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Abstract In this study, we present and analyze a virtual element discretization for a non-selfadjoint
fourth order eigenvalue problem derived from the transmission eigenvalue problem. Using suitable
projection operators, the sesquilinear forms are discretized by only using the proposed degrees of
freedom associated with the virtual spaces. Under standard assumptions on the polygonal meshes,
we show that the resulting scheme provides a correct approximation of the spectrum and prove an
optimal order error estimate for the eigenfunctions and a double order for the eigenvalues. Finally,
we present some numerical experiments illustrating the behavior of the virtual scheme on different
families of meshes.
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1 Introduction

This paper deals with the numerical approximation by the Virtual Element Method (VEM) [5] of the
transmission eigenvalue problem. This problem has important applications in inverse scattering. For
instance, it can be used to obtain estimates for the material properties of the scattering object and
have a theoretical importance for the analysis of reconstruction in inverse scattering theory. For these
reasons, this problem has attracted much interest in the last years.

From the mathematical point of view, the transmission eigenvalue problem is nonstandard and
difficult to treat. As a consequence, different variational formulations have been proposed and analyzed
to solve the eigenvalue problem. More precisely, the problem can be formulated as a fourth order
quadratic eigenvalue problem, as a mixed eigenvalue problem, among others. Several conforming and
nonconforming finite element methods, mixed formulations have been proposed during the last years.
We cite as a minimal sample of them [14-16,20,23,26,32,41,44,47].
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Among the existing techniques, in [15] it has been introduced and analyzed a variational formula-
tion in H?(§2) x H'(§2). The resulting variational problem is obtained by considering an additional
second order elliptic problem to write a double-size linear eigenvalue problem. By using Argyris and
Lagrange finite element spaces, a conforming discretization is proposed. A complete analysis of the
method including error estimates is proved using the theory for compact nonselfadjoint operators.
Following a similar approach, in [46] it has been written a weak formulation in H2(§2) x L?({2) for the
transmission eigenvalue problem which is based on a linearization technique by considering an addi-
tional unknown in L2. The authors have proposed a conforming C* — C*! finite element discretization
in 2D and 3D and error estimates have been obtained. We recall that fourth order problems require
the use of globally C! polynomial spaces. The construction of C'-conforming finite elements is difficult
in general, since they usually involve a large number of degrees of freedom [21]; thus, they are often
viewed as prohibitively expensive due to their high polynomial degree.

The VEM is a recent technology introduced in [5] as a generalization of finite element method
which among its advantages permits to easily implement highly regular conforming discrete spaces.
This make the method very feasible to solve fourth order problems [2,3,7,9,13,35]. The method has
been also used to solve eigenvalue problems, among which we mention the following recent works [18,
19,8,11,24,25,29-31,34,33,35,37].

Regarding the approximation by VEM of the transmission eigenvalue problem, in [36] it has been
presented a C! — C-conforming virtual element method to solve the spectral problem on general
polygonal meshes. This scheme is based on the formulation presented in [15]. Optimal order error
estimates for the eigenfunctions and a double order for the eigenvalues are derived. More recently, in
[38] it has been introduce and analyze a conforming C'* —C! VEM on polytopal meshes by considering
the variational formulation introduced in [46]. Optimal order error estimates for the eigenfunctions
and a double order for the eigenvalues are derived. The aim of this work is to consider the same
continuous formulation as in [46,38] and use a different discretization for the additional unknown
introduced to transform the problem into an equivalent double-size linear eigenvalue. We remark that
by considering this new discretization, we obtain a smaller generalized eigenvalue problem.

In the present paper, we consider a C' — C?-conforming virtual element method to solve the trans-
mission eigenvalue problem. The variational formulation leads to a fourth order quadratic eigenvalue
problem, which is transformed into an equivalent double-size linear eigenvalue problem that fits within
the functional framework for nonselfadjoint compact bounded operators. At the continuous level, we
follow [39] to obtain an appropriate spectral characterization. Next, we propose a C* — C%-conforming
virtual element approximation that applies to general polygonal meshes. More precisely, the scheme is
based on the discrete space introduced in [2] for the Canh-Hilliard equations and in [1] for the linear
reaction-diffusion equation. We construct proper L2-projection operators that are used to approximate
the sesquilinear form presented in the system. At the discrete level, we use once again [39] to prove
that the spectrum is correctly approximated and to obtain error estimates.

Outline. This paper is structured as follows: we introduce in Section 2 the interior transmission
eigenvalue problem, first in terms of a system of second order equations and then in an equivalent
form as a linear nonselfadjoint fourth order eigenvalue problem. In Section 3, we present the discrete
spaces together with their properties. In Section 4, we construct the discrete sesquilinear forms by
using the projection operators. Moreover, we introduce the virtual element discrete formulation. In
Section 5, we present the error analysis of the virtual scheme. In Section 6, we report three numerical
tests that allow us to assess the convergence properties of the virtual element scheme.



2 Model Problem

The transmission eigenvalue problem can be stated as follows (see, for instance, [22,42]). Find k € C
and v, ¢ € L2(£2) with ¢ — ¢ € H?(§2) such that

AY +k*np =0 in £, (2.1a)
Ap+k2p=0 in £, (2.1b)
Yv—¢=0 onl, (2.1c)

Oy —0,0=0 onlI. (2.1d)

The system (2.1a)—(2.1d) corresponds to the scattering problem for an isotropic inhomogeneous
medium for the Helmholtz equation, where 2 C R? is a bounded simply-connected Lipschitz domain
with boundary I' := 92. Here, v denotes the outward unit normal vector to I", 9, denotes the normal
derivative and n is the index of refraction. We assume that n(z) =: n € W»°(£2) satisfying either
one of the following assumptions for all € §2:

1 < ne <n(x) <n* < oo,

2.2

0<n, <n(z)<n" <l1. (2:2)

The transmission eigenvalue problem is often solved by reformulating it as a fourth-order eigen-

value problem. More precisely, by introducing a new unknown u := (¢p — ¢) € H3(2), the model
problem (2.1a)-(2.1d) can be rewritten as follows:

1

In this section we introduce a continuous variational formulation associated with the fourth order
transmission eigenvalue problem (cf. (2.3)) and its spectral characterization. With this aim, we mul-
tiply the identity (2.3) by w € H3(£2) and we arrive at the following quadratic eigenvalue problem:
find k € C and u € H3(£2), u # 0 such that

1 _ 9 n 2/ 1 _ 4/ n
/Qn_lAqu—i—k /QAu<n_1w)+k Qn_lqu—i—k i

One of the main difficulties of the variational formulation (2.4) is the nonlinearity with respect
to the parameter k2. For the theoretical analysis it is convenient to transform the above variational
problem into a double-size linear eigenvalue problem. There are different options to do that. In this
work we will follow the approach used in [46,45,38]. More precisely, we consider an auxiliary variable
denoted by z and defined as:

uw =0 Yw € HA(2). (2.4)

z:=k>u in 0. (2.5)

Now, we denote by H the product space H := H2(£2) x L2(2), endowed with the following product

norm 1/2
[|(w, 0)|[1 = ([[D*w][3 0 + [J0][§.0) "

where D?w denotes the Hessian matrix of w. Moreover, it is clear that the above norm is equivalent
with the usual norm in H2(£2) x L2(£2).

Using (2.5) we arrive at the following weak formulation of the transmission eigenvalue problem:

Problem 1 Find (A, (u,2)) € C x H with (u, z) # 0 such that

1 1
/ AuA@—I—/ zv:)\(/ Au( n E)—F/ uAE—i—/ n z@—/ uv),
on—1 %) 0 n—1 an—1 en—1 2

for all (w,v) € H and with A := —k2.




In order to write the problem in a compact form, we introduce the following forms:

1

n —

A:HxH—-C, A((u,z),(w,v)):= /Q AUAE+/ 2T, (2.6)

9]

no_ 1 _ no_ _
B:HxH —C, B((u,z),(w,v)) .:/QAu(n_lw>—&-/Qn_lqu—&-/Qn_lzw—/qu. (2.7)

Thus, the nonselfadjoint eigenvalue problem can be written as follows:

Problem 2 Find (), (u,2)) € C x H with (u, z) # 0 such that
A((u, 2), (w,v)) = AB((u, 2), (w,v)) V(w,v) € H.

The following lemma establishes some properties for the forms A(:,-) and B(:,-), which will play
an important role in the analysis of the solution operator.

Lemma 1 There exist positive constants ag and C' that depend on the index of refraction n such that

A((w, ), (w,v)) = aoll(w, )|, (2.8)
[A((u, 2), (w, )] < C|(u, 2)[al|(w, v)[ |8, (2.9)
1B((u, 2), (w, )| < C|(u, 2)[[al|(w, )|, (2.10)

for all (u, 2), (w,v) € H.

According to Lemma 1, we are in a position to introduce the solution operator.

T:-H — H
(f,9) — T(f,9) = (4,2)

defined as the unique solution of the following source problem (see Lemma 1):

A((u,2), (w,v)) = B((f,9), (w,v)) V(w,v) € H. (2.11)

Thus, we have that the linear operator T' is well defined and bounded. Moreover, we have that
(X, (u, 2)) solves Problem 1 if and only if (u, (u, z)) is an eigenpair of T, i.e. T'(u, z) = u(u, z), with
wi=1/\

We observe that no spurious eigenvalues are introduced into the problem. In fact, if p # 0, then
(0, 2) is not an eigenfunction of the problem.

The following is an additional regularity result associated with the solution of the source problem
(2.11). The proof follows from the classical regularity result for the biharmonic problem (see for
instance [10,27,40]).

Lemma 2 There exist s € (0,1] and a positive constant C' depending on the index of refraction n such
that for all (f,g) € H, the unique solution (U,z) of problem (2.11) satisfies (u,z) € H?>T5(£2) x H3(£2)
and

[all2ts.2 + |[Zll2.2 < Cl(f, 9)l|m-

Proof On the one hand, by testing problem (2.11) with (w,0) € H, we obtain a biharmonic problem
with its right-hand side in H~!(£2). Thus, the estimate for @ follows. On the other hand, by testing
problem (2.11) with (0,v) € H, we obtain that Z = f € H3({2) and we conclude the proof.

Now, as a consequence of Lemma 2 and the compact inclusion H2+#(£2) x HZ(£2) — H, we obtain
that operator T' is compact. In addition, we have the following spectral characterization result.

Lemma 3 The spectrum of T satisfies sp(T') = {0}U{uk }ren, where { g tren s a sequence of complex
eigenvalues which converges to 0 and their corresponding eigenspaces lie in H2T5(§2) x H2T$(82) and

lullz4s,0 + 112l |245,2 < Cl(u, 2) |-

In addition, u = 0 is not an eigenvalue of T'.



3 Virtual Element Discretization

In this section, we will introduce the virtual element spaces (local and global) to be used in the
discretization of Problem 2.

We begin with the mesh construction and the assumptions considered to introduce the discrete
virtual element spaces (see e.g [1,5]). Let {Tx},-, be a sequence of decompositions of {2 into general
polygonal elements E. We will denote by hg the diameter of the element E and by h the maximum
of the diameters of all the elements of the mesh, i.e., h := maxge7;, hg. In addition, we denote by Ng
and NE the number of polygons in 75 and the number of vertices of E, respectively. Moreover, we
denote by e a generic edge of 7}, and for all e € OF, we define a unit normal vector v that points
outside of E.

As in [5], we need to assume regularity of the polygonal meshes in the following sense: there exists
a positive real number v such that, for every h and every E € Ty,

Ay: F €7y is star-shaped with respect to every point of a ball of radius yhg;
As: the ratio between the shortest edge and the diameter hg of E is larger than ~.

Now, for all m € N, we will denote by P,,(O) the space of polynomials of degree up to m defined
on the subset © C R2.

We introduce on each element E € 7T}, the following finite dimensional spaces:
Wi(E) == {wy, € H(E) : A*wy, € Po(E), wyop € C°(E), whl. € P3(e) Ve € IE,
Vuwplop € [CO(GE)]Q,&,Ewh\e € Pi(e) Ve e 8E},
and

Vi(E) := {vy € H'(E) : Avy, € P1(E), valog € C°(OE), vp|e € P1(e) Ve € OF}.

Moreover, in Wh(E) and V;,(E) we define the following sets of linear operators. For all wj, € Wh(E)
and vy, € Vi, (E) we consider

Dww1: evaluation of wy, at the Nf vertices of F;
Dw2: evaluation of Vwy, at the NZ vertices of E;
Dv: evaluation of v, at the NE vertices of E.

Projection operators and local virtual spaces. In order to introduce the local virtual space, we
define the projector 175 : Wj,(E) — Py(E) as follows:

D2ITgwy, : D%*q = / D*wy, : D*q  Vq € Py(E),
E E
((Hﬁwhﬂ))E = ((wha Q))E VC] € Pl(E)7

where ((¢n, ¢n))E is defined as follows:

(3.1)

E
NV

(om0 =Y _ en(vi)én(vi)  Vn, én € C°(OE),
i=1

with v;, 1 <i < N{:J, being the vertices of E.

Remark 1 The second equation in (3.1) is to select an element from the non-trivial kernel of the
operator I é. We mention that it could be substituted by any other appropriate compatible average
on JF, for instance,

(g wh, q)or = (wh,q)oe Vg € P1(E),

where (-, +)sg is the standard L? inner product over the boundary of E.



We refer to [2] to prove that operator IT 1;4 is computable from the output values of the sets Dw1
and Dwa.

In a similar way, we define the projector ITy, : Vi(E) —> Py (E) for each 1 € Vj,(E) as the solution
of

VIIYvy,-Vq= / Vuy - Vg VqePi(E),
E E
(II¥vn, @)or = (vn, Q)or Vq € Po(E).
We observe that operator ITy. can be computed using only the output values of the set Dy (see [1]).

We introduce on each element E € Ty, the following local virtual space Wj(E) (see, for instance,

[2])-
Wi (E) = {wh € Wi(E) : /E(Hbéwh)q :/

Whq Vg € IP)Q(E)} .
E

Now, since Wy, (E) C W, (E) the projector IT4 is well defined and computable in W}, (E). Moreover,
the sets of linear operators Dw1 and D2 constitutes a set of degrees of freedom for W, (E), we refer
to [2, Lemma 2.3] for further details.

Now, we introduce the following local virtual space (see [1]):

Vi(E) = {vh € Vi(E) : /E(Hgvh)q :/

Vg Vg € IP’l(E)} .
E

It is clear that Vj,(E) C V,(E). Thus, the linear operator ITY, is well defined on V,(E). Moreover, the
set of operators Dy constitutes a set of degrees of freedom for the space Vi, (FE) (see [1]).

We also have that Py(FE) x Py (E) C Wy, (E) x V3, (E). This will guarantee the good approximation
properties for the spaces.

Now, for all m € NU {0} and E € Tj, we define the following projector:
oy - 12(E) - P, (E); / (r—II2r)g=0 Vg € P, (E). (3.2)
E

It easy to check that for all wy, € Wj(E) the scalar functions IT&wy, and II%Awy, are computable
from the degrees of freedom Dw1 and Dwa (see [2]). Moreover, for all v, € V},(E) the scalar function
ITLvy, is computable from the degrees of freedom Dy (see [1]).

Global virtual spaces. Now, we introduce the global virtual spaces to be used in the discretization
of Problem 2.

For every decomposition 7; of {2 into simple polygons F, the first global virtual element space is
defined as
Wy, = {wh € H%(Q) : wh|E S Wh(E)} .

A set of degrees of freedom for W}, is given by all pointwise values of wy, on all vertices of 7}, together
with all pointwise values of Vwy, on all vertices of T, excluding the vertices on the boundary (where
the values vanish).

Next, we introduce the following global virtual space.
Vi = {vh S H(l)(()) : Uh|E € Vh(E)}.

In this case, a set of degrees of freedom for V}, is given by all pointwise values v, on all vertices of Tj,
excluding the vertices on the boundary (where the values vanish).

Finally, for every decomposition 75 of {2 into simple polygons E, we introduce the global virtual
space denoted by Hj, as follow:
Hh = Wh X Vh.



Remark 2 We observe that the virtual element space Vj, is a conforming space in H!(2). This space
will be used for the approximation of the auxiliary variable z € L2(§2). This choice permit us to
incorporate a Dirichlet boundary condition for z and also facilitate the analysis of the proposed
virtual method. Other virtual element discretizations based on piecewise discontinuous polynomials
will be studied in a future work.

4 Discrete Spectral Problem

In this section, we will introduce a virtual element scheme to approximate the spectrum of the trans-
mission eigenvalue problem stated in Problem 2 and using the virtual spaces introduced in Section 3

In what follows, for simplicity, we assume that the index of refraction n is piecewise constant with
respect to the decomposition 7y, i.e., n is constant on each polygon E € Tj,.

Next, we decompose the continuous sesquilinear forms (2.6)-(2.7) in an element by element con-
tribution as follows:

A((u, 2), (w,v)) :=A (v, w) + A%(z,v),

Y Ak (u,w) + Ag(z,0)),

Ec2y,

with

1
Ag (u,w) ::/ — 1AuA@, and  A%(z,v) ::/ 2.
ET E

Moreover, we introduce

Bi((u, 2), (w,v)) ::/EAu(nilw>+/Eni1uﬂﬁ+/]3nilzﬁf/Euﬁ.

Now, in order to propose the discrete scheme, we need to introduce some definitions. First, we
consider S£(+,-) and S%(-,-) any hermitian positive definite forms satisfying:

AL (wy, wy) < Sﬁ(wh,wh) < a* AL (wp,wp)  VYwy, € Wi(E) Hﬁwh =0, (4.1)
B*AZE(’U}L,’U;L) < S%(vh,vh) < B*A%(Uh,vh) Yo, € Vi (F), (4.2)

where ay, 8, and o*, 8* are positive constants depending only on the constant  from mesh assump-
tions A1*A2.

Next, we define the discrete versions of the sesquilinear forms presented in (2.6)-(2.7) as follows:

Alh Wi, x Wy, — (C; Alh uh,wh Z 'AE' uh,wh

E€Ty,
.Azh : Vh X Vh — (C; .Azh Zh,’Uh Z .A2 Zh,’Uh
E€Th
Bh : Hh X Hh — C; Bh((uh,zh) (wh,vh Z BE uh,zh) (wh,vh))

EeTy

where
AR W (B) x Wi(E) = C, A2V, (E)x Vu(E) = C, B HF xHF - C,
are local sesquilinear forms given by
A (upy,wp) = AR (TG un, HEwy) + SE (up, — Hgup, wy, — gwy,), (4.3)

.A%h(zh,vh) = A%(H};zh,ﬂévh) + S%(zh — Hézh, vy, — H};vh), (4.4)



n 1
B%((uh,zh),(whwh)) 2:/ H%Auhﬂ%@h—f—/ —H%uhH%Awh
+/ n H};zhﬂ%ﬁh —/ H%Uhﬂ}ﬂﬁh, (45)
gn—1 E

with HY := W, (E) x V,,(E).

The following lemma establishes properties of consistency and stability for the local sesquilinear
forms AY(-,-) and AZ(-,-). The proof follows standard arguments in the VEM literature (see [1]).

Proposition 1 The local forms AL(-,) and A% (-,-) satisfy the following properties:

— Consistency: for all h > 0 and for oll E € T}, we have that

A (q,wn) = A (q,wn) Vg € Po(E) Vwy, € Wi(E); (4.6)
A3 (q,vn) = A% (q,vn) Vg e Pi(E) Y, € Vi(E). (4.7)

— Stability and boundedness: There exist positive constants aq, s, 51, P2 depending on the index of
refraction n and the constant v from mesh assumptions Ai1-As such that:

ar AL (wp, wy) < A}gh(wh,wh) < ag Ak (wp, wy,) Ywy, € Wi(E); (4.8)
B1A% (vn, vp) < AH (v, vn) < B2 A% (vn, vp) Yoy, € Vi (E).

Now, for all (up, z1), (wh,vn) € Hy, we introduce the discrete sesquilinear form

.Ah : Hh X Hh — (C; Ah((uh,zh), (’w}“Uh)) = Alh(uh,wh) + AQh(Zh, 'Uh). (410)

As consequence of Proposition 1, we have the following result, which is the discrete version of
Lemma 1.

Lemma 4 There ezist positive constants C' and « that depend on the index of refraction n and the
constants in (4.8)-(4.9) such that for all (up, z1), (wp,vy) € Hy, we have

Ah((whvvh)’ (wh,’Uh)) > a”(whvvh)H%—I’ (411)
|A™ ((un, 2n), (wn, o) < Cll(un, 20) el (wh, o) |5, (4.12)
1B" ((un, z1), (wn, vn))| < Cll(un, 20)| el (wn, vn)| |- (4.13)

Proof Tt is straightforward to prove the estimates (4.11)-(4.13) from Proposition 1 and the definition
(4.5).

For the sesquilinear form B"(-,-), we do not require any lower bound. Thus, we do not need to
stabilize this form.

Now, we are in a position to write the virtual element discretization of Problem 2.

Problem 3 Find (Ap, (up, 2r)) € C x Hy, with (up, z;,) # 0 such that
Ah((uh, Zh), (wh, ’Uh)> = )\hBh((uh, Zh>, (wp, ’Uh)) V(wh, ’Uh) c Hy,. (4.14)

In order to characterize the spectrum of Problem 3, we introduce the discrete version of the solution

operator T.
T, H — H;, CH

(fa g) — Th(f7 g) = (ah72h)7
defined as the unique solution of the following source problem (see Lemma 4):

A" ((n, Zn), (wnyvn)) = B"((f,9), (wn,0n))  V(wp,vp) € H. (4.15)

We have that operator T, is well defined and uniformly bounded. Once more, as in the continuous
case, we have that (A, (up, 21)) solves Problem 3 if and only if (up, (up, 21)) is an eigenpair of T,
ie., Th(un, zn) = pn(un, zn), with pp == 1/Ap.



5 Convergence and Error Estimates

In what follows, we focus on proving the convergence and error analysis of the proposed virtual
element scheme for the transmission eigenvalue problem. First, we recall some well-known results on
star-shaped polygons [12].

Proposition 2 There exists a positive constant C, such that for all w € HY(E) there exists w, €
Pr(E), k € N such that

lw—weler <OhS  lwls g 0<d<k+1,£=0,...,[0],

with [8] denoting largest integer equal to or smaller than § € R,..

Now, we consider interpolation operators in the virtual element spaces W}, and Vj,. First, for the O
interpolation operator, we have the following result and the proof can be found in [2, Proposition 3.1].

Proposition 3 Assume A1-Ay are satisfied, let w € H*(02) with e € [2,3]. Then, there exist w; € W,
and C' > 0, independent of h, such that

e <Ch e, £=0,1,2.

llw — wy

For the C° interpolation operator, we have the following result whose proof can be obtained by
repeating the arguments in [17, Theorem 11] (see also [34, Proposition 4.2]).

Proposition 4 Assume Ai-Ay are satisfied, let v € H2(£2). Then, there exist v; € Vi, and C > 0,
independent of h, such that

[o = villo,@ + hlv —vil1,0 < Ch?||v]|2,0.
The following lemma shows that T, converges in norm to T' as h goes to zero.

Lemma 5 There exist s € (0,1] and a positive constant C' > 0 that depends on the index of refraction
n, both independent of the meshsize h such that: For oll (f,g9) € H, if (u,2) =T (f,g) and (up,zn) =
Th(f,9), then

(T =T) (f,9)lla < CR7(|(f, 9)|1-

Proof Let (f,g) € H. As a consequence of Lemma 2, there exists s € (0,1] such that (u,z) €
H?+5(02) x H%($2). Let (4y,2;) € Hy, be such that Propositions 3 and 4 hold true. By using the

triangle inequality, we have

(T —Th) (f, 9l = [[(@,2) — (Un, 2n)||lu
< |(@,2) — (ur, z1)|la + [|(ur, 2r) — (@n, 2n) |5 (5.1)

We define (wp,vp) := (up, — Uy, z2n — 21) € Hy. Then, for all 4, € Po(F) and z; € P1(F), from (4.11)
(ellipticity of the sesquilinear form A"(-,-)), we have
al|(wn, vn)||F <A™ ((wn,vp), (wh, vn)) (5.2)

=A"((tn, Zn), (wn, va)) = An((@r, Z1), (wh, vn))

=B"((£.9). (w,vn)) = Y- {AY (@r.wn) + AF Gr.on) }

EeTy,

=B"((£,9), (wn,vn) = Y {{AY (@1 = fin, wn) + Ab(@r — i)}

EcTh
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F A2 G — B ) + ARG — 2 on) )+ {AL (@ wp) + AL(E, vh)}}
=Y {BE((f,9), (wn,vn)) = Be((f,9), (wn, vn))}

EeTh

R},
N (ARG — Ty wn) + Al (@ — T wn))
EeTy RQE
— ) (ARG = 2 vn) + AL (G — 2o (5.3)
Ee€Ty A
RE

where we have used the definition of the solution operators T' and T, and the consistency proper-
ties (4.6) and (4.7). In what follows, we will bound the terms R}, R% and R3,.

We start with the term R}: we use the definitions of Bg(-,-) and Bi(-,-) (cf. (2.7) and (4.5),
respectively) to obtain

R}Ez/{ NI Af T h——Afwh}
E
Rll
T2 I Aw), — ——fA
+/E{n71 £y Awy, T wh}
R12
_n 2 1—
—&-/E{ 1HEgHEwh — 1gwh}+[E{UEfHEvh fvh}
R13 R
= Ry + R + Ri? + R} (5.4)

Thus, we have to bound each term on the right-hand side above. First, the terms RY and R can
be bounded repeating the same arguments in [38, Lemma 4.2]. We obtain

n
7 <Chg T |f\2,E{|wh|2,E + \wh|1,E}7 (5.5)
— Ui~ (p)
and
n
Rp < Chg 1 {|f|2,E + |f\1,E}|wh|2,E~ (5.6)
= L (E)

Now, to bound the term RL}, we use the fact that n is piecewise constant, the definition of IT
and IT%, the Cauchy-Schwarz inequality and n/(n — 1) € L>°(£2) to have

RY = / { 1HEgHEwh — 7gwh} (5.7)
E

:[En_lnEg(HEwh*HEwh +/En (I — g)(H @ — W)

< Ch gllo.2|Whl2.E- (5.8)

-1

Leo(E)

For the term R, we use the definition of IT% and the Cauchy-Schwarz inequality to obtain

Ry = /E {H?Efﬂiﬁh - fm} (5.9)
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- / (IT3f — ITLF)IThT, + / UThf — F)(IThon — )
E E

< Chg|fl2,el[vnllo,5- (5.10)

Now, taking sum over E in the terms (5.5),(5.6),(5.8) and (5.10) and applying Cauchy-Schwarz
inequality for sequences we obtain

Z RYE < C’hmax{

EeTy,

1
n—1

n—1

)} (£ Ol lall(wn, o) e (5.11)

Lo (E) , Loo(E

Next, we bound the term Y RZ%. By using the Cauchy-Schwarz inequality and the stability and
E€Th
boundedness properties of AL(:,-) (cf. (4.8)), we obtain

S RE=YN {A};"(af—ﬁmwh)JrAf(ﬂn —@wh)}

E€Th E€Th
< 3 {lir —Gelo.ghonlzp + fin = 2, plonls p )
E€Th
< 3 {lr — o + 20 = nlos flwnla.e.
E€Th

Next, from Propositions 2, 3, and Lemma 2, we have

> Ry < CRII(f, 9)llull(wn, on) - (5.12)
EET,,

To bound the last term: > R%, we use the Cauchy-Schwarz inequality and we add and subtract
E€Th
the term Z, to obtain

SR =Y {AQEh(EI 2 o) + AL — 2 vh)}
EeTy, EcTh

< 3 {1 = Flos + 2117 = Zllo.p vl

EeTh,

0,E-

Hence, applying Proposition 2 and Proposition 4 (with £ = 0), and Lemma 2 in the above inequality
we deduce

> RE < CR2(|(f, )|l (wh, vn)| |- (5.13)
E€7—h

Now, by combining (5.3) with (5.11), (5.12) and (5.13), we obtain
~ o PN C.
1@@r, 21) = (an, 20)llm < 17I(f; 9)l- (5.14)
Finally, we complete the proof from (5.1), (5.14), Propositions 3, 4 and Lemma 2.

Since Problem 1 is nonselfadjoint, we need to analyze the adjoint solution operators (continuous
and discrete). Thus, first we introduce the adjoint solution operator T*:
T™:H — H
(f,9) — T*(f.9) = (@, 2z7)
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defined as the unique solution (see Lemma 1) of the following source problem:

A(w,v), @,5) = B((w,v), (fr9))  V(w,v) € H. (5.15)

Tt is simple to prove that if p is an eigenvalue of T' with multiplicity m, [ is an eigenvalue of T
with the same multiplicity m. In addition, a result analogous to Lemma 2 can be proven in this case.

Lemma 6 There exist s € (0,1] and a positive constant C' depending on the index of refraction n
such that for all (f,g) € H, the unique solution (u*,z*) of (5.15) satisfies (u*,z*) € H**(02) x HZ(2)
and

[u"l245,2 + [[27]|l2.2 < ClI(f, 9)l |1

Now, let T, : H — H;, C H the adjoint operator of T,. This operator is defined by T (f,g) :=
(uy,z}), where (uy, ;) is the unique solution of the following source problem:

A" ((wnson), (@5, 2)) = B" ((wn, o), (f,9)) V(wn,vn) € Hy,. (5.16)

The next result establishes the convergence in norm of the operator T'; to T™ as h goes to zero.
The proof follows repeating the same arguments as those used to prove Lemma 5.

Lemma 7 There exist a positive constant C' that depends on the index of refraction n and s € (0,1],
both independent of the meshsize h, such that: For all (f,g) € H, if (u*,z*) =T"(f,g) and (u},z}) =

T;kz(fag); then
(" = T3) (f, 9l < CP°|I(f, 9)lm-

Now we are ready to prove the convergence and obtain error estimates of the eigenvalue problem.
First, we recall that in [39], the author gives the convergence conditions under which the eigenvalues
of T'j, converge to those of T', where T is a nonselfadjoint compact operator (see also [4]).

We first recall the definition of the spectral projectors. Let p be a nonzero eigenvalue of T' with
algebraic multiplicity m. Denote by C a circle in the complex plane centered at p such that no other
eigenvalue lies inside C. Define the spectral projection £ as

£ = (2mi)~ " /C(z ~T) 'dz.
In a similar way, we define the spectral projector £* as follows:
& = (2mi)~! /C(z — T dz.
We have that £ and £* are projections onto the space of generalized eigenvectors R(E) and R(E*),

respectively. It is easy to check that R(E), R(€*) € H2(2) x H2T$(02) (see Lemma 3).

As a consequence of the convergence in norm of T', to T' (cf. Lemma 5), there exist m eigenvalues

(which lie in C) MS), cey ugm) of T'j, (repeated according to their respective multiplicities) which will
converge to u as h goes to zero.

Analogously, we introduce the following spectral projector &, := (2mi)~! fc (2 — T1)~tdz, which
is a projector onto the invariant subspace R(Ep) of T, spanned by the generalized eigenvectors of T,
corresponding to pg), ... ,,uglm).

We recall the definition of the gap 5 between two closed subspaces X and ) of of a Hilbert space
H:

5(X,Y) :=max{6(X,Y),56(),X)}, where &X,Y):=  sup (inf ||zy||H).

TeX: ||z||y=1 \YEY

The following error estimates for the approximation of eigenvalues and eigenfunctions hold true.
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Theorem 1 There exists a strictly positive constant C' that depends on the index of refraction such
that

3(R(E),R(&n)) < Ch?, (5.17)
1 — fin| < Ch2, (5.18)

where fip, = % > ,ugf) and s € (0,1] as in Lemma 3.
i=1

Proof The proof follows repeating the same arguments used in [38, Theorem 4.1].

6 Numerical Results

We report in this section a series of numerical tests to approximate the transmission eigenvalues
k described in the system (2.1a)-(2.1d), using the Virtual Element Method proposed and analyzed
in this paper. Thus, we have implemented in a MATLAB code the proposed VEM on arbitrary
polygonal meshes (see [6]). Moreover, the spectral problem is solved by using the built-in function eigs
in MATLAB.

In order to compare our results with the ones reported in the literature of the transmission eigen-
value problem, we have chosen three configurations for the computational domain f2:

Square domain: s :=(0,1)2, (6.1)
L-shaped domain: £, := (—1/2,1/2)?\([0,1/2] x [~1/2,0]),
Circular domain: Q¢ := {(z,y) € R? : 2% 4 9* < 1/4}.

Additionally, we have tested the method by using different families of polygonal meshes (see
Figure 6.1):

— 2}%: Trapezoidal meshes;

2! : Triangular meshes;

— "ee: Hexagonal meshes made of convex hexagons;

§27: Voronoi meshes which have been partitioned with Np number of polygons.

On the other hand, to complete the choice of the VEM scheme, we had to fix the forms S£ (-, -)
and S%(-, ) satisfying (4.1) and (4.2), respectively. In particular, we have considered the forms

NY
Si(un,wp) = hg> Y [un(vi)wn(vi) + b3, Vun(v;) - Von(v4)] Yup,, wy, € Wi(E),
i=1
NE
Sh(zn,vn) = hH > zn(vi)vn(vi) Yz, vn € Vi(E),
i=1
where vi,..., vye are the vertices of B, hy, corresponds to the maximum diameter of the elements

with v; as a vertex. With the above choice, we have that (4.1) and (4.2) are satisfied (see [2,1] for
further details).
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Fig. 6.1 Sample meshes: £2§ (top left), 2¢* (top middle), 27 (top right), 2! (bottom left) and £2¥ (bottom right).

6.1 Test 1: Square domain (2g

In this numerical test, we have computed the three lowest transmission eigenvalues k;p, i = 1,2, 3,
with three different index of refraction n on the unit square {2s.

We report in Table 6.1 the three lowest in magnitude transmission eigenvalues computed with the
virtual scheme introduced in this work. The table includes orders of convergence as well as accurate
values extrapolated by means of a least-squares fitting. We consider three different values for the index
of refraction and three different families of meshes. We compare the results with the ones reported in
references [28,36,23,20,38].

It can be seen from Table 6.1 that the eigenvalue approximation order of the proposed method is
quadratic and that the results obtained by the different methods agree perfectly well. We illustrate in
Figure 6.2 the eigenfunctions corresponding to the four lowest transmission eigenvalues obtained with
meshes QL‘” and n = 16.

6.2 Test 2: L-shaped domain {7,

In order to compare our results with those presented in the literature of the transmission eigenvalue (for
instance [15,36,38]), in this numerical test we have computed the three lowest transmission eigenvalues
kin, i = 1,2,3, with the index of refraction n = 16 on the L-shaped domain (2, and with meshes (2
and {2}.

We report in Table 6.2 the three lowest in magnitude transmission eigenvalues, for n = 16, and
computed with the VEM (4.14) on the meshes 2! (triangular meshes), and §2§ (square meshes) (cf.
Figure 6.1). The table includes orders of convergence as well as accurate values extrapolated by means
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Table 6.1 Test 1: Lowest transmission eigenvalues k;p, ¢ = 1,2,3, computed on different families of meshes, on the

square domain {2g and with different index of refraction.

[ n [ s ] kin kan ksn |
N =32 4.2551-1.18551  4.2551+1.18551  5.5954
N =64 4.2674-1.1573 1  4.26744+1.1573 1  5.5048
N =128 4.2706-1.1499i  4.2706+1.1499i  5.4832
Order 1.94 1.94 2.07
4 Qher | BExtrap. 4.2718-1.1473i  4.271841.1473i  5.4765
[28] | [Multigrid FEM]  4.2717-1.1474i  4.2717+1.1474i  5.4761
[36] | [C!-CO-VEM] 4.2718-1.14751  4.2718+1.1475i  5.4779
[38] | [C'-C'-VEM] 4.2717-1.1474i  4.2717+1.1474i  5.4768
N =32 1.8897 2.4607 2.4660
N =64 1.8821 2.4483 2.4496
N =128 1.8802 2.4452 2.4456
Order 2.03 2.03 2.02
16 2t | Extrap. 1.8796 2.4442 2.4442
(23] [Argyris method] 1.8651 2.4255 2.4271
[36] | [CI-CO-VEM] 1.8796 2.4442 2.4442
[38] | [C!-Cl-VEM] 1.8796 2.4442 2.4442
N =32 2.8329 3.5512 3.5570
N =64 2.8248 3.5418 3.5434
N =128 2.8228 3.5395 3.5401
Order 2.03 2.03 2.03
8+xz—y | £ | Extrap. 2.8222 3.5387 3.5390
[20] | [CO-FEM] 2.8221 3.5383 3.5387
[38] | [C!-Cl-VEM] 2.8222 3.5387 3.5390

of a least-squares fitting. Once again, the last rows show the values obtained by extrapolating those
computed with different methods presented in [15,36,38].

Table 6.2 Test 2: Lowest transmission eigenvalues k;, ¢ = 1,2, 3, computed on meshes Qfl and {2y with an index of
refraction n = 16 on the L-shaped domain (2r,.

[n ] L] kin kan ksn |
N =32 2.9706 3.1472  3.4237
N =64 2.9589 3.1414  3.4141
16 | 2 | N=128 2.9549  3.1400 3.4114
Order 1.53 1.96 1.82
Extrap. 2.9528 3.1394 3.4103
N =32 2.9678 3.1481 3.4281
N =64 2.9571 3.1414  3.4149
16 | 2F | N=128 2.9539  3.1399 3.4114
Order 1.76 2.11 1.94
Extrap. 2.9526  3.1394  3.4102
[15] | [Argyris method]  2.9553 - -
[36] | [C'-CO-VEM] 2.9527 3.1395  3.4103
[38] | [C'-CI-VEM] 2.9528 3.1394  3.4103

It can be seen from Table 6.2 that the results obtained by our method agree perfectly well with those
reported in [15,36,38]. Moreover, we observe that for the first transmission eigenvalue the associated
eigenfunction presents a singularity. Thus, the order of convergence is affected by this singularity and
we obtain an order close to 1.54, which corresponds to the Sobolev regularity for the biharmonic
equation in both cases. In addition, the method converges with larger orders for the rest of the
transmission eigenvalues (kop, and ksp,).

Figure 6.3 shows the eigenfunctions corresponding to the four lowest transmission eigenvalues with
index of refraction n = 16 on an L-shaped domain with meshes (2} .
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Fig. 6.2 Test 1. Eigenfunctions: uyp (top left), usp (top right), usp (bottom left) and uygp, (bottom right) obtained
with meshes Q,};” and n = 16.

6.3 Test 3: Circular domain {2c

Finally, we have computed the three lowest transmission eigenvalues k;p,, ¢ = 1, 2, 3, with three different
index of refraction n on the circular domain 2¢. The domain {2¢ is partitioned using a sequence of
polygonal meshes (Centroidal Voronoi tessellation) created with PolyMesher [43].

We report in Table 6.3 the three lowest in magnitude transmission eigenvalues computed with the
virtual scheme introduced in this work. The table includes orders of convergence as well as accurate
values extrapolated by means of a least-squares fitting. We consider three different values for the index
of refraction and three different families of meshes. Once again, a quadratic order of convergence can
be clearly appreciated from Table 6.3. Moreover, Figure 6.4 shows the eigenfunctions corresponding
to the four lowest transmission eigenvalues on a circular domain with index of refraction n = 16.
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