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NONLOCAL REACTION TRAFFIC FLOW MODEL WITH ON-OFF RAMPS

F. A. CHIARELLO, H. D. CONTRERAS, AND L. M. VILLADA

ABSTRACT. We present a non-local version of a scalar balance law modeling traffic flow with on-
ramps and off-ramps. The source term is used to describe the traffic low over the on-ramp and
off-ramps. We approximate the problem using an upwind-type numerical scheme and we provide
L°° and BV estimates for the sequence of approximate solutions. Together with a discrete entropy
inequality, we also show the well-posedness of the considered class of scalar balance laws. Some

numerical simulations illustrate the behaviour of solutions in sample cases.

1. INTRODUCTION

1.1. Scope. Models of conservation laws with nonlocal flux has been used to describe traffic flow
dynamics in which drivers adapt their velocity with respect to what happens to the cars in front
of them [3, 5, 10, 15, 18]. In this type of models, the flux function depends on a downstream
convolution term between the density or the velocity of vehicles and a kernel function with support
on the negative axis. However, the above models cannot be used to study the traffic flow on the
highway with ramps since they did not include their presence. Indeed, ramps are an important
element of traffic systems and develops some complex traffic phenomena, see [11, 14, 16, 19, 20, 21,
22].

In this work, we propose a new nonlocal traffic model which includes the effects of on- and off-

ramps. We start by considering a local reaction traffic model proposed in [16],

(11) pt + (PU(P))z = Pon — Soffa

where the non-negative functions S,, and S,g are the source and sink term, respectively, defined

(1.2) Son(t;z,0) = Lon(T)Gon(t)(Pmax — p),
(1.3) Soft(t,x,p) = Log(x)qom(t)p,

with gon € RT, and ¢og € R the rate of the on- and off-ramp respectively. The spatial position

of the on- and off- ramp is described by indicator functions 1o, (), and 1,g(z) defined as

— 1
Zon < T < Top,

1
Ton(z) =< 1og(z) =
0

T Tog < T < Toff,
otherwise, 0 otherwise.

In order to obtain a non-local version of the model (1.1), we first rewrite the flux function
f(p) = pv(p) in its non-local version, see [1, 3, 10],
T+
£(6) = polpxan). with (pxwn)ltin) = [ plt.g)unly — 2)dy.

xT
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Figure 1. Illustration of our model setting.

On the on-ramp the idea is that at position x the flow merging in the traffic way is inversely

proportional to the average density around position x, see Fig. 1 , i.e, we write

(14) Son(tv T, pP,pP* wnﬁ) = ]-on(x)cbn(t) (pmax —px* wn,é)a
with
z+n+9
(prwna)te) = [ pltylensly — 2)dy,
x—n+0

with n € [0,1] and 6 € [—n,n]. However, in the numerical test section we will see that the choice of
the non-local term (1.4) does not guarantee that the proposed model satisfies a Maximum Principle,

see Example 3. In order to overcome this difficulty, we consider a first variant of (1.4) taking

(1-5) Son(t,x, p, p* wn,é) = 1on(w)%n(t) (Pmax — p) (pmax —px* wn,é)-

Note that this term contains a product which differentiates it from the original model. An alter-

native is to choose

(1.6) Son(t,x,p, p* Wn,é) = Lon(7)qon(t) (Pmax — max{p; p * Wn,é}) .

The purpose of this work is the study of the well-posedness of a nonlocal reaction traffic flow

model with source term given by (1.5) and (1.6).

1.2. Related work. In [2, 3, 4, 5, 6, 10, 15] the authors studied a nonlocal conservation law to
model vehicular traffic flow in the case Son = Sog = 0, i.e., without on- and off-ramps. The need
to design more realistic models has led to the development of multi-lane vehicular traffic models
among which we can highlight the following. In [13], it is introduced a new local model for multilane
dense vehicular traffic by means of a system of a weakly coupled scalar conservation laws. In [9], the
authors consider the model proposed in [13] but with a more general source terms and they allow
for the presence of space discontinuities both in the speed law and in the number of lanes; in these
two local models the source term accounts for the lane change rate and the key assumption is that
the drivers prefer to drive faster, and that the tendency of a vehicle change the lines is proportional
to the difference in velocity between neighboring lanes. In [8] is studied a multilane model with
local and non-local flux combined with a source term that also incorporates a nonlocality; here,
the non-local source term describes the lane changing rate depending on a (nonlinear) evaluation
of the velocity. In particular, the lane changing rate is proportional to the difference in the velocity
between two adjacent lanes, but the velocities are evaluated in a neighbourhood of the current
position, moreover, this rate is proportional also to the density in the receiving lane, meaning that
if that lane is crowded only a few vehicles can actually change lane.

Regarding to vehicular traffic flow models taking into account the presence of ramps we can mention
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[16], where the authors study the (local) first order nonlinear conservation law (1.1). In [21] a (lo-
cal) second order model is proposed to study the effects of on- and off-ramps on a main road traffic
during two rush periods. Likewise, other works about the study of effects of ramps in vehicular
traffic flow models are referenced in [21]. In particular, in [7] the authors consider a Lighthill-
Witham-Richards (LWR) traffic flow model on a junction composed by one mainline, an on-ramp
and an off-ramp, which are connected by a node. Moreover, in [12] a non-local gas-kinetic traffic
model including ramps is proposed, the model allows to simulate syncronized congested traffic and
reproduces realistic phenomena of vehicular traffic by variations of the on-ramp flow . In [17] a
new modeling methodology for merging and diverging flows is studied, the methodology includes
coupling effects between main and ramps flows and a new formulation for the modeling of traffic

friction is also introduced.

1.3. Outline of the paper. This work is organized as follows: In Section 2 we present the pro-
posed mathematical model with all the considered assumptions on it. Afterwards, we introduce
an upwind-type Scheme with two different source terms and derive important properties such as
maximum principle, L'— bound and BV estimates. Furthermore, we derive the L!—Lipschitz
continuous dependence of solutions to (2.1) on the initial data and the terms ¢, and gog in Section
3. In Section 4, we present numerical examples illustrating the behavior of the solutions of our

model.

2. MATHEMATICAL MODEL

The main goal of this work is to study the well-posedness of the non-local reaction traffic model

(21) pt+(pv(p*w77))m = OH('v'apap*wn,zs) _Soff('v'ap)? €T €R7
where Sou (-, -, p, p * wy5) defined in (1.5) or (1.6), Sog defined by (1.3) and initial condition
(2.2) p(z,0) = po(z) € (L' NBV) (R, [0,1]).

From now on we called Model 0 the equations (2.1)-(1.4)-(2.2), Model 1 the equations (2.1)-(1.5)-
(2.2), and Model 2 (2.1)-(1.6)-(2.2). Let us assume the following assumptions:

gon € L®°(RT;RT), gop € L¥(RT;RT).

v € C%(R;[0,1]) v' < 0.
(H1) wy € CH([0,7); RT) with w] (z) <0, [ wy(z)dz =1, ¥n > 0.

wps € CH([6 —n, 6 +n]; RT) with o'(z),5 > 0 for z € [§ —n,0],

W'(x)ps <0 for z €0, +n], and f;fnn wy.s(x)de =1, ¥n > 0.

We recall the definition of weak entropy solution for (2.1).
Definition 2.1. Let py € (L' N BV)(R;[0,1]). We say that p € C([0,T];L(R;[0,1])), with

p(t,-) € BV(R;[0,1]) fort € [0,T], is a weak solution to (2.1) with initial datum po if for any
¢ € CL([0, T[xR;R)

/ / ppr + pVips) dwdt—i—/ / Sonpdxdt — / / Soffgodxdt—i—/po( )p(0,2)dz = 0,
Qon off

where V(t,x) = v((p*xw)(t,x)) and Son is as in (1.5 (1.6).
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Definition 2.2. Let pg € (L'1NBV)(R; [0, 1]). We say that p € C([0, T]; L1(R; [0, 1])), with p(t,-) €
BV (R;[0,1]) fort € [0,T], is a entropy weak solution to (2.1) with initial datum po if for any
© € CL([0, T[xR;R) and for all k € R

T T
| [ o= Hor 1o~ K Vies = sn(o— bpVap)dade + [ [ sgn(p — k)Sumpddad
0 R 0

T
—/ / sgn(p — k)Sogpdrdt + / lpo — k|p(0,z)dz > 0.
0 Jp R

Our main result is given by the following theorem, which states the well-posedness of problem
(2.1) to (2.2) with source term given by (1.5) or (1.6).

Theorem 2.1. Let py € (L* NBV) (R;[0,1]). Assume v € C?([0,1];R). Then, for all T > 0,
the problem (2.1) has a unique solution p € C° ([0, T}; L*(R; [0,1])) in the sense of Definition 2.2.
Moreover, the following estimates hold: for any t € [0,T]

o)l ®) < Ra(t),
0<p(t,z) <1,
TV (p(t)) < e (TV(pO) +t (”qO"”LOO([O,T])JLFII%EIILW<[07T]>)) ’

where

(2.3) Ri = |pollLrw) + qun(.)HLl([QtD - ;ggjﬂ l[gon () (- )1 (f0,17)
- ;&i}?ﬁ g0tz (+) P (-, CU)HLl([o,t]) )

(2.4) H = 2|gonllLe(or)) T l1ottllLee (fo,77) + wn(0)L

(2.5) L = ([[vllLeeo) + 1V lLee(o,1])) -

3. EXISTENCE OF ENTROPY SOLUTION

3.1. Numerical discretization. We take a space step Ax such that n = NAz, for some N € N,
and a time step At subject to a CFL condition which will be specified later. For any j € Z, let
x;_1/2 = jAz be a cells interfaces, z; = ( j—i—%) Ax the cells centers. We consider ramps with length
L and take L = ¢Ax, for some ¢ € Z" such that z,, = Tk 11/2) Ton = Tk, 11/240 Loff = Tk g+1/2
and Toff = g _,y1/24¢, for some k,, kg € Z. With this notation, we define the subdomains
Qon = [Zoys Ton]s Qoff = [Zofrs Tost), and we put QF = [k, +1,k,, + ¢ and Q’gﬂ = lkog + 1, kog + ).
We fix T > 0, and set Ny € N such that NpAt < T < (Np+ 1) At and define the time mesh
as t" = nAt for n = 0,...,Np. Set A = At/Az. The initial data is approximated for j € Z, as
follows:
s
o= Alx/xjjjj po(x)dz.

We define a piecewise constant approximate solution pa (t,z) to (2.1) as

n=0,...,Np—1,
jeZ.

t e [tn, tn+1 |:
(3.1) pa(t,x) = py,  for where
T €]Tj_1/2,Tjt1/2]s

The Sy, terms (1.5) and (1.6) are discretized via

(3:2)  Son ("2, g qon o A RLT) = Aongait 20— (- R,

» *%on,j on,j
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(3:3)  Son ("2 gm0y A RL) = Aongaiy? (1 max {0V RIEAL).

on,j on,j4on,j on,j

The Sy term is discretizated via

1/2 1/2 1/2
(3.4) Soft (tn+1/27$j7QOff7p?+ / ) = log,dog / P?Jr ”,

where we denote

1 [z _

1 Az ijfj//j lon(®)dz,  Zong < Tj < Tonk
on,j —
0 otherwise.
1 [Tj41/2 =
L, =420 fx;_l//? Log(@)dz,  Zogp < 25 < Toff ks
off,j =
0 otherwise.

tn+1 tn+1

1 1
n+1/2 +1/2
O:/ - At/ QOn(t)dtv qgff - At/ QOff(t)dt7

tn tn
The approximate solution pa is obtained via an upwind-type scheme together with operator
splitting to account for the reaction term, see Algorithm 3.1
Algorithm 3.1 (Upwind scheme).

Input: approzimate solution vector {p!}jez fort =1"

dojeZ
n+1/2 n n n n n
(3.5) ijr 2 pPj — /\(Pj U(Rj+1/2) - Pj—lv(Rj—l/Q))
enddo
dojeZ
Sgrj:jl/Q < Son (tn+1/2,xj>,0?+1/2,RZ;C;”) , using (3.2) or (3.3),

S”;;/Q — Sof <t”+1/2,xjjp?+l/2) , using (3.4),

[®)

(3.6) Pl R b ALSIE — A

on,j off,

enddo
Output: approximate solution vector {p}lﬂ}jez fort =t =" 4 At.

n n+1/2
j+1/2° Ron,j

operators in the velocity and source term and they are defined, respectively, by

The terms for j € Z and n = 0,..., Ny — 1 denotes the discrete convolution

[n/Az]-1
R, = Z VP +p+1s
p=0
|52 ]-1
n+1/2 o n+1/2
on,j - ’Wlpj—&-h .
h=1%2)

Here we denote v, = ["7*1/2w,(y — z)dy, for p € [0, [n/Az] — 1] and 4, = [+ w, s(y — x)dy,

Tp—-1/2 Th—1/2

for h € [|(6 —n)/Az], | (0 +n)/Azx] —1].
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Remark 3.1. If 0 < p?+1/2 <1 forall j € Z, then for allmn € {0,..., Np — 1},
HRnHmHL . < 1. Indeed, we have that

S+n_ d4m | _
AIJ 1 \.AZJ 1
n+1/2 A n+1/2 o
’Ronﬁj ‘ < E Yh pj+h+1’ < 5 = 1.
h=l52 h=| 5

+1/2

Remark 3.2. The discrete convolution operator RZHJ

Z ‘Rn+1/2 B Rn—l—l/Z‘ < Z

on,j+1 on,j
JEL JEZ

satisfies

n+1/2  n+l/2
j+1 J )

The proof of this property can be seen in [8] Lemma 3.2.

3.2. Existence of solution Model 1. In order to prove the existence of solution of model (2.1)-
(1.5), in the next lemmas we will show some properties of the approximate solutions constructed
by the Algorithm 3.1.

Lemma 3.1 (Maximum principle). Let pg € L*°(R;[0,1]). Let hypotheses (H1) and the following
Courant-Friedrichs-Levy (CFL) condition hold

(3.7) At < min{ A , L }

(vollv'l[Leeo,17) + [[ollwee(o,17))  ldonllnee o7y + Ndoftllgec jo,77)

then for allt > 0 and x € R the piece-wise constant approzimate solution pa constructed through
Algorithm 3.1 is such that

0 <pa(t,z) <1.

Proof. The proof is made by induction. Let us assume that 0 < p <1 for all j € Z. Consider the
convective step (3.5) of Algorithm 3.1, by CFL condition (3.7) we have 0 < p?H/z <lforjeZ
(see Theorem 3.3 of [15]).

Now focus on the remaining step, involving the source term.

1 +1/2 +1/2 +1/2 +1/2 jnt1/2
P;H_ = p? /+At< Onquljl/Q(l_p? /)<1_Rgnj/>_1 ’quﬁ /p;l />
s 12 1/2 n+1/2

< A Aot (1= 0 = At et ey

1/2 1/2
= (1 At (Tongam + Top gl V%) ) oy T+ Aty a2

1/2
1/ and one.

Because of CFL condition (3.7), the last right-hand side is a convex combination of pj
Then p”'H € [p;bﬂ/ ’1 } and since an/ 2 € [0, 1], we therefore conclude that 0 < p}”l < 1, for
Jj €.

O

Lemma 3.2 (L! — Bound). Let pg € L1(R,[0,1]). Let (H1) and the CFL condition (3.7) hold.
Then, the piece-wise constant approximate solution pa constructed through Algorithm 3.1 satis-
fies, for all T > 0,

lpa(T, ‘)HLl(R) < Cu(T),
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with

(3.8) Ci(t) = HPOHLl(R +HQOHHL1 (0] — mln HQOH( )pA('7$)HL1([O,t})_ min Hquf(')PA('7ﬂf)HLl([o,t})-
TEQog

Proof. For the conservative form of the scheme (3.5), it is satisfied

Now, we going to work L! norm for relaxation step (3.6). By Remark 3.1 and CFL condition (3.7)

p

n+1/2‘

i) 10" lL1 ()

we have

n+1/2

(3.9) Pj

)

+1
P} ‘S

p?+1/2) + At jqit/? (1 -

+1/2 +1/2
P;L / D _Atloﬂquﬁ /

multiplying this inequality by Az and summing over all j € Z we obtain

+1 +1/2 +1/2 ) | n+1/2
™ ey < ’pn : ‘Ll( ) Allon AT Y Long = AT Y Tons 6] ’
JEQ JEQE
+1/2 +1/2
—Atqgﬂ N Z Lo p? / ’
JEQLg
pn+1/2H 1(Qk
_ n+1/2‘ Atg™ /2 (1 H L1(Q5,)
’ P L1(R) + 2on L
+1/2
_Atg n+1/2Hpn / HLl(Q’éff)
L
< Hp HLl(R +Atqn+1/2< — min pn+1/2)
JEQk,
—Atqn+ /% min pﬂ+1/2
7€q
+1/2
= [P ey + Atgg - At moin an e
—At min q7l—~_1/2/)?+1/2
JjE Q

Thus, by a standard iterative procedure we can deduce

HanLl(R) < HPOHLl(R) + H‘JonHLl([o,T]) - xrgé?n [gon (-)pA(:, @ HLl(OT]) - Iélm g0t () pa (- )HLl([O Tl)
O
3.3. BV estimates.

We first prove the Lipschitz continuity of the source terms (3.2) in its second, third and fourth

argument and (3.4) in its second and third argument.

Lemma 3.3. The map Son defined in (3.2) is Lipschitz continuous in second, third and fourth
argument with Lipschitz constant HquHLoo([o,TD, and the map Sog defined in (3.4) is Lipschitz
continuous in second and third argument with Lipschitz constant ||qott ||y, o, 77)-

Proof. Let us start with term (3.2). We denote Son = Son(t, z, p, Ron) — Son(t, Z, p, Ron), then
ISon| < [Son(t, 2, p, Ron) — Son(t, @, p, Ron)|
+ Son(tv €, ﬁ; Ron) - Son(ta z, ﬁu Ron)
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+ Son(ta x, ﬁ: Ron) - Son(ta .’Ii‘, /37 ROH)
= |1an0n (1 - Ron) (ﬁ - P)| + ]-onQOn (1 - [)) (Ron - Ron)

(Lo = o) i (1= ) (1 = )

IN

onllgoe o1 18— #1 + gomlloe o1y [ Bom — o

+ HQOHHL‘X’([O,T}) ‘1011 - 1on‘

ROl’l

+ ‘]-on - ion‘) .

< H%dhw@EDOﬁ—M+-R

Now, we prove the Lipschitz continuity of Syg term (3.4). Denoting
Sof'f = Soff(ta z, ,0) - Soff(ta i’, qoff » ﬁ)a we get

’Soff’ < ’SOH(taxvp) - Sof‘f(ta'%vpa )’ + |Soff(t73~57,0) - Soff(tw%na)‘

= ’]-offqoﬂp - iofooffp‘ + ’ioHQOﬂ”p - iofooffﬁ‘

IN

9ot o (jo,17) (| Lot — Lott| + [0 — A1) ,
Thus, we have completed the proof. 0

The Lipschitz continuity of the source term proved in Lemma 3.3 is one of the key ingredients

in order to prove the following total variation bound on the numerical approximation.

Proposition 3.1 (BV estimate in space). Let py € (L* NBV) (R;[0,1]). Assume that the hy-
potheses (H1) and CFL condition (3.7) hold. Then, for n =0,..., Ny — 1 the following estimate
holds

n n qulleLOo o) T ||‘.70ff||Loo 0.T
Z‘Pj+1—/?j‘§€TH<TV(PO)+T< ([J)L ([0,77) 7

JEZ
with H like in (2.4)

Proof. Let us compute

+1 +1 n+1/2 n+1/2 n+1/2 n+1/2
P?+1 p;l = Pjy1 TP + At [Sonj+1 - Son]

n+1/2 n+1/2
—At |:SOHJ+]. - Soff,] }

By the Lipschitz continuity of the source term proved in Lemma 3.3 and the property of the

discrete convolution operator given in Remark 3.2, we get

Zﬁﬁpﬁ1SQ+ mmmm>2p

JEZ. JEZ

n+1/2  n+1/2
j+1 Pj

+At ”qOHHLOO([O,T]) Z ’]-on,j-i-l - ]-on,j
JEQE,

+A {|gon [l oo (0,1)

n+1/2 _ pntl/?2
on,j+1 ~ “lon,j

JET

u%mummT>§j

JEZL

n+1/2 n+1/2
pj—}—l
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At
7 ot llpoe o) > o1 — Lol

jerH
At n+1/2 n+1/2
< <1 + 7 (2 ldonlle o,z + ||qoff||wo,m)> Sl = ot
jez
+At {|gon [l oo (0,17) Z [Lon,j+1 = Lon,;
JEQ,
+A|got oo oy Y, Lot g1 — Lot
jeQOff
At n+1/2 n+1/2
< <1 + 7 (2 1gon | 0,77y + quffHLoo([o,T]))> Sl =
jez
Gon||1,o0 + ot || 1,00
(3.10) LA (H onlles (j0,) . ot |1, ([o,:r])>‘

Now, for convective part (3.5) we follow [15] and get

+1/2 +1/2
= < (L A, 00) Y [ —
JEZ

with £ = ([[v]lLee(o,) + [1V'[Lee (fo,17)) -
Plugging the inequality above in (3.10) we obtain

>

JEZ

P — PjH‘ < (1 Tt (2 [[gon [l (jo,77) + H‘JoffHLoo([o,T})>> (1+ Atw,(0)£) Z P51 — P
jEZ

on oo + oo
. <||q Il (f0,17) . g0t Iy, ([O,T])> |

which applied recursively yields

on ||,00 + 1196 oo
(B11) Y | —pf] < e (TV(po)+T<Hq I <[07T1>L”q il ([0,T1>>>7
JEZ

with # = 1 (2 l[gon [l .0 (jo,77) + quffHLoo([o,T})) +wy(0)L .

Proposition 3.2 (BV estimate in space and time). Let hypotheses (H1) hold,
po € (LY NBV) (R;[0,1]). If the CFL condition (3.7) holds, then, for every T > 0 the following

discrete space and time total variation estimate is satisfied:
TV (pa;[0,T] x R) < TCu(T),

with

”qorlHLOO H%HH oo
TH ([0,7) Lee([0,77)
Cuo(T) = e <(1 +2L) (TV(pO) +T ( s

Gon||1,00 + [|Qoff || 1,00 |Gon || 1,00
(3.12) +<H L ([o,T])L| L ([O’TD>C1(T)+|LL([O’TD.
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Proof.
Np—1
N
TV(pa; [0, T] xR) = Z ZAt‘Pﬁ-l P]|+ (T' — NrAt) Z‘pﬁrl PjT
n=0 j€eZ JEZ
Np—1
L3 S aaln g
n=0 jEZ
By BV estimate in space (3.11), we have
Np—1
N,
S S At - ] (- NeA) o -
n=0 jeZ JEL
q o0 + 119oft || 1,0
(3.13) < T (TV(P0)+T (” onlr~(o.ry L” ol ([O’T”>>.

On the other hand, observe that

ntl n+1/2

Pj ‘ +lp n+1/2

(3.14) ‘p"“ — 0

— 0|
We then estimate separately each term on the right hand side of the inequality (3.14).
By the definition of the relaxation step (3.6), for the first term on right hand side of (3.14) we have

Pyt — p}”m’ < At|SnR - s
< Atlon g2 (1 _ p?+1/2> (1 _ RZL}/z) I Atloﬁ,]q2§1/2p§+1/2
+1/2 1/2
(3.15) < At|gonlLee (jo,17) (1011,] + lon,; P? / D + Atlog ”quf”Loo ((o,1)) |P n+ / )

then multiplying by Az and summing over all j € Z,

n n 1/2 n+1/2
Aycz o +/ < At qunHLoo([o,T]) Az Z 1onj + Az Z Lon,j pj+/ ’
Jet ek, JEOk,
n+1/2
+AL|got | oo o7y AT Y Tofi g ‘P o ‘
jeQks
o2,
p 1(R)
< At HQOHHLOO([O,T]) (1 + L)
P2 |
+AL || qoft || 00 ([0,77) I &
1" lp1 (= o™ L w
= At |gonllg o) (HL“ + At aotelloe o1 ~— 1
[gon |0 jo,77) + 1ot | Loe (0.7 n [[@on | Lo 0,7
(3.16) _ At( o * 01D ) g gy + e L2el=0)

Now we analyze the second term of the right hand side (3.14). Since the numerical flux defined
in (3.5) is Lipschitz continuous in both arguments with Lipschitz constant £, defined by (2.5), we
obtain

n+1/2 n
i TP

= ‘ Si1/2(07, ]+1/2)—Fj—1/2(P?—17R?—1/2)‘

AL (\pj — Pl + ‘R?H/z - R?—1/2D ’

IN
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multiplying by Az, summing over all j € Z and by the Remark 3.2 we get

Acd |0 oy < 2eaeY o) — o]
i/ JEZ

(3.17) = 2LALY |of - o)
JEZ

Collecting together (3.16) and (3.17), and by using Lemma 3.2 and Proposition 3.1 we have,

l[on [l 1, + [|goft I, [gon]| 1,
ntl _ ([0,71) Lo ([0,77) n Lo ([0,77)
Az ot < At( - "l gry + At
JEZ
+2£Atz ‘,0?“ — p’;‘
JEL
Gon ||1,00 + 19off || o Gon ||1,00
o (V=g ooty Y o g o Wl goy
L L
T 1gonlI e (jo,77) + [1ott lLoo (f0,77)
(3.18) 2L Ate™ [ TV (po) + T - .
Then, collecting together (3.13) and (3.18) we get
Np—1
> At = |+ (T = NrAD Y o — o] \+ ZAw wl
n=0 jeZ JEL n=0 jezZ

Gon ||1,00 + 119 S
« 1o (rvimy o mn Hasozn)

q n oo + qO o q n [e el
s (H o HL ([o,77) - ” ﬁ‘HL ([O,T])> C(T) +TH o HLL ([O,T})‘

3.4. Discrete Entropy Inequality.
We define, for x € [0,1],

Gjt12(uVK) =uwo(Rjt1y2),  Fip0(w) = Gjpape(uV k) = Gipp(u A k),
with a V b = max{a, b}, and a A b = min{a, b}.

Lemma 3.4. Let py € (L' NBV) (R;[0,1]). Assume that hypotheses (H1) and CFL condition
(3.7) hold. Then, the approximate solution pa constructed by Algorithm 3.1 satisfies the following
discrete entropy inequality: for j € Z, forn=0,..., Ny — 1 and for any € [0, 1],

‘p?H ‘ |pj — K] + A ( j+1/2 () - SF§'€+1/2 (P?—1))
e (1) (s () ()

+Asgn ( ntl /{) K (v (R?+1/2) —v (R?—1/2>> < 0.

Proof. We set

Gj(u,w) = w—A(Gji12(w) — Gj_1/2(u))
= w—X(wv(Rj41)2) —wv(R;_1/2)) -
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1/2
Clearly p /% = G(o7_,, 7).

The map §; is a monotone non-decreasing function with respect to each variable under the CFL

condition (3.7) since we have

09
T 1= Av(Rjy12) 20,

Moreover, we have the following identity

09 _

Ev AM(R;_1/2)-

Gi(Pior Vs 5V R) = Gy V s A R) = [0 = k| = A (Th s (0F) = FEy g (10))
Then, by monotonicity, the definition of scheme (3.5) and by using |a + b| > |a| 4 sgn(a)b, we get

9j(p§L_1 VK, p? \ H) - 9](pgl—l VK, P;L A Kj)

> G(pi_1,07) V Gj(k, k) = G5(pi_1,p7) A Gj(K, k)
= 1850, ) — G )|
= P?H/Q — Gj(k, "1)‘
n n+1/2 pntl/2 n n+1/2
At (Son (t T2 g, o2 RTY ) — Soft (t 2,y >> '
> p;?“ — /i‘ + Asgn (,0?4rl — KJ) K ('U(R?+1/2) - U<R§'L71/2)>

—Atsgn (p?+1 _ K) (Son (tn+1/2,mj,p?+1/2 Rn+1/2) S (th/Q’xj,p?H/Q)) ‘

» ~on,j

O

The following Theorem states the L!-Lipschitz continuous dependence of solution to (2.1) on

both the initial datum and the ¢o, and ¢og functions.

Theorem 3.1 (Uniqueness). Let p and p be two solutions to problem (2.1) in the sense of Definition
2.2, with initial data py, po € LYNBV (R;[0,1]) respectively. Assume v € C2([0,1],R). Then, for
a.e. t €10,T],

o) = p)lLrw) < " (HPO = pollr ) + [lgon = donllLr(jo.) + g0 — (joffHLl([O,T])) :

Proof. The proof follows closely Theorem 5.6 of [8].

By using Kruzkov’s doubling of variables technique we get
T T
6T = HT ey < ool + [ [ [Sonfwaes [ ]
0 JQon 0 JQug

T T
4 / / V] 9ap(t, 2)| dardt + / / Vul lo(t, 2)] dadt,
0 R 0 R

on — Son (t> Ly fon, P, Ron) - Son (t; Z, C’jona ﬁ’ Ron) s

Son Soff dxdt

where

Soff = Soff (ta T, don, P) — Soff (t, T, Qon, ,5) >
v(R) —v(P),
Vi = 0zv(R)— 0;v(P)
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Let us now estimate all the terms appearing in the right hand side of the above inequality. We

start bounding Son and Soﬂ»‘ terms:

T B T
] |Sufasae =[]
O on O on
T
f g, (s
0 Qon

S(}n = SOII (t7$7q0n7p7 ROH) - SOH <t,l'7qu,p7 ROH) )
Sgn = Son (tawv qon; P, ifion) — Son <t7377 on; P, ROn) )

Sgn = Son (tal'a Gon, Ps Ron) — Son (tyl'a Gon> P, Ron) .

dxdt

Son (ta T, Gon; P, Ron) — Son (ta Z, Gon, P, Ron)

IN

3 ) dadt,

where

First we going to bound Sén term ,

LonGon (1 — p) ((1 — Ron) — (1 - RO“)) ‘

qunHLOO([OT]) =
= T‘ROH_ROH7
thus
T
Gon || 1,00
// < [[gon |y, (OT]// R — R | dzdt
0 Qon on
= ”qonnLoo OT])/ HROH Ron .
- L 0 L (Qon)

Observe that
HRon - Ron < ||p(t7 ) - ﬁ(tv ‘)HLl(Qon) )

since [p wy(z)dz = 1. Then,

L1 (Qon)

llgonll oo,y [T 5
on 0
donllpee o7y [T 5
< L([])/o ot ) — At )L ) dt.

Now we going to bound S2,.

1an0n (1 - Ron) (1 - :0) (ﬁ - p)
HQOnHLOO([O,T])
- L
Integrating in time and space we have

T l[gon [l oo (0,7 T ~
| Jsafasar < FEEEED o) el dt

gonllgoe oy (7 5
A /0 lp(t, ) = Alt, )l ) dt-

lp—pl.

Bounding S3

on?’

Lon (1= 7) (1= Ron) (Gon — Gon)

on
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IQOn _Cjon‘
s T
thus

S3,| dadt

IN

1 T
Z / / |QOn - QOH‘ dxdt
0 on

qun - (jonHLl([O,T}) .

T
o
Therefore, we get the following estimate

T
T

(3.19) < 2|gon|[ L ([0,17) /0 ot ) = ot )llLr gy At + llgon — Gon I (jo,77) -

IN

Son| dzdt

Regarding So term, we proceed in a similar way like above and we get

Soff = flofquffP - 1offq~offﬁ‘
< (S| + (8%

where

S;f—f = Soff (ty X, qoff, P) - Soff (t7 T, qoff, ﬁ) 5

ngf = Soﬂ (t7 X, qoff, ﬁ) - Soﬂ (t7 x, QOffa ﬁ) .
Then,

T T
~ qoff || 1,00
[ [Stafamar < Mm@ [y a
0 JQom L 0 °
HqufHLoo 0,1 T -
< FEEEEOID [Tt~ plt, s ge dt
0
and
T ~

/ / ngf‘ dadt < ||go — ‘joffHLl([O,T]) :

0 Qo
Thus, we get

T
/ / |Sofr| dadt
0 Qoﬂ
”%HHLOO 0,T T - -

(3.20) < ———0d /O ot ) = () o ey 42 + ot — o s 0.7

Next, focus on V, by using the following estimate

VI < (O [0/ o 0,1 N0t ) = A8 ey

we obtain

T
| [vl10uptt.2) azat
0 R

T
(3.21) < wy(0) HU,HLOO([O,I]) ts[‘él;] llo(t, ')HTV(R)/O lo(t, ) = p(t, ) llpr ) dt.
€10,

Next, we pass to V. Following [8] we compute
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2 ~
Val < (2000 10"l oy * 1 oy 18l o ) 10 ) = A8 gy
+wn (Ol (o, (o = A1 (£, + 1) + |o — 5] (t,2))
thus
T T
(3.22) [ [ oelioteaiasde < w [ ate) = ot ey
where

W= (2 (wn(0)) HUHHLOO([OJ]) + Hv,HLOO([O,l]) H“%HLoo([o,ﬂ)) C1(t) + 2wy (0) HUIHLOO([O,I]) :
Collecting together (3.19), (3.20), (3.21) and (3.22) we get

1o(T,) = (T, lprwy < llpo = pollpr gy + (H%n — GonllL (o, + gt — ‘joffHLl([O,t})>

(3.23) ‘e / 10t ) = (t, g gy

where

(3.24) C = 2 HquHLoo([o,T]) + ||quf||Loo([0,T]) + wy(0) HUIHLOO([O,H) tes[%%] [o(t, ')HTV(R) +W

An application of Gronwall Lemma to (3.23) completes the proof. U

3.5. Proof of theorem 2.1. The convergence of the approximate solutions constructed by Al-
gorithm 3.1 towards the unique weak entropy solution can be proven by applying Helly’s com-
pactness theorem. The latter can be applied due to Lemma 3.1 and Proposition 3.2 and states
that there exists a sub-sequence of approximate solution pa that converges in L! to a function
p € L>®([0,T] x R;[0,1]). Following a Lax-Wendroff type argument, we can show that the limit
function p is a weak entropy solution of (2.1) in the sense of Definition 2.2. Together with the

uniqueness result in Theorem 3.1. this concludes the proof of Theorem 2.1.

3.6. Existence for Model 2. In this section we consider the problem (2.1) with the S, (1.6).
In Algorithm 3.1 we substitute S,, term in the reaction step (3.6) by (3.3), thus now the term
(3.6) is given by

(3.25)0?“ n+1/2+At10nqu;1/2( maX{p;L—H/Q RZ:,;M}) Atlog g :;—1/210?4-1/2

Lemma 3.5 (Maximum Principle). Let pg € L>(R; [0, 1]). Let hypotheses (H1) and CFL condition
(3.7) hold, then for allt > 0 and x € R the piece-wise constant approzimate solution pa constructed
through Algorithm 3.1 is such that

0<pa(t,z) <1.

Proof. The prootf is made by induction. We assume that 0 < pj <1 for all j € Z. Consider the
step (3.5) of Algorithm 3.1, by CFL condition (3.7) we have 0 < an/z <1 forjeZ.

Now focus on the remaining step, involving the source term.

pyﬂ _ pn+1/2 4 Aton g1/ (1 — max {P;LH/Q,RZI,;/QD B At10ﬁ,Jq§§1/2pj+l/2
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n+1/2 +Rn+l/2 pn+1/2 . Rn+1/2

i1/ j on,j j on,j

n+1/2 1—

= + Atlon 5] jdon

_ At n+1/2 n+1/2

off,j 4o Pj
1/2 At 1 2 At 1/2
- p;-H_ / + At]—on,]qzzr—li_lm 710n,]qgr—1i_l/2p;l+ / 10Hqu;_1/2RZr—:]/
At
+1/2 | n+l/2 n+1/2 n+1/2 n+1/2
_710n,qun / 10] on] ‘ - At]‘ 7j off p]
1/2 At 1 2 At 1/2
< A Aol = T el = T e el R
At T1/2| At +1/2 +1/2 nt1/2
+—Lon, nrj_ R:n,j/ ‘ - 710n,qun—i_1/2 P7'I / ) Atlog ff,j 4 fo / p;l /
+1/2 +1/2 +1/2 n+1/2
= Pn / +Atlonquj1/2 Atlonquil/%? / — Atl, quff /10? /
1/2 1/2
e St (o oY) 7+ Mg
now we can proceed as in Lemma 3.1. O

Lemma 3.6. Let py € L1(R,[0,1]). Let (H1) and the CFL condition (3.7) hold. Then, the piece-
wise constant approximate solution pa constructed through Algorithm 3.1 satisfies,
[oa ()]l m) < Ca(t),

where Cy like in (3.8).

Proof. By (3.26) and CFL condition (3.7) we have

pr;+1/2‘) ~ At qu;fﬂ/z pn+1/2

J J ’

pgz-i-l‘ <

p?“”’ + Aty jqit 1/ (1 -

this cases reduce to (3.9) and we can proceed as in Lemma 3.2. ]
3.7. BV estimates.

Lemma 3.7. The map Son given in (3.25) is Lipschitz continuous in second, third and fourth

argument with Lipschitz constant ||qon||y,e (o 17)-

Proof.
Son(t; @, p, Ron) = Son(t, ,p, Ron)| < S1+ Sz + Ss,
where
S1 = |Son(t,,p, Ron) — Son(t, x, p, Ron)|
Sy = |Son(t, =, 5, Ron) — Son(t, 2, p, Ron)

S3 = Son(taxaﬁaRO) Son( i’ﬁ»Ron)-

by the definition of S,, term we have

St < ol oy [1 = 1m0 (5 Ron) — (1 e {5, Fon)|

= qun”LOO([O,T])

max {7, Ron} — max {p, Ron} ]
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HQOHHLOO 0,7 | ~ ~
= 2([’])p+Ron+‘pRon|(p+R0n+|pRon|)‘

Hqu”Loo 0,7)) | ~ o
= —([,])p_p+|p_Ron’_’p_R0n‘

2
qun”LOo 0.7) | - -
< 05— o+ 15— ol + lo=—Feal - lo—Feal
Hqu”Loo 0,7 - -
< 22RO (15— o+ 15— pl)

2
= Hqu”Loo([o,T]) 1p—nl

Pass now to Sa:

S < ||QOnHL°°([0,T}) max {ﬁ, ROH} — max {ﬁa Ron}
HQOHHLOO([O,TD - > -5 ~ ~
= f P+Ron+ ‘p_Ron - (p+R0n+|p_ROHD
[ gonLoe jo,17) | 5 . 5 _
== fRon_Ron'f_‘p_Ron _|p_ROH|
[ gonl Lo j0,17) | 5 N . _
- 2 Ron — Ron + ’P_ROH+ROH_ROH — [ — Ronl
Gon || 1,00 ~ ~
< ”HL2“0TD Ron — Ron + |[p=Ron] + ]ROH—ROn — |p—Rom
< 1gonllree (jo.79) [Bon — Ron| -

Next, we analyze the S term:

S3 = |1lonGon (1 — max {ﬁ, Ron}) — ion%n (1 — max {ﬁv Rm}) '

HQOH||L<>O([(]7T]) 1on — 1op max {ﬁ’ Ron} - ion + ion max {ﬁ) Ron} ’

) (Lon = Ton)

10n - ion

IN

N T
= Naonllzoe oy [Lon = Ton = 5 (74 Bon + [~ Ron

1/, = ~ -
< Mol |1~ 5 (7-+ o - [ +181)

= lldonllyoe(po7y) [Ton = Ton| 11 = 4l

IN

HqOHHLOO([(LT]) ‘1on - ion} .
(I
Proposition 3.3 (BV estimate in space). Let pp € (L' NBV) (R;[0,1]). Assume that the hy-

potheses (H1) and CFL condition (3.7) hold. Then, for n =0,..., Ny — 1 the following estimate
holds

I gonll Lo jo.77) + 190t I o0 (0.7
Z}p?+1_p?‘§eTH<TV(pO)+T< oy * AR

JEZ
with H like in (2.4).

Proof. Due to the results obtained in Lemma 3.7, the proof is analogous to that one of Proposition
3.1. O



18 F. A. CHIARELLO, H. D. CONTRERAS, AND L. M. VILLADA

Proposition 3.4 (BV estimate in space and time). Let hypotheses (H1) hold, py € (L* NBV) (R; [0,1]).
If the CFL condition (3.7) holds, then, for every T > 0 the following discrete space and time total

variation estimate is satisfied:
TV (pa;[0,T] x R) < TCyu(T),
with C(T') defined in (3.12).

Proof. For this proof we need to compute the following estimate,

A i I L
< Atlonj [|9onllnee oy |1 — % <pv]z+1/2 LRIV | RZE/zD‘
T Ao j 1goft | oo o, 77) | n+1/2‘
< Atlon l[gonlluee(o,ry |1~ *( P B B ) ‘
+ At Lot laoft o= oy |57
< Alon; laonlloe oy (1+ |65 7%]) + AL ot loe oy ||

+1/2 +1/2
< AtHQOnHLOO([O,TD (10n,] + 1on,] P;l / D + At ||QOff||Loo ([0,7) off,] Pn / )
this case reduces to (3.15).
The rest of the proof is analogous to Proposition 3.2. U

4. NUMERICAL EXPERIMENTS

In this section we present some numerical examples to describe the effects that the ramps have
on a road. We solve Model 1 and Model 2 by means Algorithm 3.1 with the terms S, (3.2) and
(3.3), respectively. In all numerical examples below, we consider one on-ramp and one off-ramp,
both ramps with length L = 0.1, the on-ramp is located from z = 1.0 until x = 1.1, the off-ramp

is located from x = 3 until = 3.1 and we consider the following kernel functions

n—x
wy(z) = 2 e

116 5/2
anale) = e (= =0,

for convective and reactive term respectively, with n € [0, 1] and § € [—n, 7).

4.1. Example 1: Dynamic of Model 1 vs. Model 2.

In this example we show numerically the behavior of the density of vehicles in a main road with
the presence of one on-ramp and one off-ramp. We solve (2.1) numerically in the interval [—1,9] in
simulated times T'= 0.5, T =2, T =5, T = 7. We consider Az = 1/1000, n = 0.05, § = —0.01,
a constant initial condition py(x) = 0.3, and the rate of the on- and off-ramp are given by gon(t) =
1.2, qog(t) = 0.8, respectively.

In Fig.2 we can see that when vehicles enter the ramp, the density of vehicles on the main road
increases and a shock wave with negative speed is formed, after that, a rarefaction wave appears

and when some vehicles leave the main road through off-ramp a shock wave with positive speed is
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formed. In particular we can observe a difference between the maximum density that is reached in

each model, which may be due to the presence of the term 1 — p in the Model 1.

(a) (b)

0.8 0.8

i

il

= 0.6 = 0.6 !
= R i
< < I
S04 204 i
-

1 " 1F i i i ‘ 7
——Model 2 Model 2
""" Model 1 -----Model 1
0.8 1 87 P 1
—~ 0.6
8
<
<4
<04
0.2 0.2
0
0 . .
0 2 4 6 0 2 4 6
x xr

Figure 2. Example 1. Numerical approximations of the problem (2.1). Dynamic
of Model 1 vs. Model 2 at (a)T' = 0.5, (b)T' =2, (¢)I' =5, ()T =T7.

4.2. Example 2: limit n — 0 in Model 2.

In this example we take a look at the limit case n — 0 and investigate the convergence of the
Model 2 to the solution of the local problem (1.1)-(1.3). In particular, we consider the initial
condition pg(x) = 0.3 for = € [0,1], gon(t) = 1.2, gox(t) = 0.8 at T" = 5 with fixed Az = 1/1000
and 1 € {0.1,0.05,0.01,0.004}, and § = 0. To evaluate the convergence, we compute the L!
distance between the approximate solution obtained for the proposed upwind-type scheme by means
Algorithm 3.1 with a given n and the result of a classical Godunov scheme for the corresponding
local problem. In Table 1, we can observe that the L! distance goes to zero when n — 0. The

results are illustrated in Fig.3.

n 0.1 0.05 | 0.01 | 0.004
L1 distance | 2.8¢-1 | 1.6e-1 | 3.6e-2 | 1.1e-2

Table 1. Example 2. L! distance between the approximate solutions to the
non-local problem and the local problem for different values of n at T' = 5 with
Az = 1/1000.
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Local RTM

Figure 3. Example 2. Numerical approximations of the problem (2.1) at 7' = 5.
Comparison of local and non-local versions of the model (2.1) with § = 0 and

different values for 7.

4.3. Example 3: Maximum principle.

In this example we verify that the Algorithm 3.1 with the terms S,, (3.2) and (3.3) satisfy the
maximum principle, i.e., we verify numerically that Lemmas 3.1 and 3.5 respectively, are fulfilled.
On the other hand, we also verify that the Algorithm 3.1 with a discretization of the term Sy,
(1.4), which we called Model 0, does not satisfy a maximum principle. For this purpose we consider

the initial condition given by

{01 st
a:‘ pr
po 0.9 if z>1.1,

don(t) =1, qog(t) = 0.2 at T = 0.3, with Az = 1/100, n = 0.05, and 6 = —0.01. We can see in
Fig.4 (a) that the Model 0 does not satisfy a maximum principle unlike Model 1 and Model 2. The
Fig4 (b) is a zoom of (a) in which we can appreciate in a better form that Model 0 does not satisfy

a maximum principle.

(a) (b)

1.2
1 1.1
0.8+
® o
2061 =
A <
SN S
0.4+
09+
02+ Model 2|/ ——Model 2
----- Model 1 —-—-—Model 1
0 Model 0 Model 0
-1 0 1 2 3 0.9 1 1.1 1.2 1.3
x T

Figure 4. Example 3. Numerical approximation at time 7' = 0.3. (a) Model 1,
Model 2 satisfying a maximum principle and Model 0 not satisfying a maximum

principle. (b) Zoom of a part of (a).
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4.4. Example 4: Free main road.

In this example we consider a free main road, i.e, we consider a initial condition py = 0, boundary
conditions po(t) = 0.4 for all ¢ > 0 and absorbing conditions at x = 5. We also consider the rate
of the on-ramp gon(t) = 3 (sin(rt) + 1) and the rate of the off-ramp go(t) = 0.2. We solve (2.1)
numerically in the interval [—1,5] in different times, namely T'=1, T =2, T =5, T = 7 and
consider Az = 1/1000, n = 0.1, § = —0.02. In Fig.5 we can see the dynamic of the model 2.1
approximated by means of Model 1 and Model 2.

(a) (b)

Figure 5. Example 4. Dynamic of the model (2.1). Behavior of the numerical
solution computed with Algorithm 3.1 by means of Model 1 and Model 2 at time
(a)T'=1,(b)T' =2, ()T =5, (d)T =7.

5. CONCLUSION AND PERSPECTIVES

In this paper we introduced a nonlocal balance law to model vehicular traffic flow including on-
and off-ramps. We presented three different models called Model 0, Model 1 and Model 2 and
we proved existence and uniqueness of solutions for Model 1 and Model 2. We approximated the
problem through a upwind-type numerical scheme, providing a Maximum principle, L1 and BV
estimates for approximate solutions. Numerical simulations illustrate the dynamics of the studied
models and show that Model 0 does not satisfy a maximum principle. A limit model as the kernel
support tends to zero is numerically investigated. In a future work, we would like to consider a

nonlocal version of second order model proposed in [21].
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