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Abstract

We propose and analyze an unfitted method for a dual-dual mixed formulation of a class of Stokes
models with variable viscosity depending on the velocity gradient, in which the pseudoestress, the
velocity and its gradient are the main unknowns. On a fluid domain Ω with curved boundary Γ we
consider a Dirichlet boundary condition and employ an approach previously applied to the Stokes
equations with constant viscosity, which consists of approximating Ω by a polyhedral computational
subdomain Ωh, not necessarily fitting Ω, where a Galerkin method is applied to compute solution.
Furthermore, to approximate the Dirichlet data on the computational boundary Γh, we make use of
a transferring technique based on integrating the discrete velocity gradient. Then the associated
Galerkin scheme can be defined by employing Raviart–Thomas of order k ≥ 0 for the pseudostress,
and discontinuous polynomials of degree k for the velocity and its gradient. For the a priori error
analysis we provide suitable assumptions on the mesh near the boundary Γ ensuring that the
associated Galerkin scheme is well-posed and optimally convergent with O(hk+1). Next, for the case
when Γh is taken as a piecewise linear interpolation of Γ, we develop a reliable and quasi-efficient
residual-based a posteriori error estimator. Numerical experiments verify our analysis and illustrate
the performance of the associated a posteriori error indicator.
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1 Introduction

Although finite element methods are well-known in the numerical treatment of partial differential
equations (PDEs) in regard to a priori error estimates to guarantee convergence, there is evidence
demonstrating a loss of accuracy of these methods when applied to PDEs on domains Ω with curved
boundary Γ (see, e.g., [3]). In practice, the real domain Ω is approximated by a convenient computational
domain Ωh. Often Ωh does not exactly match the boundary of Ω. As a consequence, the discrete space
in which one looks for the finite element solution is no longer a subspace of the continuous space. This
approximation therefore introduces a “variational crime”. Strang [36] was the first who studied this
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fact and established how to estimate the consistency error term introduced by the crime. This term is
typically of low order and dominates the error estimates. An approach to remedy this drawback is to
match or “fit” the mesh to Ω using a suitable local interpolation of the boundary Γ [26]. However, the
generation of high-order meshes is non-trivial for the latter case and can be expensive if remeshing is
required, e.g., deforming domain problems. It is then preferable to use unfitted methods which reduce
the computational cost of mesh generation by, for instance, immersing Ω in a background mesh and
setting Ωh to be the union of all the elements of the mesh that lie inside Ω. However, it is not easy to
construct a higher-order accurate unfitted method, primarily because the boundary data is imposed
“away” from the true boundary.

Let us briefly discuss the literature on unfitted methods. A common approach to construct these
methods consists of using a Nitsche-like strategy [29] to weakly impose the data on the computational
boundary Γh := ∂Ωh. In this direction, the cut finite element method (CutFEM) has been successfully
applied to the Poisson and Stokes problems [5, 6], among others. Alternatively, an unfitted method
based on shifting the location of the boundary data was presented by Main and Scovazzi [28]. They
proposed a suitable Taylor expansion of the solution allowing for an accurate approximation of the
boundary data on Γh. This approach is closely related to the one developed in [14], and later analyzed
in [13], using hybridizable discontinuous Galerkin (HDG) methods and a transferring (or shifting)
technique proposed for one-dimensional problems [12]. More precisely, if u is an unknown of the PDE
and g is a datum satisfying u = g on Γ, the method proposes to rewrite u on Γh by integrating σ := ∇u
along a family of segments connecting Γ and Γh. Proceeding as for u and integrating the extrapolation
of the discrete approximation of σ, a suitable approximation of g on Γh is obtained. Then, the problem
is solved in Ωh and its solution is extended by local extrapolations to the region Ω \ Ωh. In [13] it has
been shown that for a piecewise C2 boundary Γ, the method keeps high order accuracy if the distance
d(Γ,Γh) between Γ and Γh is of order of hs, where h denotes the meshsize and s ≥ 1. Moreover, mixed
formulations based on this transferring technique have been recently proposed for difussive problems
by [30] and for linear Stokes flow by [31].

In this paper, we consider a higher-order accurate unfitted mixed method for a class of nonlinear
Stokes models arising in quasi-Newtonian fluids with Dirichlet data. On the domain Ωh we combine
the above transferring technique with the dual-dual mixed formulation of these models, where the
pseudoestress, the velocity and its gradient are the main unknowns [22]. Assuming similar hypotheses as
in [30, 31], we show well-posedness and optimal a priori error estimates of the Galerkin scheme through
a fixed point argument and standard results on nonlinear monotone operators. In particular, under the
choice of finite element subspaces given by Raviart–Thomas of order k ≥ 0 for the pseudostress, and
discontinuous polynomials of degree k for the velocity and its gradient, we show an overall convergence
of order of hk+1 when d(Γ,Γh) is of order of hs, with s ≥ 1. One of the main differences between our
work and [22] is that we introduce a boundary-value correction in the dual-dual mixed scheme while
[22] presents results on polyhedral domains for which a transferring technique is not required.

The second contribution of this paper is a reliable and quasi-efficient residual-based a posteriori
error estimator for nonlinear Stokes flow. We first show reliability estimates for higher-order accurate
approximations of the dual-dual mixed formulation of our model by using a postprocessed velocity
with enhanced accuracy, and standard arguments (inf-sup conditions on the involved finite element
spaces, Helmholtz decompositions and local approximation properties of Clément and Raviart–Thomas
interpolation operators), provided Γh is constructed by a piecewise linear interpolation of Γ for which
d(Γ,Γh) is of order of h2. A similar approach was previously used in the a posteriori analysis of the
standard pseudostress-velocity formulation of the linear Stokes problem in [21], and later extended to
domains with curved boundaries in [31]. We furthermore prove that our estimator is efficient up to a
fully computable and residual term involving the curved boundary.
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The rest of this paper is structured as follows. The governing equations and corresponding dual-dual
mixed formulation are presented in Section 2. In Section 3 we introduce the Galerkin scheme and
derive hypotheses on the curved and computational boundaries providing the well-posedness of the
problem. The corresponding a priori error estimates are discussed in Sections 4. In Section 5 we
derive a reliable and quasi-efficient residual-based a posteriori error estimator. Numerical examples to
validate our theory are reported in Section 6 and conclusions are drawn in Section 7.

2 The continuous problem

2.1 Notation

Let Ω ⊆ Rn denote a bounded and open region with Lipschitz continuous boundary Γ which is not
necessarily polygonal (n = 2) or polyhedral (n = 3), and denote by ν the outward unit normal vector
on Γ. In what follows we use standard notation for Lebesgue spaces Lp(Ω) and Sobolev spaces Hs(Ω)
with norm ‖ · ‖s,Ω and seminorm | · |s,Ω. In particular, H1/2(Γ) is the trace space of H1(Ω) and H−1/2(Γ)
denotes its dual. By M and M we will denote the corresponding vector and tensor counterparts of the
generic scalar functional space M. When no confusions arises, ‖ · ‖ with no subscripts, will stand for
the natural norm of either an element or an operator in any product functional space, and | · | will
denote the Euclidean norm in Rn or Rn×n. In turn, given σ := (σij), τ := (τij) ∈ Rn×n, we let div τ
be the divergence operator div acting along the rows of τ , and write as usual

τ t := (τji), tr (τ ) :=

n∑
i=1

τii, σ : τ :=

n∑
i,j=1

σijτij , and τ d := τ − 1

n
tr (τ )I,

where I is the identity matrix in Rn×n. For tensor-valued functions we also require the Hilbert space

H(div ; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,

equipped with the norm

‖ · ‖div ;Ω :=
(
‖ · ‖20,Ω + ‖div (·)‖20,Ω

)1/2
.

Finally, by 0 we will refer to the generic null vector (including the null functional and operator), and
we will denote by C, with or without subscripts, bar, tildes, or hats, generic constants independent of
the discretization parameters, but might depend on the polynomial degree, the shape-regularity of the
triangulation and the domain.

2.2 Governing equations

We are interested in approximating, by a mixed finite element method, the nonlinear Stokes equations
describing a steady quasi-Newtonian Stokes flow occupying the region Ω, under the action of external
forces, given by

σ = 2µ(|∇u|)∇u− pI in Ω, divσ = −f in Ω,

div u = 0 in Ω, u = g on Γ,
(2.1)

where the unknowns are the velocity u, the pressure p, and the pseudostress tensor σ. Furthermore,
f ∈ L2(Ω) is a given volume force, g ∈ H1/2(Γ) is a prescribed velocity on Γ, and µ : R+ → R+

describes a given nonlinear kinematic viscosity.
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As suggested by the third equation in (2.1), the compatibility condition
∫

Γ g · ν = 0 will be assumed
throughout this work. Moreover, in order to ensure the uniqueness of solution, we shall consider (2.1)
with p ∈ L2

0(Ω) :=
{
q ∈ L2(Ω) :

∫
Ω q = 0

}
.

It is worth recalling that (2.1) covers a large family of nonlinear viscosity functions (see, e.g.,
[1, 25, 27, 33]). For instance, the Carreau law for viscoplastic flows (see, e.g., [27]) given by µ(s) :=
µ0 + µ1(1 + s2)(β−2)/2 for all s ∈ R+, with µ0 ≥ 0, µ1 > 0, and β ≥ 1; and the Ladyzhenskaya law (or
power Law) for fluids with large stresses [25], which reads µ(s) := µ0 + µ1s

β−2 for all s ∈ R+, with
µ0 ≥ 0, µ1 > 0, and β > 1.

We end this section with the assumptions made in [22] concerning the viscosity in (2.1). For each
r := (rij) ∈ Rn×n and for all i, j ∈ {1, . . . , d}, we let µij : Rn×n → R be the mapping given by
µij(r) := µ(|r|)rij . We assume that µ is of class C 1 and that there exist constants γ0, α0 > 0 such that
for all r := (rij), s := (sij) ∈ Rn×n, there hold

|µij(r)| ≤ γ0|r|,
∣∣∣∣ ∂

∂rkl
µij(r)

∣∣∣∣ ≤ γ0 ∀ i, j, k, l ∈ {1, . . . , n}, (2.2)

and
n∑

i,j,k,l=1

∂

∂rkl
µij(r)sijskl ≥ α0|s|2. (2.3)

It is in particular possible to check that the Carreau law satisfies (2.2) and (2.3) for all µ0 > 0 and for
all β ∈ [1, 2].

2.3 The dual-dual mixed formulation

In this section we recall the dual-dual mixed formulation of (2.1) which has been studied in [22]. Let
us first observe that the incompressibility condition together with the constitutive equation in (2.1)
are equivalent to the pair of equations given by

σ = 2µ(|∇u|)∇u− pI in Ω, and p+
1

n
tr (σ) = 0 in Ω, (2.4)

from which p can be eliminated from (2.1) and recovered afterwards by a post-processing technique
that will be specified in Section 4.2. In this way, by introducing the auxiliary unknown t := ∇u to
make the nonlinear viscosity easier to handle, we can rewrite (2.1) equivalently as

σd = 2µ(|t|)t in Ω, divσ = −f in Ω,

t = ∇u in Ω, u = g on Γ.
(2.5)

Motivated by (2.4) and by the fact that p ∈ L2
0(Ω), in the sequel we consider the decomposition

H(div ; Ω) = H0(div ; Ω)⊕ P0(Ω)I, where H0(div ; Ω) :=
{
τ ∈ H(div ; Ω) :

∫
Ω tr (τ ) = 0

}
and P0(Ω)

is the space of constant polynomials defined on Ω. Furthermore, due to the impressibility condition,
we let L2

tr (Ω) :=
{
s ∈ L2(Ω) : tr (s) = 0 in Ω

}
. Then, it is not difficult to obtain the following

variational formulation of (2.5): Find (t,σ,u) ∈ L2
tr (Ω)×H0(div ; Ω)× L2(Ω) such that

2

∫
Ω
µ(|t|)t : s−

∫
Ω

s : σd = 0 ∀ s ∈ L2
tr (Ω), (2.6a)

−
∫

Ω
t : τ d −

∫
Ω

u · div τ = −〈τν,g〉Γ ∀ τ ∈ H0(div ; Ω), (2.6b)
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−
∫

Ω
v · divσ =

∫
Ω

f · v ∀v ∈ L2(Ω), (2.6c)

whose well-posedness was established in [22, Section 2.2] via the abstract theory for twofold saddle
point formulations (see, e.g., [18, Theorem 1] and [19, Theorem 2.4]).

3 The Galerkin scheme

In this section we introduce and analize the Galerkin approximation of (2.6). For simplicity, however,
we restrict ourselves to the problem in two dimensions. The extension to three dimensions requires
some technicalities that will be discussed in Section 7.

3.1 Preliminary results

In what follows we suppose that Γ is piecewise C 2 and that Ω can be approximated by a family
{Ωh}h>0 of polygonal subdomains of Ω. We allow, in principle, any construction of Ωh (not necessarily
fitting the curved boundary Γ) and write Γh := ∂Ωh. In addition, the index h will refer to the size of a
given triangulation Th of Ωh.

Let us discuss the link between the problem (2.6) and Ωh. Applying integration by parts in (2.6)
and using suitable test functions, one can recover the original system of equations given by (2.5), and
hence, the solution of (2.6) satisfies in a distributional sense,

σd = 2µ(|t|)t in Ωh, divσ = −f in Ωh, t = ∇u in Ωh. (3.1)

Let now g̃ be the trace of u on Γh. Proceeding as in [13] (see also [14]), we will employ a transferring
technique to provide a more convenient expression for g̃. Let x ∈ Γh and x̄ ∈ Γ be a point associated
to x̄, i.e., x̄(x). The precise construction of x̄ will be explained in Section 6. We denote by ρ(x) the
segment (often called transferring path) starting at x and ending at x̄, with unit tangent vector m(x)
and length |ρ(x)|. Then, integrating the equation t = ∇u along ρ(x), we obtain

g̃(x) := ḡ(x)−
∫ |ρ(x)|

0
t(x+ εm(x))m(x) dε, (3.2)

where ḡ(x) := g(x̄(x)) and g is the boundary condition prescribed on Γ. In Section 3.3 we will
comment on the main considerations to construct the transferring paths.

From (3.1) and (3.2) we find that the solution of (2.6) satisfies

2

∫
Ωh

µ(|t|)t : s−
∫

Ωh

s : σd = 0 ∀ s ∈ L2(Ωh), (3.3a)

−
∫

Ωh

t : τ −
∫

Ωh

u · div τ = −〈τνΓh
, g̃〉Γh

∀ τ ∈ H(div ; Ωh), (3.3b)

−
∫

Ωh

v · divσ =

∫
Ωh

f · v ∀v ∈ L2(Ωh), (3.3c)

and ∫
Ωh

tr (σ) = −
∫

Ωc
h

tr (σ), (3.3d)
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where Ωc
h := Ω \ Ωh and νΓh

denotes the outward unit normal vector on Ωh.

Let now σ0 ∈ H(div ; Ωh) be given by

σ0 := σ − ωσI, with ωσ := − 1

2|Ωh|

∫
Ωc

h

tr (σ) ∈ R. (3.4)

Observe that σ0 ∈ H0(div ; Ωh) if and only if (3.3d) holds, and since σd
0 = σd and divσ0 = divσ,

equations (3.3a) and (3.3c) remain unchanged when σ is replaced by σ0. Moreover, from (3.1) we have
tr (t) = 0 in Ωh, which implies that t ∈ L2

tr (Ωh), and
∫

Γh
g̃ · νΓh

= 0. Consequently, the system (3.3)
can be rewritten equivalently as

[A1,h(t), s] + [B1,h(s),σ0] = 0 ∀ s ∈ L2
tr (Ωh), (3.5a)

[B1,h(t), τ ] + [Bh(τ ),u] = [Gt
h, τ ] ∀ τ ∈ H0(div ; Ωh), (3.5b)

[Bh(σ0),v] = [Fh,v] ∀v ∈ L2(Ωh), (3.5c)

where the nonlinear operator A1,h : L2
tr (Ωh) →

[
L2

tr (Ωh)
]′

, and the linear and bounded operators

B1,h : L2
tr (Ωh)→ [H0(div ; Ωh)]′ and Bh : H0(div ; Ωh)→

[
L2(Ωh)

]′
, are defined by

[A1,h(r), s] := 2

∫
Ωh

µ(|r|)r : s, [B1,h(r), τ ] := −
∫

Ωh

r : τ d,

and [Bh(τ ),v] := −
∫

Ωh

v · div τ ,

(3.6)

and the linear functionals Fh ∈
[
L2(Ωh)

]′
and Gt

h ∈ [H(div ; Ωh)]′ by

[Fh,v] :=

∫
Ωh

f · v and [Gt
h, τ ] := −〈τνΓh

, g̃〉Γh
. (3.7)

Above, [·, ·] denotes the duality pairing induced by the corresponding operators and functionals.

We end this section by specifying the boundedness properties of the operators and functionals
appearing in (3.5). Using the Cauchy–Schwarz inequality, it follows that∣∣[B1,h(r), τ ]

∣∣ ≤ ‖r‖0,Ωh
‖τ‖div ;Ωh

∀ r ∈ L2
tr (Ωh), ∀ τ ∈ H0(div ; Ωh), (3.8)∣∣[Bh(τ ),v]

∣∣ ≤ ‖τ‖div ;Ωh
‖v‖0,Ωh

∀ τ ∈ H0(div ; Ωh), ∀v ∈ L2(Ωh), (3.9)∣∣[Fh,v]
∣∣ ≤ ‖f‖0,Ω‖v‖0,Ωh

∀v ∈ L2(Ωh), (3.10)

and by the boundedness of the normal trace operator in H(div ; Ωh), there holds∣∣[Gt
h, τ ]

∣∣ ≤ ‖g̃‖1/2,Γh
‖τ‖div ;Ωh

∀ τ ∈ H0(div ; Ωh).

Finally, we recall from [22, Lemma 2.1] that A1,h is strongly monotone and Lipschitz continuous,
that is, with the constants α0 and γ0 given by (2.2) and (2.3), respectively, we have

[A1,h(r)−A1,h(s), r− s] ≥ 2α0‖r− s‖20,Ωh
, (3.11)

and
‖A1,h(r)−A1,h(s)‖ ≤ 2γ0‖r− s‖0,Ωh

, (3.12)

for all r, s ∈ L2
tr (Ωh).
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Figure 3.1: A two-dimensional example of T eext is shown in gray.

3.2 Statement of the Galerkin scheme

In this section we propose a Galerkin approximation of the problem (3.5). We start by introducing
some useful notation and definitions. Hereafter, Th stands for a shape-regular triangulation of Ωh made
of triangles T of diameter hT , i.e., h := max{hT : T ∈ Th}. Moreover, given an integer l ≥ 0 and a
subset S of R2, we let Pl(S) (resp. P̃l(S)) denote the space of polynomials of degree at most l on S
(resp. of degree equal to l on S). Then, for each integer k ≥ 0 and for each T ∈ Th, we define the local
Raviart–Thomas space of order k as RTk(T ) := [Pk(T )]2 ⊕ P̃k(T )x, where x := (x1, x2)t is a generic
vector of R2.

For each T ∈ Th, we denote by Eh the set of all edges of Th. Then we write Eh = Eh(Ωh) ∪ Eh(Γh),
where Eh(Ωh) := {e ∈ Eh : e ⊆ Ωh} and Eh(Γ) := {e ∈ Eh : e ⊆ Γh}. Given e ∈ Eh(Γ), we associate an
element T e of Th having e as an edge. In addition, for every e ∈ Eh(Γ), we let T eext be the region
delimited by e, the transferring paths associated to the vertices of e, and Γ (see an illustration in
Figure 3.1). Finally, we let T ch denote the partition of Ωc

h into all sets T eext. Clearly, the latter makes
sense if the paths from the vertices do not intersect each other and do not intersect the interior of the
domain Ωh, and if for a vertex x ∈ Γ, x̄(x) is uniquely defined (cf. Section 6), which will be assumed
from now on.

We now define the finite element subspaces:

X1,h(Ωh) :=
{

sh ∈ L2
tr (Ωh) : sh|T ∈ [Pk(T )]2×2 ∀T ∈ Th

}
, (3.13)

M1,h(Ωh) :=
{
τ h ∈ H(div ; Ωh) : ctτ h|T ∈ RTk(T ) ∀ c ∈ R2, ∀T ∈ Th

}
, (3.14)

Mh(Ωh) :=
{

vh ∈ L2(Ωh) : vh|T ∈ [Pk(T )]2 ∀T ∈ Th
}
. (3.15)

Then, letting M0
1,h(Ωh) := M1,h(Ωh)∩H0(div ; Ωh), the Galerkin scheme associated to the problem (3.5)

reads: Find (th,σ0,h,uh) ∈ X1,h(Ωh)×M0
1,h(Ωh)×Mh(Ωh) such that

[A1,h(th), sh] + [B1,h(sh),σ0,h] = 0 ∀ sh ∈ X1,h(Ωh), (3.16a)

[(B1,h + Dh)(th), τ h] + [Bh(τ h),uh] = [Gh, τ h] ∀ τ h ∈M0
1,h(Ωh), (3.16b)

[Bh(σ0,h),vh] = [Fh,vh] ∀vh ∈Mh(Ωh), (3.16c)

where A1,h, B1,h, Bh and Fh are defined in (3.6) and (3.7), and

[Dh(rh), τ h] := −
∑

e∈Eh(Γh)

∫
e

(∫ |ρ(x)|

0
Eh(rh)(x+ εm(x))m(x) dε

)
· (τ hνe)(x) dSx, (3.17)
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and

[Gh, τ h] := −
∑

e∈Eh(Γh)

∫
e
ḡ(x) · (τ hνe) (x) dSx, (3.18)

for all rh ∈ X1,h(Ωh) and for all τ h ∈M0
1,h(Ωh), where νe := (νΓh

)|e, ḡ(x) = g(x̄(x)), and Eh is the

extrapolation operator defined for each integer ` ≥ 0 and for all p ∈∏T∈Th [P`(T )]2 as

Eh(p)(y) :=

{
p(y) ∀y ∈ T, ∀T ∈ Th,
p|T e(y) ∀y ∈ T eext, ∀ e ∈ Eh(Γh).

(3.19)

Note that (3.16) can be seen in general (with only few exceptions, including the case of a polygonal
domain Ω = Ωh) as a perturbation of the standard approximation of the problem (2.6) due to the
presence of the following approximation of g̃ (cf. (3.2)):

g̃h(x) := ḡ(x)−
∫ |ρ(x)|

0
Eh(th)(x+ εm(x))m(x) dε (3.20)

for all e ∈ Eh(Γh) and for each x ∈ e. Therefore, the theory for twofold saddle point formulations cannot
be straightforwardly applied here to ensure the well-posedness of (3.16). Nevertheless, this drawback
can be overcome if we use a fixed point approach. More precisely, in what follows we reformulate (3.16)
as a fixed point problem and show that its associated operator results to be a contraction mapping
provided ‖Dh‖ is sufficiently small.

3.3 Well-posedness

We begin by introducing the aforementioned fixed point operator. In fact, we let

Jh : X1,h(Ωh)→ X1,h(Ωh), rh 7→ Jh(rh) = th,

where th ∈ X1,h(Ωh) is the first component of the solution of problem: Find (th,σ0,h,uh) ∈ X1,h(Ωh)×
M0

1,h(Ωh)×Mh(Ωh), such that

[A1,h(th), sh] + [B1,h(sh),σ0,h] = 0 ∀ sh ∈ X1,h(Ωh), (3.21a)

[B1,h(th), τ h] + [Bh(τ h),uh] = [Gh −Dh(rh), τ h] ∀ τ h ∈M0
1,h(Ωh), (3.21b)

[Bh(σ0,h),vh] = [Fh,vh] ∀vh ∈Mh(Ωh), (3.21c)

and realize that proving the unique solvability of problem (3.16) is equivalent to proving the unique
solvability of the fixed point problem: Find th ∈ X1,h(Ωh), such that

Jh(th) = th. (3.22)

Then, in what follows we apply the classical Banach fixed point theorem to prove existence and
uniqueness of solution of problem (3.22). Before doing that, we must study the well-definiteness of
the operator Jh. To that end, we recall the following result taken from [18, Theorem 3] (see also [19,
Theorem 2.2] or [20, Theorem 3.1]).

Theorem 3.1. Let X1, M1 and M be Hilbert spaces, and let X ′1, M ′1, and M ′ be their respective dual
spaces. Let A1 : X1 → X ′1 be a nonlinear operator, and B : M1 → M ′ and B1 : X1 → M ′1 be linear
and bounded operators. In turn, let X1,h, M1,h and Mh be finite dimensional subspaces of X1, M1,
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and M , respectively. In addition, let M̃1,h := {τ h ∈ M1,h : [B(τ h),vh] = 0 ∀vh ∈ Mh}, define

V1,h := {sh ∈ X1,h : [B1(sh), τ h] = 0 ∀ τ h ∈ M̃1,h}, and let Π1,h : X ′1,h → V ′1,h be the canonical
imbedding. Finally, let A1,h := i∗hA1 : X1 → X ′1,h, where ih : X1,h → X1 is the canonical injection with
adjoint i∗h : X ′1 → X ′1,h, and assume that

(i) The nonlinear operator A1,h : X1 → X ′1,h is Lipschitz–continuous with a Lipschitz constant

γ∗h > 0, and for any t̃h ∈ X1,h, the nonlinear operator Π1,hA1,h( · + t̃h) : V1,h → V ′1,h is strongly

monotone with a monotonicity constant α∗h > 0 independent of t̃h.

(ii) There exists β∗h > 0 such that

sup
τh∈M1,h

τh 6=0

[B(τ h),vh]

‖vh‖X1

≥ β∗h‖vh‖M ∀vh ∈Mh.

(iii) There exists β∗1,h > 0 such that

sup
sh∈X1,h

sh 6=0

[B1(sh), τh]

‖sh‖X1

≥ β∗1,h‖τ h‖M1 ∀ τ h ∈ M̃1,h.

Then, for each (H,G,F ) ∈ X ′1 ×M ′1 ×M ′ there exists a unique (th,σh,uh) ∈ X1,h ×M1,h ×Mh,
satisfying

[A1(th), sh] + [B1(sh),σh] = [H, sh] ∀ sh ∈ X1,h, (3.23a)

[B1(th), τ h] + [B(τ h),uh] = [G, τ h] ∀ τ h ∈M1,h, (3.23b)

[B(σh),vh] = [F,vh] ∀vh ∈Mh. (3.23c)

Moreover, there exists Ch > 0, depending only on α∗h, β∗h, γ∗h β
∗
1,h and ‖B1‖, such that

‖(th,σh,uh)‖ ≤ Ch
(
‖H|X1,h

‖+ ‖F |Mh
‖+ ‖G|M1,h

‖+ ‖A1,h(0)‖
)
. (3.24)

Proof. See [18, Theorem 3], [19, Theorem 2.2] or [20, Theorem 3.1].

According to the definition of the fixed point operator, it becomes clear that to prove the well-
definitenes of Jh it suffices to prove the well-posedness of problem (3.21) by means of Theorem 3.1. We
begin by noticing that the strong monotonicity and Lipschitz continuity of the nonlinear operator A1,h

also hold at the discrete level (see [22, Secton 2.4]). These imply the first hypothesis of Theorem 3.1
with monotonicity constant α∗h and Lipschitz constant γ∗h independent of h, because they actually
coincide with those provided by (3.11) and (3.12), respectively. Furthermore, the boundedness of the
linear operators B1,h and Bh, as well of the functional Fh, are inherited from the continuous case
with the same boundedness constants as in (3.8), (3.9) and (3.10), respectively. Next, to obtain the
boundedness of the functional Gh −Dh(rh) we proceed exactly as in [31, Lemma 3.1] and provide
first an estimate for the linear operator Dh. To that end, we need to introduce further notations and
definitions. Given e ∈ Eh(Γh), we denote by h⊥e the distance between the vertex of T e, opposite to e,
and the plane determined by e, and set He := maxx∈e |ρ(x)| and re := He/h

⊥
e . Given an integer ` ≥ 0,

we also set

Ceext := r−1/2
e sup

r∈[P`(T
e)]2×2

r6=0

|||Eh(r)|||e
‖r‖0,T e

and Ceeq := sup
p∈[P`(∂T

e)]2

p6=0

‖p‖0,∂T e

‖p‖−1/2,∂T e
, (3.25)
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where [P`(∂T
e)]2 :=

∏
ẽ⊆∂T e [P`(ẽ)]

2 and

|||w|||e :=

(∫
e

∫ |ρ(x)|

0
|w(x+ εm(x))|2 dεdSx

)1/2

∀w ∈ L2(T eext).

We recall from [30] that the constant Ceext is independent of the meshsize h, but depend on the
shape-regularity constant and the polynomial degree, and similarly for Ceeq (see, e.g., [15, Lemma 3.2]).

In this way, applying the Cauchy–Schwarz inequality and using the fact that h⊥e ≤ hT e , we obtain,
after some algebraic manipulations,

|[Dh(rh), τ h]| ≤ max
e∈Eh(Γh)

{
reC

e
extC

e
eq

}
‖rh‖0;Ωh

‖τ h‖div ;Ωh
, ∀ rh ∈ L2

tr (Ωh), τ h ∈ H0(div ; Ωh),

(3.26)
which implies

‖Dh‖ ≤ max
e∈Eh(Γh)

{
reC

e
extC

e
eq

}
. (3.27)

Above we do not know, a priori, how re varies with h. To control this quantity, we assume that

R := max
e∈Eh(Γh)

re ≤ C, (3.28)

where C > 0 is independent of h. At the end of this section we will see that (3.28) makes sense.

Now, to bound Gh we assume that the mapping x̄ : Γh → Γ (cf. Section 3.1) is continuous (this will
be ensured by construction in Section 6) and apply the boundedness of the normal trace operator in
H(div ; Ωh), to immediately find

|[Gh, τ h]| ≤ ‖ḡ‖1/2,Γh
‖τ h‖div ;Ωh

∀ τ h ∈ H(div ; Ωh), (3.29)

which implies
‖Gh‖ ≤ ‖ḡ‖1/2,Γh

. (3.30)

From (3.26) and (3.29) it readily follows that the functional Gh −Dh(rh) is continuous.

Finally, it is well-known that the following inf-sup conditions hold (see [22, Section 2.4]):

sup
τh∈M0

1,h(Ωh)

τh 6=0

[Bh(τ h),vh]

‖τ h‖div ;Ωh

≥ β‖vh‖0,Ωh
∀vh ∈Mh(Ωh), (3.31)

and

sup
sh∈X1,h(Ωh)

sh 6=0

[B1,h(sh), τ h]

‖sh‖0,Ωh

≥ β1‖τ h‖div ;Ωh
∀ τ h ∈ Vh(Ωh), (3.32)

where β, β1 > 0 depend on |Ωh|, and

Vh(Ωh) :=
{
τ h ∈M0

1,h(Ωh) : [Bh(τ h),vh] = 0 ∀vh ∈Mh(Ωh)
}

=
{
τ h ∈M0

1,h(Ωh) : div τ h = 0 in Ωh

}
.

(3.33)

From the above discussion, the well-posedness of problem (3.21), or equivalently the well-definiteness
of Jh, is a straightforward consequence of Theorem 3.1.

Now we turn to prove the Lipschitz continuity of Jh.
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Theorem 3.2. There holds

‖Jh(rh)− Jh(r∗h)‖0,Ωh
≤ γ0

α0β1
‖Dh‖ ‖rh − r∗h‖0,Ωh

∀ rh, r
∗
h ∈ L2

tr (Ωh). (3.34)

Proof. Let rh, r
∗
h, th, t

∗
h ∈ X1,h(Ωh) be such that Jh(rh) = th and Jh(r∗h) = t∗h. By definition of Jh,

it follows that there exist σ0,h,σ
∗
0,h ∈ M0

1,h(Ωh) and uh,u
∗
h ∈ Mh(Ωh) such that (th,σ0,h,uh) and

(t∗h,σ
∗
0,h,u

∗
h) satisfy the problem (3.21), where on the right-hand side the operator Dh is evaluated at

rh and r∗h, respectively. We can therefore write

[A1,h(th)−A1,h(t∗h), sh] + [B1,h(sh),σ0,h − σ∗0,h] = 0, (3.35a)

[B1,h(th − t∗h), τ h] + [Bh(τ h),uh − u∗h] = [Dh(r∗h − rh), τ h], (3.35b)

[Bh(σ0,h − σ∗0,h),vh] = 0, (3.35c)

for all (sh, τ h,vh) ∈ X1,h(Ωh)×M0
1,h(Ωh)×Mh(Ωh).

From (3.35c) we have (σ0,h − σ∗0,h) ∈ Vh(Ωh) (cf. (3.33)). Then, using the inf-sup condition in
(3.32), equation (3.35a) and the Lipschitz continuity of A1,h (cf. (3.12)), we obtain

β1‖σ0,h − σ∗0,h‖div ;Ωh
≤ sup

sh∈X1,h(Ωh)
sh 6=0

∣∣[B1,h(sh),σ0,h − σ∗0,h]
∣∣

‖sh‖0,Ωh

= sup
sh∈X1,h(Ωh)

sh 6=0

∣∣[A1,h(th)−A1,h(t∗h), sh]
∣∣

‖sh‖0,Ωh

≤ 2γ0‖th − t∗h‖0,Ωh
.

(3.36)

On the other hand, using the strong monotonocity of Ah,1 (cf. (3.11)), system (3.35) and the
boundedness of Dh, there holds

2α0‖th − t∗h‖20,Ωh
≤
[
A1,h(th)−A1,h(t∗h), th − t∗h] = [Dh(rh − r∗h),σ0,h − σ∗0,h]

≤ ‖Dh‖‖rh − r∗h‖0,Ωh
‖σ0,h − σ∗0,h‖div ;Ωh

.

Combined with (3.36), this yields

‖Jh(rh)− Jh(r∗h)‖0,Ωh
= ‖th − t∗h‖0,Ωh

≤ γ0

α0β1
‖Dh‖ ‖rh − r∗h‖0,Ωh

,

which completes the proof.

It is quite clear from Theorem 3.2 and estimate (3.27) that provided(
γ0

α0β1

)
max

e∈Eh(Γh)

{
reC

e
extC

e
eq

}
< 1, (3.37)

Jh becomes a contraction mapping.

We are now in a position of stating the well-posedness of the problem (3.16).
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Theorem 3.3. Assume that

Cwp max
e∈Eh(Γh)

{
reC

e
extC

e
eq

}
≤ 1

2
, (3.38)

with

Cwp :=
γ0

α0β1
max

{
1,

γ0

α0β1

}
. (3.39)

Then, there exists a unique (th,σ0,h,uh) ∈ X1,h(Ωh)×M0
1,h(Ωh)×Mh(Ωh) satisfying (3.16). Moreover,

there exists C > 0, independent of h, such that

‖th‖0,Ωh
+ ‖σ0,h‖div ;Ωh

+ ‖uh‖0,Ωh
≤ C

(
‖ḡ‖1/2,Γh

+ ‖f‖0,Ωh

)
. (3.40)

Proof. Since assumption (3.38) implies (3.37), the unique solvability of the problem (3.16) follows from
Theorem 3.2 and the Banach’s fixed point theorem.

All that remains is to prove (3.40). To that end, we let [Vh(Ωh)]⊥ be the orthogonal complement
of the space Vh(Ωh) given by (3.33). It follows that there exist σ̃0,h ∈ Vh(Ωh) and σ⊥0,h ∈ [Vh(Ωh)]⊥

such that σ0,h = σ̃0,h + σ⊥0,h. Then, considering the monotonicity and Lipschitz constants in (3.11)
and (3.12), respectively, and the inf-sup conditions given by (3.31) and (3.32), we can proceed as in
the proof of [20, Theorem 3.1] to obtain

‖uh‖0,Ωh
≤ 1

β
‖Gh − (B1,h + Dh)(th)‖, (3.41)

‖th‖0,Ωh
≤ 1

2α0

(
‖σ⊥0,h‖div ;Ωh

+ ‖σ̃0,h‖div ;Ωh
+ ‖A1,h(0)‖

)
, (3.42)

‖σ̃0,h‖div ;Ωh
≤ 2γ2

0

α0β2
1

(
‖Gh −Dh(th)‖+

1

2α0

(
‖σ⊥0,h‖div ;Ωh

+ ‖A1,h(0)‖
))

, (3.43)

and

‖σ⊥0,h‖div ;Ωh
≤ 1

β
‖Fh‖. (3.44)

Next, combining (3.43) and (3.44), using the boundedness of Dh, noting that A1,h(0) becomes the
null operator, and finally using the estimate (3.42), we find

‖σ̃0,h‖div ;Ωh
≤ 2γ2

0

α0β2
1

(
‖Gh‖+

1

2α0
‖Dh‖‖σ̃0,h‖div ;Ωh

+
1

2α0β

(
1 + ‖Dh‖

)
‖Fh‖

)
.

This, together with estimate (3.27) and assumption (3.38), gives

‖σ̃0,h‖div ;Ωh
≤ 4γ2

0

α0β2
1

‖Gh‖+
1

β

(
1 +

2γ2
0

α2
0β

2
1

)
‖Fh‖. (3.45)

Therefore, from (3.10), (3.30), (3.44) and (3.45), and by the triangle inequality, we get

‖σ0,h‖div ;Ωh
≤ 4γ2

0

α0β2
1

‖ḡ‖1/2,Γh
+

2

β

(
1 +

γ2
0

α2
0β

2
1

)
‖f‖0,Ωh

.

Moreover, from (3.27), (3.41), (3.42), (3.44) and (3.45), it is immediate to see that

‖th‖0,Ωh
≤ 2γ2

0

α0β2
1

‖ḡ‖1/2,Γh
+

1

α0β

(
1 +

γ2
0

α2
0β

2
1

)
‖f‖0,Ωh

,
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and

‖uh‖0,Ωh
≤ 1

β

(
1 +

2γ2
0

α0β2
1

(
1 +

1

2Cwp

))
‖ḡ‖1/2,Γh

+
1

α0β2

(
1 +

γ2
0

α2
0β

2
1

)(
1 +

1

2Cwp

)
‖f‖0,Ωh

,

where Cwp is defined in (3.39). This completes the proof.

We end this section by noting that the closeness between Γh and Γ is critical in verifying the
assumptions (3.28) and (3.38) providing the above results. Therefore, we consider two situations where
we think that our method can be applied. The first is the scenario where Γh is constructed through
a picewise linear interpolation of Γ. In this case d(Γ,Γh) = O(h2), R = O(h) and (3.28) and (3.38)
are clearly satisfied for h small enough. Alternatively, Ω can be immersed in a background mesh in
order to set Ωh as the union of all elements inside Ω. Now R is of order 1 and (3.28) holds, but we fail
to ensure (3.38) since d(Γ,Γh) = O(h) only. Nevertheless, as we will see in Section 6, our numerical
results suggest that (3.38) can be relaxed to fit also the latter case.

4 A priori error analysis

We now derive the a priori error estimates for the Galerkin scheme (3.16). To this end, we proceed as
in [20] and employ a suitable Strang-type estimate for twofold saddle point formulations. Furthermore,
by a postprocessing procedure, we provide the corresponding estimates for the pseudostress σ and the
pressure p.

We will assume throughout the rest of this section that (3.28) and (3.38) hold true without stating
them in the results.

4.1 Estimates on Ωh

To alleviate the notation, hereafter we denote by ~t0 and ~t0,h the solutions of the problems (3.5) and
(3.16), respectively. In addition, let us consider the spaces

X0(Ωh) := L2
tr (Ωh)×H0(div ; Ωh)× L2(Ωh),

and
X0,h(Ωh) := X1,h(Ωh)×M0

1,h(Ωh)×Mh(Ωh),

and let Ph : X0(Ωh)→ [X0(Ωh)]′ be the nonlinear operator obtained after adding the three equations
on the left-hand side of the problem (3.5), that is,

[Ph(~r),~s] := [A1,h(r), s] + [B1,h(s),ρ] + [B1,h(r), τ ] + [Bh(τ ),w] + [Bh(ρ),v] (4.1)

for all ~r := (r,ρ,w),~s := (s, τ ,v) ∈ X0(Ωh). Then we can rewrite the problems (3.5) and (3.16)
equivalently as

[Ph(~t0),~s] = [F
~t0
h ,~s] ∀~s := (s, τ ,v) ∈ X0(Ωh), (4.2)

and

[Ph(~t0,h),~sh] = [G
~t0,h
h , ~sh] ∀~sh := (sh, τ h,vh) ∈ X0,h(Ωh). (4.3)

where
[F
~t0
h ,~s] := [Gt

h, τ ] + [Fh,v], (4.4)
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and

[G
~t0,h
h , ~sh] := [Gh −Dh(th), τ h] + [Fh,vh]. (4.5)

We now turn our attention to the Strang–type estimate for our Galerkin scheme (3.16), or equivalently
for the problem (4.3). Our general strategy consists of mimicking the proofs of the results in [20].

We start by recalling the following lemma.

Lemma 4.1. Let X1 be a Hilbert space and let X ′1 be its dual. Let A1 : X1 → X ′1 be a nonlinear
operator. Assume that A1 : X1 → X ′1 is Lipschitz continuous with constant γ∗ > 0 and strongly
monotone with constant α∗ > 0. Suppose further that A1 : X1 → X ′1 has a hemi-continuous first
order Gâteaux derivative DA1 : X1 → L(X1, X

′
1), that is, for any s, r ∈ X1, the mapping R 3 ε 7→

DA1(s + εr)(r, ·) ∈ X ′1 is continuous. Then, for any q ∈ X1, DA1(q) is a bounded and X1-elliptic
form, with boundedness and ellipticity constants given by γ∗ and α∗, respectively.

Proof. See [20, Lemma 3.1].

Recall that in Section 2.2 we have assumed that µ is of class C 1. In this case, it is not difficult
to see that A1,h (cf. (3.6)) verifies the hypotheses of Lemma 4.1, and hence, DA1,h(q) is a uniformly
bounded and uniformly elliptic bilinear form on L2

tr (Ωh)× L2
tr (Ωh) for all q ∈ L2

tr (Ωh). Moreover, due
to the linearity of the operators Bh and B1,h defining Ph, we immediately conclude, after replacing
[A1,h(t), s] in (4.1) by DA1,h(q)(t, s), that for any ~q := (q, τ ,v) ∈ X0(Ωh), the first order Gâteaux
derivative of Ph is given by

DPh(~q)(~rh,~sh) := DA1,h(q)(rh, sh) + [B1,h(sh),ρh] + [B1,h(rh), τ h]

+ [Bh(τ h),wh] + [Bh(ρh),vh]

for all ~rh := (rh,ρh,wh),~sh := (sh, τ h,vh) ∈ X0,h(Ωh).

Next, due to the inf-sup conditions for Bh and B1,h provided by (3.31) and (3.32), respectively, and
by the already mentioned properties of DA1,h(q), it follows that the hypotheses of the linear version
of Theorem 3.1 (see [20, Theorem 3.2] for details) are satisfied by the problem obtained after replacing
[Ph(~t0,h),~sh] in (4.3) by DPh(~q)(~t0,h,~sh). Therefore, the corresponding continuous dependence result
implies that the following global inf-sup condition holds:

Cglob‖~rh‖X0(Ωh) ≤ sup
~sh∈X0,h(Ωh)

~sh 6=0

DPh(~q)(~rh,~sh)

‖~sh‖X0(Ωh)
∀~rh ∈ X0,h(Ωh), (4.6)

with Cglob > 0 independent of h.

We have then the following intermediate result.

Lemma 4.2. There exists a constant CS > 0, independent of h, such that

‖~t0 −~t0,h‖X0(Ωh)

≤ CS

T~t00 + inf
~rh∈X0,h(Ωh)

‖~t0 −~rh‖X0(Ωh) + inf
rh∈Xh(Ωh)

∑
e∈Eh(Γh)

|||t−Eh(rh)|||e

 ,
(4.7)

where

T
~t0
0 := sup

~sh∈X0,h(Ωh)
~sh 6=0

∣∣[F~t0h ,~sh]− [G
~t0,h
h ,~sh]

∣∣
‖~sh‖X0(Ωh)

. (4.8)
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Proof. Note that if we prove the existence of a positive constant C, independent of h, such that for all
~rh ∈ X0,h(Ωh),

‖~t0,h −~rh‖X0(Ωh) ≤ C

T~t00 + ‖~t0 −~rh‖X0(Ωh) + inf
rh∈Xh(Ωh)

∑
e∈Eh(Γh)

|||t−Eh(rh)|||e

 , (4.9)

then one could simply use the triangle inequality to obtain (4.7). Therefore, in the sequel we focus on
proving (4.9) and proceed as in [20, Theorem 3.3] (see also [8, Lemma 5.1]).

We begin by noting that the hemi-continuity of DA1,h yields the same property for DPh. Then,
given ~r := (rh,ρh,wh),~sh := (sh, τ h,vh) ∈ X0,h(Ωh), there exists ε0 ∈ (0, 1), satisfying

[Ph(~t0,h),~sh]− [Ph(~rh),~sh] =

∫ 1

0

d

dε

(
[Ph(ε~t0,h + (1− ε)~rh),~sh]

)
dε

= DPh(ε0~t0,h + (1− ε0)~rh)(~t0,h −~rh,~sh).

(4.10)

Applying now the global inf-sup condition in (4.6) to ‖~t0,h −~rh‖X0(Ωh), taking ~q := ε0~t0,h + (1− ε0)~rh,
and using (4.10), we find

Cglob‖~t0,h −~rh‖X0(Ωh) ≤ sup
~sh∈X0,h(Ωh)

~sh 6=0

[Ph(~t0,h),~sh]− [Ph(~rh),~sh]

‖~sh‖X0(Ωh)
. (4.11)

Furthermore, by (4.2) and (4.3), adding and subtracting convenient terms, it follows that

[Ph(~t0,h),~sh]− [Ph(~rh),~sh] = [G
~t0,h
h , ~sh]− [F

~t0
h , ~sh] + [F

~t0
h , ~sh]− [G~rhh , ~sh].

Combined with (4.11) this yields

‖~t0 −~rh‖X0(Ωh) ≤
1

Cglob

(
T
~t0
0 +T

~t0
1

)
, (4.12)

where T~t00 is defined in (4.8) and

T
~t0
1 := sup

~sh∈X0,h(Ωh)
~sh 6=0

∣∣[F~t0h ,~sh]− [G~rhh ,~sh]
∣∣

‖~sh‖X0(Ωh)
.

All that remains is to estimate T
~t0
1 . The approach of [30, Section 2.4] is useful for this purpose. Let ζ

be defined for each x ∈ e and for any rh ∈ X1,h(Ωh) (cf. (3.13)) as

ζ(x) :=

∫ |ρ(x)|

0
(t−Eh(rh)) (x+ εm(x))m(x) dε,

and note, by definition of the functionals F
~t0
h and G~rhh (cf. (4.4) and (4.5), respectively), that

[F
~t0
h , ~sh]− [G~rhh , ~sh] = −

∫
Γh

ζ(x) · (τ hνΓh
)(x) dSx.
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Then, applying the Cauchy–Schwarz inequality, and using the constant Ceeq of (3.25), we have∣∣[F~t0h ,~sh]− [G~rhh ,~sh]
∣∣ ≤ ∑

e∈Eh(Γh)

Ceeqh
−1/2
T e ‖ζ‖0,e‖τ h‖div ;T e ,

where T e denotes an element of Th having e as an edge. To estimate ‖ζ‖0,e above, we can apply the
Cauchy–Schwarz inequality and use the fact that h⊥e ≤ hT e . This yields

‖ζ‖20,e ≤ He|||t−Eh(rh)|||2e ≤ rehT e |||t−Eh(rh)|||2e,

providing

T
~t0
1 ≤

∑
e∈Eh(Γh)

(re)
1/2Ceeq|||t−Eh(rh)|||e. (4.13)

The result (4.9) follows by combining (4.12) and (4.13).

Having proved Lemma 4.2, it is clear that in order to derive the Strang-type estimate of our Galerkin

scheme (3.16), we only need to bound T
~t0
0 . The main result of this section is the following.

Theorem 4.3. Assume that

CS max
e∈Eh(Γh)

{
reC

e
extC

e
eq

}
≤ 1

2
, (4.14)

where CS is the constant appearing in (4.7). Then, there exists C > 0, independent of h, such that

‖~t0 −~t0,h‖X0(Ωh) ≤ C

 inf
~rh∈X0,h(Ωh)

‖~t0 −~rh‖X0(Ωh) + inf
rh∈X1,h(Ωh)

∑
e∈Eh(Γh)

|||t−Eh(rh)|||e

 . (4.15)

Proof. First, applying similar arguments as in the proof of (4.13), it is immediate to see that

T
~t0
0 ≤

∑
e∈Eh(Γh)

(re)
1/2Ceeq|||t−Eh(th)|||e.

Let rh ∈ X1,h(Ωh). Adding and subtracting Eh(rh), using the constant Ceext (cf. (3.25)) to bound the
norm |||·|||e, and assumption (4.14), there holds

T
~t0
0 ≤

∑
e∈Eh(Γh)

(re)
1/2Ceeq|||t−Eh(th)|||e

≤
∑

e∈Eh(Γh)

(re)
1/2Ceeq|||t−Eh(rh)|||e +

1

2CS
‖th − rh‖0,Ωh

,

from which, adding and subtracting t0, we have

T
~t0
0 ≤

∑
e∈Eh(Γh)

(re)
1/2Ceeq|||t−Eh(rh)|||e +

1

2CS

(
‖t− th‖0,Ωh

+ ‖t− rh‖0,Ωh

)
. (4.16)

The proof ends by combining (4.16) and (4.7), and observing that rh is arbitrary.
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4.2 Estimates by postprocessing

Besides the variables approximated by the Galerkin scheme (3.16), with our approach we can also
approximate the pressure p and the pseudostress σ. To that end, we proceed as in [31] and present here
postprocessing formulae according to definition (3.4) and the second equation of (2.4). More precisely,
given (th,σ0,h,uh) ∈ X1,h(Ωh) ×M0

1,h(Ωh) ×Mh(Ωh) the unique solution of (3.16), we propose to
approximate σ and p by

σh := σ0,h + ωσh
I, (4.17)

and

ph := −1

2
tr (σh), (4.18)

where

ωσh
:= − 1

2|Ωh|

∫
Ωc

h

tr

(
σ0,h −

(
1

2|Ω|

∫
Ωc

h

tr (σ0,h)

)
I

)
. (4.19)

Above we use the extrapolation operator (cf. (3.19)) whenever an evaluation of σ0,h on Ωc
h is required.

It is not difficult to check that the following identities hold:

− 2|Ωh|ωσh
=

∫
Ωc

h

tr (σh) and 2|Ωh|ωσh
=

∫
Ωh

tr (σh). (4.20)

We furthermore note that the normal component of σh is in general discontinuous across the transferring
paths from the vertices of Γh to their corresponding points in Γ. Therefore, for the subsequent analysis
we consider that σh on Ωc

h belongs in the broken Sobolev space

H(div ; T ch ) :=
∏

e∈Eh(Γh)

H(div ;T eext), (4.21)

equipped with the norm

‖τ‖div ;T c
h

:=

 ∑
e∈Eh(Γh)

‖τ‖2div ;T e
ext

1/2

∀ τ ∈ H(div ; T ch ).

The following result will be of paramount importance to derive the error estimation of our postpro-
cessing technique.

Lemma 4.4. Suppose that there exists an integer ` ≥ 0 such that t ∈ H`+1(Ω) and σ ∈ H`+1(Ω), with
divσ ∈ H`+1(Ω). Then, there exist positive constants C1 and C2, independent of h, such that for any
rh ∈ X1,h(Ωh) and for any ζh ∈M1,h(Ωh),

‖t−Eh(rh)‖0,Ωc
h
≤ C1

(
‖t− rh‖0,Ωh

+ h`+1‖t‖`+1,Ω

)
, (4.22)

and

‖σ −Eh(ζh)‖div ;T c
h
≤ C2

(
‖σ − ζh‖div ;Ωh

+ h`+1‖σ‖`+1,Ω + h`+1‖divσ‖`+1,Ω

)
. (4.23)

Furthermore, if d(Γ,Γh) = O(hs), with s ≥ 1, then there exists a constant C3 > 0, independent of h,
such that ∑

e∈Eh(Γh)

|T eext| ‖σ −Eh(ζh)‖0,T e
ext
≤ C3

(
hs+1‖σ − ζh‖0,Ωh

+ h`+s+2‖σ‖`+1,Ω

)
. (4.24)
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Proof. We refer to [30, Lemma 3.5] for the proofs of (4.22) and (4.23).

On the other hand, it is not difficult to see that the proof of (4.24) is similar to that of (4.22), except
that now higher order terms appear from the fact that |T eext| = O(hs+1) when d(Γ,Γh) = O(hs).

Before proceeding any further, let us specify the family of transferring paths {ρ(x)}x∈Γh
connecting

Γh and Γ. Given e ∈ Eh(Γh), we let {p1,p2} be the set of all vertices of e. To each of them, we assign a
unique point in the boundary Γ, denoted by p̃1 and p̃2, respectively. In Section 6 we will guaranty that
p̃i (i = 1, 2) can be obtained in such a way that ρ(pi) satisfies the assumptions made in Section 3.2. Let
m̂pi := p̃i−pi. We then set mi := m̂pi/|m̂pi | if m̂pi 6= 0 and mpi := νe, otherwise. Given e ∈ Eh(Γh),
the transferring path ρ(x) is determined as a convex combination of ρ(p1) and ρ(p2). More precisely,
for any θ ∈ [0, 1], we fix a point x(θ) := p1 + θ(p2 − p1) on e, and let m(θ) := mp1 + θ(mp2 −mp2)
be the tangent vector to the transferring path associated to x(θ). Finally, by setting c(θ) := |m̂(θ)| if
m̂(θ) 6= 0 and c(θ) = 1, otherwise, we let m(θ) := m̂(θ)/c(θ).

Then we recall from [30, Lemma 3.4] the following useful result.

Lemma 4.5. Let r ∈ L2(T eext) and consider the following conditions:

(i) mp1 ·mp2 ≥ 0,

(ii) there exists a constant δe, independent of h, such that m(θ) · νe ≥ δe > 0 for all θ ∈ [0, 1]; and

(iii) mp1 · (mp2)⊥ ≥ 0, where (mp2)⊥ is the image of mp2 under a π/2 counterclockwise rotation
about the origin.

If (i) holds, then there exists Ce1 > 0, independent of h, such that ‖r‖0,T e
ext
≤ Ce1 |||r|||e. Moreover, if (ii)

and (iii) are satisfied, then |||r|||e ≤ Ce2‖r‖0,T e
ext

, where Ce2 > 0 is also independent of h.

We are now in a position to present the error estimate of our postprocessing technique.

Lemma 4.6. Assume that the hypotheses of Lemma 4.4 hold. Suppose further that

max
e∈Eh(Γh)

{
|T eext|(re)1/2CeextC

e
1

}
≤ 1

2
|Ωh|1/2. (4.25)

Then, there exists a constant C > 0, independent of h, such

‖p− ph‖0,Ω + ‖σ − σh‖div ;Ωh
+ ‖σ − σh‖div ;T c

h

≤ C inf
~rh∈X0,h(Ωh)

‖~t0 −~rh‖X0(Ωh) + Ch`+1
(
‖t‖`+1,Ω + ‖σ‖`+1,Ω + ‖divσ‖`+1,Ω

)
.

(4.26)

Proof. Adding and subtracting convenient terms, using the constant Ceext of (3.25) and applying the
estimate (4.23), it follows that

‖σ−σh‖div ;T c
h
≤ Ĉ1

(
‖σ − ζh‖div ;Ωh

+ ‖σ − σh‖div ;Ωh
+ h`+1‖σ‖`+1,Ω + h`+1‖divσ‖`+1,Ω

)
(4.27)

for all ζh ∈M1,h(Ωh). Furthermore, by (3.4), (4.17) and (4.20),

‖σ − σh‖0,Ωh
≤ ‖σ0 − σ0,h‖0,Ωh

+ 21/2|Ωh|1/2|ωσ − ωσh
|

= ‖σ0 − σ0,h‖0,Ωh
+

1

21/2|Ωh|1/2

∣∣∣∣∣
∫

Ωc
h

tr
(
σ −Eh(σh)

)∣∣∣∣∣
≤ ‖σ0 − σ0,h‖0,Ωh

+
1

|Ωh|1/2
∑

e∈Eh(Γh)

|T eext| ‖σ − σh‖0,T e
ext
.
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Then, using the identity div (σ − σh) = div (σ0 − σ0,h), we find

‖σ − σh‖div ;Ωh
≤ ‖σ0 − σ0,h‖div ;Ωh

+
1

|Ωh|1/2
∑

e∈Eh(Γh)

|T eext| ‖σ − σh‖0,T e
ext
. (4.28)

Similar to the steps in the proof of (4.23) (see [30, Lemma 3.5]) we can apply Lemma 4.5 and use the
extrapolation constant Ceext of (3.25) to obtain

‖σ − σh‖0,T e
ext
≤ ‖σ −Eh(ζh)‖0,T e

ext
+ (re)

1/2CeextC
e
1‖ζh − σh‖0,T e .

Multiplying this by |T eext|, summing over all edges in Eh(Γh), applying the estimate (4.24), adding and
subtracting σ, and finally using (4.25), we have∑

e∈Eh(Γh)

|T eext| ‖σ − σh‖0,T e
ext

≤ C3h
`+s+2‖σ‖`+1,Ω +

(
C3h

s+1 +
1

2
|Ωh|1/2

)
‖σ − ζh‖0,Ωh

+
1

2
|Ωh|1/2‖σ − σh‖0,Ωh

,

(4.29)

where s ≥ 1. Substituting (4.29) into (4.28) yields

‖σ − σh‖div ;Ωh
≤ Ĉ2

(
‖σ0 − σ0,h‖div ;Ωh

+ ‖σ − ζh‖div ;Ωh
+ h`+s+2‖σ‖`+1,Ω

)
. (4.30)

Let now ζ0,h := ζh − ωζhI, where ωζh ∈ R is chosen such that
∫

Ωh
tr (ζh) = 0. Then, by the same

computations as before,

‖σ − ζh‖div ;Ωh
≤ ‖σ0 − ζ0,h‖div ;Ωh

+
1

|Ωh|1/2
∑

e∈Eh(Γh)

|T eext| ‖σ −Eh(ζh)‖0,T e
ext

≤ ‖σ0 − ζ0,h‖div ;Ωh
+

1

|Ωh|1/2

Ĉ3h
`+s+2‖σ‖`+1,Ω +

∑
e∈Eh(Γh)

|T eext|(re)1/2CeextC
e
1‖σ − ζh‖0,T e

 ,

which, thanks to assumption (4.25), implies that

‖σ − ζh‖div ;Ωh
≤ Ĉ4

(
‖σ0 − ζ0,h‖div ;Ωh

+ h`+s+2‖σ‖`+1,Ω

)
. (4.31)

Combining (4.27), (4.30) and (4.31), applying (4.15) with ~rh := (rh, ζ0,h,wh) ∈ X0,h(Ωh), and noting,

by the second equation of (2.4) and by the definition of ph (cf. (4.18)), that p− ph = −1
2tr (σ − σh),

we readily obtain

‖p− ph‖0,Ω + ‖σ − σh‖div ;Ωh
+ ‖σ − σh‖div ;T c

h

≤ Ĉ5 inf
~rh∈X0,h(Ωh)

‖~t0 −~rh‖X0(Ωh) + Ĉ5h
`+1
(
‖σ‖`+1,Ω + ‖divσ‖`+1,Ω

)
+ Ĉ5 inf

rh∈X1,h(Ωh)

∑
e∈Eh(Γh)

|||t−Eh(rh)|||e

(4.32)

To bound the last term on the right-hand side of (4.32), we may apply the equivalence of our norms
over T eext and the estimate given by (4.22). This yields (4.26).
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4.3 Further estimates on Ωc
h and rates of convergence

We are now interested in approximating t and u on Ωc
h. For simplicity of notation, these approximations

will be also denoted by th and uh.

First, we set th on Ωc
h to be Eh(th) in the sense given by (3.19). We then have the following result.

Lemma 4.7. Suppose that there exists an integer ` ≥ 0 such that t ∈ H`+1(Ω). Then, there exists
C > 0, independent of h, such that

‖t− th‖0,Ωc
h
≤ C

(
inf

~rh∈X0(Ωh)
‖~t0 −~rh‖X0(Ωh) + h`+1‖t‖`+1,Ω

)
. (4.33)

Proof. With minor modifications the proof follows from [30, Lemma 3.6].

Let us now specify uh on Ωc
h. To this end, we proceed as in [13, Section 2.1.3]. We start by noting

that for each e ∈ Eh(Γh) and any y ∈ T eext, there exists a transferring path ρ(x), connecting x ∈ Γh and
x̄ ∈ Γ, such that y = x+ (ε/|ρ(x)|)(x̄− x) for some ε ∈ [ 0, |ρ(x)| ]. Therefore, by similar arguments
as in (3.2), we can write

uh(y) := u(ȳ)−
∫ |ȳ−y|

0
th(y + εk(y))k(y) dε,

where ȳ := x̄ and k(y) := (ȳ − y)/|ȳ − y|. Then, the following result establishes the corresponding
error estimate. The proof is omitted since it is essentially the same as in [30, Lemma 3.7].

Lemma 4.8. Assume that the hypotheses of Lemma 4.7 hold. Then, there exists a constant C > 0,
independent of h, such that

‖u− uh‖0,Ωc
h
≤ CRh

(
inf

~rh∈X0(Ωh)
‖~t0 −~rh‖X0(Ωh) + h`+1‖t‖`+1,Ω

)
, (4.34)

where R is defined in (3.28).

From the above discussion, the following theorem provides the theoretical rate of convergence of the
Galerkin scheme (3.16) and the main unknowns under suitable regularity assumptions on the exact
solution.

Theorem 4.9. Additionally to the hypotheses of Theorem 3.3, Theorem 4.3 and Lemma 4.6, assume
that there exists s ∈ (0, k + 1] such that t ∈ Hs(Ω), u ∈ Hs(Ω) and σ ∈ Hs(Ω), with divσ ∈ Hs(Ω).
Then, there exist positive constants Ci, i ∈ {1, 2, 3}, independent of h, such that

‖~t0 −~t0,h‖X0(Ωh) ≤ C1h
s
(
‖t‖s,Ω + ‖u‖s,Ω + ‖σ‖s,Ω + ‖divσ‖s,Ω

)
,

‖t− th‖0,Ωc
h
≤ C2h

s
(
‖t‖s,Ω + ‖u‖s,Ω + ‖σ‖s,Ω + ‖divσ‖s,Ω

)
,

‖u− uh‖0,Ωc
h
≤ C3Rh

s+1
(
‖t‖s,Ω + ‖u‖s,Ω + ‖σ‖s,Ω + ‖divσ‖s,Ω

)
.

Furthermore, for the postprocessed solutions σh and ph, given by (4.17) and (4.18), respectively, it
follows that there exists a constant C4 > 0, independent of h, such that

‖p− ph‖0,Ω + ‖σ − σh‖div ;Ωh
+ ‖σ − σh‖div ;T c

h

≤ C4h
s
(
‖t‖s,Ω + ‖u‖s,Ω + ‖σ‖s,Ω + ‖divσ‖s,Ω

)
.
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Proof. The result is a straightforward application of Theorem 4.3, Lemma 4.6, Lemma 4.7, Lemma 4.8,
and the usual interpolation estimates.

5 A residual-based a posteriori error estimator

In this section we develop a reliable and quasi-efficient residual-based a posteriori error estimator for
the Galerkin scheme (3.16). For simplicity, we restrict ourselves to the problem in two dimensions,
yet retaining all the characteristic features of the general case. Furthermore, by choosing a suitable
norm of the total error, we consider Γh to be constructed through a piecewise linear interpolation of
the boundary Γ, yielding d(Γ,Γh) = O(h2). Despite this, we recall that the a priori error analysis in
previous sections also holds under the case d(Γ,Γh) = O(h), provided (3.28), (3.37), (4.14) and (4.25)
are satisfied. However, the a posteriori error estimator is not trivial for the latter case and is a topic of
ongoing work.

We start by introducing some useful notation and preliminary results. In what follows, he stands for
the length of a given edge e ∈ Eh. For each T ∈ Th, we let Eh,T the set of all edges of T , and denote
Eh,T (Γh) := {e ⊆ ∂T : e ∈ Eh(Γh)} and Eh,T (Ωh) := {e ⊆ ∂T : e ∈ Eh(Ωh)}. For every e ∈ Eh(Γh),
we let Γe be the intersection between Γ and the closure of the region Text. Furthermore, for every
e ∈ Eh(Γh) we fix a unit normal vector νe := (νe1, ν

e
2)t to the edge e, and let Se := (−νe2, νe1)t be the unit

tangential vector along e. We define νΓe and SΓe along Γe similarly. Moreover, for every e ∈ Eh(Γh)
(resp. Γe), we take νe (resp. νΓe) as the vector pointing in the outward direction of Γh (resp. Γ) from
Ωh (resp. Ω). However, when no confusion arises we will simply write ν and S instead of νe and Se (or,
νΓe and SΓe), respectively. Given e ∈ Eh(Ωh), v ∈ L2(Ωh) and τ ∈ L2(Ωh), such that v|T ∈ [C(T )]2

and τ |T ∈ [C(T )]2×2 for all T ∈ Th, we let JvK and JτSK be the corresponding jumps across e, that is,
JvK := (v|T+) |e − (v|T−) |e and JτSK := {(τ |T+) |e − (τ |T−) |e}S, where T+ and T− are two triangles
of Th having e as a common edge. Finally, given vector and tensor-valued fields v := (vi)1≤i≤2 and
τ := (τij)1≤i,j≤2, respectively, we set

curl (v) :=


∂v1

∂x2
−∂v1

∂x1

∂v2

∂x2
−∂v2

∂x1

 and curl (τ ) :=


∂τ12

∂x1
− ∂τ11

∂x2

∂τ22

∂x1
− ∂τ21

∂x2

 .

In what follows we assume that the hypotheses of Theorem 3.3, Theorem 4.3 and Lemma 4.6 hold
true without explicitly stating them in the results. Let (th,σ0,h,uh) ∈ X1,h ×M0

1,h(Ωh)×Mh(Ωh) be
the unique solution of problem (3.16) and σh be given by (4.17). For the subsequent analysis we further
consider a postprocessing u∗h of the fluid velocity u. More precisely, we take u∗h ∈

∏
T∈Th Pk+1(T )

satisfying, for all T ∈ Th, ∫
T
∇u∗h : ∇q =

∫
T

th : ∇q ∀q ∈ Pk+1(T ),∫
T

u∗h =

∫
T

uh.

(5.1)

Similar to [11, Theorem 5.2] we note that if t ∈ Hs(Ω) and u ∈ Hs+1(Ω), with s ≥ 1, then u∗h
converges to u with O(hs+1). To alleviate the notation, we will also write u∗h to denote its extrapolation
to the region Ωc

h. It follows from the previous analysis that (th,σh,u
∗
h) is an optimal convergent

approximation of (t,σ,u) ∈ X0(Ω) := L2
tr (Ω)×H0(div ; Ω)× L2(Ω).

21



We now introduce the global a posteriori error estimator

Θ :=

∑
T∈Th

Θ2
T

1/2

, (5.2)

where ΘT is the local error indicator defined for each T ∈ Th as follows:

Θ2
T := Ψ2

T + ‖uh − u∗h‖20,T + h2
T ‖curl (th)‖20,T + ‖th −∇u∗h‖20,T

+
∑

e∈Eh,T (Ωh)

(
he‖JthSeK‖20,e + h−1

e ‖Ju∗hK‖20,e
)

+ ‖σd
h − 2µ(|th|)th‖20,T

+ ‖f + divσh‖20,T +
∑

e∈Eh,T (Γh)

(
‖f + divσh‖20,T e

ext
+ ‖σd

h − 2µ(|th|)th‖20,T e
ext

)
.

(5.3)

Above, ΨT is the fully computable term defined by

Ψ2
T :=

∑
e∈Eh,T (Γh)

(
h−1
e ‖g − u∗h‖20,Γe

+ hT e

∥∥∥∥ dg

dSΓe

− thSΓe

∥∥∥∥2

0,Γe

)
. (5.4)

The residual character of each term defining Θ is a consequence of the strong problem (2.5) and
the regularity of the weak formulation at the continuous level. It is important to remark that the
second term of ΨT requires (dg/dSΓe)|Γe ∈ L2(Γe) for each Γe ⊆ Γ, which will be overcome below by
simply assuming that g ∈ H1(Γ). Furthermore, if µ(th) is a polynomial, as in the examples given in
Section 2.2, then we can use Lemma 4.5 and the constant Ceext of (3.25) to bound ‖σd

h−2µ(|th|)th‖0,T e
ext

by ‖σd
h − 2µ(|th|)th‖0,T e . In the latter case, the last term in the definition of ΘT is not required.

In what follows we prove the main properties of Θ, namely, its reliability and quasi-efficiency.

5.1 Reliability of the a posteriori error estimator

In this section we focus on the proof of the following result.

Theorem 5.1. There exists a constant Crel > 0, independent of h, such that

‖(t,σ,u)− (th,σh,uh)‖X0(Ω) ≤ CrelΘ. (5.5)

We emphasize that the norm appearing in (5.5) makes sense because σh ∈ H0(div ; Ω). In fact,
since the extrapolation of any function of H(div ; Ωh) is a function of H(div ; Ω) as Γh is given by a
piecewise linear interpolation of the boundary Γ, it suffices to note, thanks to the identities in (4.20),
that

∫
Ω tr (σh) = 0.

The proof of Theorem 5.1 is presented in several steps.

5.2 Preliminary results

We start by providing a preliminary upper bound for the total error, as done in [22] (see also [7]).

Lemma 5.2. There exists C > 0, independent of h, such that

‖(t,σ,u)− (th,σh,uh)‖X0(Ω)

≤ C
(
‖u∗h − uh‖0,Ω + ‖σd

h − 2µ(|th|)th‖0,Ω + ‖f + divσh‖0,Ω + ‖R‖
)
,

(5.6)
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where u∗h is the postprocessed velocity provided by (5.1), and R : H0(div ; Ω) → R is the linear and
bounded functional defined by

R(τ ) :=

∫
Ω

th : τ +

∫
Ω

u∗h · div τ − 〈τν,g〉Γ ∀ τ ∈ H0(div ; Ω). (5.7)

Proof. First observe, by similar arguments as in (4.6), that for any ~q ∈ X0(Ω) := L2
tr (Ω)×H0(div ; Ω)×

L2(Ω), the following global inf-sup condition holds:

Ĉglob‖~r‖X0(Ω) ≤ sup
~s∈X0(Ω)
~s6=0

DP(~q)(~r,~s)

‖~s‖X0(Ω)
∀~r ∈ X0(Ω), (5.8)

where P : X0(Ω)→ [X0(Ω)]′ is the nonlinear operator induced by the left-hand side of the continuous
problem (2.6). Moreover, since ~t := (t,σ,u),~th := (th,σh,uh) ∈ X0(Ω), an application of the mean
value theorem yields the existence of a convex combination of ~t and ~th, say ~q ∈ X0(Ω), such that

DP(~q)(~t−~th,~s) = [P(~t),~s]− [P(~th),~s] ∀~s ∈ X0(Ω). (5.9)

Next, adding and subtracting (0,0,u∗h) to the total error, applying (5.8), using the identity (5.9),
problem (2.6), and noting that th : τ d = th : τ since tr (th) = 0, we readily obtain

‖(t,σ,u)− (th,σh,uh)‖X0(Ω)

≤ ‖u∗h − uh‖0,Ω + ‖(t,σ,u)− (th,σh,u
∗
h)‖X0(Ω)

≤ ‖u∗h − uh‖0,Ω +
1

Ĉglob
sup

~s∈X0(Ω)
~s6=0

∣∣[P(~t),~s]− [P(~th),~s]
∣∣

‖~s‖X0(Ω)

≤ ‖u∗h − uh‖0,Ω +
1

Ĉglob

(
‖σd

h − 2µ(|th|)th‖0,Ω + ‖f + divσh‖0,Ω + ‖R‖
)
,

(5.10)

where R is defined in (5.7). Since Ĉglob is independent of h, the result follows.

It is now clear that in order to show (5.5), we need a suitable upper bound for ‖R‖. In doing so, we
can write

‖R‖ = sup
τ∈H0(div ;Ω)

τ 6=0

R(τ h)

‖τ‖div ;Ω
+ sup
τ∈H0(div ;Ω)

τ 6=0

R(τ − τ h)

‖τ‖div ;Ω
, (5.11)

with τ h a suitably chosen function that will be defined later by employing a Helmholtz decomposition
and the Clément and Raviart–Thomas interpolation operators. This approach has been widely used in
a posteriori error estimators for mixed methods, see for instance [7, 9, 21, 22, 23]. However, the case of
curved domains Ω requires further technicalities that have been recently addressed in [31] with the
help of suitable triangles that are added to the triangulation Th of Ωh, even though, as we will see in
Section 6, they are not needed to compute our a posteriori error estimator. Let us now discuss how
this can be done.

We associate with each e ∈ Eh(Γh) a triangle T e? , with diameter hT e
?
, satisfying

• T e? has e as a boundary edge, Γe ⊆ T e? , |Γe| ' he and hT e
?
' hT e .

• If F := T ei? ∩ T ej? , with ei, ej ∈ Eh(Γh), i 6= j, then F is either a common vertex or a common
edge of T ei? and T

ej
? .
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These hypotheses are expected to be satisfied on sufficiently fine meshes since Γh is constructed through
a piecewise linear interpolation of the boundary Γ.

Let Ω?
h be the polygon whose triangulation T ?h consists of Th ∪ {T e? : e ∈ Eh(Γh)}, and assume, for

the sake of convenience, that T ?h is shape-regular. Let M1,h(Ω?
h) be the analogue of the space defined

in (3.14), and Πk
h : H1(Ω?

h)→M1,h(Ω?
h) be the Raviart–Thomas interpolation operator. The following

local approximation properties are well-known to hold [4, 32]:

• There exists C > 0, independent of h, such that for each τ ∈ H`(Ω?
h), with 1 ≤ ` ≤ k + 1, there

holds
‖τ −Πk

h(τ )‖0,T ≤ Ch`T |τ |`,T ∀T ∈ T ?h . (5.12)

• There exists C > 0, independent of h, such that for each τ ∈ H1(Ω?
h), with div τ ∈ H`(Ω?

h) and
0 ≤ ` ≤ k + 1, there holds∥∥div (τ −Πk

h(τ ))
∥∥

0,T
≤ Ch`T |div τ |`,T ∀T ∈ T ?h . (5.13)

• There exists C > 0, independent of h, such that for each τ ∈ H1(Ω?
h), there holds

‖(τ −Πk
h(τ ))νe‖0,e ≤ Ch1/2

e ‖τ‖1,T e ∀ edge e of T ?h . (5.14)

Similarly, due to the above hypotheses on the triangles T e? , the following approximation properties
on curved segments hold [31]:

• There exists C > 0, independent of h, such that for each τ ∈ H1(Ω?
h), there holds

‖(τ −Πk
h(τ ))νΓe‖0,Γe ≤ Ch1/2

T e ‖τ‖1,T e
?

∀ e ∈ Eh(Γh). (5.15)

• There exists C > 0, independent of h, such that for each τ ∈ H1(Ω?
h), there holds

‖τ −Πk
h(τ )‖0,Γe ≤ Ch1/2

T e ‖τ‖1,T e
?

∀ e ∈ Eh(Γh). (5.16)

• There exists C > 0, independent of h, such that for each τ ∈ H1(Ω?
h), there holds

‖τνΓe‖0,Γe ≤ Ch−1/2
T e ‖τ‖1,T e

?
∀ e ∈ Eh(Γh). (5.17)

In addition, we let Ih : H1(Ω?
h)→

{
v ∈ C( Ω?

h ) : v|T ∈ P1(T ) ∀T ∈ T ?h
}

be the Clément interpolation
operator. We recall from [10] that there exist constants C1, C2 > 0, independent of h, such that for
each v ∈ H1(Ω) there hold

‖v − Ih(v)‖0,T ≤ C1hT |v|1,∆(T ) ∀T ∈ T ?h , (5.18)

and
‖v − Ih(v)‖0,e ≤ C2h

1/2
e |v|1,∆(e) ∀ edge e of T ?h , (5.19)

where ∆(T ) and ∆(e) are the union of all the elements intersecting with T and e, respectively.

We end this section by recalling that for each v ∈ H1(Ω) there exists an extension E (v) ∈ H1(R2),
satisfying E (v)|Ω = v and ‖E (v)‖1,R2 ≤ C‖v‖1,Ω, with C > 0 independent of v. For its proof, we refer
the reader to [35].
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5.3 Upper bound for ‖R‖

In order to introduce a suitable τ h for the estimation of ‖R‖ in (5.11), we proceed as in [21, Section 4.1]
and provide a stable Helmholtz decomposition of H0(div ; Ω). More precisely, for each τ ∈ H0(div ; Ω)
there exist ζ ∈ H1(Ω) and ϕ := (ϕ1, ϕ2)t ∈ H1(Ω), with

∫
Ω ϕ1 =

∫
Ω ϕ2 = 0, such that

τ = ζ + curl (ϕ) in Ω, and ‖ζ‖1,Ω + ‖ϕ‖1,Ω ≤ C‖τ‖div ;Ω, (5.20)

where C is a positive constant independent of τ , ζ and ϕ.

For simplicity of notation, given τ ∈ H0(div ; Ω) and its Helmholtz decomposition (5.20), we let
ζh := Πk

h(EEE (ζ)|Ω?
h
) and ϕh := Ih(EEE (ϕ)|Ω?

h
), where EEE and I are defined componentwise by the

extension operator E and the Clément interpolant Ih, respectively. We then set the discrete Helmholtz
decomposition as τ h := ζh + curl (ϕh) + ωτh

I, where ωτh
∈ R is chosen so that

∫
Ω tr (τ h) = 0.

From the above discussion, by definition ofR (cf. (5.7)) and by the compatibility condition
∫

Γ g·ν = 0,
we can write

R(τ − τ h) = R(ζ − ζh) +R(curl (ϕ−ϕh)). (5.21)

We will bound each term on the right-hand side of (5.21) separately.

The upper bound for |R(ζ − ζh)| follows by similar arguments as in [31, Lemma 5.5] (see also [21,
Lemma 4.4]). Indeed, for each ξ ∈ H0(div ; Ω) we can decompose the integrals over Ω, within R(ξ),
into integrals over Ωh and its complement. In this way, integrating by parts on each element of Th
and T ch , and using the fact that for any sufficiently smooth tensor field ξ and for each e ∈ Eh(Γh),{

(ξ|T e) |e −
(
ξ|T e

ext

)
|e
}
νe = 0, it is not difficult to see that

R(ζ − ζh) =
∑
T∈Th

∫
T

(th −∇u∗h) : (ζ − ζh) +
∑

e∈Eh(Γh)

∫
T e
ext

(th −∇u∗h) : (ζ − ζh)

+
∑

e∈Eh(Γh)

∫
Γe

(u∗h − g) · (ζ − ζh)νΓe +
∑

e∈Eh(Ωh)

∫
e
Ju∗hK · (ζ − ζh)νe.

(5.22)

Applying the Cauchy–Schwarz inequality to each term above, using the approximation properties (5.12),
(5.14) and (5.15), and the constant Ceext of (3.25), we obtain, after some algebraic manipulations,

|R(ζ − ζh)| ≤ C
( ∑
T∈Th

h2
T ‖th −∇u∗h‖20,T +

∑
e∈Eh(Γh)

(Ceext)
2reh

2
T e‖th −∇u∗h‖20,T e

+
∑

e∈Eh(Γh)

hT e‖g − u∗h‖20,Γe
+

∑
e∈Eh(Ωh)

hT e‖Ju∗hK‖20,e

)1/2( ∑
T∈Th

‖ζ‖21,T +
∑

e∈Eh(Γh)

B2
e

)1/2

,

where B2
e := ‖ζ‖21,T e

ext
+ ‖EEE (ζ)‖21,T e

?
+ ‖ζ‖21,K(e) and K(e) := {T ′ : e ⊆ ∂T ′}. Therefore, the stability

property of the extension operator EEE yields

|R(ζ − ζh)| ≤ Ĉ
( ∑
T∈Th

h2
T ‖th −∇u∗h‖20,T +

∑
e∈Eh(Γh)

hT e‖g − u∗h‖20,Γe

+
∑

e∈Eh(Ωh)

hT e‖Ju∗hK‖20,e

)1/2

‖ζ‖1,Ω.

(5.23)
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We now bound |R(curl (ϕ − ϕh)| following similar steps as in [21, Lemma 4.3]. First, using the
identity curl (ϕ−ϕh)ν = d

dS(ϕ−ϕh), assuming that dg
dS ∈ L2(Γ), and integrating by parts on Γ, it

follows that

〈curl (ϕ−ϕh)ν,g〉Γ = −
∑

e∈Eh(Γh)

∫
Γe

dg

dSΓe

· (ϕ−ϕh). (5.24)

We can then rewrite R(curl (ϕ−ϕh), using (5.24), applying [24, Theorem 2.11] to integrate on each
element of Th and T ch , as

R(curl (ϕ−ϕh)) =
∑
T∈Th

∫
T

curl (th) · (ϕ−ϕh) +
∑

e∈Eh(Γh)

∫
T e
ext

curl (th) · (ϕ−ϕh)

−
∑

e∈Eh(Ωh)

∫
e
JthSeK · (ϕ−ϕh) +

∑
e∈Eh(Γh)

∫
Γe

(
thSΓe −

dg

dSΓe

)
· (ϕ−ϕh).

(5.25)

Next, using similar arguments as before, the approximation properties of Ih (cf. (5.18) and (5.19)),
and the fact that the number of triangles in ∆(T ) and ∆(e) are bounded (due to the shape-regularity
of the mesh), we readily obtain

|R(curl (ϕ−ϕh)| ≤ C
( ∑
T∈Th

h2
T ‖curl (th)‖20,T +

∑
e∈Eh(Ωh)

he‖JthSeK‖20,e

+
∑

e∈Eh(Γh)

hT e

∥∥∥∥ dg

dSΓe

− thSΓe

∥∥∥∥2

0,Γe

)1/2

‖ϕ‖1,Ω.

(5.26)

Finally, in order to bound the first term on the right-hand side of (5.11), it suffices to note, by the

estimate (5.17), that ‖τ hνΓe‖0,Γe ≤ Ch−1/2
T e ‖τ h‖1,T e

?
for all e ∈ Eh(Γh). In fact, this yields

|R(τ h)| ≤ C
( ∑
T∈Th

‖th −∇u∗h‖20,T +
∑

e∈Eh(Γh)

h−1
T e ‖g − u∗h‖20,Γe

+
∑

e∈Eh(Ωh)

h−1
T e ‖Ju∗hK‖20,e

)1/2(
‖ζ‖1,Ω + ‖ϕ‖1,Ω

)
.

(5.27)

The reliability estimate (5.5) now follows directly from (5.11), the estimates given by (5.23), (5.26)
and (5.27), and the stability of the Helmholtz decomposition (5.20).

5.4 Quasi-efficiency of the a posteriori error estimator

The main result of this section reads as follows.

Theorem 5.3. There exists a constant Ceff > 0, independent of h, such that

CeffΘ ≤ ‖(t,σ,u)− (th,σh,uh)‖X0(Ω) + Ψ, (5.28)

where Ψ :=
(∑

T∈Th Ψ2
T

)1/2
and ΨT is given by (5.4).
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We note that in the above inequality the estimator is quasi-efficient in the sense that it is efficient
up to the fully computable and residual term Ψ. If this quantity is of the same order of the total error,
we can ensure that Θ is an optimal convergent estimator. In [31] it was presented numerical evidence
showing that Ψ is optimally convergent as an unfitted mixed method for the Stokes equations with
constant viscosity is considered. In the case of nonlinear viscosity, as we will see in Section 6, the
estimator term Ψ has the same behavior.

To obtain (5.28), we will found upper bounds for each estimator term in the definition of ΘT in (5.3),
separately. In doing so, we frequently use of the original system of equations given by (2.1), which can
be recovered from the continuous twofold saddle point formulation (2.6) by applying integration by
parts in the corresponding equations and using suitable test functions. In particular, we have that
σd = µ(|t|)t and divσ = −f hold. Then, it is immediate to see that the estimates for the last four
terms appearing in the definition of ΘT (cf. (5.3)) follow by applying the triangle inequality and the
Lipschitz continuity of the nonlinear operator A1,h (cf. (3.12)). We have the following lemma.

Lemma 5.4. For all T ∈ Th and e ∈ Eh(Γh), there hold

‖f + divσh‖0,T ≤ ‖σ − σh‖div ;T ,

‖f + divσh‖0,T e
ext
≤ ‖σ − σh‖div ;T e

ext
,

‖σd
h − 2µ(|th|)th‖0,T ≤ ‖σ − σh‖0,T + 2γ0‖t− th‖0,T ,

‖σd
h − 2µ(|th|)th‖0,T e

ext
≤ ‖σ − σh‖0,T e

ext
+ 2γ0‖t− th‖0,T e

ext
,

where γ0 is the constant given in (2.2).

The following three lemmas provide upper bounds for the remaining five estimator terms in the
definition of ΘT .

Lemma 5.5. There exits positive constants C1 and C2, independent of h, such that for all T ∈ Th and
e ∈ Eh(Ωh),

h2
T ‖curl (th)‖20,T ≤ C1‖t− th‖20,T , (5.29)

he‖JthSeK‖20,e ≤ C2‖t− th‖20,K(e), (5.30)

where K(e) := {T ′ ∈ Th : e ⊆ ∂T ′}.

Proof. Since curl (t) = curl (∇u) = 0, the result can be readily deduced. In fact, applying Lemma 4.9
and Lemma 4.10 of [21] to ρ := t and ρh := th, we obtain (5.29) and (5.30), respectively.

Lemma 5.6. For each T ∈ Th, there exits a constant C3 > 0, independent of h, such that

‖th −∇u∗h‖20,T ≤ C3‖t− th‖20,T . (5.31)

Furthermore, for each e ∈ Eh(Ωh), there exists a constant C4 > 0, independent of h, such that

h−1
e ‖Ju∗hK‖20,e ≤ C4

∑
T∈K(e)

‖t− th‖20,T . (5.32)

Proof. To obtain (5.31), it suffices to apply the result stated in Lemma 3.7 of [16].
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It remains to prove (5.32), for which we proceed as in [31, Section 5.2]. First, adding and subtracting
convenient terms, it follows that

h−1
e ‖Ju∗hK‖20,e ≤ 2h−1

e ‖PPPh(Ju∗hK)‖20,e + 2h−1
e ‖(I −PPPh(Ju∗hK)‖20,e, (5.33)

where I is the identity operator and PPPh denotes the L2-orthogonal projection onto the space of piecewise
constant functions on each e ∈ Eh (cf. Section 3.2). To estimate the first term on the right-hand side of
(5.33), we can proceed as in [31, Lemma 5.4] and use equation (3.16b), the system (5.1) providing u∗h,
and the equations defining the Raviart–Thomas interpolation operator Πk

h (see, e.g., [4]), to obtain

h−1
e ‖PPPh(Ju∗hK)‖20,e ≤ C

∑
T∈K(e)

‖th −∇u∗h‖20,T . (5.34)

Furthermore, proceeding exactly as in [16, Lemma 3.5], we find

h−1
e ‖(I −PPPh(Ju∗hK)‖20,e ≤ Ĉ

∑
T∈K(e)

‖∇(u− u∗h)‖20,T . (5.35)

The result (5.32) follows from (5.33), (5.34), (5.35), by using the identity t = ∇u and the estimate (5.31).

Lemma 5.7. There exists a constant C5 > 0, independent of h, such that for all T ∈ Th,

‖uh − u∗h‖20,T ≤ C5

(
‖t− th‖20,T + ‖u− uh‖20,T

)
.

Proof. Due to the second equation of (5.1) and the identity t = ∇u, the result follows by mimicking
the steps in the proof of [31, Lemma 5.10]. We omit the mathematical details.

We end this section by noting that the quasi-efficiency estimate (5.28) is a straightforward consequence
of Lemma 5.4, Lemma 5.5, Lemma 5.6 and Lemma 5.7.

6 Numerical results

In this section we present numerical examples in two dimensions illustrating the good performance
of our discrete scheme (3.16), validating the reliability and quasi-efficiency of the a posteriori error
estimator Θ in (5.2), and showing the behavior of the associated adaptive algorithm. The nonlinear
systems resulting from (3.16) were solved using Newton’s method with a tolerance of 1e-6 and taking as
initial guess the solution of the associated linear problem with µ = 1. All simulations were implemented
using MATLAB. At each Newton iteration, we used UMFPACK [17] as a direct solver.

The error estimates presented in this work are independent of the construction of basis functions.
We chose hierarchical basis for the local Raviart–Thomas space of order k, as presented in [2], and the
Dubiner basis (see, e.g., [34]) for the local polynomial space of degree less or equal to k.

In what follows, we denote by N the total number of elements of the mesh Th of Ωh. The global
error and effectivity index associated to the global estimator Θ are given by

e(t,σ,u) :=
{

[e(t)]2 + [e(σ)]2 + [e(u)]2
}1/2

and eff(Θ) := Θ/e(t,σ,u),

where

e(t) := ‖t− th‖0,Ω, e(σ) :=
{
‖σ − σh‖2div ;Ωh

+ ‖σ − σh‖2div ;T c
h

}1/2
, e(u) := ‖u− uh‖0,Ω,
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and σh is the postprocessed solution given by (4.17). We furthermore consider the errors

e(p) := ‖p− ph‖0,Ω and e∗(u) := ‖u− u∗h‖0,Ω,

where ph and u∗h are the approximations provided by (4.18) and (5.1), respectively. Moreover, using
the fact that h ' N−1/2, the experimental rate of convergence of any of the above quantities will be
computed as

rate := −2[log(e/e′)/ log(N/N ′)],

where N and N ′ denote the total number of elements associated to two consecutive triangulations with
errors e and e′.

The examples to be considered in this section are described next. In all them we set the nonlinear
viscosity to

µ(s) := µ0 + µ1(1 + s2)(β−2)/2 ∀ s > 0,

with µ0 = 1, µ1 = 0.5 and β = 1.5. In Examples 1 and 2 we explore the performance of the Galerkin
scheme (3.16) under different constructions of the computational domain. Furthermore, Example 2
is used to corroborate the reliability and quasi-efficiency of the a posteriori error estimator Θ under
a quasi-uniform refinement, whereas the simulations in Examples 3 demonstrate the behavior of the
adaptive algorithm associated to Θ, which reads:

1. Start with a coarse mesh Th of Ωh.

2. Solve the Newton iterative method associated to (3.16) on the current mesh Th.

3. Compute ΘT for each T ∈ Th.

4. Check the stopping criterion and decide whether to finish or go to next step.

5. Use red-green-blue algorithm to refine each T ′ ∈ Th satisfying: ΘT ′ ≥ 0.5 (maxT∈Th ΘT ).

6. Project every new vertex x of Γh onto the closest point x̄ of Γ.

7. Define the resulting mesh as the current mesh Th, and go to step 2.

Note that the above procedure is the usual adaptive refinement strategy from [37], except that the
6th step has been added to expect assumptions (3.28), (3.37), (4.14) and (4.25) to hold. Without this
modification the region Ωc

h remains unchanged.

Example 1: Accuracy assessment with d(Γ,Γh) = O(h)

In our first test we choose the domain Ω as the circle centered at (0, 0) with a radius of 0.75, and the data f
and g such that the solution of problem (2.1) is given by u := (u1, u2)t, where u1(x1, x2) := x1 cos(x1x2)
and u2(x1, x2) := −x2 cos(x1x2), and p(x1, x2) := x4

1x
4
2 − p0, where p0 ∈ R is chosen so that p ∈ L2

0(Ω),
and t and σ are defined as in (2.1) and (2.5), respectively.

In Table 6.1 we report the convergence history obtained for this example under a sequence of uniform
triangulations of a background mesh of Ω, see Figure 6.1. In this case we set Ωh as the union of all
elements inside Ω. Note that d(Γ,Γh) = O(h) for which assumptions (3.38) and (4.25) hold for h small
enough, while (3.38) and (4.14) are not guaranteed theoretically. To compute the transferring paths
from the vertices xv of Γh, we use the algorithm in [14, Section 2.4.1] which uniquely determinate a
point x̄(xv) in Γ as the closest point to xv, as shown in the right panel of Figure 6.1. All conditions in
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Figure 6.1: Example 1: Left, a background mesh of Ω and right, corresponding computational domain,
shown in gray, and transferring paths from the vertices of Γh, shown in blue.

Figure 6.2: Example 1: Approximate velocity component u2,h obtained with N = 72 and k = 3.

Section 3.2 on the paths ρ(xv) hold for this approach. If x ∈ Γh and x 6= xv, we compute the path
ρ(x) using the procedure in Section 4.2.

From Table 6.1 we observe that, even when e(t), e(σ) and e(p) deteriorate for N = 360 and k = 3,
an overall rate of convergence of O(hk+1) is obtained for k = 1, 2, 3 as predicted by Theorem 4.9
under the assumption that (3.28), (3.37), (4.14) and (4.25) hold. We furthermore observe that e?(u)
converges with one order higher than the method, as expected from Section 5. In Figure 6.2 we display
the approximation of the second component of the velocity for N = 72 and k = 3.

Example 2: Accuracy assessment with d(Γ,Γh) = O(h2)

This second example is aimed at evaluating the accuracy of the method, as well as the properties of
the a posteriori error estimator through the effectivity index eff(Θ), under a quasi-uniform refinement
strategy. For this, we consider the same the domain Ω and data as in Example 1 and let Ωh be the
region enclosed by a piecewise linear interpolation of Γ. For every e ∈ Eh(Γh) the transferring paths
associated to the interior points of e are chosen so that they perpendicular to this edge. All assumptions
in this work can be now verified for h small enough since d(Γ,Γh) = O(h2).

In Table 6.2, we present the convergence history obtained for this example. As expected, the method
converges with O(hk+1) for k = 1, 2, 3. In Figure 6.3, we report the history of convergence of the
estimator term Ψ in Theorem 5.3. From these results, we conclude that Ψ converges with the same
order as the method, as anticipated in Section 5.4. Finally, the effectivity index eff(Θ) is depicted in
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k = 1
e(u) e(σ) e(t) e∗(u) e(p)

N iter error rate error rate error rate error rate error rate
72 2 1.66e-03 0.52 1.16e-01 – 1.75e-02 – 1.56e-03 – 3.90e-02 –

360 2 1.95e-04 2.67 2.37e-02 1.98 3.24e-03 2.10 1.64e-04 2.80 8.86e-03 1.84
1560 2 3.33e-05 2.41 3.45e-03 2.63 4.91e-04 2.57 1.34e-05 3.42 1.13e-03 2.80
7000 2 8.54e-06 1.81 9.11e-04 1.77 1.24e-04 1.83 2.99e-06 1.99 2.41e-04 2.06

28504 2 2.10e-06 2.00 1.59e-04 2.48 2.31e-05 2.40 3.26e-07 3.16 3.91e-05 2.59
k = 2

e(u) e(σ) e(t) e∗(u) e(p)
N iter error rate error rate error rate error rate error rate
72 2 4.08e-04 – 2.60e-02 – 3.72e-03 – 3.92e-04 – 1.45e-02 –

360 2 1.24e-04 1.48 1.25e-02 0.92 2.14e-03 0.69 1.23e-04 1.44 7.80e-03 0.77
1560 2 8.61e-07 6.78 1.17e-04 6.37 1.99e-05 6.38 6.04e-07 7.25 5.76e-05 6.69
7000 2 9.82e-08 2.89 1.60e-05 2.64 2.45e-06 2.79 5.92e-08 3.09 6.92e-06 2.82

28504 2 1.05e-08 3.19 1.23e-06 3.66 1.88e-07 3.66 3.03e-09 4.23 5.11e-07 3.71
k = 3

e(u) e(σ) e(t) e∗(u) e(p)
N iter error rate error rate error rate error rate error rate
72 2 8.31e-05 – 3.45e-03 – 7.33e-04 – 8.13e-05 – 1.59e-03 –

360 3 4.52e-05 0.76 6.71e-03 -0.83 1.04e-03 -0.43 4.40e-05 0.76 4.31e-03 -1.24
1560 2 7.80e-08 8.68 1.65e-05 8.20 2.56e-06 8.19 7.72e-08 8.66 1.04e-05 8.22
7000 2 4.23e-10 6.95 2.47e-07 5.60 1.24e-08 7.10 2.06e-10 7.89 5.10e-08 7.09

28504 2 2.37e-11 4.11 9.53e-09 4.64 4.79e-10 4.63 5.16e-12 5.25 2.08e-09 4.56

Table 6.1: Example 1: Convergence history of the errors under a uniform refinement strategy.

Figure 6.4. It is clear that eff(Θ) increases as k does. This behavior was also observed in [31] and it
is in agreement with the estimates (5.5) and (5.28) since the constants Crel and Ceff depend on the
polynomial degree. Moreover, for each value of k, the effectivity index remains bounded, thus verifying
not only the reliability of the a posteriori error estimator Θ, but also suggesting its efficiency.

Example 3: Adaptive refinement strategy

In our final example we choose Ω as the kidney-shaped domain whose boundary satisfies(
2
[
(x1 + 0.5)2 + x2

2

]2 − x1 − 0.5
)2 − [(x1 + 0.5)2 + x2

2

]
+ 0.1 = 0.
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Figure 6.3: Example 2: Log-log plots of N vs. Ψ for a quasi-uniform refinement strategy.
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k = 1
e(u) e(σ) e(t) e∗(u) e(p)

N iter error rate error rate error rate error rate error rate
38 2 1.47e-03 – 7.74e-02 – 1.02e-02 – 3.17e-04 – 1.54e-02 –

130 2 4.43e-04 1.95 2.30e-02 1.97 3.10e-03 1.94 5.40e-05 2.88 3.98e-03 2.20
486 2 1.24e-04 1.93 5.90e-03 2.06 8.61e-04 1.94 7.09e-06 3.08 1.05e-03 2.03

1961 2 2.88e-05 2.09 1.39e-03 2.07 2.11e-04 2.02 8.58e-07 3.03 2.67e-04 1.96
7950 2 7.55e-06 1.91 3.51e-04 1.97 5.35e-05 1.96 1.09e-07 2.95 6.59e-05 2.00

31566 2 1.90e-06 2.00 8.80e-05 2.00 1.34e-05 2.01 1.37e-08 3.01 1.64e-05 2.01
k = 2

e(u) e(σ) e(t) e∗(u) e(p)
N iter error rate error rate error rate error rate error rate
38 2 2.35e-04 – 6.39e-03 – 1.19e-03 – 1.95e-05 – 1.77e-03 –

130 2 4.01e-05 2.87 1.16e-03 2.78 2.03e-04 2.87 1.98e-06 3.72 2.75e-04 3.03
486 2 5.35e-06 3.06 1.41e-04 3.20 2.65e-05 3.08 1.25e-07 4.19 3.51e-05 3.12

1961 2 6.20e-07 3.09 1.73e-05 3.01 3.20e-06 3.03 7.39e-09 4.06 4.26e-06 3.02
7950 2 8.14e-08 2.90 2.17e-06 2.96 4.05e-07 2.95 4.65e-10 3.95 5.37e-07 2.96

31566 2 1.02e-08 3.01 2.74e-07 3.00 5.09e-08 3.01 2.95e-11 4.00 6.73e-08 3.01
k = 3

e(u) e(σ) e(t) e∗(u) e(p)
N iter error rate error rate error rate error rate error rate
38 2 1.98e-05 – 2.64e-04 – 6.06e-05 – 6.80e-07 – 9.04e-05 –

130 2 2.12e-06 3.63 2.92e-05 3.58 7.46e-06 3.40 7.45e-08 3.60 9.87e-06 3.60
486 2 1.31e-07 4.22 1.75e-06 4.27 4.01e-07 4.43 1.65e-09 5.77 5.61e-07 4.35

1961 2 7.80e-09 4.05 1.02e-07 4.08 2.58e-08 3.94 5.53e-11 4.87 3.41e-08 4.01
7950 2 5.00e-10 3.92 6.70e-09 3.89 1.60e-09 3.97 1.73e-12 4.95 2.16e-09 3.95

31566 2 3.15e-11 4.01 4.21e-10 4.01 1.02e-10 4.00 5.55e-14 4.99 1.37e-10 4.00

Table 6.2: Example 2: Convergence history of the errors under a quasi-uniform refinement strategy.

0 10000 20000 30000
N

1

2

3

4

eff
(Θ

)

k = 1 k = 2 k = 3

Figure 6.4: Example 2: N vs. eff(Θ) for a quasi-uniform refinement strategy.
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We consider two manufactured solutions. In all of them p(x1, x2) := sin(x2
1 + x2

2)− p0, where p0 ∈ R is
chosen in such a way p ∈ L2

0(Ω). In practice, we compute p0 using an extremely fine polygonal mesh
approximating Ω. Furthermore, the fluid velocity is given by two options,

u(x1, x2) :=

 4(x1 + x2)3 + x2√
(x1+0.19)2+x22

−4(x1 + x2)3 − (x1−0.55)√
(x1−0.55)2+x22

 and u(x1, x2) :=

6(x1 + x2)5 + 1
x2+0.7

−6(x1 + x2)5

 ,

and t and σ are defined as in (2.1) and (2.5), respectively. Note that one velocity exhibits a singularity
at (0.55, 0), and one exhibits singularities along the line {(x1, x2)t ∈ R2 : x2 = −0.7} so that for both
cases, high gradients of the velocity are likely to occur near the boundary Γ.

For this example the region of Ωc intersecting with Ωh has positive measure because Γh is constructed
through a piecewise linear interpolation of Γ, and therefore, the validity of the error estimates in this
work are not entirely verifiable as σh is given by (4.17). In fact, we fail to ensure that

∫
Ω tr (σh) = 0

for the latter case. To remedy this, we replace the constant ωσh
in (4.17) by

ωσh
:= − 1

2|Ωh|

∫
Ωc

h

tr

(
σ0,h −

1

2|Ω|

(∫
Ωc

h

tr (σ0,h)−
∫

Ωc∩Ωh

tr (σ0,h)

)
I

)

+
1

2|Ωh|

∫
Ωc∩Ωh

tr

(
σ0,h −

1

2|Ω|

(∫
Ωc

h

tr (σ0,h)−
∫

Ωc∩Ωh

tr (σ0,h)

)
I

)
,

where σ0,h ∈M0
1,h(Ωh). This is considered in our simulations. Furthermore, noting that

∫
Ω tr (σ) = 0

from the system (2.6) and assuming σ ∈ H(div ; Ωh ∪ Ω), we replace ωσ in (3.4) by

ωσ := − 1

2|Ωh|

(∫
Ωc

h

tr (σ)−
∫

Ωc∩Ωh

tr (σ)

)
.

The proofs of the corresponding error estimates proceed now as in the case Ωh ⊆ Ω.

In Figure 6.5, we report the decay of the total error with respect to N for quasi-uniform and adaptive
refinement strategies. It is clear that the errors using the adaptive refinement are considerably smaller
than when using quasi-uniform refinement. Moreover, the adaptive procedure reduces the magnitude
of e(t,σ,u) with optimal convergence of O(hk+1) for k = 1, 2, 3. Some adapted meshes are depicted in
Figure 6.6, from which is evident that the a posteriori error estimator Θ detects the singularities.

7 Concluding remarks

We have introduced a higher-order accurate unfitted mixed method for a class of nonlinear Stokes
models with Dirichlet boundary condition. For this, we have extended the boundary-valued correction
developed in [12, 14] to the dual-dual mixed formulation of our models. Therefore, the approximation
to the solution is first computed on a convenient polyhedron Ωh approximating the real domain Ω and
then extended by local extrapolations to the region Ω \ Ωh. We have proven a priori error bounds
under the assumption that (3.28), (3.37), (4.14) and (4.25) hold. Furthermore, we have provided a
posteriori error estimates on Ωh to be the region enclosed by a piecewise linear interpolation of the real
boundary, for which all assumptions in this work hold. These estimates have been verified by numerical
experiments in 2D. In particular, an adaptive algorithm associated to the proposed a posteriori error
estimator has been improved the accuracy of the approximation under complex situations, such as
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Figure 6.5: Example 3: Log-log plots of N vs. e(t,σ,u) for both refinement strategies.

Figure 6.6: Example 3: Initial mesh and two adapted meshes obtained with the adaptive algorithm
and k = 2 for the two solutions under consideration, one with high gradients near the nonconvex part
of Ω (top), and one with high gradients near the convex part of Ω (bottom).
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high gradients or singularities of the solution. The extension of the analysis to three dimension relies
on the validity of the norm equivalence in Lemma 4.5, which has been successfully addressed in [31].

On the other hand, further research is needed to obtain an a posteriori error estimator for unfitted
mixed methods where Ωh arises from background meshes as in Example 1 of Section 6. This is ongoing
work.
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