationary QGE equations constitutes a stepping-stone
towards others related problems. For instance, two-layer quasi-geostrophic model [42] or time
dependent QGE equations [28].

Outline. The paper is organized as follows: In Section 2, we recall the quasi-geostrophic equa-
tions in terms of the stream-function and introduce the corresponding variational formulation for
the system. In Section 3, we present the C1-virtual element discretization of the variational formu-
lation. Under the assumption of small data, we prove the existence and uniqueness of the discrete
problem by using the Banach fixed-point Theorem. In Section 4, we establish error estimates for
the stream-function. Four numerical tests that allow us to assess the convergence properties of
the method and to check whether the experimental rates of convergence agree with the theoretical
ones are reported in Section 5.

Notations. Throughout the paper, we will follow the usual notation for Sobolev spaces and
norms [1]. We will denote by Ω ⊂ R2 a polygonal bounded simply connected domain and by
n = (ni)i=1,2 the outward unit normal vector to the boundary ∂Ω. For D an open bounded
domain, the L2(D) inner-product will be denoted by (·, ·)0,D. In addition, we will denote by
P`(D) the space of polynomials of degree up to ` ∈ N defined on D. Moreover, c and C, with
or without subscripts, hats or tildes, will represent a generic positive constant independent of the
mesh parameter h, assuming different values in different occurrences. In addition, for any vector

2



field v = (vi)i=1,2 and any scalar field θ we recall the differential operators:

rotv := ∂xv2 − ∂yv1, ∇θ :=

(
∂xθ
∂yθ

)
, curl θ :=

(
∂yθ
−∂xθ

)
.

2 The model problem

Let Ω ⊂ R2 be a polygonal bounded simply connected domain with boundary Γ := ∂Ω. We consider
the steady one-layer quasi-geostrophic equations in stream-function formulation (for further details,
see for instance [27]):

Re−1∆2ψ − curl ψ · ∇(∆ψ)− Ro−1∂xψ = Ro−1f in Ω,

ψ = ∂nψ = 0 on Γ,
(2.1)

where ψ is the stream-function of the velocity field u, i.e., u = curl ψ, ∂n denotes the normal
derivative and f is the source term. The constants Re and Ro denote the Reynolds and Rossby
numbers, respectively. These parameters are defined by (see [27, 31, 32]):

Re :=
U L

AH
and Ro :=

U

β L2
,

where the coefficient β is the coefficient multiplying the y-coordinate in the β-plane (see [46]), L is
the characteristic length scale, U is the characteristic velocity scale and AH is the eddy viscosity
parametrization.

In order to write a weak formulation of problem (2.1), we consider the following space:

X :=
{
φ ∈ H2(Ω) : φ = ∂nφ = 0 on Γ

}
.

We endow the space X with the following norm

‖φ‖X := |φ|2,Ω ∀φ ∈ X.

Now, we multiply the corresponding equation by a test function φ ∈ X, integrate twice by parts
in Ω and using the boundary conditions, we obtain the following variational problem: find ψ ∈ X
such that:

Re−1A(ψ, φ) +B(ψ;ψ, φ)− Ro−1C(ψ, φ) = Ro−1F (φ) ∀φ ∈ X, (2.2)

where A,C : X×X → R are bilinear forms, B : X×X×X → R is a trilinear form and F : X → R
is a linear functional, defined as follows:

A(ψ, φ) :=

∫
Ω

D2ψ : D2φ ∀ψ, φ ∈ X, (2.3)

B(ζ;ψ, φ) :=

∫
Ω

∆ζ curl ψ · ∇φ ∀ζ, ψ, φ ∈ X, (2.4)

C(ψ, φ) :=

∫
Ω

∂xψ φ ∀ψ, φ ∈ X, (2.5)

F (φ) :=

∫
Ω

f φ ∀φ ∈ X, (2.6)

where we denote by “ : ” the usual scalar product of 2×2-matrices and by D2φ the Hessian matrix
of φ.

3



Using integration by part and the boundary conditions, it is easy to see that bilinear form
C(·, ·) defined in (2.5) satisfies,

C(ψ, φ) = − C(φ, ψ) ∀ψ, φ ∈ X.

Now, we introduce the following bilinear form Cskew : X ×X → R:

Cskew(ψ, φ) :=
1

2
C(ψ, φ)− 1

2
C(φ, ψ) =

1

2

∫
Ω

∂xψ φ−
1

2

∫
Ω

∂xφψ ∀ψ, φ ∈ X. (2.7)

Clearly
Cskew(ψ, φ) = C(ψ, φ) ∀ψ, φ ∈ X.

Thus, according to the above equality, we rewrite the variational problem (2.2) in the following
equivalent weak form: find ψ ∈ X such that:

Re−1A(ψ, φ) +B(ψ;ψ, φ)− Ro−1Cskew(ψ, φ) = Ro−1F (φ) ∀φ ∈ X. (2.8)

Remark 2.1 We observe that our VEM discretization will be based on the above weak form. In
particular, to discretize the skew-symmetric bilinear form Cskew(·, ·) (cf. (2.7)), we construct a
simple discrete form that preserves the skew-symmetric property at discrete level, which makes
the analysis of the method simpler. For instance, we observe that the analysis of existence and
uniqueness of the discrete problem and the convergence analysis of the method (see Sections 3.3
and 4, respectively) are facilitated using the skew-symmetric bilinear form.

The following lemma establishes some properties for the forms (2.3), (2.4), (2.6) and (2.7),
these properties will play an important role in the forthcoming sections.

Lemma 2.1 There exist positive constants ĈB , Ĉ1 such that

|A(ψ, φ)| ≤ ‖ψ‖X‖φ‖X ∀ψ, φ ∈ X, (2.9)

A(φ, φ) ≥ ‖φ‖2X ∀φ ∈ X, (2.10)

|B(ζ;ψ, φ)| ≤ ĈB ‖ζ‖X‖ψ‖X‖φ‖X ∀ζ, ψ, φ ∈ X, (2.11)

B(ζ;ψ, φ) = −B(ζ;φ, ψ) ∀ζ, ψ, φ ∈ X, (2.12)

B(ζ;φ, φ) = 0 ∀ζ, φ ∈ X, (2.13)

|Cskew(ψ, φ)| ≤ Ĉ1 ‖ψ‖X‖φ‖X ∀ψ, φ ∈ X, (2.14)

Cskew(φ, φ) = 0 ∀φ ∈ X. (2.15)

|F (φ)| ≤ ‖f‖−2,Ω‖φ‖X ∀φ ∈ X. (2.16)

Proof. The proof follows standard arguments. �

In order to prove the well posedness of problem (2.8), we will employ a fixed-point strategy.
Indeed, given ζ ∈ X, we define the following operator

T : X −→ X

ζ 7−→ T (ζ) = ϕ,

where ϕ is the solution of the following linear problem: find ϕ ∈ X such that

Qζ(ϕ, φ) = Ro−1F (φ) ∀φ ∈ X, (2.17)

where the bilinear form Qζ(·, ·) is given by

Qζ(ϕ, φ) := Re−1A(ϕ, φ) +B(ζ;ϕ, φ)− Ro−1Cskew(ϕ, φ).
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We note that ψ ∈ X is a solution of problem (2.8) if and only if T (ψ) = ψ. Thus, to prove well
posedness of (2.8), we will prove that T has a unique fixed point by means of the classical Banach
fixed-point Theorem (see [22, Theorem 3.7-1]).

The following lemma establishes that the bilinear form Qζ(·, ·) is bounded and elliptic. Thus,
operator T is well defined.

Lemma 2.2 There exists a positive constant CQ such that

Qζ(ϕ, φ) ≤ CQ‖ϕ‖X‖φ‖X ∀ϕ, φ ∈ X,

and
Qζ(φ, φ) ≥ Re−1‖φ‖2X ∀φ ∈ X.

Proof. The result follows from Lemma 2.1. �

By a direct application of Lax-Milgram Theorem we conclude that problem (2.17) has a unique
solution. In addition, from the definition of the continuous problem (cf. (2.17)), (2.13), (2.15) and
(2.16), the following continuous dependence holds

‖ϕ‖X ≤ Ro−1Re ‖f‖−2,Ω.

Thus, operator T is well defined.

In what follows, we will prove that T is a contraction mapping. Let δ := Ro−1Re‖f‖−2,Ω, then
we consider the following bounded set

N := {φ ∈ X : ‖φ‖X ≤ δ} ,

and using the previous lemma, we have that T (N ) ⊆ N .

The following lemma establishes that T is a contraction mapping and hence, according to the
Banach fixed-point Theorem, it has a unique fixed point in N (see [22, Theorem 3.7-1]).

Lemma 2.3 Assume that
ĈBRo−1Re2‖f‖−2,Ω < 1. (2.18)

Then, T is a contraction mapping in N .

Proof. Let ζ1, ψ1, ζ2, ψ2 ∈ N , such that

T (ζ1) = ψ1 and T (ζ2) = ψ2,

then from the definition of the operator T (·), we have

Re−1A(ψ1, φ) +B(ζ1;ψ1, φ)− Ro−1Cskew(ψ1, φ) = Ro−1F (φ) ∀φ ∈ X, (2.19)

Re−1A(ψ2, φ) +B(ζ2;ψ2, φ)− Ro−1Cskew(ψ2, φ) = Ro−1F (φ) ∀φ ∈ X. (2.20)

Subtracting (2.20) from (2.19), we get

Re−1A(ψ1 − ψ2, φ) + [B(ζ1;ψ1, φ)−B(ζ2;ψ2, φ)]− Ro−1Cskew(ψ1 − ψ2, φ) = 0 ∀φ ∈ X.

Now, taking φ := ψ1 − ψ2 in the above equation, we have that Cskew(·, ·) vanishes (cf. (2.15)).
Thus, we get

Re−1A(ψ1 − ψ2, ψ1 − ψ2) +B(ζ1;ψ1, ψ1 − ψ2)−B(ζ2;ψ2, ψ1 − ψ2) = 0.
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Then, by adding and subtracting ψ2 in the second term, we have

0 = Re−1A(ψ1 − ψ2, ψ1 − ψ2) +B(ζ1;ψ1 − ψ2, ψ1 − ψ2) +B(ζ1;ψ2, ψ1 − ψ2)

−B(ζ2;ψ2, ψ1 − ψ2)

= Re−1A(ψ1 − ψ2, ψ1 − ψ2) +B(ζ1;ψ2, ψ1 − ψ2)−B(ζ2;ψ2, ψ1 − ψ2)

= Re−1A(ψ1 − ψ2, ψ1 − ψ2) +B(ζ1 − ζ2;ψ2, ψ1 − ψ2),

where we have used (2.13). Therefore

Re−1A(ψ1 − ψ2, ψ1 − ψ2) = −B(ζ1 − ζ2;ψ2, ψ1 − ψ2),

by using (2.10), (2.11) and the Cauchy-Schwarz inequality, we obtain

Re−1‖ψ1 − ψ2‖2X ≤ ĈB‖ψ2‖X‖ζ1 − ζ2‖X‖ψ1 − ψ2‖X ,

then, using the fact that ψ2 ∈ N , we get

‖ψ1 − ψ2‖X ≤ ĈBRe
(
Ro−1Re‖f‖−2,Ω

)
‖ζ1 − ζ2‖X = ĈBRo−1Re2‖f‖−2,Ω‖ζ1 − ζ2‖X .

Therefore, according to assumption (2.18), we obtain that T is a contraction mapping, which
concludes the proof. �

The following result follows from Lemma 2.3 and the Banach fixed-point Theorem.

Theorem 2.1 If
λ := ĈB Re2Ro−1‖f‖−2,Ω < 1,

there exists a unique ψ ∈ N solution to problem (2.8), which satisfies the following continuous
dependence

‖ψ‖X ≤ Re Ro−1‖f‖−2,Ω.

In what follows, we will assume that the source term satisfies f ∈ L2(Ω). Now, we state an
additional regularity result for the solution of problem (2.8). The proof of this result can be found
in [34, Lemma 2.3] (see also [11]).

Theorem 2.2 Let ψ ∈ N be the unique solution of problem (2.8). Then, there exist s ∈ (1/2, 1]

and C̃ > 0 such that ψ ∈ H2+s(Ω) and

‖ψ‖2+s,Ω ≤ C̃‖f‖0,Ω.

3 The virtual element scheme

In the present section, we will introduce a C1-virtual element discretization for the numerical
approximation of (2.8). The discrete method will be based on the virtual space introduced in [4]
for the Cahn–Hilliard equation.

We begin with some notations and assumptions to construct the projectors on polynomial
spaces, which are going to be used to build a conforming virtual space of X and to construct the
respective discrete bilinear forms, the discrete trilinear form and the discrete functional. Finally,
we prove existence and uniqueness of the discrete formulation by using the Banach fixed-point
Theorem.
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Let {Ωh}h be a sequence of decompositions of Ω into general polygonal elements K. We will
denote by hK the diameter of the element K and by h the maximum of the diameters of all the
elements of the mesh, i.e.,

h := max
K∈Ωh

hK .

Also, we denote by NK the number of vertices of K, by e a generic edge of Ωh and for all
e ∈ ∂K, we define a unit normal vector neK that points outside of K and a unit tangent vector teK .

3.1 Virtual spaces and polynomial projections

Now, for every polygon K ∈ Ωh, we introduce the following preliminary augmented local virtual
space (see [4]):

X̃h(K) :=
{
φh ∈ H2(K) : ∆2φh ∈ P2(K), φh|∂K ∈ C0(∂K), φh|e ∈ P3(e) ∀e ∈ ∂K,

∇φh|∂K ∈ [C0(∂K)]2, ∂neKφh|e ∈ P1(e) ∀e ∈ ∂K
}
,

Next, for a given φh ∈ X̃h(K), we introduce two sets O1 and O2 of linear operators from the

local virtual space X̃h(K) into R:

• O1 : contains linear operators evaluating φh at the NK vertices of K;

• O2 : contains linear operators evaluating ∇φh at the NK vertices of K.

Now, we decompose the bilinear form A(·, ·) as follows:

A(ϕ, φ) =
∑
K∈Ωh

AK(ϕ, φ) ∀ϕ, φ ∈ X, (3.1)

where

AK(ϕ, φ) =

∫
K

D2ϕ : D2φ ∀ϕ, φ ∈ H2(K). (3.2)

In a similar way, we can decompose the forms B(·; ·, ·) and Cskew(·, ·), with the following local
forms:

BK(ζ;ψ, φ) :=

∫
K

∆ζ curl ψ · ∇φ ∀ζ, ψ, φ ∈ H2(K). (3.3)

CKskew(ψ, φ) =
1

2

∫
K

∂xψ φ−
1

2

∫
K

∂xφψ ∀ψ, φ ∈ H2(K). (3.4)

Projection operators. The next step is to build some projector operators from the local virtual
space onto P2(K) to construct the discrete version of the local bilinear forms and trilinear form
along with the discrete load term. The first projector will be constructed by using the local bilinear
form (3.2). Indeed, for each polygon K, we define the projector Π2,D

K : X̃h(K)→ P2(K) ⊆ X̃h(K)

as follows: for each φh ∈ X̃h(K), Π2,D
K φh ∈ P2(K) is the solution of the following local problem

(on each polygon K):

AK(Π2,D
K φh, q) = AK(φh, q) ∀q ∈ P2(K),

((Π2,D
K φh, q))K = ((φh, q))K ∀q ∈ P1(K),

where ((ϕh, φh))K is defined as follows:

((ϕh, φh))K :=

NK∑
i=1

ϕh(vi)φh(vi) ∀ϕh, φh ∈ C0(∂K),
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with vi, 1 ≤ i ≤ NK , being the vertices of K.

The following result establishes that the projector Π2,D
K is computable using of the sets O1 and

O2 (see [4]).

Lemma 3.1 The operator Π2,D
K : X̃h(K)→ P2(K) is explicitly computable for every φh ∈ X̃h(K),

using only the information of the linear operators O1 and O2.

Next, we introduce, for each K ∈ Ωh, our local enhanced virtual space as follows:

Xh(K) :=
{
φh ∈ X̃h(K) : (φh −Π2,D

K φh, q)0,K = 0, ∀q ∈ P2(K)
}
.

In the space Xh(K), we have the following properties (for further details, see [4]):

• the sets of linear operators O1 and O2 constitutes a set of degrees of freedom;

• Π2,D
K is well defined and it is computable using the information the of degrees of freedom O1

and O2.

Now, for each K ∈ Ωh, we consider the L2-projection onto P2(K), defined as follows: for each
φ ∈ L2(K),ΠK

2 φ ∈ P2(K) is the unique function such that∫
K

qΠK
2 φ =

∫
K

qφ ∀q ∈ P2(K). (3.5)

We observe that, using the definition of the local space Xh(K), for each φ ∈ Xh(K), the polynomial
function ΠK

2 φ ∈ P2(K) is fully computable. In fact, due to the particular property appearing in

the definition of space Xh(K), the right hand side in (3.5) is computable using Π2,D
K φ. Actually,

it is easy to check that on the space Xh(K) the projectors ΠK
2 φ and Π2,D

K φ are the same operator.
In fact: ∫

K

qΠK
2 φ =

∫
K

qΠ2,D
K φ ∀q ∈ P2(K). (3.6)

Now, we will consider the following projection onto the polynomial space [P1(K)]2: we define
ΠK

1 : [L2(K)]2 → [P1(K)]2, for each v ∈ [L2(K)]2 by∫
K

ΠK
1 v · q =

∫
K

v · q ∀q ∈ [P1(K)]2. (3.7)

Using integration by parts, it is easy to see that for any φh ∈ Xh(K), the vector functions
ΠK

1 curl φh ∈ [P1(K)]2 and ΠK
1 ∇φh ∈ [P1(K)]2 can be explicitly computed from the degrees

of freedom O1 and O2. In fact, for all K ∈ Ωh and for all φh ∈ Xh(K), using integration by parts
on the right hand side of (3.7) (with curl φh instead of v), we have∫

K

curl φh · q =

∫
K

φh rot q −
∫
∂K

φh(q · teK) ∀q ∈ [P1(K)]2

= rot q

∫
K

(Π2,D
K φh)−

∫
∂K

φh(q · teK) ∀q ∈ [P1(K)]2,

where we have used the definition of ΠK
2 φh and (3.6). The first term on the right hand side above

depends only on Π2,D
K φh and this depends only on the values of the degrees of freedom (see Lemma

3.1). The second term is an integral on the boundary of the element K, which is fully computable.
Similarly, we have that ΠK

1 ∇φh is fully computable from the degrees of freedom.
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Also, we note that for each φh ∈ Xh(K) the projection function ΠK
0 ∆φh ∈ P0(K) is computable

using the degrees of freedom O1 and O2. Indeed, for each φh ∈ Xh(K) and for all q0 ∈ P0(K) we
have ∫

K

q0 ΠK
0 ∆φh =

∫
K

q0 ∆φh =

∫
∂K

q0 ∂nφh,

from the equality above with have that

ΠK
0 ∆φh =

1

|K|

∫
∂K

∂nφh,

where |K| denotes the area of polygon K.

Now, by combining the local spaces Xh(K) and incorporating the homogeneous Dirichlet
boundary conditions, we define the global virtual space for the numerical approximation of (2.8):
for every decomposition Ωh of Ω into polygons K, we define

Xh := {φh ∈ X : φh|K ∈ Xh(K)} .

The degrees of freedom for Xh are:

• OG1 : pointwise values of φh on all vertices of Ωh excluding the vertices on Γ;

• OG2 : pointwise values of ∇φh on all vertices of Ωh excluding the vertices on Γ.

3.2 Construction of the discrete forms

In this section, we will construct the discrete version of the continuous bilinear forms, the trilinear
form and the right-hand side, using the projection operators introduced in Section 3.1.

First, let SKD (·, ·) be any symmetric positive definite bilinear form to be chosen as to satisfy:

c0A
K(φh, φh) ≤ SKD (φh, φh) ≤ c1AK(φh, φh) ∀φh ∈ Xh(K), with Π2,D

K φh = 0, (3.8)

with c0 and c1 positive constants independent of h and K.

Now, using the projector operator Π2,D
K and the bilinear form SKD (·, ·), we introduce the following

computable discrete local bilinear form:

Ah,K(ψh, φh) := AK
(

Π2,D
K ψh,Π

2,D
K φh

)
+ SKD

(
ψh −Π2,D

K ψh, φh −Π2,D
K φh

)
, (3.9)

as an approximation of the continuous bilinear form AK(·, ·) (cf. (3.1)).

We choose the following representation for the bilinear form SKD (·, ·) satisfying (3.8) (see [4, 44]):

SKD (ψh, φh) := σKD

NK∑
i=1

[
ψh(vi)φh(vi) + h2

vi∇ψh(vi) · ∇φh(vi)
]
∀ψh, φh ∈ Xh(K),

where v1, . . . ,vNK are the vertices of the element K, hvi corresponds to the maximum diameter of
the elements with vi as a vertex. The parameter σKD is a multiplicative factor to take into account
the h-scaling, for instance, in the numerical test we have taken σKD as the trace of the matrix

AK(Π2,D
K ψh,Π

2,D
K φh) (cf. (3.9)).

For the approximation of the local trilinear form BK(·; ·, ·) (cf. (3.3)), we consider the following
computable form:

Bh,K(ζh;ψh, φh) :=

∫
K

[(
ΠK

0 ∆ζh
) (

ΠK
1 curl ψh

)]
·ΠK

1 ∇φh ∀ζh, ψh, φh ∈ Xh(K). (3.10)
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For the approximation of the bilinear form CKskew(·, ·) (cf. (3.4)), we consider the skew-
symmetric discrete local form:

Ch,Kskew(ψh, φh) :=
1

2

∫
K

ΠK
2 (∂xψh) ΠK

2 φh −
1

2

∫
K

ΠK
2 ψh ΠK

2 (∂xφh). (3.11)

We recall that all the above forms are computable using only the degrees of freedom O1 and
O2.

Then, we define the global bilinear forms and trilinear form as follows:

Ah : Xh ×Xh → R, Ah(ψh, φh) :=
∑
K∈Ωh

Ah,K(ψh, φh), (3.12)

Bh : Xh ×Xh ×Xh → R, Bh(ζh;ψh, φh) :=
∑
K∈Ωh

Bh,K(ζh;ψh, φh), (3.13)

Chskew : Xh ×Xh → R, Chskew(ψh, φh) :=
∑
K∈Ωh

Ch,Kskew(ψh, φh), (3.14)

for all ζh, ψh, φh ∈ Xh. Moreover, we observe that the forms Bh(·; ·, ·) and Chskew(·, ·) can be
extended to the whole X.

The next step consists in constructing a computable approximation of the right hand side (2.6),
using the sets of degrees of freedom O1 and O2. With this aim, for each element K we define the
following term:

Fh,K(φh) :=

∫
K

ΠK
2 fφh ≡

∫
K

f ΠK
2 φh ∀φh ∈ Xh(K),

where we have used the L2-projection operator (3.5). Thus, we introduce the following approxi-
mation for the functional defined in (2.6):

Fh(φh) :=
∑
K∈Ωh

Fh,K(φh) ∀φh ∈ Xh. (3.15)

The following result establishes the classical consistency and stability properties for the discrete
local bilinear forms.

Proposition 3.1 The local bilinear forms AK(·, ·), Ah,K(·, ·), CKskew(·, ·) and Ch,Kskew(·, ·), defined
in (3.2), (3.9), (3.4) and (3.11), respectively, on each element K satisfies the following properties:

• Consistency: for all h > 0 and for all K ∈ Ωh, we have that

Ah,K(q, φh) = AK(q, φh) ∀q ∈ P2(K), ∀φh ∈ Xh(K), (3.16)

Ch,Kskew(q, φh) = CKskew(q, φh) ∀q ∈ P2(K), ∀φh ∈ Xh(K), (3.17)

• Stability and boundedness: There exist positive constants α1 and α2, independent of h and
K, such that:

α1A
K(φh, φh) ≤ Ah,K(φh, φh) ≤ α2A

K(φh, φh) ∀φh ∈ Xh(K). (3.18)

Proof. The proof follows basically from the definition of the bilinear forms. We omit further details
and refer to [4, 5]. �

The following lemma, which can be seen as the discrete version of Lemma 2.1, establishes
additional properties for the discrete forms.
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Lemma 3.2 There exist positive constants ĈBh , Ĉ2 and C1, independent of h, such that the forms
defined in (3.12)-(3.15) satisfies the following properties:

|Ah(ψh, φh)| ≤ α2 ‖ψh‖X‖φh‖X ∀ψh, φh ∈ Xh, (3.19)

Ah(φh, φh) ≥ α1 ‖φh‖2X ∀φh ∈ Xh, (3.20)

Bh(ζh;ψh, φh) ≤ ĈBh‖ζh‖X‖ψh‖X‖φh‖X ∀ζh, ψh, φh ∈ Xh, (3.21)

Bh(ζh;φh, φh) = 0, ∀ζh, φh ∈ Xh, (3.22)

|Chskew(ψh, φh)| ≤ Ĉ2 ‖ψh‖X‖φh‖X ∀ψh, φh ∈ Xh, (3.23)

Chskew(φh, φh) = 0, ∀φh ∈ Xh, (3.24)

|Fh(φh)| ≤ C1‖f‖0,Ω‖φh‖X ∀ψh, φh ∈ Xh. (3.25)

Proof. Properties (3.19) and (3.20) follows from (3.18) and the ellipticity of the bilinear form
AK(·, ·). To prove property (3.21), we use the definition of the trilinear form Bh(·; ·, ·) (cf. (3.13))
and Hölder inequality, we have

Bh(ζh;ψh, φh) =
∑
K∈Ωh

∫
K

[(
ΠK

0 ∆ζh
) (

ΠK
1 curl ψh

)]
·ΠK

1 ∇φh

≤
∑
K∈Ωh

‖ΠK
0 ∆ζh‖0,K‖ΠK

1 curl ψh‖L4(K)‖ΠK
1 ∇φh‖L4(K).

Using the continuity of the operator ΠK
0 with respect to the L2-norm and the continuity of the

operator ΠK
1 with respect to the norm L4-norm (see [8]), we have

Bh(ζh;ψh, φh) ≤ C
∑
K∈Ωh

‖∆ζh‖0,K‖curl ψh‖L4(K)‖∇φh‖L4(K).

Now, applying the Hölder inequality (for sequences), we obtain

Bh(ζh;ψh, φh) ≤ C

( ∑
K∈Ωh

‖∆ζh‖20,K

)1/2( ∑
K∈Ωh

‖curl ψh‖4L4(K)

)1/4( ∑
K∈Ωh

‖∇φh‖4L4(K)

)1/4

≤ C‖∆ζh‖0,Ω‖curl ψh‖L4(Ω)‖∇φh‖L4(Ω).

Then, by Sobolev embedding theorem, it holds that

Bh(ζh;ψh, φh) ≤ ĈBh‖ζh‖X‖ψh‖X‖φh‖X ,

where ĈBh is a constant independent of h.

Finally, (3.22)-(3.25) follows from the definition of the corresponding forms. We conclude the
proof. �

3.3 Discrete problem and fixed-point strategy

In this section, we will write the discrete VEM formulation to solve the quasi-geostrophic equations
presented in (2.8). Our scheme will be based on the discrete forms and the results introduced in
the previous section. Then, we will analyze a point-fixed strategy to establish the existence and
uniqueness of the discrete virtual scheme.

The discrete problem reads as follows: find ψh ∈ Xh, such that

Re−1Ah(ψh, φh) +Bh(ψh;ψh, φh)− Ro−1Chskew(ψh, φh) = Ro−1Fh(φh) ∀φh ∈ Xh, (3.26)

11



where Ah(·, ·) and Chskew(·, ·) are the discrete bilinear forms defined in (3.12) and (3.14), respectively,
Bh(·; ·, ·) is the discrete trilinear form defined in (3.13), and Fh(·) is the functional introduced in
(3.15).

In order to prove well posedness of (3.26), we are going to use, as in the continuous case, a
fixed-point strategy. Indeed, given ζh ∈ Xh, we define the following operator

Th : Xh −→ Xh

ζh 7−→ Th(ζh) = ϕh,

where ϕh is the solution of the following linear problem: find ϕh ∈ Xh such that

Qζh(ϕh, φh) = Ro−1Fh(φh) ∀φh ∈ Xh, (3.27)

where the bilinear form Qζh(·, ·) is given by

Qζh(ϕh, φh) := Re−1Ah(ϕh, φh) +Bh(ζh;ϕh, φh)− Ro−1Chskew(ϕh, φh).

The following lemma establishes that the operator Th is well-defined.

Lemma 3.3 Given ζh ∈ Xh, there exists a unique ϕh ∈ Xh such that Th(ζh) = ϕh.

Proof. We are going to use the Lax-Milgram Theorem to prove that problem (3.27) is well-posed.
Indeed, using the properties (3.19), (3.21) and (3.23), we have that Qζh(·, ·) is bounded with a
positive constant independent of h. On the other hand, for each φh ∈ Xh, using (3.22) and (3.24),
we have

Qζh(φh, φh) = Re−1Ah(φh, φh) +Bh(ζh;φh, φh)− Ro−1Chskew(φh, φh)

= Re−1Ah(φh, φh)

≥ Re−1α1‖φh‖2X ,

where (3.20) has been used in the last inequality. Thus, by a direct application of the Lax-Milgram
Theorem, we conclude that problem (3.27) has a unique solution ϕh ∈ Xh. Moreover, from the
definition of the discrete problem (cf. (3.27)), (3.22), (3.24) and (3.25), the following estimate
holds

‖ϕh‖X ≤ C1α
−1
1 Ro−1Re ‖f‖0,Ω.

Therefore, operator Th is well-defined. �

Now, we introduce the following set

Nh := {φh ∈ Xh : ‖φh‖X ≤ R} ,

where R := C1α
−1
1 Ro−1Re ‖f‖0,Ω. As an immediate consequence of the previous lemma, we have

that Th(Nh) ⊆ Nh.

Note that our discrete virtual scheme (3.26) is well-posed if only if operator Th has a unique
fixed point in Nh.

The following lemma establishes that Th is a contraction mapping in Nh.

Lemma 3.4 Assume that
ĈBhC1Ro−1Re2‖f‖0,Ω

α2
1

< 1. (3.28)

Then, Th is a contraction mapping in Nh.

12



Proof. Let ζ1
h, ψ

1
h, ζ

2
h, ψ

2
h ∈ Nh, such that Th(ζ1

h) = ψ1
h and Th(ζ2

h) = ψ2
h, then from the definition

of the operator Th(·), we have

Re−1Ah(ψ1
h, φh) +Bh(ζ1

h;ψ1
h, φh)− Ro−1Chskew(ψ1

h, φh) = Ro−1Fh(φh) ∀φh ∈ Nh, (3.29)

Re−1Ah(ψ2
h, φh) +Bh(ζ2

h;ψ2
h, φh)− Ro−1Chskew(ψ2

h, φh) = Ro−1Fh(φh) ∀φh ∈ Nh. (3.30)

Subtracting (3.30) from (3.29), due to the properties of the bilinear forms Ah(·, ·) and Chskew(·, ·),
we have that

Re−1Ah(ψ1
h − ψ2

h, φh) + [Bh(ζ1
h;ψ1

h, φh)−Bh(ζ2
h;ψ2

h, φh)]− Ro−1Chskew(ψ1
h − ψ2

h, φh) = 0,

for all φh ∈ Nh. Now, taking φh := ψ1
h−ψ2

h in the above equality, we have that Chskew(·, ·) vanishes
(cf. (3.24)). Thus, we obtain

Re−1Ah(ψ1
h − ψ2

h, ψ
1
h − ψ2

h) +Bh(ζ1
h;ψ1

h, ψ
1
h − ψ2

h) −Bh(ζ2
h;ψ2

h, ψ
1
h − ψ2

h) = 0.

Then, adding and subtracting ψ2
h in the second term of the left hand above, we get

0 = Re−1Ah(ψ1
h − ψ2

h, ψ
1
h − ψ2

h) +Bh(ζ1
h;ψ1

h − ψ2
h, ψ

1
h − ψ2

h) +Bh(ζ1
h;ψ2

h, ψ
1
h − ψ2

h)

−Bh(ζ2
h;ψ2

h, ψ
1
h − ψ2

h)

= Re−1Ah(ψ1
h − ψ2

h, ψ
1
h − ψ2

h) +Bh(ζ1
h;ψ2

h, ψ
1
h − ψ2

h)−Bh(ζ2
h;ψ2

h, ψ
1
h − ψ2

h)

= Re−1Ah(ψ1
h − ψ2

h, ψ
1
h − ψ2

h) +Bh(ζ1
h − ζ2

h;ψ2
h, ψ

1
h − ψ2

h),

where we have used (3.22). Then, we have

Re−1Ah(ψ1
h − ψ2

h, ψ
1
h − ψ2

h) = −Bh(ζ1
h − ζ2

h;ψ2
h, ψ

1
h − ψ2

h),

then applying the Cauchy-Schwarz inequality, (3.20) and (3.21), we obtain

Re−1α1‖ψ1
h − ψ2

h‖2X ≤ ĈBh‖ψ2
h‖X‖ζ1

h − ζ2
h‖X‖ψ1

h − ψ2
h‖X ,

using the fact that ψ2
h ∈ Nh, we obtain

‖ψ1
h − ψ2

h‖X ≤
ĈBhC1Ro−1Re2‖f‖0,Ω

α2
1

‖ζ1
h − ζ2

h‖X .

Thus, according to assumption (3.28), we have that Th is a contraction mapping. The proof is
complete. �

The following result is a direct consequence of Lemma 3.4 and the Banach fixed-point Theorem.

Theorem 3.1 If

λh :=
ĈBhC1Ro−1Re2‖f‖0,Ω

α2
1

< 1, (3.31)

there exists a unique ψh ∈ Nh solution to problem (3.26), which satisfies the following continuous
dependence

‖ψh‖X ≤
C1Ro−1Re ‖f‖0,Ω

α1
.

4 Convergence analysis

In this section, we will analyze the convergence properties of the discrete virtual element scheme
presented in Section 3.3. In the forthcoming analysis, we will make the following assumptions for
the polygonal mesh Ωh: there exists a real number CΩh > 0 such that, for every h and every
K ∈ Ωh we have
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A1 : K ∈ Ωh is star-shaped with respect to every point of a ball of radius CΩhhK ;

A2 : the ratio between the shortest edge and the diameter hK of K is larger than CΩh .

We introduce the following broken H`-seminorm, for each integer ` ≥ 0:

|φ|`,h :=

( ∑
K∈Ωh

|φ|2`,K

)1/2

,

which is well defined for every φ ∈ L2(Ω) such that φ|K ∈ H`(K) for all polygon K ∈ Ωh.

The following approximation results will play a relevant role in our error analysis (see [4, 9, 12]).

Proposition 4.1 Assume A2 is satisfied, then there exists a constant C > 0, such that for every
φ ∈ Hδ(K), there exists φπ ∈ P2(K), such that

|φ− φπ|`,K ≤ Chδ−`K |φ|δ,K , 0 ≤ δ ≤ 3, ` = 0, 1, . . . , [δ],

where [δ] denotes the largest integer equal to or smaller than δ ∈ R.

Proposition 4.2 Assume that A1−A2 are satisfied. Then, for each φ ∈ H2+s(Ω), with
s ∈ (1/2, 1] there exist φI ∈ Xh and C > 0, independent of h, such that

‖φ− φI‖X ≤ Chs|φ|2+s,Ω.

Proof. The proof follows repeating the arguments from [9, Proposition 4.2] (see also [4, Proposi-
tion 3.1]). �

We will also use the following approximation property (see [8]):

Lemma 4.1 Let K ∈ Ωh, and δ, p two real numbers such that 0 ≤ δ ≤ 1 and 0 ≤ p ≤ ∞. Then,
there exists a constant C > 0, independent of hK , such that for every v ∈ [Hδ(K)]2

|v −ΠK
1 v|Lp(K) ≤ ChδK |v|W δ,p(K).

Now, we start with the following bound.

Proposition 4.3 Let f ∈ L2(Ω) and let F (·) and Fh(·) be the functionals defined in (2.6) and
(3.15), respectively. Then, we have the following estimate:

∥∥F − Fh∥∥
X′
h

:= sup
φh∈Xh
φh 6= 0

|F (φh)− Fh(φh)|
‖φh‖X

≤ Ch2‖f‖0,Ω.

Proof. The proof follows from the definition of the functionals F (·) and Fh(·), together with
approximation properties of the projector ΠK

2 . �

The next step is to establish two technical results for the trilinear forms B(·; ·, ·) and Bh(·; ·, ·).
We begin with the following lemma.

Lemma 4.2 Let v ∈ H2+s(Ω) ∩X, with s ∈ (1/2, 1]. Then for all w ∈ X, we have that

|B(v; v, w)−Bh(v; v, w)| ≤ Chs(‖v‖1+s,Ω + ‖v‖X)‖v‖2+s,Ω‖w‖X .
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Proof. Let v ∈ H2+s(Ω) ∩X and w ∈ X, then adding and subtracting suitable terms and using
orthogonality properties of the projectors ΠK

0 and ΠK
1 , we have that

B(v; v, w)−Bh(v; v, w) =
∑
K∈Ωh

∫
K

[
∆v curl v · ∇w −

(
ΠK

0 ∆vΠK
1 curl v

)
·ΠK

1 ∇w
]

=
∑
K∈Ωh

∫
K

∆v curl v ·
(
∇w −ΠK

1 ∇w
)

+
∑
K∈Ωh

∫
K

(
∆v
(
curl v −ΠK

1 curl v
))
·ΠK

1 ∇w

+
∑
K∈Ωh

∫
K

((
∆v −ΠK

0 ∆v
)

ΠK
1 curl v

)
·ΠK

1 ∇w

=: T1 + T2 + T3.

(4.1)

We will bound the terms in the last equality. Applying Hölder inequality and approximation
properties of projector ΠK

1 (see Lemma 4.1), we bound the term T1 as follows

T1 ≤
∑
K∈Ωh

C‖∆v‖L4(K)‖curl v‖L4(K)‖∇w −ΠK
1 ∇w‖0,K

≤
∑
K∈Ωh

C‖∆v‖L4(K)‖curl v‖L4(K)Ch|∇w|1,K ,

then using Hölder inequality (for sequences) and the fact that Hs(Ω) ↪→ L4(Ω), we obtain that

T1 ≤ Ch

( ∑
K∈Ωh

‖∆v‖4L4(K)

)1/4( ∑
K∈Ωh

‖curl v‖4L4(K)

)1/4( ∑
K∈Ωh

|w|22,K

)1/2

≤ Ch‖∆v‖L4(Ω)‖curl v‖L4(Ω)‖w‖X
≤ Ch‖∆v‖s,Ω‖curl v‖s,Ω‖w‖X
≤ Ch‖v‖2+s,Ω‖v‖1+s,Ω‖w‖X .

(4.2)

Now, for the term T2, we use again Hölder inequality, approximation properties of projector
ΠK

1 in Sobolev spaces (see Lemma 4.1), and continuity of ΠK
1 with respect L4-norm (see [8]), to

get

T2 ≤
∑
K∈Ωh

C‖∆v‖0,K‖curl v −ΠK
1 curl v‖L4(K)‖ΠK

1 ∇w‖L4(K)

≤
∑
K∈Ωh

C‖∆v‖0,Khs‖curl v‖W s,4(K)‖∇w‖L4(K).

Now, using again Hölder inequality (for sequences) and Sobolev embeddings Hs(Ω) ↪→ L4(Ω) and
H1+s(Ω) ↪→W s,4(Ω), we obtain that

T2 ≤ Chs
( ∑
K∈Ωh

‖∆v‖20,K

)1/2( ∑
K∈Ωh

‖curl v‖4W s,4(K)

)1/4( ∑
K∈Ωh

‖∇w‖4L4(K)

)1/4

≤ Chs‖∆v‖0,Ω|curl v|W s,4(Ω)‖∇w‖L4(Ω)

≤ Chs‖v‖X |curl v|1+s,Ω‖w‖X
≤ Chs‖v‖X‖v‖2+s,Ω‖w‖X .

(4.3)
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We continue with the term T3. We use Hölder inequality and the continuity of the projector ΠK
1

with respect L4-norm and the approximation property for projector ΠK
0 , it holds that

T3 ≤
∑
K∈Ωh

C‖∆v −ΠK
0 ∆v‖0,K‖ΠK

1 curl v‖L4(K)‖ΠK
1 ∇w‖L4(K)

≤
∑
K∈Ωh

Chs‖∆v‖s,K‖curl v‖L4(K)‖∇w‖L4(K).

By employing the Hölder inequality (for sequences) and Sobolev embedding theorem, we have that

T3 ≤ Chs‖v‖2+s,Ω|v|1+s,Ω‖w‖X . (4.4)

Finally, the proof follows from the estimates (4.2), (4.3), (4.4) and (4.1). �

Now, we state the second technical result.

Lemma 4.3 For all ζ, ϕ, φ ∈ X we have that

|Bh(ϕ;ϕ, φ)−Bh(ζ; ζ, φ)| ≤ ĈBh (‖ζ‖X‖φ‖X + ‖ϕ− ζ + φ‖X(‖ϕ‖X + ‖ζ‖X)) ‖φ‖X .

Proof. Let ζ, ϕ, φ ∈ X. Then, adding and subtracting suitable terms, using the trilineality of the
form Bh(·; ·, ·) and the property (3.22), we have

Bh(ϕ;ϕ, φ)−Bh(ζ; ζ, φ)

= Bh(ϕ;ϕ− ζ, φ) +Bh(ϕ− ζ; ζ, φ)

= Bh(ϕ;ϕ− ζ + φ, φ)−Bh(ϕ;φ, φ) +Bh(ϕ− ζ + φ; ζ, φ)−Bh(φ; ζ, φ)

= Bh(ϕ;ϕ− ζ + φ, φ) +Bh(ϕ− ζ + φ; ζ, φ)−Bh(φ; ζ, φ).

Thus, the proof follows from (3.21) with continuous arguments. �

The following theorem provides the rate of convergence of our virtual element scheme.

Theorem 4.1 Let ψ and ψh be the unique solutions of problem (2.8) and problem (3.26), respec-
tively. Then, there exists a positive constant C, independent of h, such that

‖ψ − ψh‖X ≤ C hsG(f ; Re,Ro, λ, λh),

where s ∈ (1/2, 1] is such that ψ ∈ H2+s(Ω) ∩X (cf. Theorem 2.2) and G is a suitable function
independent of h.

Proof. Let ψI ∈ Xh be the interpolant of ψ, such that Proposition 4.2 holds true. We set
wh := ψh − ψI . Thus,

‖ψ − ψh‖X ≤ ‖ψ − ψI‖X + ‖wh‖X . (4.5)

The bound of first term on the right hand side above follows from Proposition 4.2. Thus, we bound
the second term. Thank to properties (3.20), (3.22) and (3.22), we have that

Re−1α1‖wh‖2X ≤ Re−1Ah(wh, wh) = Re−1Ah(ψh, wh)− Re−1Ah(ψI , wh)

= Re−1Ah(ψh, wh) +Bh(ψh;wh, wh)− Ro−1Chskew(wh, wh)− Re−1Ah(ψI , wh)

=
[
Re−1Ah(ψh, wh) +Bh(ψh;ψh, wh)− Ro−1Chskew(ψh, wh)

]
−Bh(ψh;ψI , wh) + Ro−1Chskew(ψI , wh)− Re−1Ah(ψI , wh)

= Ro−1Fh(wh)− Re−1Ah(ψI , wh)−Bh(ψh;ψI , wh) + Ro−1Chskew(ψI , wh),
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where we have used the definition of the discrete scheme (3.26). Now, adding and subtracting the
term Ro−1F (wh) on the right hand side above, and using the definition of the continuous problem
(cf. (2.8)), we get

Re−1α1‖wh‖2X ≤ Ro−1
[
Fh(wh)− F (wh)

]
+ Re−1

[
A(ψ,wh)−Ah(ψI , wh)

]
+ [B(ψ;ψ,wh)−Bh(ψh;ψI , wh)] + Ro−1

[
Cskew(ψ,wh)− Chskew(ψI , wh)

]
≤ C Ro−1‖F − Fh‖X′

h
‖wh‖X + Re−1

[
A(ψ,wh)−Ah(ψI , wh)

]
+
[
B(ψ;ψ,wh)−Bh(ψh;ψI , wh)

]
+ Ro−1

[
Cskew(ψ,wh)− Chskew(ψI , wh)

]
= TF + TA + TB + TC .

(4.6)

Now, we bound each term on the right hand side above. First, the term TF can be easily bounded
by using Proposition 4.3. Then, we estimate the term TA as follows. Adding and subtracting
ψπ ∈ P2(K) such that Proposition 4.1 holds true, and using the consistency of the bilinear form
Ah,K(·, ·) (cf. (3.16)), we have that

TA = Re−1
∑
K∈Ωh

[
AK(ψ − ψπ, wh)−Ah,K(ψI − ψπ, wh)

]
≤ CRe−1hs‖ψ‖2+s,Ω‖wh‖X , (4.7)

where we have used the continuity of the bilinear form Ah,K(·, ·), Propositions 4.1 and 4.2 and
Cauchy-Schwarz inequality. Analogously, the term TC can be estimated as follows

TC = Ro−1
∑
K∈Ωh

[
CKskew(ψ − ψπ, wh)− Ch,Kskew(ψI − ψπ, wh)

]
≤ CRo−1hs‖ψ‖2+s,Ω‖wh‖X . (4.8)

The next step is to bound the term TB . We proceed as follows

TB =
[
B(ψ;ψ,wh)−Bh(ψh;ψh, wh)

]
+
[
Bh(ψh;ψh, wh)−Bh(ψh;ψI , wh)

]
=
[
B(ψ;ψ,wh)−Bh(ψh;ψh, wh)

]
+ [Bh(ψh;wh, wh)]

= B(ψ;ψ,wh)−Bh(ψh;ψh, wh),

(4.9)

where we have used (3.22) to obtain the last equality. Now, we add and subtract the term
Bh(ψ;ψ,wh), then we use Lemmas 4.2 and 4.3 to obtain that

TB =
[
B(ψ;ψ,wh)−Bh(ψ;ψ,wh)

]
+
[
Bh(ψ;ψ,wh)−Bh(ψh;ψh, wh)

]
≤ C hs(‖ψ‖X + ‖ψ‖1+s,Ω)‖ψ‖2+s,Ω‖wh‖X

+ ĈBh (‖ψh‖X‖wh‖X + Chs‖ψ‖2+s,Ω(‖ψ‖X + ‖ψh‖X)) ‖wh‖X ,
(4.10)

where we have used that wh = ψh − ψI and then Proposition 4.2.

Therefore, from (4.6), using (4.7)-(4.10), we obtain

Re−1α1‖wh‖X ≤ C Ro−1 h2‖f‖0,Ω + C(Re−1 + Ro−1)hs‖ψ‖2+s,Ω + C hs(‖ψ‖X + ‖ψ‖1+s,Ω)‖ψ‖2+s,Ω

+ ĈBh‖ψh‖X‖wh‖X + ĈBh Ch
s(‖ψ‖X + ‖ψh‖X)‖ψ‖2+s,Ω.

From the inequality above, we obtain

Re−1α1

(
1− ĈBhReα−1

1 ‖ψh‖X
)
‖wh‖X ≤ C Ro−1h2‖f‖0,Ω + C(Re−1 + Ro−1)hs‖ψ‖2+s,Ω

+ C hs(‖ψ‖X + ‖ψ‖1+s,Ω)‖ψ‖2+s,Ω + ĈBh Ch
s(‖ψ‖X + ‖ψh‖X)‖ψ‖2+s,Ω.

(4.11)

Next, from (3.31) and the fact that ψh ∈ Nh, it holds that

1− ĈBh‖ψh‖X
Re−1α1

≥ 1− ĈBh C1 Re2 Ro−1‖f‖0,Ω
α2

1

= 1− λh > 0. (4.12)

17



Therefore, from (4.11), (4.12) and Theorem 3.1, we get

‖wh‖X ≤
C Re Ro−1 h2 ‖f‖0,Ω

α1 (1− λh)
+
C Re (Re−1 + Ro−1)hs

α1 (1− λh)
‖ψ‖2+s,Ω

+
C Re hs

α1 (1− λh)
(‖ψ‖X + ‖ψ‖1+s,Ω)‖ψ‖2+s,Ω +

ĈBh C Re hs

α1 (1− λh)
(‖ψ‖X + ‖ψh‖X)‖ψ‖2+s,Ω

≤ C hsG(f ; Re,Ro, λ, λh),

(4.13)

where we have also used Theorem 2.2. Finally, the proof follows from (4.5), (4.13) and Proposi-
tion 4.2. �

5 Numerical results

In this section, we present four numerical experiments, to test the behavior of the proposed VEM
discretization (3.26) and in order to verify the theoretical results established in Section 4.

We have tested the virtual scheme by using different families of polygonal meshes (cf. Figure 1).
For reasons of brevity, we do not report the results obtained with all meshes for all test problems.
The non reported results are in accordance with the ones shown.

• Ω1
h: Sequence of CVT (Centroidal Voronoi Tessellation);

• Ω2
h: Trapezoidal meshes;

• Ω3
h: Distorted concave rhombic quadrilaterals;

• Ω4
h: Uniform triangular meshes.

In order to test the convergence of the proposed scheme, we introduce the following computable
quantities:

ei(ψ) := |ψ −Π2,D
K ψh|i,h, i = 0, 1, 2.

We will compute experimental rates of convergence for each individual error as follows:

ri(ψ) :=
log(ei(ψ)/e′i(ψ))

log(h/h′)
, i = 0, 1, 2.

where h, h′ denote two consecutive mesh sizes with their respective errors ei and e′i.

For each test to solve the resulting nonlinear system, we used the Newton method with max-
imum 10 iterations, a tolerance Tol= 1e − 8 and we take ψ0

h = 0 as an initial guess; moreover,
we have taken the Reynolds number as Re = 1.667 and the Rossby number as Ro = 1e − 4 (see
[27]). Finally, we consider Ω := (0, 1)2 as computational domain in the first three examples and
an L-shaped domain in the last example.

5.1 Test 1: Smooth solution

In this numerical test, we take the load term in such a way that the analytical solution of the
quasi-geostrophic equations (2.1) is given by:

ψ(x, y) :=
1

π2
sin2 (πx) sin2(πy)ex

2+y2 .
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Figure 1: Sample meshes. Ω1
h (top left), Ω2

h (top right), Ω3
h (bottom left) and Ω4

h (bottom right).

We report in Table 1 the convergence history of our virtual scheme on the meshes Ω1
h. The

table includes the number of degrees of freedom (dofs), the discrete errors ei(ψ), the convergence
rates ri(ψ) for i = 0, 1, 2, and the number of iterations (iter) used by the method of Newton to
achieve tolerance at each level of refinement.

dofs h e0(ψ) r0(ψ) e1(ψ) r1(ψ) e2(ψ) r2(ψ) iter

294 1/8 4.214341e-2 — 1.338770e-1 — 3.676844e-1 — 3
1371 1/16 1.100219e-2 1.937 4.993576e-2 1.422 1.924777e-1 0.933 3
5796 1/32 2.329921e-3 2.239 1.229111e-2 2.022 9.401329e-2 1.033 3

23874 1/64 5.576055e-4 2.062 3.109190e-3 1.983 4.633333e-2 1.020 3
96855 1/128 1.089853e-4 2.355 7.895256e-4 1.977 2.308295e-2 1.005 3

Table 1: Test 1. Errors and experimental rates for the stream-function ψh, using the meshes Ω1
h.

We observe that the asymptotic O(h) decay of the discrete error e2(ψ) observed for the stream-
function confirms the optimal convergence predicted by Theorem 4.1. It can be also seen that the
errors e0(ψ) and e1(ψ) decay much faster. However, we have not proved the higher order in these
cases. The table also shows that a maximum of four iterations are required for the Newton method.

Sample approximate solutions generated with the virtual method on a coarse mesh are por-
trayed in Figure 2.
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Figure 2: Test 1. Exact and approximate solutions ψ and ψh, the streamlines of ψh and the
velocity field uh := curlψh (top left, top right, bottom left, bottom right, respectively), using the
VEM method (3.26) with Ω1

h, h = 1/32.

5.2 Test 2: Solution with western boundary layer

In this numerical example, we solve the quasi-geostrophic equations (2.1) by taking the load term
in such a way that the analytical solution is given by:

ψ(x, y) =
1

(20π)2

(
(1− x)

(
1− e−20x

)
sin(πy)

)2
.

We observe that in this case the solution has a boundary layer on the left hand side.

In Table 2 we report the convergence history of our virtual scheme on the meshes Ω2
h. The table

includes the number of degrees of freedom (dofs), the discrete errors ei(ψ), and the convergence
rates ri(ψ) for i = 0, 1, 2. Once again, the expected order of convergence for the discrete errors
e2(ψ) is reached.

dofs h e0(ψ) r0(ψ) e1(ψ) r1(ψ) e2(ψ) r2(ψ) iter

147 1/8 7.600646e-5 — 1.549666e-3 — 2.834095e-2 — 3
675 1/16 1.616079e-5 2.233 4.688010e-4 1.724 1.390167e-2 1.027 2

2883 1/32 2.976015e-6 2.441 1.110449e-4 2.077 7.254667e-3 0.938 2
11907 1/64 6.202604e-7 2.262 2.706962e-5 2.036 3.804474e-3 0.931 2
48387 1/128 1.451048e-7 2.095 6.730940e-6 2.007 1.938996e-3 0.972 3

Table 2: Test 2. Errors and experimental rates for the stream-function ψh, using the meshes Ω2
h.

In addition, in Figure 3 we display the stream-function (exact and numerical solution) and the
approximate velocity field.
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Figure 3: Test 2. Exact and approximate solutions ψ, ψh, the streamlines of ψh and the velocity
field uh := curlψh and (top left, top right, bottom left, bottom right, respectively) using the VEM
method (3.26) with Ω2

h, h = 1/64.

5.3 Test 3: Solution with vortex in the top-right corner of the domain

In this numerical example, we solve the quasi-geostrophic equations (2.1) by taking the load term
in such a way that the analytical solution is given by:

ψ(x, y) =
1

4π2

(
1− cos

(
2π(eR1x − 1)

eR1 − 1

))(
1− cos

(
2π(eR2y − 1)

eR2 − 1

))
.

In this experiment it is expected to observe a counter-clockwise rotating vortex with center (xc, yc)
which depends on the values of R1 and R2. The coordinates of the center of the vortex are given
by:

xc =
1

R1
log

(
eR1 + 1

2

)
yc =

1

R2
log

(
eR2 + 1

2

)
.

In particular, we have chosen R1 = R2 = 4, then the center of the vortex is located at the top-right
corner of the domain. More precisely, (xc, yc) ≈ (0.83125, 0.83125).

We proceed to study the accuracy of our VEM scheme by solving the discrete problem on a
sequence of polygonal meshes Ω3

h. Once again, we compute the discrete errors ei(ψ) for i = 0, 1, 2.
The error history is collected in Table 3, which indicates that the scheme, as predicted by the
theory, converges with an O(h) in the discrete error e2(ψ). The table also shows that a maximum
of four iterations are required for the Newton method.

In Figure 4 we display the stream-function (exact and numerical solution) and the approximate
velocity field.
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dofs h e0(ψ) r0(ψ) e1(ψ) r1(ψ) e2(ψ) r2(ψ) iter

123 1/4 1.153577e-2 — 2.116982e-1 — 4.17475e+0 — 4
531 1/8 9.705065e-3 0.249 1.328881e-1 0.671 3.21654e+0 0.376 3

2211 1/16 2.444361e-3 1.989 4.017754e-2 1.725 1.72708e+0 0.897 3
9027 1/32 4.937103e-4 2.307 9.985092e-3 2.008 8.549397e-1 1.014 4

36483 1/64 1.118995e-4 2.141 2.479913e-3 2.009 4.275213e-1 0.999 4

Table 3: Test 3. Errors and experimental rates for the stream-function ψh, using the meshes Ω3
h.
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Figure 4: Test 3. Exact and approximate solutions ψ, ψh and the velocity field uh := curlψh (top
left, top right and bottom, respectively) using the VEM method (3.26) with Ω3

h, h = 1/32.

5.4 Test 4: L-shaped domain

Finally, we solve the quasi-geostrophic equations (2.1) on an L-shape domain: Ω := (−1, 1)2 \
([0, 1) × (−1, 0]). We take the right hand side term and non-homogeneous Dirichlet boundary
conditions in such a way that the exact solution in polar coordinates is given by

ψ(r, θ) = r5/3 sin

(
5

3
θ

)
.

The analytical solution contains a singularity at the re-entrant corner of Ω; here, we have ψ ∈
H8/3−ε(Ω) for all ε > 0.

Table 4 shows the errors and experimental convergence rates of our virtual scheme on the
meshes Ω4

h. Since the analytical solution is singular, we are not going to obtain linear (in H2)
and quadratic (in H1 and L2) order of convergences as in the previous examples. More precisely,
according to the regularity of ψ, we expect an order of convergence in H2 as O(h2/3).

It can be seen from Table 4 that the expected order of convergence for the discrete errors e2(ψ)
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dofs h e0(ψ) r0(ψ) e1(ψ) r1(ψ) e2(ψ) r2(ψ) iter

483 1/8 2.985997e-4 — 6.677776e-3 — 2.614276e-1 — 4
2115 1/16 1.448822e-4 1.043 2.446762e-3 1.448 1.643765e-1 0.669 4
8835 1/32 6.100395e-5 1.247 9.069247e-4 1.431 1.040009e-1 0.660 4

36099 1/64 2.538614e-5 1.264 3.411994e-4 1.410 6.577727e-2 0.660 4
145923 1/128 1.063002e-5 1.255 1.316359e-4 1.374 4.155790e-2 0.662 4

Table 4: Test 4. Errors and experimental rates for the stream-function ψh, using the meshes Ω4
h.

is obtained. We also observe that the errors e0(ψ) and e1(ψ) decay much faster.

Finally, Figure 5 shows the stream-function (exact and numerical solution).

Figure 5: Test 4. Exact and approximate solutions ψ, ψh (left and right, respectively) using the
VEM method (3.26) with Ω4

h, h = 1/16.
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
Ingenieŕıa Matemática (CI2MA)
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