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Abstract

In this paper we consider Banach spaces-based fully-mixed variational formulations that has been
recently proposed for the Boussinesq and the Oberbeck-Boussinesq models, and develop reliable
and efficient residual-based a posteriori error estimators for the 2D and 3D versions of the as-
sociated mixed finite element schemes. For the reliability analysis, we employ the global inf-sup
condition for each equation defining the model, namely Navier-Stokes and heat equations in the
case of Boussinesq, along with suitable Helmholtz decomposition in nonstandard Banach spaces,
the approximation properties of the Raviart-Thomas and Clément interpolants, further regularity
on the continuous solutions, and smallness assumptions on the data. In turn, the efficiency es-
timates follow from inverse inequalities and the localization technique through bubble functions
in adequately defined local Lp spaces. Finally, several numerical results including natural convec-
tion in 3D differentially heated enclosures, are reported with the aim of confirming the theoretical
properties of the estimators and illustrating the performance of the associated adaptive algorithm.
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1 Introduction

We have recently introduced in [24] and [25] new fully-mixed finite element methods for the stationary
Boussinesq and Oberbeck-Boussinesq problems in Rn, n ∈ {2, 3}, with temperature-dependent viscosi-
ties. The first model deals with the fluid motion generated by density differences due to temperature
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‡CI2MA and Departamento de Ingenieŕıa Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile,

email: crinzunza@udec.cl.
§School of Mathematics, Monash University, 9 Rainforest Walk, Clayton 3800 VIC, Australia; and Institute of Com-

puter Science and Mathematical Modelling, Sechenov University, Moscow, Russian Federation; and Universidad Adven-
tista de Chile, Casilla 7-D, Chillán, Chile, email: ricardo.ruizbaier@monash.edu.
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gradients, and it consists of the Navier–Stokes equations with a buoyancy term depending on the tem-
perature, coupled to the heat equation with a convective term depending on the velocity of the fluid. In
turn, the second one refers to natural convection in porous media when temperature and concentration
differences occur simultaneously, and it is described by the incompressible Navier-Stokes/Brinkman
equations nonlinearly coupled, via convective mass and heat transfer, to advection-diffusion equations
for solute’s concentration and temperature.

Regarding the main features of the aforementioned references, we first stress that the approach in
[24] begins by adopting an idea that had been previously applied to the Navier-Stokes equations only
(see, e.g., [30], [44]). Indeed, in addition to the velocity gradient, it introduces the Bernoulli stress
tensor as a primary variable in the fluid part, which can be interpreted as an incomplete version of
the usual stress tensor whose divergence yields the full equilibrium equation. Then, the novelty of [24]
lies on the fact that this very same idea is applied to the heat equation forming part of the Boussinesq
model as well, so that, instead of using there the classical primal or dual-mixed methods, the gradient
of temperature and a vector version of the Bernoulli tensor are incorporated as further unknowns,
thus yielding a modified mixed formulation. As a consequence, and besides eliminating the pressure,
which can be computed later on via a postprocessing formula, the resulting continuous scheme does
not need any augmentation term, as it has been usual in several previous contributions (see, e.g., [5],
[6], [8], [26], [27]). In this way, a Banach spaces-based variational formulation, showing exactly the
same saddle-point structure in both equations, is obtained, and hence the corresponding continuous
and discrete analyses for the fluid and heat models can be performed separately and very much in
the same way, which turns into a clear advantage from the theoretical point of view. In particular,
Raviart-Thomas spaces of order k ≥ n−1 for the Bernoulli tensor and its vector version, and piecewise
polynomials of degree ≤ k for the velocity, the temperature, and both gradients, constitute a feasible
choice for the well-posedness of the associated Galerkin scheme.

In turn, the theory developed in [24] is extended in [25] to the case of the Oberbeck-Boussinesq
equations. In this case, and besides the aforedescribed unknowns in the fluid equations, the tem-
perature gradient, the concentration gradient and a vector version of the Bernoulli tensor combining
advective and diffusive heat and concentration fluxes, are introduced as further field variables. Thus,
similarly as in [24], the resulting formulation shows again a saddle-point structure on Banach spaces in
both the Navier-Stokes/Brinkman and the thermal energy conservation equations. Consequently, the
tools employed in [24], which include basically the Banach and Brouwer fixed-point theorems, along
with the respective Babuška-Brezzi theory, are also utilized here for the analysis of the continuous
and discrete schemes. In this way, the same finite element subspaces from [24] yield now a well-posed
Galerkin scheme for this second model. For related contributions dealing with Banach spaces-based
variational formulations and corresponding Galerkin schemes for nonlinear and coupled problems, we
refer to [13], [16], [17], [21], [22], [34], [39] and the references therein.

On the other hand, it is well known that adaptive algorithms based on a posteriori error estimators
are usually employed to recover optimal rates of convergence of finite element and mixed finite ele-
ment methods that loose accuracy when applied to highly nonlinear models or to problems under the
eventual presence of singularities. In fact, in these cases the successive application of quasi uniform
refinements in the entire domain might exhaust the computational capacity without obtaining satis-
factory approximations of the solutions. In this regard, and concerning Banach spaces-based mixed
finite element methods for nonlinear and coupled problems, as the ones mentioned above, not many
contributions on the respective a posteriori error analyses of those numerical procedures are available
so far (see, e.g. [15], [20], and [34]). In particular, the usual techniques employed within the Hilbertian
framework are extended in [15] to the case of Banach spaces by deriving a reliable and efficient a pos-
teriori error estimator for the momentum conservative mixed finite element method introduced in [16]
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for the steady-state Navier–Stokes problem. The above includes corresponding local estimates and
new Helmholtz decompositions for the reliability, as well as respective inverse inequalities and local
estimates of bubble functions for the efficiency. In turn, similar tools to those employed in [15] were
previously applied in [20] to develop a residual-based a posteriori error analysis of the primal-mixed
finite element method introduced in [17] for the Navier–Stokes/Darcy–Forchheimer coupled problem.
The amount of references is certainly much larger for Hilbert spaces-based variational formulations,
including augmented ones, of nonlinear and coupled problems, particularly of Navier-Stokes, Boussi-
nesq, and related flow-transport coupling models. A representative list of them is given by [3], [4], [7],
[10], [11], [14], [18], [19], [28], [29], [40], and [41].

According to the above discussion, and aiming to continue extending the knowledge on the numerical
analysis of nonlinear and coupled problems, in this paper we proceed similarly to [15] and [20] and
derive reliable and efficient residual-based a posteriori error estimators in 2D and 3D for the fully-
mixed finite element methods introduced in [24] and [25]. In this way, and up to our knowledge,
the present work provides the first a posteriori error analyses of non-augmented Banach spaces-based
mixed finite element methods for the stationary Boussinesq and Oberbeck-Boussinesq systems.

The rest of the paper is organized as follows. At the end of this section we introduce some notations
and definitions to be employed throughout the whole manuscript. In Section 2 we recall from [24]
the Boussinesq model, its fully-mixed variational formulation, and the associated mixed finite element
scheme. Next, in Section 3 we derive in full details a reliable and efficient residual-based a posteriori
error estimator for the 2D version of the Boussinesq equations. This includes preliminary results to
be utilized for the derivation of the reliability and efficiency estimates, and then the proofs of the
latter themselves, respectively. Then, in Section 4 we establish the 3D version of the a posteriori error
estimator provided in Section 3. Being the analysis analogue to the 2D case, the respective details are
omitted. In turn, the extension of the main results from Sections 3 and 4 to the Oberbeck-Boussinesq
equations are summarized in Section 5. Finally, several numerical results illustrating the reliability
and efficiency of the a posteriori error estimators, as well as the good performance of the adaptive
algorithms induced by them, and confirming the recovery of optimal rates of convergence, are reported
in Section 6.

1.1 Preliminary notations

Let Ω ⊆ Rn, n ∈ {2, 3}, be a given bounded domain with polyhedral boundary Γ, and let ν be the
outward unit normal vector on Γ. Standard notation will be adopted for Lebesgue spaces Lp(Ω) and
Lp(Γ), and Sobolev spaces Ws,p(Ω) and Ws,p(Γ), with s ∈ R and p > 1, whose corresponding norms,
and semi-norms in the case of the latter, either for the scalar, vector, or tensor case, are denoted by
‖ · ‖0,p;Ω, ‖ · ‖0,p;Γ, ‖ · ‖s,p;Ω, | · |s,p;Ω, ‖ · ‖s,p;Γ, and | · |s,p;Γ, respectively. In addition, Ws,2(Ω) and
Ws,2(Γ) are also denoted by Hs(Ω) and Hs(Γ), and the notations of their norms and semi-norms are
simplified to ‖ · ‖s,Ω, | · |s,Ω, ‖ · ‖s,Γ, and | · |s,Γ, respectively. In particular, H1/2(Γ) is the space of traces
of functions of H1(Ω) and H−1/2(Γ) is its dual. On the other hand, given any generic scalar functional
space M, we let M and M be the corresponding vectorial and tensorial counterparts, whereas ‖ · ‖,
with no subscripts, will be employed for the norm of any element or operator whenever there is no
confusion about the space to which they belong. Furthermore, as usual I stands for the identity tensor
in R := Rn×n, and | · | denotes the Euclidean norm in R := Rn. Also, for any vector fields v = (vi)i=1,n

and w = (wi)i=1,n we set the gradient, divergence, and tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div(v) :=
n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n .
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In turn, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div(τ ) be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr (τ ) :=
n∑
i=1

τii, τ : ζ :=
n∑

i,j=1

τijζij , and τ d := τ − 1

n
tr (τ ) I .

Next, given p > 1, we introduce the Banach spaces

H(divp; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lp(Ω)

}
,

H(divp; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lp(Ω)

}
,

provided with the natural norms

‖τ‖divp;Ω := ‖τ‖0,Ω + ‖div(τ )‖0,p;Ω ∀ τ ∈ H(divp; Ω) ,

and
‖τ‖divp;Ω := ‖τ‖0,Ω + ‖div(τ )‖0,p;Ω ∀ τ ∈ H(divp; Ω) .

Finally, we end this section by mentioning that, throughout the rest of the paper, we employ 0 to
denote a generic null vector (or tensor), and use C and c, with or without subscripts, bars, tildes
or hats, to denote generic constants independent of the discretization parameters, which may take
different values at different places.

2 The Boussinesq model

In this section we resort to [24] to introduce the Boussinesq model, its corresponding fully-mixed
variational formulation, and the associated mixed finite element method.

2.1 The boundary value problem

The stationary Boussinesq problem consists of a system of equations in which the incompressible
Navier-Stokes equation is coupled with the heat equation through a convective term and a buoyancy
term typically acting in opposite direction to gravity. More precisely, given a fluid occupying the
region Ω, an external force per unit mass g ∈ L∞(Ω), and data uD ∈ H1/2(Γ) and ϕD ∈ H1/2(Γ), the
model of interest reads: Find a velocity field u, a pressure field p and a temperature field ϕ such that

−div(2µ(ϕ)e(u)) + (∇u)u +∇p = ϕg in Ω, div(u) = 0 in Ω ,∫
Ω
p = 0 , −div(K∇ϕ) + u · ∇ϕ = 0 in Ω ,

u = uD on Γ , and ϕ = ϕD on Γ ,

(2.1)

where e(u) is the symmetric part of the velocity gradient ∇u, also known as the strain rate tensor,
and K ∈ L∞(Ω) is a uniformly positive tensor describing the thermal conductivity of the fluid, thus
allowing the possibility of anisotropy. In turn, µ : R −→ R+ is the temperature dependent viscosity,
which is assumed to be a Lipschitz-continuous and bounded from above and below function, which
means that there exist constants Lµ > 0 and µ1, µ2 > 0, such that

|µ(s)− µ(t)| ≤ Lµ |s− t| and µ1 ≤ µ(s) ≤ µ2 ∀ s, t ≥ 0 . (2.2)
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We observe here that, because of the incompressibility of the fluid (cf. second eq. of (2.1)) and the
Dirichlet boundary condition (cf. fifth eq. of (2.1)), uD must satisfy the compatibility condition∫

Γ uD · ν = 0.

2.2 The fully-mixed variational formulation

Following the approach from [24], we first introduce the velocity gradient t, the Bernoulli stress tensor
σ, the temperature gradient t̃, and the pseudoheat flux σ̃ as auxiliary unknowns, that is

t := ∇u, σ := 2µ(ϕ)tsym −
1

2
(u⊗ u)− pI ,

t̃ := ∇ϕ, and σ̃ := Kt̃− 1

2
ϕu ,

where tsym := 1
2

(
t + tt

)
is the symmetric part of t. In this way, the Boussinesq problem (2.1) can be

rewritten as
∇u = t in Ω ,

tr (t) = 0 in Ω ,

−div(σ) +
1

2
tu − ϕg = 0 in Ω ,

2µ(ϕ)tsym −
1

2
(u⊗ u)d = σd in Ω ,

∇ϕ = t̃ in Ω ,

Kt̃ − 1

2
ϕu = σ̃ in Ω ,

−div(σ̃) +
1

2
u · t̃ = 0 in Ω ,

u = uD and ϕ = ϕD on Γ ,∫
Ω

tr (2σ + u⊗ u) = 0 ,

(2.3)

where p is eliminated from the present formulation and computed afterwards in terms of σ and u by
using the identity

p = − 1

2n
tr
(
2σ + u⊗ u

)
. (2.4)

In what follows we recall from [24] the variational formulation of (2.3), for which we begin by
noticing from its first two equations that, if u is originally sought in H1(Ω), then t must belong to
the space

L2
tr(Ω) :=

{
s ∈ L2

tr(Ω) : tr (s) = 0
}
.

Next, we consider the orthogonal decomposition

H(div4/3; Ω) = H0(div4/3; Ω)⊕ RI, (2.5)

where

H0(div4/3; Ω) :=
{
τ ∈ H(div4/3; Ω) :

∫
Ω

tr τ = 0
}
,

5



and observe, in particular, that the unknown σ can be uniquely decomposed, according to (2.5) and

the condition

∫
Ω

tr (2σ + u⊗ u) = 0, as

σ = σ0 + c0I, with σ0 ∈ H0(div4/3; Ω) and c0 := − 1

2n|Ω|

∫
Ω

tr (u⊗ u).

In this way, and similarly as for the pressure, the constant c0 can be computed once the velocity is
known, and hence it only remains to obtain σ0. In this regard, we now stress that the equations of
(2.3) involving σ remain unchanged if σ is replaced by σ0, and hence from now on we denote σ0 as
simply σ ∈ H0(div4/3; Ω). In addition, thanks to the compatibility condition satisfied by the datum
uD and the fact that t is sought in L2

tr (Ω), we realize that testing the fourth equation of (2.3) against
τ ∈ H(div4/3; Ω) is equivalent to doing it against τ ∈ H0(div4/3; Ω).

Finally, in order to write the announced formulation in a simplified way, we now set the notations

(ϕ,ψ)Ω :=

∫
Ω
ϕψ, (u,v)Ω :=

∫
Ω

u · v, (σ, τ )Ω :=

∫
Ω
σ : τ ,

→
u := (u, t) ,

→
v := (v, s) ∈ H := L4(Ω)× L2

tr(Ω) ,

→
ϕ := (ϕ, t̃) ,

→
ψ := (ψ, s̃) ∈ H̃ := L4(Ω)× L2(Ω) ,

‖→u‖ := ‖u‖0,4;Ω + ||t||0,Ω ∀→u := (u, t) ∈ H , and

‖→ϕ‖ := ‖ϕ‖0,4;Ω + ||̃t||0,Ω ∀→ϕ := (ϕ, t̃) ∈ H̃ .

In this way, the fully-mixed formulation of our stationary Boussinesq problem reduces to (we refer to

[24, Section 3.1] for details): Find (
→
u,σ) ∈ H × H0(div4/3; Ω) and (

→
ϕ, σ̃) ∈ H̃ ×H(div4/3; Ω) such

that
aϕ(
→
u,
→
v) + c(u;

→
u,
→
v) + b(

→
v ,σ) = Fϕ(

→
v) ∀→v ∈ H ,

b(
→
u, τ ) = G(τ ) ∀ τ ∈ H0(div4/3; Ω) ,

ã(
→
ϕ,
→
ψ) + c̃u(

→
ϕ,
→
ψ) + b̃(

→
ψ, σ̃) = 0 ∀

→
ψ ∈ H̃ ,

b̃(
→
ϕ, τ̃ ) = G̃(τ̃ ) ∀ τ̃ ∈ H(div4/3; Ω) ,

(2.6)

where, given arbitrary (w, φ) ∈ L4(Ω)×L4(Ω), the forms aφ, b, c(w; ·, ·), ã, b̃, and c̃w, the functionals

Fφ, G, and G̃, are defined by

aφ(
→
u,
→
v) := (2µ(φ)tsym, s)Ω , b(

→
v , τ ) := − (τ , s)Ω − (v,div(τ ))Ω , (2.7)

c(w;
→
u,
→
v) :=

1

2

{
(tw,v)Ω −

(
(u⊗w)d, sd

)
Ω

}
, (2.8)

for all
→
u := (u, t),

→
v := (v, s) ∈ H, τ ∈ H0(div4/3; Ω),

ã(
→
ϕ,
→
ψ) := (Kt̃, s̃)Ω , b̃(

→
ψ, τ̃ ) := − (τ̃ , s̃)Ω − (ψ,div(τ̃ ))Ω , (2.9)

c̃w(
→
ϕ,
→
ψ) :=

1

2

{
(ψw, t̃)Ω − (ϕw, s̃)Ω

}
, (2.10)

for all
→
ϕ := (ϕ, t̃),

→
ψ := (ψ, s̃) ∈ H̃, τ̃ ∈ H(div4/3; Ω), and

Fφ(
→
v) := (φg,v)Ω , G(τ ) := −〈τ ν,uD〉Γ , G̃(τ̃ ) := −〈τ̃ · ν, ϕD〉Γ , (2.11)
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for all
→
v := (v, s) ∈ H, τ ∈ H0(div4/3; Ω), τ̃ ∈ H(div4/3; Ω).

The well posedness of (2.6), which makes use of a fixed-point strategy along with the Babuška-Brezzi
theory in Banach spaces, is established by [24, Theorem 3.11].

2.3 The finite element method

Let
{
Th
}
h>0

be a family of regular triangulations Th of Ω̄ made of triangles K (when n = 2) or

tetrahedra K (when n = 3). Then, given h > 0, we let T bh be the corresponding barycentric refinement
of Th, and set its meshsize as h := max

{
hK : K ∈ T bh

}
, where hK denotes the diameter of K. In what

follows, given an integer ` ≥ 0, P`(K) stands for the space of polynomials of degree ≤ ` defined on K,
with vector and tensor versions denoted by P`(K) := [P`(K)]n and P`(K) := [P`(K)]n×n, respectively.
Then, given an integer k ≥ 0, we set for each K ∈ T bh the local Raviart–Thomas space of order k as

RTk(K) := Pk(K) ⊕ Pk(K)x ,

where x := (x1, . . . , xn)t is a generic vector of Rn. Next, following [24, Section 5], we assume from now
on that k + 1 ≥ n, and introduce the following finite element subspaces approximating the unknowns
u, t, σ, ϕ, t̃, and σ̃, respectively

Hu
h :=

{
vh ∈ L4(Ω) : vh|K ∈ Pk(K) ∀K ∈ T b

h

}
,

Ht
h :=

{
sh ∈ L2

tr (Ω) : sh|K ∈ Pk(K) ∀K ∈ T b
h

}
,

Hσ
h :=

{
τ h ∈ H0(div4/3; Ω) : ct τ h|K ∈ RTk(K) ∀ c ∈ Rn , ∀K ∈ T b

h

}
,

Hϕ
h :=

{
ψh ∈ L4(Ω) : ψh|K ∈ Pk(K) ∀K ∈ T b

h

}
,

Ht̃
h :=

{
s̃h ∈ L2(Ω) : s̃h|K ∈ Pk(K) ∀K ∈ T b

h

}
, and

Hσ̃
h :=

{
τ̃ h ∈ H(div4/3; Ω) : τ̃ h|K ∈ RTk(K) ∀K ∈ T b

h

}
.

In addition, and similarly to Section 2.1, we set the notations

→
uh := (uh, th) ,

→
vh := (vh, sh) ∈ Hh := Hu

h ×Ht
h ,

→
ϕh := (ϕh, t̃h) ,

→
ψh := (ψh, s̃h) ∈ H̃h := Hϕ

h ×Ht̃
h .

Hence, the Galerkin scheme associated with 2.6 reads: Find (
→
uh,σh) ∈ Hh ×Hσ

h and (
→
ϕh, σ̃h) ∈

H̃h ×Hσ̃
h such that

aϕh
(
→
uh,

→
vh) + c(uh;

→
uh,

→
vh) + b(

→
vh,σh) = Fϕh

(
→
vh) ∀→vh ∈ Hh ,

b(
→
uh, τ h) = G(τ h) ∀ τ h ∈ Hσ

h ,

ã(
→
ϕh,

→
ψh) + c̃uh

(
→
ϕh,

→
ψh) + b̃(

→
ψh, σ̃h) = 0 ∀

→
ψh ∈ H̃h ,

b̃(
→
ϕh, τ̃ h) = G̃(τ̃ h) ∀ τ̃ h ∈ Hσ̃

h .

(2.12)

The solvability analysis and the derivation of the a priori error bounds for (2.12), which employ a
fixed-point strategy as well, along with the discrete version of the Babuška-Brezzi theory in Banach
spaces, are provided in [24, Theorems 4.11 and 6.2].
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3 A posteriori error analysis: The 2D case

In this section, we proceed to derive a reliable and efficient residual-based a posteriori error estimator
for the two-dimensional version of (2.12). The corresponding a posteriori error analysis for the 3D
case, which follows from minor modifications of the one to be presented next, will be addressed in
Section 4.

3.1 Preliminaries for reliability

We begin by introducing a few useful notations for describing local information on elements and
edges. Given K ∈ T bh , we let Eh(K) be the set of its edges e, and let Eh be the set of all the edges
e of T bh , with corresponding diameters denoted by he. Then, we set Eh = Eh(Ω) ∪ Eh(Γ), where
Eh(Ω) :=

{
e ∈ Eh : e ⊂ Ω

}
and Eh(Γ) :=

{
e ∈ Eh : e ⊂ Γ

}
. Also for each e ∈ Eh we fix unit normal

and tangential vectors to e denoted by νe := (ν1, ν2)t and se := (−ν2, ν1)t, respectively. However,
when no confusion arises, we simply write ν and s instead of νe and se , respectively. In addition, the
usual jump operator J·K across an internal edge e ∈ Eh(Ω) is defined for piecewise continuous tensor,
vector, or scalar-valued functions ζ as simply JζK := ζ|K−ζ|K′ , where K and K ′ are the triangles of T bh
having e as a common edge. Furthermore, given scalar, vector and matrix valued fields φ, v = (v1, v2)t

and τ := (τij)2×2, respectively, we set

curl (φ) :=

(
∂φ

∂x2
, − ∂φ

∂x1

)t

, curl (v) :=

(
curl (v1)t

curl (v2)t

)
,

rot (v) :=
∂v2

∂x1
− ∂v1

∂x2
, and rot (τ ) :=

(
rot (τ11, τ12)
rot (τ21, τ22)

)
,

where the derivatives involved are taken in the distributional sense.

Let us now recall the main properties of the Raviart-Thomas and Clément interpolation operators
(cf. [33], [23]). We begin by defining for each p ≥ 2n

n+2 the spaces

Hp :=
{
τ ∈ H(divp; Ω) : τ |K ∈W1,p(K) ∀K ∈ T b

h

}
, (3.1)

and
Ĥσ
h :=

{
τ ∈ H(divp; Ω) : τ |K ∈ RTk(K) ∀K ∈ T b

h

}
. (3.2)

In addition, we let Πk
h : Hp → Ĥσ

h be the Raviart-Thomas interpolation operator, which is character-
ized for each τ ∈ Hp by the identities (see e.g. [33, Section 1.2.7])∫

e
(Πk

h(τ ) · ν) ξ =

∫
e
(τ · ν) ξ ∀ ξ ∈ Pk(e), ∀ edge or face e of T b

h , (3.3)

when k ≥ 0, and ∫
K

Πk
h(τ ) · ψ =

∫
K
τ · ψ ∀ψ ∈ Pk−1(K) , ∀K ∈ T b

h ,

when k ≥ 1. In turn, given q > 1 such that 1
p + 1

q = 1, we let

Hu
h :=

{
v ∈ Lq(Ω) : v|K ∈ Pk(K) ∀K ∈ T b

h

}
, (3.4)

and recall from [33, Lemma 1.41] that there holds

div
(
Πk
h(τ )

)
= Pkh

(
div(τ )

)
∀ τ ∈ Hp ,
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where Pkh : Lp(Ω) → Hu
h is the usual orthogonal projector with respect to the L2(Ω)-inner product,

which satisfies the following error estimate (see [33, Proposition 1.135]): there exists a positive
constant C0, independent of h, such that for 0 ≤ l ≤ k + 1 and 1 ≤ p ≤ ∞ there holds

‖w − Pkh(w)‖0,p;Ω ≤ C0 h
l ‖w‖l,p;Ω ∀w ∈Wl,p(Ω) .

We stress that Pkh(w)|K = PkK(w|K) ∀w ∈ Lp(Ω), where PkK : Lp(K)→ Pk(K) is the corresponding
local orthogonal projector. In addition, denoting by Hu

h the vector version of Hu
h (cf. (3.4)), we let

Pk
h : Lp(Ω)→ Hu

h be the vector version of Pkh .

Next, we collect some approximation properties of Πk
h.

Lemma 3.1 Given p > 1, there exist positive constants C1, C2, independent of h, such that for
0 ≤ l ≤ k and for each K ∈ T bh there holds

‖τ −Πk
h(τ )‖0,p;K ≤ C1 h

l+1
K |τ |l+1,p;K ∀ τ ∈Wl+1,p(K) . (3.5)

and
‖τ · ν −Πk

h(τ ) · ν‖0,p;e ≤ C2 h
1−1/p
e |τ |1,p;K ∀ τ ∈W1,p(K) , ∀e ∈ Eh(K). (3.6)

Proof. The estimate (3.5) follows from straightforward applications of [33, Lemma B.67] and [33,
Lemma 1.101] (see, e.g. [24, Lemma 5.3, eq. (5.38)]), whereas for (3.6) we refer to [15, Lemma 4.2].
�

Furthermore, denoting by Hp and Ĥσ
h the tensor versions of Hp (cf. (3.1)) and Ĥσ

h (cf. (3.2)),

respectively, we let Πk
h : Hp → Ĥσ

h be the operator Πk
h acting row-wise. Then, according to the

decomposition (2.5), for each τ ∈ Hp there holds

Πk
h(τ ) = Πk

h,0(τ ) + d I , with d :=
1

n|Ω|

∫
Ω

tr(Πk
h(τ )) ∈ R

and Πk
h,0(τ ) := Πk

h(τ )− d I ∈ Hσ
h .

We now recall from [15] a stable Helmholtz decomposition for the Banach space H(divp; Ω), whose
particular case given by p = 4/3 will be selected in the forthcoming analysis. More precisely, we have
the following result.

Lemma 3.2 Given p ∈ (1,+∞), there exists a positive constant Cp such that for each τ ∈ H(divp; Ω)
there exist η ∈W1,p(Ω) and ξ ∈ H1(Ω) satisfying

τ = η + curl (ξ) in Ω and ‖η‖1,p;Ω + ‖ξ‖1,Ω ≤ Cp ‖τ‖divp;Ω .

Proof. See [15, Lemma 4.4]. �

We stress here that the foregoing theorem is certainly valid for the tensor version H(divp; Ω) of
H(divp; Ω) as well, and hence in particular for H0(divp; Ω). In other words, for each τ ∈ H0(divp; Ω)
there exist η ∈W1,p(Ω) and ξ ∈ H1(Ω) such that

τ = η + curl (ξ) in Ω and ‖η‖1,p;Ω + ‖ξ‖1,Ω ≤ Cp ‖τ‖divp;Ω . (3.7)

On the other hand, defining Xh :=
{
vh ∈ C(Ω) : v|K ∈ P1(K) ∀K ∈ T bh } and denoting by Xh

its vector version, we let Ih : H1(Ω) → Xh and Ih : H1(Ω) → Xh be the usual Clément interpolation
operator and its vector version, respectively. Some local properties of Ih, and hence of Ih, which
correspond to the particular case of [33, Lemma 1.127] that arises by choosing there m = 0, p = 2,
and ` = 1, are established in the following lemma.
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Lemma 3.3 There exist positive constants C1 and C2, such that

‖v − Ihv‖0,K ≤ C1hK ‖v‖1,∆(K) ∀K ∈ T bh ,

and
‖v − Ihv‖0,e ≤ C2h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh ,

where ∆(K) := ∪
{
K ′ ∈ T bh : K ′ ∩K 6= ∅

}
and ∆(e) := ∪

{
K ′ ∈ T bh : K ′ ∩ e 6= ∅

}
.

Proof. See [23] for details. �

3.2 Reliability

Recall that
→
σ := ((

→
u,σ), (

→
ϕ, σ̃)) ∈ X := H×H0(div4/3; Ω)× H̃×H(div4/3; Ω)

is the unique solution of problem (2.6), and that

→
σh := ((

→
uh,σh), (

→
ϕh, σ̃h)) ∈ Xh := Hh ×Hσ

h × H̃h ×Hσ̃
h

is a solution of problem (2.12). Then, assuming from now on that uD ∈ H1(Γ) ∩ L4(Γ) and ϕD ∈
H1(Γ) ∩ L4(Γ), which allows, in particular, to define their tangential derivatives ∇uD s and ∇ϕD · s,
we introduce for each K ∈ T bh the local error indicators

Θ̃
4/3
K :=

∥∥− div(σh) +
1

2
th uh − ϕh g

∥∥4/3

0,4/3;K
+
∥∥− div(σ̃h) +

1

2
uh · t̃h

∥∥4/3

0,4/3;K
, (3.8)

Θ̄2
K :=

∥∥2µ(ϕh)th,sym −
1

2
(uh ⊗ uh)d − σd

h

∥∥2

0,K
+
∥∥Kt̃h −

1

2
ϕhuh − σ̃h

∥∥2

0,K

+ h2
K‖rot (th)‖20,K + h2

K‖rot (t̃h)‖20,K +
∑

e∈Eh(K)∩Eh(Ω)

he

{∥∥Jth sK
∥∥2

0,e
+
∥∥Jt̃h · sK∥∥2

0,e

}
+

∑
e∈Eh(K)∩Eh(Γ)

he

{
‖ths−∇uD s‖20,e + ‖t̃h · s−∇ϕD · s‖20,e

}
,

and
Θ̂4
K := h4

K‖th −∇uh‖40,4;K + h4
K‖t̃h −∇ϕh‖40,4;K

+
∑

e∈Eh(K)∩Eh(Γ))

he

{
‖uD − uh‖40,4;e + ‖ϕD − ϕh‖40,4;e

}
,

(3.9)

so that the global a posteriori error estimator is defined as

Θ =

{ ∑
K∈T b

h

Θ̃
4/3
K

}3/4

+

{ ∑
K∈T b

h

Θ̄2
K

}1/2

+

{ ∑
K∈T b

h

Θ̂4
K

}1/4

. (3.10)

The residual character of each one of the terms defining the foregoing indicators becomes clear from
a simple inspection of the strong problem (2.3) and thanks to the regularity of the continuous solution.

The main result of this section, which establishes the reliability of Θ, reads as follows.

Theorem 3.4 Assume that the data are sufficiently small (as indicated below in Lemma 3.7). Then,
there exists a positive constant Crel, independent of h, such that

‖→σ −→σh‖X ≤ Crel Θ . (3.11)
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The proof of (3.11) is performed throughout the rest of the section by means of several consecutive
steps. We begin by recalling from [24, Section 3.2] the definitions of two suitable operators, namely
S : L4(Ω)×L4(Ω)→ H and S̃ : L4(Ω)→ H̃. In fact, for each (w, φ) ∈ L4(Ω)×L4(Ω) we let S(w, φ) :=
→
u = (u, t) ∈ H, where (

→
u, τ ) is the solution of the problem arising from the first two equations of (2.6)

after replacing aϕ and c(u; ·, ·) by aφ and c(w; ·, ·), respectively, that is, (
→
u, τ ) ∈ H×H0(div4/3; Ω) is

such that
aφ(
→
u,
→
v) + c(w;

→
u,
→
v) + b(

→
v ,σ) = Fφ(

→
v) ∀→v ∈ H ,

b(
→
u, τ ) = G(τ ) ∀ τ ∈ H0(div4/3; Ω) .

(3.12)

In turn, for each w ∈ L4(Ω) we let S̃(w) :=
→
ϕ ∈ H̃, where (

→
ϕ, σ̃) is the solution of the problem arising

from the last two equations of (2.6) after replacing u by w, that is, (
→
ϕ, σ̃) ∈ H̃×H(div4/3; Ω) is such

that

ã(
→
ϕ,
→
ψ) + c̃w(

→
ϕ,
→
ψ) + b̃(

→
ψ, σ̃) = 0 ∀

→
ψ ∈ H̃ ,

b̃(
→
ϕ, τ̃ ) = G̃(τ̃ ) ∀ τ̃ ∈ H(div4/3; Ω) .

(3.13)

We now recall from [24, Lemmas 3.5 and 3.6] that (3.12) and (3.13) are well-posed for each (w, φ) ∈
L4(Ω)×L4(Ω) and for each w ∈ L4(Ω), respectively, which implies that the bilinear forms arising after
adding the corresponding left-hand sides satisfy global inf-sup conditions uniformly. In other words,
denoting from now on W := H × H0(div4/3; Ω) and W̃ := H̃ × H(div4/3; Ω), there exist positive
constants γ, and γ̃, independent of (w, φ) and w, respectively, such that

γ ‖(→z , ζ)‖W ≤ sup
(
→
v ,τ )∈W
(
→
v ,τ )6=0

aφ(
→
z ,
→
v) + c(w;

→
z ,
→
v) + b(

→
v , ζ) + b(

→
z , τ )

‖(→v , τ )‖W
∀ (
→
z , ζ) ∈W , (3.14)

and

γ̃ ‖(
→
φ, ζ̃)‖

W̃
≤ sup

(
→
ψ,τ̃ )∈W̃
(
→
ψ,τ̃ )6=0

ã(
→
φ,
→
ψ) + c̃w(

→
φ,
→
ψ) + b̃(

→
ψ, ζ̃) + b̃(

→
φ, τ̃ )

‖(
→
ψ, τ̃ )‖

W̃

∀ (
→
φ, ζ̃) ∈ W̃ . (3.15)

Next, proceeding exactly as in [24, Section 3.4], we suppose further regularity on the solutions of
the problem defining the operator S (cf. (3.12)). Indeed, we assume that uD ∈ H1/2+ε(Γ) for some
ε ∈ [1/2, 1) (when n = 2) or ε ∈ [3/4, 1) (when n = 3), and that for each (w, φ) ∈ L4(Ω)×L4(Ω) there
holds

S(w, φ) :=
→
u = (u, t) ∈Wε,4(Ω)×

(
L2

tr (Ω) ∩Hε(Ω)
)
, (3.16)

and (cf. [24, eq. (3.62)])

‖u‖ε,4:Ω + ‖t‖ε,Ω ≤ cS

{
‖φ‖0,4;Ω ‖g‖0,∞;Ω +

(
1 + ‖w‖0,4;Ω

)
‖uD‖1/2+ε,Γ

}
, (3.17)

with a positive constant cS independent of the given (w, φ). In particular, taking ‖(w, φ)‖ ≤ r, with
r > 0 given, there holds

‖u‖ε,4:Ω + ‖t‖ε,Ω ≤ cS

{
r ‖g‖0,∞;Ω + (1 + r) ‖uD‖1/2+ε,Γ

}
. (3.18)

Our first estimate aiming to prove (3.11) is established as follows.
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Lemma 3.5 There exists C1 > 0, independent of h, such that

‖(→u,σ)− (
→
uh,σh)‖W ≤ C1

{∥∥− div(σh) + 1
2thuh − ϕhg

∥∥
0,4/3;Ω

+
∥∥2µ(ϕh)th,sym −

1

2
(uh ⊗ uh)d − σd

h

∥∥
0,Ω

+ ‖→uh‖H ‖u− uh‖0,4;Ω

+
(
‖g‖0,∞;Ω + ‖t‖ε,Ω

)
‖ϕ− ϕh‖0,4;Ω + ‖R‖

}
,

(3.19)

where R : H0(div4/3; Ω)→ R is the functional defined by

R(τ ) := (th, τ )Ω +
(
uh,div(τ )

)
Ω
− 〈τν,uD〉Γ ∀ τ ∈ H0(div4/3; Ω) . (3.20)

Proof. We begin by applying (3.14) to (w, φ) = (u, ϕ) and (
→
z , ζ) = (

→
u,σ) − (

→
uh,σh). In this way,

and additionally employing the first two equations of (2.6), we arrive at

γ‖(→u,σ)− (
→
uh,σh)‖W ≤ sup

(
→
v ,τ )∈W
(
→
v ,τ )6=0

Q(
→
v) +R(τ )

‖(→v , τ )‖W
, (3.21)

where
Q(
→
v) := Fϕ(

→
v)−

{
aϕ(
→
uh,

→
v) + c(u;

→
uh,

→
v) + b(

→
v ,σh)

}
∀→v ∈ H ,

and
R(τ ) := G(τ ) − b(

→
uh, τ ) ∀ τ ∈ H0(div4/3; Ω) ,

which, according to the definitions of G (cf. (2.11)) and b (cf. (2.7)), yields (3.20). Next, adding and

subtracting Fϕh
(
→
v), aϕh

(
→
uh,

→
v), and c(uh;

→
uh,

→
v), we obtain

Q(
→
v) := Q1(

→
v) + Fϕ−ϕh

(
→
v) + aϕh

(
→
uh,

→
v)− aϕ(

→
uh,

→
v) + c(uh;

→
uh,

→
v)− c(u;

→
uh,

→
v) , (3.22)

with
Q1(

→
v) := Fϕh

(
→
v)− aϕh

(
→
uh,

→
v)− c(uh;

→
uh,

→
v)− b(→v ,σh) .

Then, bearing in mind the definitions of the forms and functionals involved (cf. (2.7), (2.8), and
(2.11)), and applying the Hölder and Cauchy-Schwarz inequalities, we find that

|Q1(
→
v)| ≤

{∥∥− div(σh) +
1

2
thuh − ϕhg

∥∥
0,4/3;Ω

+
∥∥2µ(ϕh)th,sym −

1

2
(uh ⊗ uh)d − σd

h

∥∥
0,Ω

}
‖→v‖H ,

(3.23)

|Fϕ−ϕh
(
→
v)| ≤ |Ω|1/2‖g‖0,∞;Ω ‖ϕ− ϕh‖0,4;Ω ‖

→
v‖H , (3.24)

and
|c(uh;

→
uh,

→
v)− c(u;

→
uh,

→
v)| ≤ ‖→uh‖H ‖u− uh‖0,4;Ω ‖

→
v‖H . (3.25)

In turn, proceeding as in the proof of [24, Lemma 3.8], that is using the Lipschitz-continuity of µ
(cf. (2.2)), the Cauchy-Schwarz and Hölder inequalities again, and the regularity assumption on the
operator S (cf. (3.16)), we obtain (cf. [24, eqs. (3.67) y (3.68)])

|aϕh
(
→
uh,

→
v)− aϕ(

→
uh,

→
v)| ≤ 2Lµ ‖iε‖ c(ε, n, |Ω|) ‖t‖ε,Ω ‖ϕ− ϕh‖0,4;Ω ‖

→
v‖H , (3.26)
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where iε denotes the continuous injection of Hε(Ω) into Lε∗(Ω), with ε∗ := 2/(1 − ε), and c(ε, n, |Ω|)
is a positive constant depending on ε, n, and |Ω|. Hence, employing (3.23), (3.24), (3.25), and (3.26)

to bound |Q(
→
v)| (cf. (3.22)), and replacing the resulting estimate back into (3.21), we get (3.19) with

C1 := γ−1 max
{

1, |Ω|1/2, 2Lµ ‖iε‖ c(ε, n, |Ω|)
}

, which completes the proof. �

The bound for ‖(→ϕ, σ̃)− (
→
ϕh, σ̃h)‖

W̃
is provided next.

Lemma 3.6 There exists C2 > 0, independent of h, such that

‖(→ϕ, σ̃)− (
→
ϕh, σ̃h)‖

W̃
≤ C2

{∥∥− div(σ̃h) +
1

2
uh · t̃h

∥∥
0,4/3;Ω

+
∥∥Kt̃h −

1

2
ϕhuh − σ̃h

∥∥
0,Ω

+ ‖→ϕh‖H̃‖u− uh‖0,4;Ω + ‖R̃‖

}
,

(3.27)

where R̃ : H(div4/3; Ω)→ R is the functional defined by

R̃(τ̃ ) := (t̃h, τ̃ )Ω + (ϕh, div(τ̃ ))Ω − 〈τ̃ · ν, ϕD〉Γ ∀ τ ∈ H(div4/3; Ω) . (3.28)

Proof. It proceeds similarly to the proof of Lemma 3.5, but now applying the global inf-sup condition

(3.15) to w = u and (
→
φ, ζ̃) = (

→
ϕ, σ̃)− (

→
ϕh, σ̃h), and then employing the last two equations of (2.6),

along with the definitions and boundedness properties of the forms and functionals involved (cf. (2.9),
(2.10), and (2.11)). Further details are omitted. �

Thanks to Lemmas 3.5 and 3.6, we are able to state now a preliminary estimate for the global error

‖→σ −→σh‖X = ‖(→u,σ)− (
→
uh,σh)‖W + ‖(→ϕ, σ̃)− (

→
ϕh, σ̃h)‖

W̃
.

Indeed, it follows straightforwardly from (3.19) and (3.27) that

‖→σ −→σh‖X ≤ C3

{∥∥− div(σh) +
1

2
thuh − ϕhg

∥∥
0,4/3;Ω

+
∥∥− div(σ̃h) +

1

2
uh · t̃h

∥∥
0,4/3;Ω

+
∥∥2µ(ϕh)th,sym −

1

2
(uh ⊗ uh)d − σd

h

∥∥
0,Ω

+
∥∥Kt̃h −

1

2
ϕhuh − σ̃h

∥∥
0,Ω

+
(
‖→uh‖H + ‖→ϕh‖H̃

)
‖u− uh‖0,4;Ω +

(
‖g‖0,∞;Ω + ‖t‖ε,Ω

)
‖ϕ− ϕh‖0,4;Ω + ‖R‖+ ‖R̃‖

}
,

with C3 := max
{
C1, C2

}
. Then, according to the a priori estimates for ‖→uh‖H and ‖→ϕh‖H̃ provided by

[24, Theorem 4.11, eqns. (4.24) and (4.25)], there exist positive constants CS,d and C
S̃,d

, independent
of h, such that

‖→uh‖H ≤ CS,d

{
r ‖g‖0,∞;Ω +

(
1 + r

)
‖uD‖1/2,Γ

}
, (3.29)

and
‖→ϕh‖H̃ ≤ C

S̃,d

{
1 + ‖K‖0,∞;Ω + r

}
‖ϕD‖1/2,Γ ,

whereas the regularity estimate (3.18) yields a corresponding bound for ‖t‖ε,Ω. Thus, it follows that

C3

{(
‖→uh‖H + ‖→ϕh‖H̃

)
‖u− uh‖0,4;Ω +

(
‖g‖0,∞;Ω + ‖t‖ε,Ω

)
‖ϕ− ϕh‖0,4;Ω

}
≤ max

{
C(data), Cε(data)

}
‖→σ −→σh‖X ,
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where C(data) and Cε(data) are the data-depending constants given by

C(data) := C3CS,d

{
r ‖g‖0,∞;Ω +

(
1 + r

)
‖uD‖1/2,Γ

}
+C3CS̃,d

{
1 + ‖K‖0,∞;Ω + r

}
‖ϕD‖1/2,Γ ,

and
Cε(data) := C3 ‖g‖0,∞;Ω + C3 cS

{
r‖g‖0,∞;Ω + (1 + r)‖uD‖1/2+ε,Γ

}
.

As a consequence, we readily deduce the following result.

Lemma 3.7 Assume that

max
{
C(data), Cε(data)

}
≤ 1

2
,

and let C̃ := 2C3. Then there holds

‖→σ −→σh‖X ≤ C̃
{∥∥− div(σh) +

1

2
thuh − ϕhg

∥∥
0,4/3;Ω

+
∥∥− div(σ̃h) +

1

2
uh · t̃h

∥∥
0,4/3;Ω

+
∥∥2µ(ϕh)th,sym −

1

2
(uh ⊗ uh)d − σd

h

∥∥
0,Ω

+
∥∥Kt̃h −

1

2
ϕhuh − σ̃h

∥∥
0,Ω

+ ‖R‖+ ‖R̃‖
}
.

(3.30)

According to (3.30), and in order to complete the derivation of our residual-based estimator, we
need to bound the norms of the residual functionals R and R̃. In this regard, we now notice from
the second and fourth equations of the Galerkin scheme (2.12) that R(τ h) = 0 for all τ h ∈ Hσ

h and

R̃(τ̃ h) = 0 for all τ̃ h ∈ Hσ̃
h , respectively, whence the aforementioned norms can be redefined as

‖R‖ := sup
τ∈H0(div4/3;Ω)

τ 6=0

R(τ − τ h)

‖τ‖div4/3;Ω
and ‖R̃‖ := sup

τ̃∈H(div4/3;Ω)

τ̃ 6=0

R̃(τ̃ − τ̃ h)

‖τ̃‖div4/3;Ω
, (3.31)

where the functions τ h and τ̃ h are chosen within the suprema of (3.31) so that they depend on the
corresponding τ ∈ H0(div4/3; Ω) and τ̃ ∈ H(div4/3; Ω). More precisely, they are suitably defined
in what follows by employing the Helmholtz decompositions provided by Lemma 3.2 and (3.7) with
p = 4/3. Indeed, letting η ∈W1,4/3(Ω), ξ ∈ H1(Ω), η ∈W1,4/3(Ω), and ξ ∈ H1(Ω), such that

τ := η + curl (ξ) and τ̃ := η + curl (ξ) in Ω , (3.32)

with

‖η‖1,4/3;Ω + ‖ξ‖1,Ω ≤ C4/3 ‖τ‖div4/3;Ω and ‖η‖1,4/3;Ω + ‖ξ‖1,Ω ≤ C4/3 ‖τ‖div4/3;Ω , (3.33)

we set

τ h := Πk
h(η) + curl (Ihξ) + c I ∈ Hσ

h and τ̃ h := Πk
h(η) + curl (Ihξ) ∈ Hσ̃

h , (3.34)

where the constant c is chosen so that tr (τ h) has a null mean value, and hence τ h does belong to Hσ
h .

Note that τ h and τ̃ h can be seen as discrete Helmholtz decompositions of τ and τ̃ , respectively. In
this way, using that R(cI) = 0, and denoting

η̂ := η −Πk
h(η) , ξ̂ := ξ − Ihξ , η̂ := η −Πk

h(η) , and ξ̂ := ξ − Ihξ ,

14



it follows from (3.32) and (3.34) that

R(τ ) = R(τ − τ h) = R(η̂) + R(curl (ξ̂)) , (3.35)

and
R̃(τ̃ ) = R̃(τ̃ − τ̃ h) = R̃(η̂) + R̃(curl (ξ̂)) , (3.36)

where, according to the definitions of R and R̃ (cf. (3.20) and (3.28)), we find that

R(η̂) = (th, η̂)Ω + (uh,div(η̂))Ω − 〈η̂ν,uD〉Γ , (3.37)

R(curl (ξ̂)) = (th, curl (ξ̂))Ω − 〈curl (ξ̂)ν,uD〉Γ , (3.38)

R̃(η̂) = (t̃h, η̂)Ω + (ϕh,div(η̂))Ω − 〈η̂ · ν, ϕD〉Γ ,

and
R̃(curl (ξ̂)) = (t̃h, curl (ξ̂))Ω − 〈curl (ξ̂) · ν, ϕD〉Γ .

The following lemma establishes the residual upper bound for ‖R‖.

Lemma 3.8 There exists a positive constant C, independent of h, such that

‖R‖ ≤ C
{

Φ̄ + Φ̂
}
, (3.39)

where
Φ̄

2
:=

∑
K∈T b

h

Φ̄2
K and Φ̂

4
:=

∑
K∈T b

h

Φ̂4
K ,

with

Φ̄2
K := h2

K ‖rot (th)‖20,K +
∑

e∈Eh(K)∩Eh(Ω)

he ‖Jth sK‖20,e +
∑

e∈Eh(K)∩Eh(Γ)

he ‖ths−∇uD s‖20,e ,

and
Φ̂4
K := h4

K ‖th −∇uh‖40,4;K +
∑

e∈Eh(K)∩Eh(Γ)

he ‖uD − uh‖40,4;e .

Proof. According to (3.35), we begin by estimating R(η̂) (cf. (3.37)). Let us first observe that, for

each e ∈ Eh, the identity (3.3) and the fact that uh|e ∈ Pk(e) yield

∫
e
η̂ν · uh = 0. Hence, locally

integrating by parts the second term in (3.37), we readily obtain

R(η̂) = (th −∇uh, η̂)Ω −
∑

e∈Eh(Γ)

∫
e
uD · η̂ν = (th −∇uh, η̂)Ω −

∑
e∈Eh(Γ)

∫
e
(uD − uh) · η̂ν ,

from which, applying the Hölder inequality along with the approximation properties (3.5) and (3.6)
(cf. Lemma 3.1) with p = 4/3 and l = 0, we find that

|R(η̂)| ≤
∑
K∈T b

h

‖th −∇uh‖0,4;K ‖η̂‖0,4/3;K +
∑

e∈Eh(Γ)

‖uD − uh‖0,4;e ‖η̂ν‖0,4/3;e

≤ Ĉ1

{ ∑
K∈T b

h

hK ‖th −∇uh‖0,4;K |η|1,4/3;K +
∑

e∈Eh(Γ)

h1/4
e ‖uD − uh‖0,4;e |η|1,4/3;Ke

}
,
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where, given e ∈ Eh(Γ), Ke is the triangle of T bh having e as an edge. Then, employing the discrete
Hölder inequality in the above sums and then the first stability estimate of (3.33), we arrive at

|R(η̂)| ≤ Ĉ2

{ ∑
K∈T b

h

h4
K ‖th −∇uh‖40,4;K +

∑
e∈Eh(Γ)

he ‖uD − uh‖40,4;e

}1/4

‖τ‖div4/3;Ω . (3.40)

Next, we estimate R(curl (ξ̂)) (cf. (3.38)). In fact, regarding its second term, a suitable boundary
integration by parts formula (cf. [31, eq. (3.35), Lemma 3.5]) yields

〈curl (ξ̂)ν,uD〉Γ = −〈∇uD s, ξ̂〉Γ . (3.41)

In turn, locally integrating by parts the first term of R(curl (ξ̂)), we get

(th, curl (ξ̂))Ω =
∑
K∈T b

h

∫
K

rot (th) · ξ̂ −
∑

e∈Eh(Ω)

∫
e
JthsK · ξ̂ −

∑
e∈Eh(Γ)

∫
e
ths · ξ̂ ,

which, together with (3.41), imply

R(curl (ξ̂)) =
∑
K∈T b

h

∫
K

rot (th) · ξ̂ −
∑

e∈Eh(Ω)

∫
e
JthsK · ξ̂ −

∑
e∈Eh(Γ)

∫
e
(ths−∇uD s) · ξ̂ . (3.42)

In this way, applying the Cauchy-Schwarz inequality, the approximation properties provided by Lemma
3.3, and again the first stability estimate of (3.33), we deduce from (3.42) that

|R(curl (ξ̂))| ≤ Ĉ3

{ ∑
K∈T b

h

h2
K‖rot (th)‖20,K +

∑
e∈Eh(Ω)

he‖JthsK‖20,e

+
∑

e∈Eh(Γ)

he‖ths−∇uD s‖20,e

}1/2

‖τ‖div4/3;Ω .

(3.43)

Finally, it is easy to see that (3.31), (3.35), (3.40), and (3.43) give (3.39), which ends the proof. �

The derivation of the residual upper bound for ‖R̃‖ proceeds analogously to the proof of the previous
lemma. We omit further details and state the corresponding result as follows.

Lemma 3.9 There exists a positive constant C, independent of h, such that

‖R̃‖ ≤ C
{

Ψ̄ + Ψ̂
}
,

where
Ψ̄

2
:=

∑
K∈T b

h

Ψ̄2
K and Ψ̂

4
:=

∑
K∈T b

h

Ψ̂4
K ,

with

Ψ̄2
K := h2

K‖rot (t̃h)‖20,K +
∑

e∈Eh(K)∩Eh(Γ)

he ‖Jt̃h · sK‖20,e +
∑

e∈Eh(K)∩Eh(Γ)

he ‖t̃h · s−∇ϕD · s‖20,e ,

and
Ψ̂4
K := h4

K ‖t̃h −∇ϕh‖40,4;K +
∑

e∈Eh(K)∩Eh(Γ)

he ‖ϕD − ϕh‖40,4;e .

We end this section by stressing that the reliability of the estimator Θ (cf. (3.10)), that is the proof
of Theorem 3.4, is a direct consequence of Lemmas 3.7, 3.8, and 3.9.
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3.3 Preliminaries for efficiency

For the efficiency analysis of Θ (cf. (3.10)) we proceed as in [7], [10], [11], [15], [20], [27] and [40],
and apply the localization technique based on bubble functions, along with inverse and discrete trace
inequalities. For the former, given K ∈ T bh , we let ψK be the usual element-bubble function (cf. [46,
eqs. (1.5) and (1.6)]), which satisfies

ψK ∈ P3(K), supp(ψK) ⊆ K, ψK = 0 on ∂T and 0 ≤ ψK ≤ 1 in K .

The specific properties of ψK to be employed in what follows, are collected in the following lemma,
for whose proof we refer to [46, Lemma 3.3 and Remark 3.2].

Lemma 3.10 Let k be a non-negative integer, and let p, q ∈ (1,+∞) conjugate to each other, that is
such that 1/p + 1/q = 1, and K ∈ T bh . Then, there exist positive constants c1, c2, and c3, independent
of h and K, but depending on the shape-regularity of the triangulations (minimum angle condition)
and k, such that for each u ∈ Pk(K) there hold

c1 ‖u‖0,p;K ≤ sup
v∈Pk(K)

v 6=0

∫
K
uψKv

‖v‖0,q;K
≤ ‖u‖0,p;K , (3.44)

and
c2 h

−1
K ‖ψKu‖0,q;K ≤ ‖∇(ψKu)‖0,q;K ≤ c3 h

−1
K ‖ψKu‖0,q;K . (3.45)

In turn, the aforementioned inverse inequality is stated as follows (cf. [33, Lemma 1.138]).

Lemma 3.11 Let k, `, and m be non-negative integers such that m ≤ `, and let r, s ∈ [1,+∞], and
K ∈ T bh . Then, there exists c > 0, independent of h, K, r, and s, but depending on k, `, m, and the
shape regularity of the triangulations, such that

‖v‖l,r;K ≤ c h
m−`+n(1/r−1/s)
K ‖v‖m,s;K ∀ v ∈ Pk(K) . (3.46)

Finally, proceeding as in [1, Theorem 3.10], that is employing the usual scaling estimates with
respect to a fixed reference element K̂, and applying the trace inequality in W1,p(K̂), for a given
p ∈ (1,+∞), one is able to establish the following discrete trace inequality.

Lemma 3.12 Let p ∈ (1,+∞). Then, there exits c > 0, depending only on the shape regularity of the
triangulations, such that for each K ∈ T bh and e ∈ E(K), there holds

‖v‖p0,p;e ≤ c
{
h−1
K ‖v‖

p
0,p;K + hp−1

K |v|p1,p;K
}

∀ v ∈W1,p(K) . (3.47)

3.4 Efficiency

In this section we prove the efficiency of Θ (cf. (3.10)), which is stated as follows.

Theorem 3.13 Assume, for simplicity, that uD and ϕD are piecewise polynomials. Then, there exists
a positive constant Ceff, independent of h, such that

Ceff Θ + h.o.t. ≤ ‖→σ −→σh‖X , (3.48)

where h.o.t. stands for one or several terms of higher order.
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The proof of (3.48) is carried out throughout the rest of this section. We begin with the following
result.

Lemma 3.14 There exist positive constants c, c̃, C, and C̃, independent of h, such that∥∥− div(σh) +
1

2
th uh − ϕh g

∥∥
0,4/3;Ω

≤ c
{
‖σ − σh‖div4/3;Ω + ‖u− uh‖0,4;Ω + ‖t− th‖0,Ω + ‖ϕ− ϕh‖0,4;Ω

}
,

(3.49)

∥∥2µ(ϕh)th,sym −
1

2
(uh ⊗ uh)d − σd

h

∥∥
0,Ω

≤ C
{
‖σ − σh‖div4/3;Ω + ‖t− th‖0,Ω + ‖u− uh‖0,4,Ω + ‖ϕ− ϕh‖0,4;Ω

}
,

(3.50)

∥∥− div(σ̃h) +
1

2
uh · t̃h

∥∥
0,4/3;Ω

≤ c̃
{
‖σ̃ − σ̃h‖div4/3;Ω + ‖t̃− t̃h‖0,Ω + ‖u− uh‖0,4;Ω

}
, (3.51)

and∥∥Kt̃h−
1

2
ϕhuh− σ̃h

∥∥
0,Ω
≤ C̃

{
‖σ̃− σ̃h‖div4/3;Ω +‖t̃− t̃h‖0,Ω +‖u−uh‖0,4;Ω +‖ϕ−ϕh‖0,4;Ω

}
. (3.52)

Proof. Let us begin with the proof of (3.49). According to the third row of (2.3), and applying the
triangle inequality and the continuous injection of L4(Ω) into L4/3(Ω), we readily find that∥∥− div(σh) +

1

2
thuh − ϕhg

∥∥
0,4/3;Ω

=
∥∥div(σ − σh)− 1

2
(tu− thuh) + (ϕ− ϕh)g

∥∥∥
0,4/3;Ω

≤ ‖σ − σh‖div4/3;Ω +
1

2
‖tu− thuh‖0,4/3;Ω + ‖g‖0,∞;Ω ‖ϕ− ϕh‖0,4;Ω .

(3.53)

Then, subtracting and adding tuh, and employing the triangle and Hölder inequalities, the latter with
conjugate exponents given by 3/2 and 3, we obtain

‖tu− thuh‖0,4/3;Ω ≤ ‖t(u− uh)‖0,4/3;Ω + ‖(t− th)uh‖0,4/3;Ω

≤ ‖t‖0,Ω ‖u− uh‖0,4;Ω + ‖t− th‖0,Ω ‖uh‖0,4;Ω .
(3.54)

Next, using the bounds for ‖t‖0,Ω and ‖uh‖0,4;Ω provided by [24, Theorem 3.11, eq. (3.79)] and (3.29)
(cf. [24, Theorem 4.11, eq. (4.24)]), respectively, we deduce from (3.54) the existence of a positive
constant C, depending only on data, but independent of h, such that

‖tu− thuh‖0,4/3;Ω ≤ C
{
‖u− uh‖0,4;Ω + ‖t− th‖0,Ω

}
,

which, replaced back into (3.53), yields (3.49). In turn, for the proof of (3.50), we first make use of
the fourth row of (2.3) and the triangle inequality to obtain∥∥2µ(ϕh)th,sym −

1

2
(uh ⊗ uh)d − σd

h

∥∥
0,Ω

=
∥∥2
{
µ(ϕh)th,sym − µ(ϕ)tsym

}
+

1

2

{
(u⊗ u)d − (uh ⊗ uh)d

}
+ σd − σd

h

∥∥
0,Ω

≤ 2
{
‖µ(ϕh)th,sym − µ(ϕ)tsym‖0,Ω + ‖(u⊗ u)− (uh ⊗ uh)‖0,Ω + ‖σ − σh‖0,Ω

}
.

(3.55)
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Then, subtracting and adding µ(ϕh)tsym, using the upper bound of µ (cf. (2.2)), proceeding as for
the derivation of (3.26) (see also [24, eq. (3.68)]), and employing the regularity estimate for ‖t‖ε,Ω
provided by (3.18), we find that

‖µ(ϕh)th,sym − µ(ϕ)tsym‖0,Ω ≤ ‖µ(ϕh)
(
tsym − th,sym)‖0,Ω + ‖

(
µ(ϕ)− µ(ϕh)

)
tsym‖0,Ω

≤ C
{
‖t− th‖0,Ω + ‖ϕ− ϕh‖0,4;Ω

}
,

(3.56)

where C is a positive constant depending only on data and independent of h. Similarly, subtracting
and adding uh in one factor of u⊗ u, and then applying Hölder’s inequality, we get

‖(u⊗ u)− (uh ⊗ uh)‖0,Ω ≤ ‖u‖0,4;Ω ‖u− uh‖0,4;Ω + ‖uh‖0,4;Ω ‖u− uh‖0,4;Ω , (3.57)

from which, making use of the bounds for ‖u‖0,4;Ω and ‖uh|0,4;Ω given by [24, Theorem 3.11, eq.
(3.79)] and (3.29) (see also [24, Theorem 4.11, eq. (4.24)], respectively, it follows that

‖(u⊗ u)− (uh ⊗ uh)‖0,Ω ≤ C ‖u− uh‖0,4;Ω , (3.58)

with another positive constant C depending only on data and independent of h as well. In this way,
replacing the bounds from (3.56) and (3.58) in (3.55), we are lead to (3.50). The proofs of (3.51) and
(3.52), being similar to those of (3.49) and (3.50), are omitted. �

The local efficiency estimates to be stated by the next two lemmas have already been proved in the
literature by using localization through bubble functions, and hence we simply refer to their respective
proofs.

Lemma 3.15 There exist positive constants c, c̃, C, and C̃, such that

h2
K ‖rot (th)‖20,K ≤ c ‖t− th‖20,K and h2

K ‖rot (t̃h)‖20,K ≤ c̃ ‖t̃− t̃h‖20,K ∀K ∈ T bh ,

he ‖JthsK‖20,e ≤ C ‖t− th‖20,ωe
and he ‖Jt̃h · sK‖20,e ≤ C̃ ‖t̃− t̃h‖20,ωe

∀ e ∈ Eh(Ω) ,

where ωe is the union of the two elements of T bh sharing the edge e.

Proof. See [12, Lemmas 4.3 and 4.4]. �

Lemma 3.16 Assume that uD and ϕD are piecewise polynomials. Then, there exist positive constants
c and c̃, such that for each e ∈ Eh(Γ) there hold

he ‖ths−∇uD s‖20,e ≤ c ‖t− th‖20,Ke
and he ‖t̃h · s−∇ϕD · s‖20,e ≤ c̃ ‖t̃− t̃h‖20,Ke

,

where Ke is the triangle of T bh having e as an edge.

Proof. See [38, Lemma 4.15]. �

The inequalities supplied by Lemma 3.10 are invoked in the proof of the following lemma.

Lemma 3.17 There exist positive constants c and c̃, independent of h, such that

h4
K ‖th −∇uh‖40,4;K ≤ c

{
‖u− uh‖40,4;K + h2

K‖t− th‖40,K
}

∀K ∈ T bh ,

and
h4
K ‖t̃h −∇ϕh‖40,4;K ≤ c̃

{
‖ϕ− ϕh‖40,4;K + h2

K‖t̃− t̃h‖40,K
}

∀K ∈ T bh .
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Proof. For the first inequality we proceed as in the proof of [20, Lemma 5.15]. In fact, given K ∈ T bh ,
we begin by applying the vector version of the left hand side inequality of (3.44), with p = 4 and
q = 4/3, to the local polynomial χK := th −∇uh ∈ Pk(K), which gives

c1 ‖χK‖0,4;K ≤ sup
v∈Pk(K)

v 6=0

∫
K
χK · ψKv

‖v‖0,4/3;K
. (3.59)

Then, using that t = ∇u in Ω, and integrating by parts, we find that∫
K
χK · ψKv =

∫
K

{
∇(u− uh)− (t− th)

}
· ψKv = −

∫
K

(u− uh) div(ψKv)−
∫
K

(t− th) · ψKv ,

from which, employing the Hölder and Cauchy-Schwarz inequalities, noting that ‖div(ψKv)‖0,4/3;Ω ≤
‖∇(ψKv)‖0,4/3;Ω, and then applying the right hand side inequality of (3.45), along with the fact that
0 ≤ ψK ≤ 1, we obtain∫

K
χK · ψKv ≤ C

{
h−1
K ‖u− uh‖0,4;K ‖v‖0,4/3;K + ‖t− th‖0,K ‖v‖0,K

}
. (3.60)

In turn, according to the local inverse inequality (3.46) with n = 2, ` = m = 0, r = 2, and s = 4/3,

there holds ‖v‖0,K ≤ c h
−1/2
K ‖v‖0,4/3;K , and thus (3.60) becomes∫

K
χK · ψKv ≤ C

{
h−1
K ‖u− uh‖0,4;K + h

−1/2
K ‖t− th‖0,K

}
‖v‖0,4/3;K . (3.61)

In this way, replacing (3.61) back into (3.59), and multiplying the resulting inequality by hK , we get

hK ‖th −∇uh‖0,4;K ≤ ‖u− uh‖0,4;K + h
1/2
K ‖t− th‖0,K ,

so that taking the foregoing inequality to the power 4 the required efficiency estimate is obtained. The
derivation of the second inequality follows an analogue reasoning, and hence we omit further details.

�

The remaining local efficiency estimates are established as follows.

Lemma 3.18 Assume that uD and ϕD are piecewise polynomials. Then, there exist positive constants
C and C̃, independent of h, such that

he ‖uD − uh‖40,4;e ≤ C
{
‖u− uh‖40,4;Ke

+ h2
Ke
‖t− th‖40,Ke

}
∀ e ∈ Eh(Γ) ,

and
he ‖ϕD − ϕh‖40,4;e ≤ C̃

{
‖ϕ− ϕh‖40,4;Ke

+ h2
Ke
‖t̃− t̃h‖40,Ke

}
∀ e ∈ Eh(Γ) ,

where Ke is the triangle of T bh having e as an edge.

Proof. Being both inequalities proved in an analogous way, we only show the first one. In fact, given
e ∈ Eh(Γ), we first observe that the local inverse inequality (3.46) with n = 1, ` = m = 0, r = 4, and

s = 2 yields ‖uD − uh‖0,4;e ≤ c h
−1/4
e ‖uD − uh‖0,e. Hence, taking the above to the power 4, using
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that u = uD on Γ, applying the vector version of the discrete trace inequality (3.47) (cf. Lemma 3.12)
with p = 2, recalling that t = ∇u, and employing the triangle inequality, we find that

he ‖uD − uh‖40,4;e ≤ C ‖u− uh‖40,e ≤ C
{
h−1
Ke
‖u− uh‖20,Ke

+ hKe ‖t−∇uh‖20,Ke

}2

≤ C
{
h−1
Ke
‖u− uh‖20,Ke

+ hKe ‖t− th‖20,Ke
+ hKe ‖th −∇uh‖20,Ke

}2
.

(3.62)

Next, using, thanks to the Cauchy-Schwarz inequality, that

‖w‖20,Ke
≤ |Ke|1/2 ‖w‖20,4;Ke

≤ c hKe ‖w‖20,4;Ke
∀w ∈ L4(Ke) ,

it follows from (3.62) that

he ‖uD − uh‖40,4;e ≤ C
{
‖u− uh‖20,4;Ke

+ hKe ‖t− th‖20,Ke
+ h2

Ke
‖th −∇uh‖20,4;Ke

}2

≤ c
{
‖u− uh‖40,4;Ke

+ h2
Ke
‖t− th‖40,Ke

+ h4
Ke
‖th −∇uh‖40,4;Ke

}
.

Finally, owing to the first estimate from Lemma 3.17 we can bound the last term in the foregoing
inequality, and this step concludes the proof. �

At this point we stress that if uD and ϕD were not piecewise polynomials but sufficiently smooth,
then higher order terms given by the errors arising from suitable polynomial approximations of these
functions would appear in the efficiency estimates provided by Lemmas 3.16 and 3.18. This fact
explains the eventual expression h.o.t. in the global efficiency estimate (3.48).

We end this section by remarking that the proof of (3.48) follows straightforwardly from Lemmas
3.14–3.18, and after summing up the local efficiency estimates over all K ∈ T bh . Further details are
omitted.

4 A posteriori error analysis: the 3D case

In this section we extend the results from Section 3 to the three-dimensional version of (2.12). Similarly
as in the previous section, given a tetrahedron K ∈ T bh , we let E(K) be the set of its faces, and let
Eh be the set of all faces of the triangulation T bh . Then, we write Eh = Eh(Ω) ∪ Eh(Γ) with Eh(Ω) and
Eh(Γ) defined as in Section 3.1. Also, for each face e ∈ Eh we fix a unit normal νe to e. Now, let
v ∈ L2(Ω) such that v|K ∈ C(K) on each K ∈ T bh . Then, given e ∈ E(K) ∩ Eh(Ω), we denote by
Jv×νeK the tangential jump of v across e, that is, Jv×νeK := (v|K−v|K′)|e×νe, where K and K ′ are
the tetrahedron of T bh having e as a common face. In addition, for τ ∈ L2(Ω) such that τ |K ∈ C(K),
we let Jτ ×νeK be the tangential jump of τ across e, that is, Jτ ×νeK := (τ |K − τ |K′)|e×νe. In what
follows, when no confusion arises, we simply write ν instead of νe. On the other hand, we recall that
the curl of a 3D vector v := (v1, v2, v3) is the 3D vector

curl (v) = ∇× v :=

(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
,

and that, given a tensor function τ := (τij)3×3, the operator curl (τ ) is the 3 × 3 tensor whose rows
are given by

curl (τ) :=

 curl (τ11, τ12, τ13)
curl (τ21, τ22, τ23)
curl (τ31, τ32, τ33)

 .
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In addition, τ × ν stands for the 3× 3 tensor whose rows are given by the tangential components of
each row of τ , that is,

τ × νe :=

 (τ11, τ12, τ13)× νe
(τ21, τ22, τ23)× νe
(τ31, τ32, τ33)× νe

 .

In turn, the tangential curl operator curl s and a tensor version of it, denoted curl s, which is defined
component-wise by curl s, will also be used (see [18, Section 3] for details).

Thus, we define for each K ∈ T bh

Θ̄2
K :=

∥∥2µ(ϕh)th,sym −
1

2
(uh ⊗ uh)d − σd

h

∥∥2

0,K
+
∥∥Kt̃h −

1

2
ϕhuh − σ̃h

∥∥2

0,K

+h2
K ‖curl (th)‖20,K + h2

K‖curl (t̃h)‖20,K +
∑

e∈Eh(Ω)

he

{∥∥Jth × νK
∥∥2

0,e
+
∥∥Jt̃h × νK

∥∥2

0,e

}
+

∑
e∈Eh(K)∩Eh(Γ)

he

{
‖th × ν − curl s(uD)‖20,e + ‖t̃h × ν − curl s(ϕD)‖20,e

}
.

(4.1)

Hence, bearing in mind the definitions of Θ̃
4/3
K (cf. (3.8)) and Θ̂4

K (cf. (3.9)), which are also valid
in the present 3D case, the associated global a posteriori error estimator is defined as

Θ =

{ ∑
K∈T b

h

Θ̃
4/3
K

}3/4

+

{ ∑
K∈T b

h

Θ̄2
K

}1/2

+

{ ∑
K∈T b

h

Θ̂4
K

}1/4

. (4.2)

In this way, the corresponding reliability and efficiency estimates, which constitute the analogue of
Theorems 3.4 and 3.13, are stated as follows.

Theorem 4.1 Assume that the data are sufficiently small (similarly as indicated in Lemma 3.7), and
suppose that uD and ϕD are piecewise polynomials. Then, there exist positive constants Crel and Ceff,
independent of h, such that

Ceff Θ + h.o.t. ≤ ‖→σ −→σh‖X ≤ Crel Θ .

The proof of Theorem 4.1 follows very closely the analysis of Section 3, except a few issues to be
described throughout the following discussion. Indeed, we first observe that the general a posteriori
error estimate given by Lemma 3.7 is also valid in 3D. Then, we follow [36, Theorem 3.2] to derive
a 3D version for arbitrary polyhedral domains of the Helmholtz decomposition provided by Lemma
3.2. Next, the associated discrete Helmholtz decomposition and the functionals R and R̃ are set and
rewritten exactly as in (3.34), (3.35), and (3.36), respectively. Furthermore, in order to derive the new
upper bounds of ‖R‖ and ‖R̃‖, we now need the 3D analogue of the integration by parts formula on
the boundary given by (3.41). In fact, by applying the identities from [43, Chapter I, eq. 2.17, and
Theorem 2.11], we deduce that in this case there holds

〈curl ξ · ν, θ〉Γ = −〈curl sθ, ξ〉Γ ∀ ξ ∈ H1(Ω) , ∀ θ ∈ H1/2(Γ) .

In addition, the integration by parts formula on each tetrahedron K ∈ T bh , which is used in the proof
of the 3D analogue of Lemma 3.8, becomes (cf. [43, Chapter I, Theorem 2.11])∫

K
curl q · ξ −

∫
K

q · curl ξ = 〈q× ν, ξ〉∂K ∀q ∈ H(curl ; Ω), ∀ ξ ∈ H1(Ω) ,
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where 〈·, ·〉∂K is the duality pairing between H−1/2(∂K) and H1/2(∂K), and, as usual, H(curl ,Ω) is
the space of vectors in L2(Ω) whose curl lies also in L2(Ω). Note that, unlike the 2D case, it is not
necessary for the reliability to assume that uD ∈ H1(Γ) and ϕD ∈ H1(Γ), since the curl s is defined
into H1/2(Γ).

Finally, in order to prove the efficiency of Θ (cf. (4.2)), we first observe that the terms defining

Θ̃
4/3
K (cf. (3.8)) and the first two defining Θ̄2

K (cf. (4.1)) are estimated exactly as done for the 2D case
in Lemma 3.14. For the remaining terms, we have the following lemma.

Lemma 4.2 Assume that uD and φD are piecewise polynomials. Then, there exist positive constants
Ci, i ∈ {1, ..., 10}, all independent of h, such that

a) h4
K‖th −∇uh‖40,4;K ≤ C1

{
‖u− uh‖40,4;K + hK‖t− th‖40,K

}
∀K ∈ T bh ,

b) h4
K‖t̃h −∇ϕh‖40,4;K ≤ C2

{
‖ϕ− ϕh‖40,4;K + hK‖t̃− t̃h‖40,K

}
∀K ∈ T bh ,

c) he‖uD − uh‖40,4;e ≤ C3

{
‖u− uh‖40,4;Ke

+ hKe‖t− th‖40,Ke

}
∀ e ∈ Eh(Γ),

d) he‖ϕD − ϕh‖40,4;e ≤ C4

{
‖ϕ− ϕh‖40,4;Ke

+ hKe‖t̃− t̃h‖40,Ke

}
∀ e ∈ Eh(Γ),

e) h2
K‖curl (th)‖20,K ≤ C5‖t− th‖20,K ∀K ∈ T bh ,

f) h2
K‖curl (t̃h)‖20,K ≤ C6‖t̃− t̃h‖20,K ∀K ∈ T bh ,

g)
∥∥Jth × νK

∥∥2

0,e
≤ C7‖t− th‖20,ωe

∀ e ∈ Eh(Ω),

h)
∥∥Jt̃h × νK

∥∥2

0,e
≤ C8‖t̃− t̃h‖20,ωe

∀ e ∈ Eh(Ω),

i) he‖th × ν − curl s(uD)‖20,e ≤ C9‖t− th‖20,Ke
∀ e ∈ Eh(Γ),

j) he‖t̃h − curl s(ϕD)‖20,e ≤ C10‖t̃− t̃h‖20,Ke
∀ e ∈ Eh(Γ).

Proof. The proof of a) and b) follows as in Lemma 3.17 by using now the local inverse inequality
(3.46) with n = 3. Analogously, c) and d) follow from Lemma 3.18 and the present estimates a) and
b). In turn, for the proof of e), f), g), and h), we refer to [37, Lemmas 4.9 and 4.10]. Finally, i) and
j) are consequence of a straightforward adaptation of the proof of [38, Lemma 4.15], along with the
definitions of curl s and curl s, respectively. �

5 Extension to the Oberbeck–Boussinesq problem

The same tools and techniques employed in the previous sections can be applied to develop the
a posteriori error analysis of the fully-mixed finite element introduced in [25] for the steady state
Oberbeck–Boussinesq model. The resulting a posteriori error estimators for the 2D and 3D cases are
summarized in Sections 5.3 and 5.4 below after recalling next the model problem and its associated
continuous and discrete formulations.

5.1 The Oberbeck–Boussinesq problem

The stationary Oberbeck-Boussinesq problem consists of the incompressible Navier-Stokes-Brinkman
equations coupled with the heat and mass transfer equations through a convective term and a buoyancy
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term acting in opposite direction to gravity. More precisely, given an external force per unit mass
g ∈ L∞(Ω), and Dirichlet data uD ∈ H1/2(Γ), and ϕ1,D, ϕ2,D ∈ H1/2(Γ), the model reduces to: Find
a velocity field u, a pressure field p, a temperature field ϕ1, and a concentration field ϕ2, both defining
a vector ϕ :=

(
ϕ1, ϕ2

)
, such that

γu− div(2µ(ϕ)e(u)) + (∇u)u +∇p = (ϑ ·ϕ)g in Ω, div(u) = 0 in Ω ,

−div(K1∇ϕ1) + u · ∇ϕ1 = 0 in Ω , −div(K2∇ϕ2) + u · ∇ϕ2 = 0 in Ω ,

u = uD on Γ , ϕ1 = ϕ1,D on Γ , ϕ2 = ϕ2,D on Γ ,

(5.1)

where γ is a positive constant inversely proportional to the reciprocal of the Darcy number Da,
µ : R × R+ −→ R+ is the viscosity of the fluid, e(u) is the symmetric part of the velocity gradient
∇u, also known as the rate of strain tensor, ϑ := (ϑ1, ϑ2) is a vector containing expansion coefficients,
and Kj ∈ L∞(Ω), with j ∈ {1, 2}, are uniformly positive definite tensors describing the thermal
conductivity of the fluid. In addition, µ is assumed bounded and Lipschitz continuous, which means
that there exist constants µ1, µ2, Lµ > 0, such that

µ1 ≤ µ(φ) ≤ µ2 and |µ(φ)− µ(ψ)| ≤ Lµ |φ−ψ| ∀φ, ψ ∈ R× R+ ,

where | · | denotes from on the euclidean norm of Rn, n ∈
{

1, 2, 3
}

. We remark here that, because of
the incompressibility of the fluid (cf. second eq. of (5.1)) and the Dirichlet boundary condition (cf.
fifth eq. of (5.1)), uD must satisfy the compatibility condition

∫
Γ uD · ν = 0. Then, using some of

the auxiliary unknowns defined in Section 2.2, introducing the new ones that are set implicitly next,
denoting ϕD :=

(
ϕ1,D, ϕ2,D

)
, and eliminating the pressure p, as we did in Section 2.2, the Oberbeck–

Boussinesq problem (5.1) can be re-stated as follows: Find (u, t,σ) and (ϕj , t̃j , σ̃j), j ∈
{

1, 2
}

, in
suitable spaces to be indicated below such that

∇u = t in Ω ,

γu− divσ +
1

2
tu − (ϑ · ϕ)g = 0 in Ω ,

2µ(ϕ)tsym −
1

2
(u⊗ u)d = σd in Ω ,

∇ϕj = t̃j in Ω ,

Kj t̃j −
1

2
ϕj u = σ̃j in Ω ,

−div σ̃j +
1

2
t̃j · u = 0 in Ω ,∫

Ω
tr (2σ + u⊗ u) = 0 , u = uD and ϕ = ϕD on Γ ,

(5.2)

5.2 The continuous and discrete formulations

Bearing in mind the definitions and notations from Section 2.2, and according to the derivation
provided in [25, Section 3.1], the fully-mixed variational formulation of the coupled problem (5.2)

reads: Find (
→
u,σ) ∈ H×H0(div4/3; Ω) and (

→
ϕj , σ̃j) ∈ H̃×H(div4/3; Ω), j ∈ {1, 2} such that

âϕ(
→
u,
→
v) + c(u;

→
u,
→
v) + b(

→
v ,σ) = F̂ϕ(

→
v) ∀→v ∈ H ,

b(
→
u, τ ) = G(τ ) ∀ τ ∈ H0(div4/3; Ω) ,

ãj(
→
ϕj ,

→
ψj) + c̃u(

→
ϕj ,

→
ψj) + b̃(

→
ψj , σ̃j) = 0 ∀

→
ψj ∈ H̃ ,

b̃(
→
ϕj , τ̃ j) = G̃(τ̃ j) ∀ τ̃ j ∈ H(div4/3; Ω) ,

(5.3)
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where, given φ ∈ L4(Ω), the forms âφ and ãj , and the functional F̂φ, are defined by

âφ(
→
u,
→
v) := (γu,v)Ω + (2µ(φ)tsym, s)Ω , ãj(

→
ϕj ,

→
ψj) := (Kj t̃j , s̃j)Ω , F̂φ(

→
v) := ((ϑ · φ)g,v)Ω

for all
→
u := (u, t),

→
v := (v, s) ∈ H, for all τ ∈ H0(div4/3; Ω), for all

→
ϕj := (ϕj , t̃j),

→
ψj := (ψj , s̃j) ∈

H̃, and for all τ̃ j ∈ H(div4/3; Ω). In turn, as stated at the beginning of this section, the forms b, c, b̃,

and c̃w, the latter for a given w ∈ L4(Ω), and the functionals G and G̃, are defined in Section 2.2.

In turn, using the same finite element subspaces defined in Section 2.3, the Galerkin scheme as-
sociated with (5.3) reads: Find (

→
uh,σh) ∈ Hh × Hσ

h and (
→
ϕj,h, σ̃j,h) ∈ H̃h ×Hσ̃

h , j ∈ {1, 2} such
that

âϕh
(
→
uh,

→
vh) + c(uh;

→
uh,

→
vh) + b(

→
vh,σh) = F̂ϕh

(
→
vh) ∀→vh ∈ Hh ,

b(
→
uh, τ h) = G(τ h) ∀ τ h ∈ Hσ

h ,

ãj(
→
ϕj,h,

→
ψj,h) + c̃uh

(
→
ϕj,h,

→
ψj,h) + b̃(

→
ψj,h, σ̃j,h) = 0 ∀

→
ψh ∈ H̃h ,

b̃(
→
ϕj,h, τ̃ j,h) = G̃(τ̃ j,h) ∀ τ̃ h ∈ Hσ̃

h .

(5.4)

For the well-posedness of (5.3) and (5.4) we refer to [25, Theorem 3.9] and [25, Theorem 4.7],
respectively, whereas the a priori error estimates and corresponding rates of convergence are established
in [25, Theorems 5.1 and 5.2].

5.3 The a posteriori error estimator in 2D

Recall that

→
σ = ((

→
u,σ), (

→
ϕ1, σ̃1), (

→
ϕ2, σ̃2)) ∈ X̂ := H×H0(div4/3; Ω)× H̃×H(div4/3; Ω)× H̃×H(div4/3; Ω)

is the unique solution of problem (5.3), and that

→
σh = ((

→
uh,σh), (

→
ϕ1,h, σ̃1,h), (

→
ϕ2,h, σ̃2,h)) ∈ X̂h := Hh ×Hσ

h × H̃h ×Hσ̃
h × H̃h ×Hσ̃

h

is a solution of problem (5.4). Then, assuming as in Section 3.2, that uD ∈ H1(Γ) ∩ L4(Γ) and
ϕj,D ∈ H1(Γ) ∩ L4(Γ), for j ∈ {1, 2}, we define for each K ∈ T bh the local error indicators

Ψ̃
4/3
K :=

∥∥γuh − div(σh) +
1

2
th uh − (ϑ ·ϕh) g

∥∥4/3

0,4/3;K
+

2∑
j=1

∥∥− div(σ̃j,h) +
1

2
uh · t̃j,h

∥∥4/3

0,4/3;K
, (5.5)

Ψ̄2
K :=

∥∥2µ(ϕh)th,sym −
1

2
(uh ⊗ uh)d − σd

h

∥∥∥2

0,K
+

2∑
j=1

∥∥Kj t̃j,h −
1

2
ϕj,huh − σ̃j,h

∥∥2

0,K

+ h2
K‖rot (th)‖20,K +

2∑
j=1

h2
K‖rot (t̃j,h)‖20,K +

∑
e∈Eh(K)∩Eh(Ω)

he
∥∥Jth sK

∥∥2

0,e

+

2∑
j=1

{ ∑
e∈Eh(K)∩Eh(Ω)

he
∥∥Jt̃j,h · sK∥∥2

0,e
+

∑
e∈Eh(K)∩Eh(Γ)

he‖t̃j,h · s−∇ϕj,D · s‖20,e

}

+
∑

e∈Eh(K)∩Eh(Γ)

he‖ths−∇uD s‖20,e ,

(5.6)
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and

Ψ̂4
K := h4

K‖th −∇uh‖40,4;K +

2∑
j=1

h4
K‖t̃j,h −∇ϕj,h‖40,4;K

+
∑

e∈Eh(K)∩Eh(Γ)

he‖uD − uh‖40,4;e +
2∑
j=1

{ ∑
e∈Eh(K)∩Eh(Γ)

he‖ϕj,D − ϕj,h‖40,4;e

}
,

(5.7)

so that the global a posteriori error estimator is given by

Ψ =

{ ∑
K∈T b

h

Ψ̃
4/3
K

}3/4

+

{ ∑
K∈T b

h

Ψ̄2
K

}1/2

+

{ ∑
K∈T b

h

Ψ̂4
K

}1/4

. (5.8)

Then, the reliability and efficiency of Ψ, whose proofs follow very closely the analysis of Section 3,
are established as follows.

Theorem 5.1 Assume that the data are sufficiently small (similarly as indicated in Lemma 3.7), and
suppose for simplicity that uD and ϕj,D, j ∈ {1, 2}, are piecewise polynomials. Then, there exist
positive constants Crel and Ceff, independent of h, such that

Ceff Ψ + h.o.t. ≤ ‖→σ −→σh‖X ≤ Crel Ψ ,

where h.o.t. stands for one or several terms of higher order.

5.4 The a posteriori error estimator in 3D

In this case we define for each K ∈ T bh

Ψ̄2
K :=

∥∥2µ(ϕh)th,sym −
1

2
(uh ⊗ uh)d − σd

h

∥∥∥2

0,K
+

2∑
j=1

∥∥Kj t̃j,h −
1

2
ϕj,huh − σ̃j,h

∥∥2

0,K

+ h2
K‖curl (th)‖20,K +

2∑
j=1

h2
K‖curl (t̃j,h)‖20,K +

∑
e∈Eh(K)∩Eh(Ω)

he
∥∥Jth × νK

∥∥2

0,e

+

2∑
j=1

{ ∑
e∈Eh(K)∩Eh(Ω)

he
∥∥Jt̃j,h × νK

∥∥2

0,e
+

∑
e∈Eh(K)∩Eh(Γ)

he‖t̃j,h × ν − curl s(ϕj,D)‖20,e

}

+
∑

e∈Eh(K)∩Eh(Γ)

he‖th × ν − curl s(uD)‖20,e ,

so that, letting Ψ̃
4/3
K and Ψ̂4

K as defined by (5.5) and (5.7), the corresponding global a posteriori error
estimator is given by (5.8), and the respective reliability and efficiency result is stated analogously to
Theorem 5.1.

6 Numerical results

This section presents four computational tests that illustrate the properties of the proposed family of
methods. Tests 1 and 2 consider the Boussinesq equations for non-isothermal flow, and tests 3 and
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4 focus on the Oberbeck-Boussinesq system. For each problem we provide a test with known closed-
form solution that we use to quantify the robustness of the a posteriori error estimators (tests 1 and
4), while we consider in tests 2 and 3 application-driven problems without closed-form solution. All
computations use Alfeld splits (barycentric refined meshes) T b

h created from regular partitions Th of Ω,
using the open-source mesh manipulator GMSH [42]. For the implementation of the numerical schemes
we have used the open-source finite element library FEniCS [2]. A Newton-Raphson algorithm with
null initial guess is used for the resolution of all nonlinear problems, whereas the solution of tangent
systems resulting from the linearization is carried out with the multifrontal massively parallel sparse
direct solver MUMPS. The condition of zero-average pressure (thanks to (2.4), translated in terms of
the trace of the tensor quantity 2σ + u⊗ u) is imposed by means of a real Lagrange multiplier.

Errors between exact and approximate solutions are denoted as

e(u) := ‖u− uh‖0,4;Ω , e(t) := ‖t− th‖0,Ω e(σ) := ‖σ − σh‖div4/3;Ω , e(p) := ‖p− ph‖0,Ω ,

e(ϕ) :=
2∑
j=1

‖ϕj − ϕj,h‖0,4;Ω , e(t̃) :=
2∑
j=1

‖t̃j − t̃j,h‖0,4;Ω , e(σ̃) :=
2∑
j=1

‖σ̃j − σ̃j,h‖div4/3;Ω,

while we let r(?) denote their corresponding rates of convergence, specified for the case of adaptive
computations as

r(?) := −2
log(e(?)/e′(?))

log(DoF/DoF′)
∀ ? ∈

{
u, t,σ, p, ϕ, t̃, σ̃

}
,

where DoF and DoF′ denote the numbers of degrees of freedom associated with two consecutive meshes
producing errors e(?) and e′(?), respectively.

The local contributions of the residual-based a posteriori error estimators (3.10), (4.2), and (5.8),
which come from the constitutive equations, the conservation equations, and the inter-element resi-
duals, are used to steer the adaptive mesh-refining. We follow Algorithm 6.1, which, though explained
below for (2.12) and Θ (cf. (3.10)), applies in the same way for (5.4) and Ψ (cf. (5.8)). It is designed
based on the classical loop of

solving → estimating → marking → refining → solving → · · · ,

as specified in, e.g., [32, 46]. As in [25] we need to deal with the adaptive procedure associated with
the initial triangular/tetrahedral mesh at each refinement step, and perform an additional step to
treat its Alfeld split and to project the estimator on a macro (parent) mesh.

6.1 Example 1: accuracy for the Boussinesq problem using uniform and adaptive
mesh refinement

First we verify numerically the convergence of the mixed method applied to the Boussinesq equations
by manufacturing exact solutions of (2.6) over the L-shaped domain Ω = (−1, 1)2 \ (0, 1)2

u =

(
cos(π2x1) sin(π2x2)
− sin(π2x1) cos(π2x2)

)
, p =

1 + sin(x1x2)

(x1 − 0.01)2 + (x2 − 0.01)2
, ϕ = 0.1 + e−100[(x1−0.01)2+(x2−0.01)2] ,

from which we can determine the exact strain rate, pseudostress, pseudo-heat and heat flux. The
values of the exact velocity and temperature are used for Dirichlet data uD and ϕD, and they are
also used to generate matching right-hand side forcing term and heat source. We consider synthetic
viscosity and conduction functions, as well as constant gravity acceleration as follows

µ(ϕ) = e−ϕ , K =

(
e−x1 x1/10
x2/10 e−x2

)
, and g =

(
0
−1

)
.
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Algorithm 6.1 – Adaptive refinement algorithm

1: for a given computation start with a coarse mesh Th made of triangles (or tetrahedra) ∆ and
do

2: Generate the associated barycentric refinement T b
h made of triangles (or tetrahedra) K,

3: for the current mesh T b
h do

4: solve the discrete problem (2.12) on the new barycentric mesh T b
h ,

5: end for
6: for each K ∈ T b

h do

7: compute Θ̃K , Θ̄K , and Θ̂K , and then compute the local a posteriori error indicator
ΘK := Θ̃K + Θ̄K + Θ̂K ,

8: end for
9: for each ∆ ∈ Th do

10: project the local a posteriori error indicator to the parent mesh Θ∆ :=
∑

K∈T b
h ,K⊆∆

ΘK ,

11: end for
12: if for an element in the parent mesh L ∈ Th (even for a boundary element) we have ΘL ≥

0.2 maxK∈T b
h

ΘK then
13: mark L for refinement and mark further elements to guarantee that the triangulation

remains regular,
14: end if
15: if sufficiently many elements in the parent mesh Th are marked so that they represent a given

fraction of the total estimated error then
16: stop
17: else
18: continue to the next step,
19: end if
20: generate an adapted parent mesh from Th through a variable metric/Delaunay automatic

meshing algorithm using the local indicators Θ∆, targeting the equidistribution of the local
error indicators in the updated parent mesh,

21: define the resulting mesh as Th and go to step (2).
22: end for

Note that the exact pressure (and therefore the exact pseudostress) and the exact temperature have
relatively high gradients near the reentrant corner, and we expect the accuracy of the mixed finite
element scheme to deteriorate upon using uniform mesh refinement.

On each refinement level we compute approximate solutions, as well as errors and convergence
rates defined as above. The error history for each field variable and the effectivity index for the
estimator (3.10), eff(Θ) := e/Θ (where e denotes the total error), are supplied in Table 6.1. These
results tabulate the convergence of the method when following a uniform mesh refinement versus the
adaptive case. In the uniform case we generate triangular meshes and refine them uniformly, then
apply for each mesh a barycentric refinement, on which we compute numerical solutions and errors.
In the adaptive case we use Algorithm 6.1. In all cases we see that the convergence is suboptimal for
the uniform refinement whereas optimal and super-optimal rates are seen when we apply the adaptive
algorithm. In addition, we observe that the effectivity index is much more stable in the adaptive case.

To further exemplify the performance of the numerical scheme, we show in Figure 6.1 approximate
solutions (discontinuous velocity magnitude, postprocessed pressure, and temperature) obtained by
the adaptive method on relatively coarse meshes, together with examples of locally refined barycentric
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With uniform mesh refinement

DoF h e(u) r(u) e(t) r(t) e(σ) r(σ)

2899 1.0000 4.73e+00 – 9.79e+01 – 5.31e+02 –
11521 0.5000 2.37e+00 1.003 5.59e+01 0.813 2.27e+02 1.235
45937 0.2500 2.54e+00 -0.100 7.61e+01 -0.447 2.30e+02 -0.022
183457 0.1250 1.46e+00 0.799 1.05e+02 -0.459 3.59e+02 -0.641
733249 0.0625 3.24e-01 2.173 8.50e+01 0.300 1.60e+02 1.163

e(ϕ) r(ϕ) e(t̃) r(t̃) e(σ̃) r(σ̃) e(p) r(p) eff(Θ)

6.01e-01 – 3.20e+00 – 8.25e+00 – 2.78e+02 – 0.5103
8.83e-02 2.780 1.27e+00 1.336 5.23e+00 0.662 1.30e+02 1.102 0.4823
3.19e-02 1.469 4.57e-01 1.479 4.79e+00 0.125 5.07e+01 1.362 0.3673
2.08e-02 0.619 3.18e-01 0.525 3.77e+00 0.348 4.05e+01 0.323 0.2884
9.69e-04 4.427 1.11e-01 1.514 7.09e-01 2.411 2.70e+01 0.585 0.1686

With adaptive mesh refinement

DoF h e(u) r(u) e(t) r(t) e(σ) r(σ)

19405 0.5143 2.42e+00 – 7.43e+01 – 2.68e+02 –
30385 0.5144 1.65e+00 1.713 6.80e+01 2.753 1.94e+02 1.041
44236 0.5153 4.34e-01 7.115 3.55e+01 3.149 1.39e+02 2.514
57601 0.5146 6.21e-02 14.722 1.65e+01 4.873 2.64e+01 12.587
77653 0.5144 7.98e-03 13.741 6.77e+00 6.139 3.89e+00 12.833

e(ϕ) r(ϕ) e(t̃) r(t̃) e(σ̃) r(σ̃) e(p) r(p) eff(Θ)

3.19e-02 – 4.42e-01 – 4.68e+00 – 5.62e+01 – 0.2957
2.14e-02 1.768 3.15e-01 1.511 3.47e+00 1.335 4.02e+01 1.499 0.2879
3.48e-03 9.689 1.26e-01 4.897 1.09e+00 6.188 3.03e+01 1.506 0.2859
3.35e-04 17.717 2.33e-02 12.759 1.03e-01 17.869 7.13e+00 10.952 0.2514
8.11e-05 9.500 4.32e-03 11.292 1.20e-02 14.381 1.77e+00 9.322 0.2812

Table 6.1: Example 1: Convergence history for the fully-mixed approximation with polynomial degree
k = 2 and using uniform (top block) and adaptive mesh refinement guided by (3.10) (bottom block).
DoF stands for the number of degrees of freedom associated with each barycentric refined mesh T b

h .

meshes indicating the expected refinement near the reentrant corner of the domain, located at the
origin.

6.2 Example 2: adaptive computation for the 3D thermal cavity

Next we test the adaptive algorithm in a 3D problem consisting of the stationary Boussinesq equations
on the unit cube Ω = (0, 1)3, where the distribution of temperature and flow patterns is driven by
differentially heating the enclosure. The classical benchmark problem uses unity viscosity and thermal
conductivity (see, e.g., [4, 9, 35]), while here we use the same nonlinear viscosity as in the previous
example together with g = (0, 0,Ra)t with a Rayleigh number of Ra = 5 · 104. For the thermal
energy conservation, the boundary is split into two regions: Γ1 (top and bottom edges of the box)
and Γ2 (vertical walls) where temperature and heat flux are prescribed, respectively. The boundary
temperature on Γ1 is set to ϕD = 0 on the top surface and ϕD = 1 on the bottom. On Γ2 we consider
that the remainder squares of the boundary (that is, the cavity walls) are insulated, which translates
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: Example 1: Approximate velocity magnitude (a), postprocessed pressure (b), and tem-
perature distribution (c) obtained using a mixed method for the Boussinesq problem with k = 2 and
after two steps of adaptive mesh refinement. Panels (d,e,f) show samples of adaptive meshes.

in prescribing zero normal components for the heat flux σ̃, which is done as an essential boundary
condition. Finally, no-slip velocities uD = 0 are prescribed everywhere on the boundary.

Starting with a coarse uniform tetrahedral mesh and its corresponding barycentric refinement, we
compute numerical solutions using the mixed method with k = 2. The error estimator (4.2) guides
the adaptive mesh refinement, which seems to focus the majority of the marking on the zone of higher
temperature gradients. The performance of the scheme is exemplified in Figure 6.2 where we display
approximate temperature, heat flux, and velocity streamlines that exhibit a qualitative agreement
with the expected flow recirculation. We also show in the bottom panels of the figure, some coarse
adaptively refined grids.

6.3 Example 3: adaptive Oberbeck-Boussinesq flow on a complex channel

The error estimation strategy applied to Oberbeck-Boussinesq flows is tested on a channel with three
obstacles (using the domain and boundary configuration from the micro-macro models for incom-
pressible flow introduced in [45]), and including mixed boundary conditions. On the inlet (the bottom
horizontal section of the boundary defined by (0, 1) × {−2}) we prescribe a parabolic inflow velocity
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(a) (b) (c)

(d) (e) (f) (g)

Figure 6.2: Example 2: Different angle views for approximate velocity streamlines (a), temperature
distribution (b), and heat flux streamlines (c) for the Boussinesq equations modeling the differentially
heated cavity. Solutions computed with a method using k = 2 and a barycentric tetrahedral grid
obtained after four steps of adaptive mesh refinement. Panels (d,e,f,g) show samples of adaptive
meshes with a crinkle clip across the geometry.

uD,1 = (0, x1(1 − x1))t and a constant concentration and temperature. On the outlet (the vertical
segment on the top left part of the boundary, defined by {−2} × (0, 1)) we impose constant concen-
tration and temperature, and set zero normal Cauchy stress, which means that we need to impose
(σ + 1

2u ⊗ u)ν = 0, and on the remainder of the boundary we set no-slip velocities. Zero-flux con-
ditions are imposed for concentration on the outlet and for temperature elsewhere on the boundary.
No closed-form solution is available for this problem but the global error estimator (5.8) decays with
optimal order. For this test we use k = 1 and perform five steps of adaptive mesh refinement. The
computed flow profiles and sample adaptive grids are shown in Figure 6.3.

6.4 Example 4: accuracy for the Oberbeck-Boussinesq problem in a truncated
cube

We conclude our numerical tests with the verification of convergence of the mixed method and the
adaptive mesh refinement applied to the Oberbeck-Boussinesq system. We use the non-convex domain
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6.3: Example 3: Approximate velocity magnitude and line integral contour (a), temperature
distribution (b), concentration distribution (c), and postprocessed pressure (d) for the Boussinesq-
Oberbeck equations on a channel. Solutions computed with a method using k = 1. Panels (d,e,f)
show samples of adaptive meshes.

Ω = (0, 1)3 \ [0.5, 1]3 (with a volume of |Ω| = 0.875), and consider the following closed-form solutions

u =

 sin2(πx1) sin(πx2) sin(2πx3)
sin(πx1) sin2(πx2) sin(2πx3)

−[sin(2πx1) sin(πx2) + sin(πx1) sin(2πx2)] sin2(πx3)

 , p =
1−x21−x22−x23

(x1−0.55)2+(x2−0.55)2+(x3−0.55)2
,

ϕ1 = 1− sin(πx1) cos(πx2) sin(πx3), ϕ2 = exp(−(x1 − 0.55)2 − (x2 − 0.55)2 − (x3 − 0.55)2) .

The manufactured exact velocity, concentration, and temperature are used as Dirichlet data every-
where on the boundary. The pressure has a strong gradient near the reentrant corner of the domain
and therefore we expect that adaptive mesh refinement outperforms the convergence of the method
using meshes successively refined in a uniform way. We select the following parameter values

µ(ϕ) = exp(−ϕ1), γ = 1, α = (1, 0.5)t, K1 =

exp(−x1) 0 0
0 exp(−x2) 0
0 0 exp(−x3)

 , K2 = I.

The error history for each field variable (number of degrees of freedom associated with each mesh
and experimental errors and convergence rates) and the effectivity index for the estimator (5.8) (its
3D version), eff(Ψ) := e/Ψ (where e denotes the total error), are supplied in Table 6.2. As in the 2D
Boussinesq case of Example 1, the lack of smoothness of the exact solution is reflected in the hindered
convergence observed under uniform mesh refinement. Noticeably improved results are obtained for
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.4: Example 4: Approximate velocity magnitude and streamlines (a), velocity gradient (b),
Bernoulli tensor (c), postprocessed pressure (d), temperature (e), concentration (f), temperature gra-
dient (g), and concentration gradient (h), obtained using k = 2 and an adaptive barycentrically refined
tetrahedral mesh. Panels (i,j,k,l) show the repartition of the indicator on coarse sample meshes.

the case of adaptive mesh refinement. The overall mesh density is controlled through a refinement
tolerance in order to produce adaptive meshes representing fewer degrees of freedom than in the
uniform case. Even then the errors decay much faster for the adaptive case and the effectivity index
remains in a neighborhood of 0.69, confirming the efficiency and reliability of the a posteriori error
indicator. Approximate solutions are shown in Figure 6.4.
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With uniform mesh refinement

DoF h e(u) r(u) e(t) r(t) e(σ) r(σ)

46251 1 0.5848 – 17.11 – 135.7 –
368921 0.5 0.1542 1.285 11.67 0.549 96.16 0.332
2947041 0.3056 0.1320 0.511 9.265 0.388 64.02 0.451
8655681 0.1528 0.0944 0.603 6.304 0.410 45.78 0.398

e(ϕ) r(ϕ) e(t̃) r(t̃) e(σ̃) r(σ̃) e(p) r(p) eff(Ψ) It.

0.03211 – 0.6320 – 0.9353 – 6.432 – 0.7676 4
0.02031 0.694 0.4377 0.467 0.6395 0.698 3.678 0.538 0.8542 3
0.01276 0.766 0.1929 0.776 0.2684 0.819 2.353 0.692 0.6129 3
0.00715 0.983 0.1307 0.462 0.2591 0.128 2.012 0.377 0.3009 4

With adaptive mesh refinement

DoF h e(u) r(u) e(t) r(t) e(σ) r(σ)

46251 1 0.5848 – 17.11 – 235.7 –
102181 1 0.3689 3.185 13.14 2.885 101.3 2.764
160002 0.7071 0.1952 2.838 9.246 2.233 60.17 2.552
334557 0.7071 0.0913 2.524 6.365 2.681 37.95 2.845
468940 0.7071 0.0532 2.487 4.032 2.528 22.79 2.709
667680 0.5719 0.0376 2.435 2.516 2.507 17.48 2.696
844490 0.5673 0.0193 2.617 1.254 2.791 11.89 2.391

e(ϕ) r(ϕ) e(t̃) r(t̃) e(σ̃) r(σ̃) e(p) r(p) eff(Ψ) It.

0.03211 – 0.6325 – 0.9353 – 7.432 – 0.7676 4
0.02371 2.474 0.3761 3.543 0.6802 2.497 5.457 1.954 0.6541 4
0.01240 1.946 0.2189 2.413 0.3549 2.794 2.872 2.506 0.6799 5
0.00628 2.666 0.1047 2.123 0.1985 2.342 1.916 2.126 0.6701 4
0.00161 2.728 0.0722 2.401 0.1343 2.194 1.141 2.396 0.6959 4
0.00092 2.729 0.0504 2.504 0.0865 2.946 0.753 2.560 0.6954 4
0.00065 2.249 0.0299 2.538 0.0596 2.444 0.449 3.028 0.6984 4

Table 6.2: Example 4: Convergence history and Newton iteration count for the fully-mixed approxi-
mation of the Oberbeck-Boussinesq equations on a truncated cube.
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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