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A pseudostress-based mixed-primal finite element method for
stress-assisted diffusion problems in Banach spaces

Gabriel N. Gatica, Cristian Inzunza,
Filander A. Sequeira

PREPRINT 2022-02

SERIE DE PRE-PUBLICACIONES





A pseudostress-based mixed-primal finite element method

for stress-assisted diffusion problems in Banach spaces∗

Gabriel N. Gatica† Cristian Inzunza‡ Filánder A. Sequeira§

Abstract

In this paper we consider the system of partial differential equations describing the stress-assisted
diffusion of a solute into an elastic material, and introduce and analyze a Banach spaces-based
variational approach yielding a new mixed-primal finite element method for its numerical solution.
The elasticity model involved, which is initially defined according to the constitutive relation given
by Hooke’s law, and whose momentum equation holds with a concentration-depending source term,
is reformulated by using the non-symmetric pseudostress tensor and the displacement as the only
unknowns of the associated mixed scheme, in addition to assuming a Dirichlet boundary condition
for the latter. In turn, the diffusion equation, whose diffusivity function and source term depend
on the pseudostress and the displacement of the solid, respectively, is set in primal form in terms
of the concentration unknown and a Dirichlet boundary condition for it as well. The resulting
coupled formulation is rewritten as an equivalent fixed point operator equation, so that its unique
solvability is established by employing the classical Banach theorem along with the corresponding
Babuška-Brezzi theory and the Lax-Milgram theorem. The aforementioned dependence of the
diffusion coefficient and the subsequent treatment of this term in the continuous analysis, suggest
to better look for the solid unknowns in suitable Lebesgue spaces. The discrete analysis is performed
similarly, and the Brouwer theorem yields existence of a Galerkin solution. A priori error estimates
are derived, and rates of convergence for specific finite element subspaces satisfying the required
discrete inf-sup conditions, are established in 2D. Finally, several numerical examples illustrating
the performance of the method and confirming the theoretical convergence, are reported.
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1 Introduction

The so-called stress-assisted diffusion models, which refer to diffusion processes in deformable solids,
are present in diverse applications, which include, among others, diffusion of boron and arsenic in
silicon [22], voiding of aluminum conductor lines in integrated circuits [26], sorption in polymers [23],
damage of electrodes in lithium ion batteries [3], and anisotropy of cardiac dynamics [7]. The usual
assumptions in most of these models are, on one hand, that the solid follows an elastic regime, and on
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the other hand, that the diffusion obeys a Fickean law enriched with further contributions arising from
local effects by exerted stresses. Mathematically, this second hypothesis means that the respective
diffusion coefficient is a continuous function depending precisely on the stress, which acts then as a
coupling variable.

While many contributions on the modelling of stress-assisted (and even strain-assisted) diffusion
problems are available in the literature, the same can not be said of the corresponding mathematical
and numerical analyses of them, which are rather scarce. Indeed, for the first of the latter issues we
can mention the recent works [21], [25], and [12], which deal with a general local-global well-posedness
theory for static and transient problems via a primal formulation, homogenization of concentration -
electric potential systems, and multiscale analysis of the deterioration of binder in electrodes, respec-
tively. In turn, concerning the second of those issues, and up to our knowledge, we can only refer
to [16] and [17], where mixed-primal and fully-mixed finite element methods have been introduced
and analyzed to numerically solve the stationary problem describing the diffusion of a solute into an
elastic material. This diffusion-deformation model is represented by the linear elasticity equations
along with a diffusion equation whose function of diffusivity depends on the Cauchy stress of the solid.
Further interactions between them are given by the corresponding source terms, which depend on
the concentration and the displacement, respectively. In other words, the diffusing species affects the
behavior of the solid, whereas the displacement of the latter influences the solute concentration, both
through the corresponding external forces, thus yielding a two-way coupled system.

Regarding further details on [16] and [17], we first notice that the approach in [16] follows the usual
methodology for the dual-mixed formulation of the linear elasticity problem (cf. [6], [14]), so that the
symmetry of the Cauchy stress is imposed weakly through the incorporation of the tensor of solid
rotations as the corresponding Lagrange multiplier. In contrast, a primal formulation is employed for
the diffusion equation. The well-posedness of the resulting coupled variational formulation is addressed
by means of a fixed-point strategy and by applying the Lax-Milgram lemma, the Babuška-Brezzi
theory, Sobolev embedding theorems, and suitable regularity estimates. In this way, the Schauder
and Banach fixed-point theorems allow to establish existence and uniqueness of continuous solution,
respectively. An analogue reasoning is applied to analyze the associated Galerkin scheme and an
augmented version of it (for the elasticity equations only), thus deriving existence of discrete solutions,
as well as corresponding a priori error estimates and rates of convergence, by employing the Brouwer
theorem and a Strang-type lemma.

In turn, while keeping the same dual-mixed scheme for the elasticity equations, an augmented
mixed formulation instead of the primal one from [16] is utilized in [17] for the diffusion equation. In
addition, similarly to previous works (see, e.g. [19]), the concentration gradient and the diffusive flux
are introduced as further unknowns for a more suitable treatment of the nonlinearity arising from the
stress-dependent diffusivity. The rest of the continuous and discrete analyses in [17] follows by applying
basically the same theoretical tools utilized in [16]. In particular, we highlight that two families of
finite element subspaces yielding stable Galerkin schemes are proposed, namely either PEERS or
Arnold-Falk-Winther elements for elasticity, and Raviart-Thomas and piecewise polynomials for the
mixed formulation of the diffusion equation. We end our discussion on [16] and [17] by pointing
out that a significant drawback of their approaches is given by the use of a regularity result for the
uncoupled elasticity problem (cf. [16, Theorem 2.4]), which is valid only for convex domains in 2D.
In this regard, we remark that the need of this result arises from the handling of the stress-dependent
diffusion term when trying to prove a Lipschitz-continuity property of one of the components of the
continuous fixed-point operator.

According to the above discussion, and in order to overcome the aforementioned drawback, we
have recently realized that the required Lipschitz-continuity property can be established, without any
regularity nor convexity assumptions for the linear elasticity problem, by previously restating the
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whole coupled variational formulation in terms of suitable Lebesgue and Sobolev-type Banach spaces.
Moreover, the continuous and discrete analyses can be carried out in this case without employing
any augmentation procedure, thus simplifying the computational complexity of the resulting discrete
scheme. The purpose of the present work is precisely to introduce and analyze, at the continuous
and discrete levels, this new Banach spaces-based formulation for the stress-assisted diffusion problem
studied in [16] and [17]. In doing so, we will resort to some of the results provided in our recent
related works [18] and [20]. Moreover, because of greater interest in applications, we consider the
nearly incompressible case in linear elasticity, and for sake of further simplicity of its analysis, we
adopt a pseudostress-based approach instead of the usual stress-based one.

The rest of the paper is organized as follows. Required notations and basic definitions are collected
at the end of this introductory section. In Section 2 we introduce the stress-assisted diffusion model and
reformulate the elasticity problem in terms of the non-symmetric pseudostress tensor. The continuous
formulation is derived in Section 3, and its solvability is studied by means of a fixed-point strategy
that arises after decoupling the model into the elasticity and diffusion problems. In turn, the well-
posedness of each one of the latter is deduced by applying the Babuška-Brezzi theory in Banach
spaces and the classical Lax-Milgram theorem, respectively, whereas the unique solvability of the
whole coupled model is concluded thanks to the Banach fixed-point theorem. In Section 4 we consider
arbitrary finite element subspaces, assume that they satisfy suitable stability conditions, and employ
the discrete version of the fixed-point strategy introduced in Section 3 to analyze the solvability of the
associated Galerkin scheme. In this way, and along with the corresponding versions of the theoretical
tools employed in Section 3, a straightforward application of Brouwer’s theorem allows us to conclude
the existence of discrete solution. An a priori error estimate in the form of Cea’s estimate is also
derived here. Next, in Section 5 we restrict ourselves to the 2D case and introduce specific finite
element subspaces satisfying the theoretical hypotheses that were assumed in Section 4. Actually, the
latter refer only to a couple of discrete inf-sup conditions for the elasticity equation since any finite
element subspace will work for the diffusion model. The lack of a required boundedness property for a
particular projector involved stops us of extending the analysis from Section 5 to the 3D case. Finally,
several numerical results illustrating the performance of the method and confirming the theoretical
rates of convergence provided in Section 5, are reported in Section 6.

Preliminary notations

Throughout the paper, Ω is a bounded Lipschitz-continuous domain of Rn, n ∈
{

2, 3
}

, which is star
shaped with respect to a ball, and whose outward normal at Γ := ∂Ω is denoted by ν. Standard
notation will be adopted for Lebesgue spaces Lt(Ω) and Sobolev spaces Wl,t(Ω) and Wl,t

0 (Ω), with
l ≥ 0 and t ∈ [1,+∞), whose corresponding norms, either for the scalar and vectorial case, are denoted
by ‖ · ‖0,t;Ω and ‖ · ‖l,t;Ω, respectively. Note that W0,t(Ω) = Lt(Ω), and if t = 2 we write Hl(Ω) instead
of Wl,2(Ω), with the corresponding norm and seminorm denoted by ‖ · ‖l,Ω and | · |l,Ω, respectively. In
addition, letting t, t′ ∈ (1,+∞) conjugate to each other, that is such that 1/t+1/t′ = 1, we denote by
W1/t′,t(Γ) the trace space of W1,t(Ω), and let W−1/t′,t′(Γ) be the dual of W1/t′,t(Γ) endowed with the
norms ‖ · ‖−1/t′,t′;Γ and ‖ · ‖1/t′,t;Γ, respectively. On the other hand, given any generic scalar functional
space M, we let M and M be the corresponding vectorial and tensorial counterparts, whereas ‖ · ‖ will
be employed for the norm of any element or operator whenever there is no confusion about the spaces
to which they belong. Furthermore, as usual, I stands for the identity tensor in R := Rn×n, and | · |
denotes the Euclidean norm in R := Rn. Also, for any vector field v = (vi)i=1,n we set the gradient
and divergence operators, respectively, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

and div(v) :=
n∑
j=1

∂vj
∂xj

.
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Additionally, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div(τ ) be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product
operators, and the deviatoric tensor, respectively, as

τ t = (τji)i,j=1,n, tr(τ ) =
n∑
i=1

τ ii, τ : ζ :=
n∑

i,j=1

τijζij , and τ d := τ − 1

n
tr(τ )I .

2 The model problem

The stress-assisted diffusion problem studied in [16] and [17], which models the diffusion of a solute into
an elastic material occupying the domain Ω, is described by the following system of partial differential
equations:

ρ = C
(
e(u)

)
in Ω , −div(ρ) = f(φ) in Ω , u = uD on Γ ,

σ̃ = ϑ̃(e(u))∇φ in Ω , −div(σ̃) = g(u) in Ω , and φ = 0 on Γ ,
(2.1)

where ρ is the Cauchy solid stress, u is the displacement field, e(u) := 1
2(∇u+∇ut) is the infinitesimal

strain tensor (symmetrised gradient of displacements), and C stands for the linear operator defining
the Hooke law (cf. [14, eq. (2.36)]), that is

C
(
e(u)

)
:= λ tr

(
e(u)

)
I + 2µ e(u) , (2.2)

with the Lamé constants λ, µ > 0 (dilation and shear moduli) characterizing the properties of the
material. In turn, φ represents the local concentration of species, σ̃ is the diffusive flux, and ϑ̃ : R→ R
is a tensorial diffusivity function. Finally, f : R → R is a vector field of body loads (which depends
on the species concentration), g : R → R denotes an additional source term depending on the solid
displacement u, and uD is the Dirichlet datum for u, which belongs to a suitable trace space to
be identified later on. Specific requirements on f and g will be given below. We note that system
(2.1) describes the constitutive relations inherent to linear elastic materials, conservation of linear
momentum, the constitutive description of diffusive fluxes, and the mass transport of the diffusive
substance, respectively. It also assumes that diffusive time scales are much lower than those of the
elastic wave propagation, justifying the static character of the system (cf. [21]).

On the other hand, in this work we are particularly interested in the nearly incompressible case,
which reduces to assume from now on that λ is sufficiently large. In addition, in order to avoid
the weak imposition of the symmetry of ρ, we now reformulate (2.1) in terms of the non-symmetric
pseudostress tensor σ introduced in [15]. More precisely, according to the analysis provided in [15,
Section 2.1], we know that the first row of (2.1) is equivalent to

σ = Ĉ
(
∇u
)

in Ω , −div(σ) = f(φ) in Ω , u = uD on Γ , (2.3)

where
Ĉ
(
∇u
)

:= (λ+ µ) tr
(
∇u
)
I + µ∇u . (2.4)

Hence, bearing in mind (2.4) and applying matrix trace to the first equation of (2.3), we can express
tr(∇u) in terms of tr(σ) (cf. [15, eq. (2.3)]), so that the former is eliminated and (2.3) is rewritten,
equivalently, as

∇u = Ĉ−1(σ) in Ω , −div(σ) = f(φ) in Ω , u = uD on Γ , (2.5)

where

Ĉ−1(σ) :=
1

µ
σd +

1

n
(
nλ+ (n+ 1)µ

) tr(σ) I . (2.6)
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We point out here that the original Cauchy stress tensor ρ can be expressed in terms of the pseudostress
σ through the formula

ρ = σ + σt − λ+ 2µ

nλ+ (n+ 1)µ
tr(σ) I . (2.7)

In turn, using (2.7) and the first equation of (2.1), from which we get e(u) = C−1(ρ), where (cf. [14,
Section 2.4.3])

C−1(ρ) :=
1

2µ
ρ − λ

2µ(nλ+ 2µ)
tr(ρ) I ,

we can recast the strain-dependent diffusivity ϑ̃(e(u)) as a pseudostress-dependent diffusivity ϑ(σ).
In this way, we finally obtain that the model (2.1) can be restated as

∇u = Ĉ−1(σ) in Ω , −div(σ) = f(φ) in Ω , u = uD on Γ ,

σ̃ = ϑ(σ)∇φ in Ω , −div(σ̃) = g(u) in Ω , and φ = 0 on Γ .
(2.8)

Throughout this work, we suppose that ϑ is of class C1 and uniformly positive definite, meaning
the latter that there exists ϑ0 > 0 such that

ϑ(τ )w ·w ≥ ϑ0 |w|2 ∀w ∈ R , ∀ τ ∈ R . (2.9)

We also require uniform boundedness and Lipschitz continuity of ϑ, that is that there exist positive
constants ϑ1, ϑ2 and Lϑ, such that

ϑ1 ≤ |ϑ(τ )| ≤ ϑ2 and |ϑ(τ )− ϑ(ζ)| ≤ Lϑ |τ − ζ| ∀ τ , ζ ∈ R . (2.10)

Similar hypotheses are assumed on the source functions f and g, which means that there exist positive
constants f1, f2, Lf , g1, g2 and Lg, such that

f1 ≤ |f(s)| ≤ f2 , |f(s)− f(t)| ≤ Lf |s− t| ∀ s, t ∈ R , (2.11)

g1 ≤ |g(w)| ≤ g2 , and |g(v)− g(w)| ≤ Lg |v −w| ∀v,w ∈ R . (2.12)

3 The continuous formulation

In this section we introduce a suitable Banach spaces-based variational formulation for (2.8), and then
analyze its solvability by means of a fixed-point strategy.

3.1 The mixed-primal formulation

We begin by noticing, as suggested by the Dirichlet boundary condition satisfied by the concentration
φ, that the appropriate trial and test space reduces in this case to

H1
0(Ω) =

{
ψ ∈ H1(Ω) : ψ = 0 on Γ

}
.

Thus, performing the usual integration by parts procedure in H1(Ω), the primal formulation for the
diffusion equation becomes: find φ ∈ H1

0(Ω) such that

Aσ(φ, ψ) = Gu(ψ) ∀ψ ∈ H1
0(Ω) , (3.1)

where, given ζ and w lying, respectively, in the same spaces where σ and u will be sought,

Aζ(φ, ψ) :=

∫
Ω
ϑ(ζ)∇φ · ∇ψ ∀φ, ψ ∈ H1

0(Ω) , (3.2)
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and

Gw(ψ) :=

∫
Ω
g(w)ψ ∀ψ ∈ H1

0(Ω) . (3.3)

Next, before proceeding with the elasticity equations, we remark that in order to study the continuity
property of the diffusivity function ϑ within the definition of the bilinear form A (cf. (3.2)), which will
be required for the solvability analysis of the fixed-point operator equation to be proposed afterwards,
we need to be able to control the expression∫

Ω
(ϑ(τ )− ϑ(ζ))∇φ · ∇ψ , (3.4)

where τ and ζ are generic tensors belonging to the same space in which we will seek the unknown
σ. In this regard, and employing the Lipschitz-continuity property of ϑ (cf. (2.10)), straightforward
applications of the Cauchy-Schwarz and Hölder inequalities yield∣∣∣∣∫

Ω
(ϑ(τ )− ϑ(ζ))∇φ · ∇ψ

∣∣∣∣ ≤ Lϑ ‖τ − ζ‖0,2p;Ω ‖∇φ‖0,2q;Ω ‖∇ψ‖0,Ω , (3.5)

where p, q ∈ (1,+∞) are conjugate to each other, which makes sense for τ , ζ ∈ L2p(Ω) and ∇ψ ∈
L2q(Ω). In this way, the above leads us to initially look for σ in the space Lr(Ω), with r := 2p.
The specific choice of r will be discussed later on, so that meanwhile we consider a generic r and let
s ∈ (1,+∞) be its respective conjugate. In turn, a suitable bounding of the expression ‖∇φ‖0,2q;Ω in
(3.5) for a particular φ will also be explained subsequently by means of a regularity argument.

Having set the above preliminary choice for the space to which σ belongs, it follows now from
(2.6) and the first equation of (2.8) that u should be initially sought in W1,r(Ω). Thus, in order to
derive the variational formulation of the elasticity equations, we need to invoke a suitable integration
by parts formula. Indeed, we first introduce for each t ∈ (1,+∞) the Banach space

Ht(divt; Ω) :=
{
τ ∈ Lt(Ω) : div(τ ) ∈ Lt(Ω)

}
, (3.6)

which is endowed with the natural norm defined as

‖τ‖t,divt;Ω := ‖τ‖0,t;Ω + ‖div(τ )‖0,t;Ω ∀ τ ∈ Ht(divt; Ω) . (3.7)

Then, given t, t′ ∈ (1,+∞) conjugate to each other, there holds (cf. [11, Corollary B. 57])

〈τν,v〉Γ =

∫
Ω

{
τ : ∇v + v · div(τ )

}
∀ (τ ,v) ∈ Ht (divt; Ω)×W1,t′(Ω) , (3.8)

where 〈·, ·〉Γ stands for the duality pairing between W−1/t,t(Γ) and W1/t,t′(Γ). Moreover, thanks to
the surjectivity of the trace operator γ0,t′ : W1,t′(Ω) −→W1/t,t′(Γ), a straightforward application of
the open mapping theorem and (3.8) yield the existence of a constant Ct′ > 0 such that

‖τν‖−1/t,t;Γ ≤ Ct′ ‖τ‖t,divt;Ω ∀ τ ∈ Ht (divt; Ω) . (3.9)

Now, applying (3.8) with t = s and t′ = r to u ∈ W1,r(Ω) and τ ∈ Hs(divs; Ω), and using the
Dirichlet boundary condition satisfied by u, for which we assume from now on that uD ∈W1/s,r(Γ),
we find that ∫

Ω
τ : ∇u = −

∫
Ω
u · div(τ ) + 〈τν,uD〉Γ , (3.10)

so that, according to (2.6), the testing of the first equation of (2.8) against τ ∈ Hs(divs; Ω) gives

1

µ

∫
Ω
σd : τ d +

1

n
(
nλ+ (n+ 1)µ

) ∫
Ω

tr(σ) tr(τ ) +

∫
Ω
u · div(τ ) = 〈τν,uD〉Γ . (3.11)
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It follows from the third term on the left hand side of (3.11) that actually it suffices to look for u in
Lr(Ω). Furthermore, testing the second equation of (2.8), also named equilibrium equation, against
v ∈ Ls(Ω), we obtain ∫

Ω
v · div(σ) = −

∫
Ω
f(φ) · v , (3.12)

which makes sense for div(σ) ∈ Lr(Ω), and hence σ is sought from now in Hr(divr; Ω). To be more
precise about the latter, we notice that for each t ∈ (1,+∞) there holds the decomposition

Ht(divt; Ω) = Ht
0(divt; Ω) ⊕ RI ,

where

Ht
0(divt; Ω) :=

{
τ ∈ Ht(divt; Ω) :

∫
Ω

tr(τ ) = 0
}
.

Equivalently, each τ ∈ Ht(divt; Ω) can be decomposed, uniquely, as

τ = τ0 + d I, with τ0 ∈ Ht
0(divt; Ω) and d :=

1

n|Ω|

∫
Ω

tr(τ ) ∈ R . (3.13)

In this way, taking τ = I in (3.11) we get

1

nλ+ (n+ 1)µ

∫
Ω

tr(σ) =

∫
Γ
uD · ν ,

from which, along with an application of (3.13) to t = r and τ = σ ∈ Hr(divr; Ω), we deduce that

σ = σ0 + c I , with σ0 ∈ Hr
0(divr; Ω) and c :=

nλ+ (n+ 1)µ

n|Ω|

∫
Γ
uD · ν ∈ R . (3.14)

The above shows that, in order to attain the full explicit knowledge of the unknown σ, it only remains
to find its Hr

0(divr; Ω)-component σ0. Therefore, replacing σ = σ0 + c I back into (3.11), redenoting
σ0 simply by σ, replacing ϑ(σ) by ϑ(σ + cI) in the diffusion equation, noting that the testing of the
resulting (3.11) against τ ∈ Hs(divs; Ω) is equivalent to doing it against τ ∈ Hs

0(divs; Ω), and placing
this new equation jointly with (3.12), we arrive at the following mixed variational formulation of the
first row of (2.8): Find (σ,u) ∈ X2 ×M1 such that

a(σ, τ ) + b1(τ ,u) = G(τ ) ∀ τ ∈ X1,

b2(σ,v) = Fφ(v) ∀v ∈ M2,
(3.15)

where

X2 := Hr
0(divr; Ω) , M1 := Lr(Ω) , X1 := Hs

0(divs; Ω) and M2 := Ls(Ω) , (3.16)

and the bilinear forms a : X2×X1 → R and bi : Xi×Mi → R, i ∈
{

1, 2
}

, and the functionals Fφ ∈M ′2
and G ∈ X ′1, are defined, respectively, as

a(ζ, τ ) :=
1

µ

∫
Ω
ζd : τ d +

1

n
(
nλ+ (n+ 1)µ

) ∫
Ω

tr(ζ) tr(τ ) ∀ (ζ, τ ) ∈ X2 ×X1 , (3.17)

bi(τ ,v) :=

∫
Ω
v · div(τ ) ∀ (τ ,v) ∈ Xi ×Mi , (3.18)

G(τ ) := 〈τν,uD〉Γ, ∀ τ ∈ X1, (3.19)

Fφ(v) := −
∫

Ω
f(φ) · v ∀v ∈M2. (3.20)
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In this way, the mixed-primal formulation of (2.8) reduces to (3.15) and (3.1), that is: Find (σ,u, φ) ∈
X2 ×M1 ×H1

0(Ω) such that

a(σ, τ ) + b1(τ ,u) = G(τ ) ∀ τ ∈ X1 ,

b2(σ,v) = Fφ(v) ∀v ∈ M2 ,

Aσ(φ, ψ) = Gu(ψ) ∀ψ ∈ H1
0(Ω) .

(3.21)

3.2 Fixed-point approach

In this section we follow a similar approach to those employed in previous works, e.g. in [2], [9],
[16], and [20], and make use of the decoupled variational formulations (3.15) and (3.1) to introduce a
fixed-point strategy for the solvability analysis of (3.21). Indeed, we first let S : H1

0(Ω) → X2 ×M1

be the operator defined for each ϕ ∈ H1
0(Ω) as S(ϕ) := (σ̃, ũ), where (σ̃, ũ) ∈ X2 ×M1 is the unique

solution (to be confirmed below) of (3.15) with ϕ instead of φ, that is

a(σ̃, τ ) + b1(τ , ũ) = G(τ ) ∀ τ ∈ X1,

b2(σ̃,v) = Fϕ(v) ∀v ∈ M2 .
(3.22)

In turn, we let S̃ : X2×M1 → H1
0(Ω) be the operator defined for each (ζ,w) ∈ X2×M1 as S̃(ζ,w) := φ̃,

where φ̃ ∈ H1
0(Ω) is the unique solution (to be confirmed below as well) of (3.1) with (ζ,w) instead

(σ,u), that is
Aζ(φ̃, ψ) = Gw(ψ) ∀ψ ∈ H1

0(Ω) . (3.23)

Thus, we define the operator T : H1
0(Ω)→ H1

0(Ω) as

T (ϕ) := S̃
(
S(ϕ)

)
∀ϕ ∈ H1

0(Ω) , (3.24)

and notice that solving (3.21) is equivalent to seeking a fixed point of T , that is φ ∈ H1
0(Ω) such that

T (φ) = φ . (3.25)

3.3 Well-posedness of the uncoupled problems

3.3.1 Some preliminary results

We begin with the Babuška-Brezzi theorem in Banach spaces.

Theorem 3.1. Let H1, H2, Q1 and Q2 be real reflexive Banach spaces, and let a : H2 × H1 → R
and bi : Hi ×Qi → R, i ∈ {1, 2}, be bounded bilinear forms with boundedness constants given by ‖a‖
and ‖bi‖, i ∈ {1, 2}, respectively. In addition, for each i ∈ {1, 2}, let Ki be the kernel of the operator
induced by bi, that is

Ki :=
{
τ ∈ Hi : bi(τ, v) = 0 ∀ v ∈ Qi

}
.

Assume that

i) there exists α > 0 such that

sup
τ∈K1
τ 6=0

a(ζ, τ)

‖τ‖H1

≥ α ‖ζ‖H2 ∀ ζ ∈ K2 ,
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ii) there holds
sup
ζ∈K2

a(ζ, τ) > 0 ∀ τ ∈ K1 , τ 6= 0 ,

iii) for each i ∈ {1, 2} there exists βi > 0 such that

sup
τ∈Hi
τ 6=0

bi(τ, v)

‖τ‖Hi
≥ βi ‖v‖Qi ∀ v ∈ Qi .

Then, for each (F,G) ∈ H ′1 ×Q′2 there exists a unique (σ, u) ∈ H2 ×Q1 such that

a(σ, τ) + b1(τ, u) = F (τ) ∀ τ ∈ H1 ,

b2(σ, v) = G(v) ∀ v ∈ Q2 ,
(3.26)

and the following a priori estimates hold:

‖σ‖H2 ≤
1

α
‖F‖H′1 +

1

β2

(
1 +
‖a‖
α

)
‖G‖Q′2 ,

‖u‖Q1 ≤
1

β1

(
1 +
‖a‖
α

)
‖F‖H′1 +

‖a‖
β1β2

(
1 +
‖a‖
α

)
‖G‖Q′2 .

(3.27)

Moreover, i), ii), and iii) are also necessary conditions for the well-posedness of (3.26).

Proof. See [4, Theorem 2.1, Corollary 2.1, Section 2.1] for details.

The results provided by the following two lemmas, which are originally stated and proved in [18,
Lemmas 3.1 and 3.3], will serve to establish the well-posedness of (3.15) for a given φ (equivalently
the well-definedness of the operator S).

The first lemma introduces a suitable linear operator mapping Lt(Ω) into itself for a range of t.

Lemma 3.2. Let Ω be a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, and let t, t′ ∈
(1,+∞) conjugate to each other with t satisfying the range specified by [18, Theorem 3.1]. Then, there
exists a linear and bounded operator Dt : Lt(Ω)→ Lt(Ω) such that

div
(
Dt(τ )

)
= 0 in Ω , (3.28)

and ∫
Ω

tr
(
Dt(τ )

)
=

∫
Ω

tr(τ ) , (3.29)

for all τ ∈ Lt(Ω). In addition, for each ζ ∈ Lt′(Ω) such that div(ζ) = 0 in Ω, there holds∫
Ω
ζd :

(
Dt(τ )

)d
=

∫
Ω
ζd : τ d ∀ τ ∈ Lt(Ω) . (3.30)

For later use, we remark in advance here that a particular case in which both t and t′ satisfy the
range specified by [18, Theorem 3.1] is when they lie in [ 2n

n+1 ,
2n
n−1 ]. More precisely, it is easy to see

that t belongs to this closed interval if and only if t′ does as well.

The second lemma announced previously generalizes from t = 2 to any t ∈ (1,+∞) the inequality
stated in [6, Chapter IV, Proposition 3.1] (see also [14, Lemma 2.3]), which is employed for the
solvability analysis of the Hilbertian dual-mixed formulation of linear elasticity.
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Lemma 3.3. Let Ω be a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, which is star-shaped
with respect to a ball, and let t ∈ (1,+∞). Then, there exist positive constants C̃t and Ĉt such that

‖tr(τ )‖0,t;Ω ≤ C̃t

{
‖τ d‖0,t;Ω + ‖div(τ )‖0,t;Ω

}
(3.31)

and
‖τ‖0,t;Ω ≤ Ĉt

{
‖τ d‖0,t;Ω + ‖div(τ )‖0,t;Ω

}
(3.32)

for all τ ∈ Ht
0(divt; Ω).

3.3.2 Well-definedness of the operator S

In what follows we employ some of the preliminary results provided in Section 3.3.1, along with
Theorem 3.1, to prove that the operator S (cf. (3.22)) is well-defined. We begin by checking that the
bilinear forms and linear functionals involved are all bounded. Indeed, we first observe from (3.17)
that a can be rewritten as

a(ζ, τ ) =
1

µ

∫
Ω
ζ : τ − λ+ µ

µ(nλ+ (n+ 1)µ)

∫
Ω

tr(ζ) tr(τ ) ,

from which, noting that λ+µ
nλ+(n+1)µ <

1
n , and employing, thanks to the triangle and Hölder inequalities,

that for each t ∈ (1,+∞) there holds

‖tr(τ )‖0,t;Ω ≤ n1/t′‖τ‖0,t;Ω ∀ τ ∈ Lt(Ω) , (3.33)

we find, using again Hölder’s inequality, that

|a(ζ, τ )| ≤ 1

µ
‖ζ‖0,r;Ω ‖τ‖0,s;Ω +

1

nµ
‖tr(ζ)‖0,r;Ω ‖tr(τ )‖0,s;Ω

≤ 2

µ
‖ζ‖0,r;Ω ‖τ‖0,s;Ω ≤

2

µ
‖ζ‖X2 ‖τ‖X1 ∀ (ζ, τ ) ∈ X2 ×X1 .

(3.34)

In turn, invoking once more the aforementioned inequality, it follows from (3.18) that

|b1(τ ,v)| ≤ ‖div(τ )‖0,s;Ω ‖v‖0,r;Ω ≤ ‖τ‖divs,s;Ω ‖v‖0,r;Ω ∀ (τ ,v) ∈ X1 ×M2 , (3.35)

and similarly
|b2(τ ,v)| ≤ ‖τ‖divr,r;Ω ‖v‖0,s;Ω ∀ (τ ,v) ∈ X2 ×M1 . (3.36)

In addition, bearing in mind the upper bound for f (cf. (2.11)) and the estimate (3.9), we deduce
from (3.19) and (3.20), respectively, that

|G(τ )| ≤ Cr ‖uD‖1/s,r;Γ ‖τ‖X1 ∀ τ ∈ X1 , (3.37)

and, for each φ ∈ H1
0(Ω),

|Fφ(v)| ≤ |Ω|1/r f2 ‖v‖0,s;Ω ∀v ∈M2 . (3.38)

In this way, and as a straightforward consequence of (3.34) - (3.38), we conclude that a, b1, b2, G and
Fφ are all bounded with respective constants satisfying

‖a‖ ≤ 2

µ
, ‖b1‖ , ‖b2‖ ≤ 1 , ‖G‖ ≤ Cr ‖uD‖1/s,r;Γ , and ‖Fφ‖ ≤ |Ω|1/r f2 . (3.39)

Next, we let Ki, i ∈ {1, 2}, be the kernel of the bilinear form bi, i ∈ {1, 2} (cf. (3.18)), that is

Ki :=
{
τ ∈ Xi : bi(τ ,v) = 0 ∀v ∈Mi

}
,
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which, according to the definitions of X1, X2 and bi (cf. (3.18)), yields

K1 =
{
τ ∈ Hs

0(divs; Ω) : div(τ ) = 0
}

(3.40)

and
K2 =

{
ζ ∈ Hr

0(divr; Ω) : div(ζ) = 0
}
. (3.41)

The continuous inf-sup conditions required for the bilinear forms a (cf. (3.17)) and bi (cf. (3.18)),
i ∈

{
1, 2
}

, are established next. While these results were already stated and proved in [18, Lemmas
4.1 and 4.3] by following similar approaches to those employed in [20, Lemmas 2.6 and 2.7], we provide
them again here for sake of completeness of our presentation.

Lemma 3.4. Assume that r and s satisfy the particular range specified by [18, Theorem 3.1], that is
r, s ∈ [ 2n

n+1 ,
2n
n−1 ]. Then, there exist positive constants M and α such that for each λ > M there hold

sup
τ∈K1
τ 6=0

a(ζ, τ )

‖τ‖X1

≥ α ‖ζ‖X2 ∀ ζ ∈ K2 , (3.42)

and
sup
ζ∈K2

a(ζ, τ ) > 0 ∀ τ ∈ K1 , τ 6= 0 . (3.43)

Proof. We begin by noticing, thanks to Hölder’s inequality and (3.33), that for each pair (ζ, τ ) ∈
X2 ×X1 := Hr

0(divr; Ω)×Hs
0(divs; Ω) there holds∣∣∣∣ ∫

Ω
tr(ζ) tr(τ )

∣∣∣∣ ≤ n1/r ‖tr(ζ)‖0,r;Ω ‖τ‖0,s;Ω . (3.44)

Now, we consider ζ ∈ K2, that is ζ ∈ X2 := Hr
0(divr; Ω) and div(ζ) = 0, such that ζ 6= 0. Then,

according to the definition of a (cf. (3.17)) and the estimates (3.44) and (3.31) (cf. Lemma 3.2), we
obtain

sup
τ∈K1
τ 6=0

a(ζ, τ )

‖τ‖X1

≥ 1

µ
sup
τ∈K1
τ 6=0

∫
Ω
ζd : τ d

‖τ‖X1

− C̃r

n1/s
(
nλ+ (n+ 1)µ

) ‖ζd‖0,r;Ω . (3.45)

Next, in order to derive a lower bound for the supremum on the right hand side of (3.45), we let

ζs :=

{
|ζd|r−2 ζd if ζd 6= 0,

0 if ζd = 0,
(3.46)

and observe that ζs ∈ Ls(Ω) and∫
Ω
ζd : ζs = ‖ζd‖r0,r;Ω = ‖ζs‖s0,s;Ω = ‖ζd‖0,r;Ω ‖ζs‖0,s;Ω . (3.47)

In addition, it is clear that tr(ζs) = 0, and thus, thanks to Lemma 3.2, it follows that Ds(ζs) belongs
to K1. Moreover, using (3.30) and (3.47), we find that∫

Ω
ζd :

(
Ds(ζs)

)d
=

∫
Ω
ζd : ζds =

∫
Ω
ζd : ζs = ‖ζd‖0,r;Ω ‖ζs‖0,s;Ω ,

and hence, noting that ‖Ds(ζs)‖X1 = ‖Ds(ζs)‖0,s;Ω, and invoking the boundedness of Ds (cf. Lemma
3.2), we deduce that

sup
τ∈K1
τ 6=0

∫
Ω
ζd : τ d

‖τ‖X1

≥

∫
Ω
ζd :

(
Ds(ζs)

)d
‖Ds(ζs)‖X1

=
‖ζd‖0,r;Ω ‖ζs‖0,s;Ω
‖Ds(ζs)‖0,s;Ω

≥ 1

‖Ds‖
‖ζd‖0,r;Ω . (3.48)
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Consequently, replacing (3.48) back into (3.45), we get

sup
τ∈K1
τ 6=0

a(ζ, τ )

‖τ‖X1

≥
{

1

µ‖Ds‖
− C̃r

n1/s
(
nλ+ (n+ 1)µ

)} ‖ζd‖0,r;Ω , (3.49)

from which, choosing λ sufficiently large such that

C̃r

n1/s
(
nλ+ (n+ 1)µ

) <
1

2µ‖Ds‖
,

which reduces to
λ > Ms :=

µ

n1+1/s
max

{
2‖Ds‖C̃r − n1/s(n+ 1), 0

}
,

and applying (3.32) to ζ, we arrive at (3.42) with α := 1

2µ ‖Ds‖ Ĉr
. On the other hand, given now

τ ∈ K1, τ 6= 0, we exchange the roles of τ and ζ in the above analysis, so that we obtain

sup
ζ∈K2

a(ζ, τ ) ≥ sup
ζ∈K2
ζ 6=0

a(ζ, τ )

‖ζ‖X2

≥ 1

2µ ‖Dr‖ Ĉs
‖τ‖X1 > 0 (3.50)

for
λ > Mr :=

µ

n1+1/r
max

{
2‖Dr‖C̃s − n1/r(n+ 1), 0

}
,

which shows (3.43). In this way, the proof is completed by choosing M := max
{
Ms,Mr

}
.

From now on we assume that the Lamé parameter λ is such that

λ > M ,

with M defined at the end of the foregoing proof.

Lemma 3.5. Assume that r and s satisfy the particular range specified by [18, Theorem 3.1], that is,
r, s ∈ [ 2n

n+1 ,
2n
n−1 ]. Then, there exist positive constants β1, β2 such that for each i ∈ {1, 2} there hold

sup
ζ∈Xi
ζ 6=0

bi(ζ,v)

‖ζ‖Xi
≥ βi ‖v‖Mi ∀v ∈Mi . (3.51)

Proof. Since b1 and b2 have the same algebraic structure (cf. (3.18)), and the pairs (X1,M1) and
(X2,M2) are obtained from each other by exchanging r and s, it suffices to show (3.51) for either
i = 1 or i = 2. We proceed here with i = 2, for which, given v ∈M2 := Ls(Ω), we first set

vr :=

{
|v|s−2 v if v 6= 0 ,

0 if v = 0 .
(3.52)

It follows that vr ∈ Lr(Ω), and similarly to (3.47), there holds∫
Ω
v · vr = ‖v‖s0,s;Ω = ‖vr‖r0,r;Ω = ‖v‖0,s;Ω ‖vr‖0,r;Ω . (3.53)

Next, we let z ∈ W1,r
0 (Ω) be the unique solution, guaranteed by [18, Theorem 3.2], of the vector

Poisson equation [18, eq. (3.19)] with f = 0 and g = vr, that is

∆z = vr in Ω , z = 0 on Γ ,
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whose weak formulation reduces to: Find z ∈W1,r
0 (Ω) such that∫

Ω
∇z · ∇w = −

∫
Ω
vr ·w ∀w ∈W1,s

0 (Ω) .

Note that the corresponding continuous dependence result establishes the existence of a positive con-
stant c̄r such that

‖z‖1,r;Ω ≤ c̄r ‖vr‖0,r;Ω . (3.54)

Furthermore, we observe that div
(
∇z
)

= vr in Ω, which proves that ∇z ∈ Hr(divr; Ω), and hence

we let ζ̂ be the Hr
0(divr; Ω)-component of ∇z. Thus, employing (3.54) and noting that div(ζ̂) = vr,

we obtain

‖ζ̂‖X2 = ‖ζ̂‖0,r;Ω + ‖div(ζ̂)‖0,r;Ω ≤ |z|1,r;Ω + ‖vr‖0,r;Ω ≤
(
1 + c̄r

)
‖vr‖0,r;Ω .

Finally, bearing in mind the definition of b2 (cf. (3.18), i = 2), and making use of (3.53) and the
foregoing inequality, we conclude that

sup
ζ∈X2
ζ 6=0

b2(ζ,v)

‖ζ‖X2

≥ b2(ζ̂,v)

‖ζ̂‖X2

=

∫
Ω
v · vr

‖ζ̂‖X2

≥ 1

1 + c̄r
‖v‖0,s;Ω , (3.55)

which proves (3.51) for i = 2 with β2 :=
(
1 + c̄r

)−1
.

For the rest of the paper we assume meanwhile that r and s lie in the range stipulated in Lemmas
3.4 and 3.5, that is

r, s ∈
[ 2n

n+ 1
,

2n

n− 1

]
. (3.56)

The following result establishes that the operator S (cf. (3.9)) is well defined.

Lemma 3.6. For each ϕ ∈ H1
0(Ω) there exists a unique S(ϕ) =

(
S1(ϕ), S2(ϕ)

)
:= (σ̃, ũ) ∈ X2 ×M1

solution to (3.22). Moreover, there hold

‖S1(ϕ)‖X2 = ‖σ̃‖X2 ≤
Cr
α
‖uD‖1/s,r;Γ +

|Ω|1/r

β2

(
1 +

2

αµ

)
f2 , and

‖S2(ϕ)‖M1 = ‖ũ‖M1 ≤
Cr
β1

(
1 +

2

αµ

)
‖uD‖1/s,r;Γ +

2|Ω|1/r

µβ1β2

(
1 +

2

αµ

)
f2 .

(3.57)

Proof. Thanks to the fact that X1, X2, M1 and M2 are all reflexive Banach spaces, along with
the boundedness of all the forms and functionals involved, and the inf-sup conditions provided by
Lemmas 3.4 and 3.5, the proof reduces to a direct application of Theorem 3.1. In particular, the a
priori estimates (3.57) follow from (3.27) and (3.39).

3.3.3 Well-definedness of operator S̃

In this section we use the classical Lax-Milgram lemma to prove that S̃ (cf. (3.23)) is well defined. In
fact, we first notice from (3.2) and (2.10) that, given ζ ∈ X2, there holds

Aζ(φ, ϕ) ≤ ϑ2 ‖φ‖1,Ω ‖ϕ‖1,Ω ∀φ, ϕ ∈ H1
0(Ω) , (3.58)

which says that Aζ is bounded independently of ζ with

‖Aζ‖ ≤ ϑ2 . (3.59)
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In turn, using now that ϑ is uniformly positive definite (cf. (2.9)), and denoting by cp the constant of
the Poincaré inequality in H1

0(Ω), which says that ‖φ‖1,Ω ≤ cp |φ|1,Ω ∀φ ∈ H1
0(Ω), we deduce that

Aζ(φ, φ) =

∫
Ω
ϑ(ζ)∇φ · ∇φ ≥ α̃ ‖φ‖21,Ω ∀φ ∈ H1

0(Ω) , (3.60)

where

α̃ :=
ϑ0

c2
p

, (3.61)

thus establishing the H1
0(Ω)-ellipticity of Aζ independently of ζ as well. Furthermore, given w ∈M1,

and bearing in mind (3.3), we employ the upper bound of g (cf. (2.12)) and the Cauchy-Schwarz
inequality to arrive at

|Gw(ψ)| ≤ |Ω|1/2 g2 ‖ψ‖0,Ω ∀ψ ∈ H1
0(Ω) , (3.62)

which yields Gw ∈ H1
0(Ω)′ with ‖Gw‖ ≤ |Ω|1/2 g2.

Consequently, we are in a position to state that the operator S̃ is well-defined.

Lemma 3.7. For each (ζ,w) ∈ X2 ×M1 there exists a unique S̃(ζ,w) := φ̃ ∈ H1
0(Ω) solution to

(3.23). Moreover, there holds

‖S̃(ζ,w)‖1,Ω = ‖φ̃‖1,Ω ≤ r̃ :=
1

α̃
|Ω|1/2 g2 . (3.63)

Proof. Thanks to the previous analysis, it is a straightforward application of Lax-Milgram’s lemma
(cf. [14, Theorem 1.1]).

3.4 Solvability of the fixed-point equation

In this section we address the solvability analysis of the fixed-point equation (3.25). For this purpose,
the hypotheses of the Banach fixed-point theorem are verified in what follows. We begin by defining
the ball

W :=
{
φ ∈ H1

0(Ω) : ‖φ‖1,Ω ≤ r̃
}
, (3.64)

where r̃ > 0 is the constant specified in (3.63). The following result states that T maps W into itself.

Lemma 3.8. There holds T (W ) ⊆W .

Proof. It follows directly from the definition of T (cf. (3.24)) and the a priori estimate for the operator
S̃ provided by (3.63).

The next goal is to establish the continuity of T , for which we previously prove the corresponding
properties of S and S̃. We begin with the one of S.

Lemma 3.9. There exists a positive constant CS, depending only on µ, α, β1, β2, and the norm of
the continuous injection ir : H1(Ω)→ Lr(Ω), such that

‖S(φ)− S(ϕ)‖X2×M1 ≤ CS Lf ‖φ− ϕ‖1,Ω ∀φ, ϕ ∈ H1
0(Ω) . (3.65)

Proof. Given ϕ, ψ ∈ H1
0(Ω), we let S(ϕ) := (σ̃, ũ) ∈ X2 × M1 and S(ψ) := (σ̄, ū) ∈ X2 × M1,

which satisfy (3.22) with ϕ itself and with ϕ = ψ, respectively. Then, subtracting the corresponding
equations of these systems, we obtain

a(σ̃ − σ̄, τ ) + b1(τ , ũ− ū) = 0 ∀ τ ∈ X1 ,

b2(σ̃ − σ̄,v) = (Fϕ − Fψ)(v) ∀v ∈M2 ,
(3.66)
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which says, thanks to the analysis and results from Section 3.3.2, particularly the inf-sup conditions
satisfied by a, b1 and b2, along with Theorem 3.1, that (σ̃ − σ̄, ũ − ū) ∈ X2 × M1 is the unique
solution of (3.22) with G given by the null functional and Fϕ replaced by Fϕ − Fψ. Next, having in
mind the definitions of Fϕ and Fψ (cf. (3.20)), employing the Lipschitz-continuity of f (cf. (2.11)),
applying Hölder’s inequality, and invoking the continuous injection ir : H1(Ω)→ Lr(Ω), which is valid
in particular for r ∈ [ 2n

n+1 ,
2n
n−1 ], we readily find that

|(Fϕ − Fψ)(v)| ≤ Lf ‖ϕ− ψ‖0,r;Ω ‖v‖0,s;Ω ≤ Lf ‖ir‖ ‖ϕ− ψ‖1,Ω ‖v‖0,s;Ω ∀ v ∈M2 , (3.67)

which implies ‖Fϕ−Fψ‖M ′2 ≤ Lf ‖ir‖ ‖ϕ−ψ‖1,Ω. In this way, this latter inequality and the abstract
estimate (3.27) applied to problem (3.66), yield (3.65) and end the proof.

On the other hand, in order to establish a continuity property for S̃, we follow the approach of
diverse previous works (see, e.g. [1], [9], [16], [17], and [20]), and introduce a regularity assumption
on the solutions of the problem defining this operator. More precisely, from now on we suppose that
there exists ε ≥ n

r and a constant Cε > 0, such that

(RA) for each (ζ,w) ∈ X2 ×M1 there holds S̃(ζ,w) = φ̃ ∈ H1
0(Ω) ∩H1+ε(Ω) and

‖φ̃‖1+ε,Ω ≤ Cε g2 . (3.68)

The reason of the aforementioned lower bound of ε is clarified within the proof of the next lemma,
which provides the Lipschitz-continuity of the operator S̃. In connection to this, and to be employed in
the aforementioned proof as well, we recall now, thanks to the embedding between fractional Sobolev
spaces, that for each ε < n

2 there holds Hε(Ω) ⊂ Lε
∗
(Ω), with continuous injection

iε : Hε(Ω) −→ Lε
∗
(Ω) , where ε∗ =

2n

n− 2ε
. (3.69)

In this regard, we notice that the indicated lower and upper bounds for the additional regularity ε,
which turn out to require that ε ∈ [nr ,

n
2 ), are compatible if and only if r > 2, which is coherent with

the fact that initially (cf. (3.5)) r = 2p, with p ∈ (1,+∞). Then, intersecting this constraint with the
one stated previously in (3.56), we deduce that the feasible range for r becomes

r ∈
(

2,
2n

n− 1

]
=

{
(2, 4] if n = 2 ,

(2, 3] if n = 3 ,
(3.70)

which we assume from now on. As a consequence, the range for the conjugate s of r is

s ∈
[ 2n

n+ 1
, 2
)

=

{ [
4
3 , 2
)

if n = 2 ,[
3
2 , 2
)

if n = 3 .
(3.71)

Lemma 3.10. There exists a positive constant C
S̃
, depending only on α̃, the norm of the continuous

injection is : H1(Ω)→ Ls(Ω), |Ω|, r, ε, ‖iε‖ (cf. (3.69)), and Cε (cf. (3.68)), such that

‖S̃(ζ,w)− S̃(τ ,v)‖1,Ω

≤ C
S̃

{
Lg + Lϑ g2

}
‖(ζ,w)− (τ ,v)‖X2×M1 ∀ (ζ,w), (τ ,v) ∈ X2 ×M1 .

(3.72)

Proof. Given (ζ,w), (τ ,v) ∈ X2×M1, we let φ̃ := S̃(ζ,w) and ϕ̃ := S̃(τ ,v), which means, according
to the definition of S̃ (cf. (3.23)), that φ̃ and ϕ̃ are the unique elements in H1

0(Ω) such that

Aζ(φ̃, ψ) = Gw(ψ) ∀ψ ∈ H1
0(Ω) , (3.73)
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and
Aτ (ϕ̃, ψ) = Gv(ψ) ∀ψ ∈ H1

0(Ω) . (3.74)

Thus, applying the H1
0(Ω)-ellipticity of Aζ , adding and subtracting Aτ (ϕ̃, φ̃− ϕ̃), and then employing

(3.73) and (3.74), we first obtain

α̃ ‖φ̃− ϕ̃‖21,Ω ≤ Aζ(φ̃− ϕ̃, φ̃− ϕ̃) = (Aτ −Aζ)(ϕ̃, φ̃− ϕ̃) + (Gw −Gv)(φ̃− ϕ̃) . (3.75)

Next, using the Lipschitz-continuity of g (cf. (2.12)), applying Hölder’s inequality, and invoking the
continuous injection is : H1(Ω)→ Ls(Ω), which is also valid for the present range of s, we find that

|(Gw −Gv)(φ̃− ϕ̃)| ≤
∫

Ω
|g(w)− g(v)| |φ̃− ϕ̃| ≤ Lg

∫
Ω
|w − v| |φ̃− ϕ̃|

≤ Lg ‖w − v‖0,r;Ω ‖φ̃− ϕ̃‖0,s;Ω ≤ Lg ‖is‖ ‖w − v‖0,r;Ω ‖φ̃− ϕ̃‖1,Ω .
(3.76)

In turn, employing now the Lipschitz-continuity of ϑ (cf. (2.10)), and making use again of Hölder’s
inequality, we get

|(Aτ −Aζ)(ϕ̃, φ̃− ϕ̃)| =
∣∣∣ ∫

Ω

(
ϑ(τ )− ϑ(ζ)

)
∇ϕ̃ · ∇(φ̃− ϕ̃)

∣∣∣
≤ Lϑ ‖τ − ζ‖0,2q;Ω ‖∇ϕ̃‖0,2p;Ω ‖φ̃− ϕ̃‖1,Ω

(3.77)

where p, q ∈ (1,+∞) are conjugate to each other. Now, choosing p such that 2p = ε∗ (cf. (3.69)),
we get 2q = n

ε , which, according to the range stipulated for ε, yields 2q ≤ r, so that the norm

of the embedding of the respective Lebesgue spaces is given by Cr,ε := |Ω|
rε−n
rn . In this way, using

additionally the continuity of iε (cf. (3.69)) along with the regularity assumption (3.68), the estimate
(3.77) becomes

|(Aτ −Aζ)(ϕ̃, φ̃− ϕ̃)| ≤ LϑCr,ε ‖τ − ζ‖0,r;Ω ‖iε‖ ‖∇ϕ̃‖ε,Ω ‖φ̃− ϕ̃‖1,Ω

≤ LϑCr,ε ‖iε‖Cε g2 ‖τ − ζ‖0,r;Ω ‖φ̃− ϕ̃‖1,Ω .
(3.78)

Finally, replacing the resulting estimates from (3.76) and (3.78) back into (3.75), simplifying ‖φ̃−ϕ̃‖1,Ω
on both sides, and dividing by α̃, we arrive at (3.72) and finish the proof.

We are now in a position to establish the Lipschitz-continuity of the fixed point operator T . More
precisely, we have the following result.

Lemma 3.11. There exists a positive constant CT , depending only on CS and C
S̃
, such that

‖T (φ)− T (ϕ)‖1,Ω ≤ CT Lf
{
Lg + Lϑ g2

}
‖φ− ϕ‖1,Ω ∀φ, ϕ ∈ H1

0(Ω) . (3.79)

Proof. Given φ, ϕ ∈ H1
0(Ω), and bearing in mind the definition of T (cf. (3.24)), straightforward

applications of Lemmas 3.10 and 3.9 yield

‖T (φ)− T (ϕ)‖1,Ω ≤ C
S̃

{
Lg + Lϑ g2

}
‖S(φ)− S(ϕ)‖X2×M1

≤ C
S̃
CS Lf

{
Lg + Lϑ g2

}
‖φ− ϕ‖1,Ω ,

which yields (3.79) with CT := CSCS̃
.

Consequently, the main result of this section is stated as follows.
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Theorem 3.12. Assume the regularity assumption (RA) (cf. (3.68)) and that the data Lf , Lg, Lϑ
and g2 are sufficiently small so that

CT Lf
{
Lg + Lϑ g2

}
< 1 . (3.80)

Then, the coupled problem (3.21) has a unique solution (σ,u, φ) ∈ X2 ×M1 × H1
0(Ω), with φ ∈ W

(cf. (3.64)). Moreover, there hold

‖σ‖X2 ≤
Cr
α
‖uD‖1/s,r;Γ +

|Ω|1/r

β2

(
1 +

2

αµ

)
f2 , and

‖u‖M1 ≤
Cr
β1

(
1 +

2

αµ

)
‖uD‖1/s,r;Γ +

2|Ω|1/r

µβ1β2

(
1 +

2

αµ

)
f2 .

(3.81)

Proof. Thanks to Lemmas 3.8 and 3.11, and the assumption (3.80), the existence of a unique φ ∈ W
solution to (3.25), and hence, equivalently, the existence of a unique (σ,u, φ) ∈ X2 ×M1 × H1

0(Ω)
solution to (3.21), is merely an application of the Banach fixed point Theorem. In addition, the fact
that (σ,u) = S(φ) along with the a priori estimates provided by (3.57), yield (3.81) and conclude the
proof.

4 The Galerkin scheme

In this section we introduce the Galerkin scheme of the mixed-primal formulation (3.21), and analyze
its solvability by employing a discrete version of the fixed point strategy developed in Section 3.2.
For this purpose, we begin by considering arbitrary finite element subspaces X2,h ⊆ X2, M1,h ⊆ M1,
X1,h ⊆ X1, M2,h ⊆ X2, and Hh ⊆ H1

0(Ω), whose specific choices satisfying all the required stability
conditions will be introduced later on in Section 5. In this way, the Galerkin scheme associated with
(3.21) reads: Find (σh,uh) ∈ X2,h ×M1,h and φh ∈ Hh such that

a(σh, τ h) + b1(τ h,uh) = G(τ h) ∀ τ h ∈ X1,h ,

b2(σh,vh) = Fφh(vh) ∀vh ∈ M2,h ,

Aσh(φh, ψh) = Guh(ψh) ∀ψh ∈ Hh .

(4.1)

4.1 The discrete fixed point strategy

Here we adopt the discrete analogue of the fixed point strategy introduced in Section 3.2 to analyse
the solvability of (4.1). According to it, we now let Sh : Hh → Xh,2 ×Mh,1 be the operator defined
for each ϕh ∈ Hh as Sh(ϕh) := (σ̃h, ũh), where (σ̃h, ũh) ∈ X2,h ×M1,h is the unique solution (to be
confirmed below) of the first two equations of (4.1) with ϕh instead of φh, that is

a(σ̃h, τ h) + b1(τ h, ũh) = G(τ h) ∀ τ h ∈ X1,h ,

b2(σ̃h,vh) = Fϕh(vh) ∀vh ∈ M2,h .
(4.2)

In addition, we also let S̃h : X2,h×M1,h → Hh be the operator defined for each (ζh,wh) ∈ X2,h×M1,h

as S̃h(ζh,wh) := φ̃h, where φ̃h ∈ Hh is the unique solution of the last equation of (4.1) with (ζh,wh)
instead of (σh,uh), that is

Aζh(φ̃h, ψh) = Gwh(ψh) ∀ψh ∈ Hh . (4.3)

Then, we define the operator Th : Hh → Hh as

Th(ϕh) := S̃h
(
Sh(ϕh)

)
∀ϕh ∈ Hh , (4.4)
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and realise that solving (4.1) is equivalent to seeking a fixed point of Th, that is φh ∈ Hh such that

Th(φh) = φh . (4.5)

4.2 Well-posedness of the operators Sh and S̃h

We now apply the discrete versions of Theorem 3.1 and Lax-Milgram’s lemma to show that the discrete
operators Sh and S̃h are well defined, equivalently that problems (4.2) and (4.3) are well-posed. For
this purpose, we now let K1,h and K2,h be the discrete kernels of the operators induced by the bilinear
forms b1 and b2, respectively, that is

K1,h :=
{
τ h ∈ X1,h : b1(τ h,vh) = 0 ∀vh ∈M1,h

}
, (4.6)

K2,h :=
{
ζh ∈ X2,h : b2(ζh,vh) = 0 ∀vh ∈M2,h

}
. (4.7)

Next, we introduce some hypotheses involving the arbitrary spaces X2,h, M1,h, X1,h, and M2,h, as well
as K1,h and K2,h. More precisely, from now on we assume the following:

(H.1) there exists a constant αd > 0, independent of h, such that

sup
τh∈X1,h

τh 6=0

a(σh, τ h)

‖τ h‖X1

≥ αd ‖σh‖X2 ∀σh ∈ K2,h , and

sup
ζh∈K2,h

a(ζh, τ h) > 0 ∀ τ h ∈ K1,h, τ h 6= 0 .

(H.2) there exist constants β1,d, β2,d > 0, independent of h, such that for each i ∈ {1, 2} there holds

sup
τh∈Xi,h
τh 6=0

bi(τ h,vh)

‖τ h‖Xi
≥ βi,d ‖vh‖Mi ∀vh ∈Mi,h .

Specific finite element subspaces satisfying (H.1) and (H.2) will be defined later on in Section 5.2.
Thus, as a straightforward consequence of these assumptions, we obtain the following result.

Lemma 4.1. For each ϕh ∈ Hh there exists a unique Sh(ϕh) =
(
S1,h(ϕh), S2,h(ϕh)

)
:= (σ̃h, ũh) ∈

X2,h ×M1,h solution to (4.2). Moreover, there hold

‖S1,h(ϕh)‖X2 = ‖σ̃h‖X2 ≤
Cr
αd
‖uD‖1/s,r;Γ +

|Ω|1/r

β2,d

(
1 +

2

αd µ

)
f2 , and

‖S2,h(ϕh)‖M1 = ‖ũh‖M1 ≤
Cr
β1,d

(
1 +

2

αd µ

)
‖uD‖1/s,r;Γ +

2|Ω|1/r

µβ1,d β2,d

(
1 +

2

αd µ

)
f2 .

(4.8)

Proof. Invoking (H.1) and (H.2), the proof reduces to a direct application of the discrete version of
Theorem 3.1 (see, e.g. [4, Corollary 2.2]). In particular, the a priori estimates given by (4.8) follow
from the discrete analogue of (3.57).

Having proved that Sh is well-defined, we now establish the same property for S̃h with an arbitrary
finite element subspace Hh of H1(Ω).
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Lemma 4.2. For each (ζh,wh) ∈ X2,h×M1,h there exists a unique S̃(ζh,wh) := φ̃h ∈ Hh solution to
(4.3). Moreover, with the same constant r̃ introduced in Lemma 3.7, there holds

‖S̃(ζh,wh)‖1,Ω = ‖φ̃h‖1,Ω ≤ r̃ . (4.9)

Proof. It suffices to note that the bilinear form Aζh is Hh-elliptic with the same constant α̃ given by

(3.61), and that Gwh restricted to Hh belongs to H′h with ‖Gwh‖ ≤ |Ω|1/2 g2 (cf. (3.62)). In this way,
the proof is a direct application of Lax-Milgram’s lemma.

4.3 Discrete solvability analysis

Having proved that the discrete operators Sh, S̃h, and hence Th, are all well defined, we now address
the solvability of the corresponding fixed point equation (4.5). To this end, and similarly to (3.64),
we first introduce the discrete ball

Wh :=
{
φh ∈ Hh : ‖φh‖1,Ω ≤ r̃

}
, (4.10)

and establish the discrete analogue of Lemma 3.8.

Lemma 4.3. There holds Th(Wh) ⊆Wh.

Proof. Similarly to the proof of Lemma 3.8, it follows from the definition of Th (cf. (4.4)) and the a
priori estimate for the operator S̃h provided by (4.9).

Next, we aim to state the continuity of the operators Sh, S̃h, and Th. We begin with Sh by proceeding
analogously to the proof of Lemma 3.9. Indeed, considering the Galerkin scheme associated with (3.66),
the inf-sup conditions provided by (H.1) and (H.2), the continuous injection ir : H1(Ω)→ Lr(Ω), and
the discrete version of the abstract estimate (3.27) (cf. [4, Corollary 2.2]), we readily deduce that there
exists a positive constant CS,d, depending only on µ, αd, β1,d, β2,d, and ‖ir‖, and hence independent
of h, such that

‖Sh(φh)− Sh(ϕh)‖X2×M1 ≤ CS,d Lf ‖φh − ϕh‖1,Ω ∀φ, ϕ ∈ Hh . (4.11)

In turn, for the continuity of S̃h we slightly modify the reasoning of the proof of Lemma 3.10.
In fact, instead of the regularity assumption (RA), which is certainly not applicable in the present
discrete context, we just employ an L2q − L2p − L2 argument to derive the discrete version of (3.72),
where p, q ∈ (1,+∞) conjugate to each other, are chosen such that 2q = r. Note that this is a feasible
choice since, as stipulated in (3.70), there holds r > 2, which yields r∗ := 2p = 2r

r−2 . In this way, given

(ζh,wh), (τ h,vh) ∈ X2,h ×M1,h, and denoting φ̃h = S̃h(ζh,wh) ∈ Hh and ϕ̃h = S̃h(τ h,vh) ∈ Hh, the
discrete analogue of (3.77) becomes

|(Aτh −Aζh)(ϕ̃h, φ̃h − ϕ̃h)| ≤ Lϑ ‖τ h − ζh‖0,r;Ω ‖∇ϕ̃h‖0,r∗;Ω ‖φ̃h − ϕ̃h‖1,Ω , (4.12)

which, along with the discrete versions of (3.75) and (3.76), imply the existence of a positive constant
C

S̃,d
, depending only on α̃ and the norm of the continuous injection is : H1(Ω) → Ls(Ω), and hence

independent of h, such that

‖S̃h(ζh,wh)− S̃h(τ h,vh)‖1,Ω

≤ C
S̃,d

{
Lg + Lϑ ‖∇S̃h(τ h,vh)‖0,r∗;Ω

}
‖(ζh,wh)− (τ h,vh)‖X2×M1

(4.13)

for all (ζh,wh), (τ h,vh) ∈ X2,h ×M1,h.
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In this way, recalling the definition of Th (cf. (4.4)), and employing the estimates (4.11) and (4.13),
we conclude that

‖Th(φh)− Th(ϕh)‖1,Ω ≤ CT,d Lf
{
Lg + Lϑ ‖Th(ϕh)‖0,r∗;Ω

}
‖φh − ϕh‖1,Ω ∀φh, ϕh ∈ Hh , (4.14)

with the positive constant CT,d := CS,dCS̃,d
. Regarding the estimate (4.14), we emphasize here that,

while it proves the continuity of Th, the lack of control of the term ‖Th(ϕh)‖0,r∗;Ω does not allow us to
conclude Lipschitz-continuity and hence nor contractivity of this operator. Consequently, we are able
to establish next only the existence of a fixed point of Th.

Theorem 4.4. The Galerkin scheme (4.1) has at least one solution (σh,uh, φh) ∈ X2,h×M1,h×Hh,
with φh ∈Wh (cf. (4.10)). Moreover, there hold

‖σh‖X2 ≤
Cr
αd
‖uD‖1/s,r;Γ +

|Ω|1/r

β2,d

(
1 +

2

αd µ

)
f2 , and

‖uh‖M1 ≤
Cr
β1,d

(
1 +

2

αd µ

)
‖uD‖1/s,r;Γ +

2|Ω|1/r

µβ1,d β2,d

(
1 +

2

αd µ

)
f2 .

(4.15)

Proof. Thanks to Lemma 4.3 and the continuity of Th (cf. (4.14)), and bearing in mind the equivalence
between (4.1) and (4.5), a straightforward application of Brouwer’s theorem (cf. [8, Theorem 9.9-2])
implies the first conclusion of this theorem. In turn, the fact that (σh,uh) = Sh(φh) and the a priori
estimates from (4.8) yield (4.15), thus completing the proof.

4.4 A priori error analysis

We now aim to derive an a priori error estimate for the Galerkin scheme (4.1) with arbitrary finite
element subspaces satisfying the hypotheses introduced in Section 4.2. In other words, we are interested
in establishing a Céa estimate for the global error

‖σ − σh‖X2 + ‖u− uh‖M1 + ‖φ− φh‖1,Ω ,

where (σ,u, φ) ∈ X2 ×M1 × H1
0(Ω) and (σh,uh, φh) ∈ X2,h ×M1,h × Hh are the unique solutions of

(3.21) and (4.1) , respectively, with φ ∈ W (cf. (3.64)) and φh ∈ Wh (cf. (4.10)). For this purpose,
and in order to employ suitable Strang estimates, we rewrite (3.21) and (4.1) as the following pairs of
corresponding continuous and discrete formulations

a(σ, τ ) + b1(τ ,u) = G(τ ) ∀ τ ∈ X1 ,

b2(σ,v) = Fφ(v) ∀v ∈ M2 ,

a(σh, τ h) + b1(τ h,uh) = G(τ h) ∀ τ h ∈ X1,h,

b2(σh,vh) = Fφh(vh) ∀vh ∈ M2,h,

(4.16)

and
Aσ(φ, ψ) = Gu(ψ) ∀ψ ∈ H1

0(Ω) ,

Aσh(φh, ψh) = Guh(ψh) ∀ψh ∈ Hh .
(4.17)

In what follows, given a subspace Zh of a generic Banach space (Z, ‖ · ‖Z), we set for each z ∈ Z

dist(z, Zh) := inf
zh∈Zh

‖z − zh‖Z .

Then, applying the Strang a priori error estimate from [4, Proposition 2.1, Corollary 2.3, and
Theorem 2.3] to the context given by (4.16), we deduce that there exists a positive constant ĈST ,
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depending only on αd, β1,d, β1,d, ‖a‖, ‖b1‖, and ‖b2‖, where ‖a‖ ≤ 2
µ and ‖b1‖, ‖b2‖ ≤ 1 (cf. (3.39)),

such that

‖σ − σh‖X2 + ‖u− uh‖M1 ≤ ĈST

{
dist(σ, X2,h) + dist(u,M1,h) + ‖Fφ − Fφh‖M ′2,h

}
. (4.18)

Then, proceeding as for the derivation of (3.67) (cf. proof of Lemma 3.9), we readily find that

‖Fφ − Fφh‖M ′2,h ≤ Lf ‖ir‖ ‖φ− φh‖1,Ω , (4.19)

which, replaced back into (4.18), gives

‖σ − σh‖X2 + ‖u− uh‖M1

≤ ĈST

{
dist(σ, X2,h) + dist(u,M1,h) + Lf ‖ir‖ ‖φ− φh‖1,Ω

}
.

(4.20)

On the other hand, applying now the classical first Strang Lemma for elliptic variational problems
(cf. [11, Lemma 2.27]) to the context given by (4.17), and then adding and subtracting φ to the first
components of the expressions involving Aσ and Aσh in the corresponding consistent term, and finally
employing the boundedness of these bilinear forms (cf. (3.58) - (3.59)), we arrive at

‖φ− φh‖1,Ω ≤ C̃ST

{
dist(φ,Hh) + ‖Gu −Guh‖H′h + ‖Aσ(φ, ·)−Aσh(φ, ·)‖H′h

}
, (4.21)

where C̃ST is a positive constant depending only on α̃ (cf. (3.60) - (3.61)) and the upper bound ϑ2 of
‖Aσh‖ (cf. (3.58) - (3.59)). Next, proceeding exactly as for the derivations of (3.76) and (3.78), we
find that for each ϕh ∈ Hh there hold

|(Gu −Guh)(ϕh)| ≤ Lg ‖is‖ ‖u− uh‖0,r;Ω ‖ϕh‖1,Ω

and
|Aσ(φ, ϕh)−Aσh(φ, ϕh)| ≤ LϑCr,ε ‖iε‖Cε g2 ‖σ − σh‖0,r;Ω ‖ϕh‖1,Ω ,

respectively, from which it follows that

‖Gu −Guh‖H′h ≤ Lg ‖is‖ ‖u− uh‖M1 (4.22)

and
‖Aσ(φ, ·)−Aσh(φ, ·)‖H′h ≤ LϑCr,ε ‖iε‖Cε g2 ‖σ − σh‖X2 . (4.23)

In this way, replacing (4.22) and (4.23) back into (4.21), we conclude that

‖φ− φh‖1,Ω ≤ C̃ST

{
dist(φ,Hh) + Lg ‖is‖ ‖u− uh‖M1 + LϑCr,ε ‖iε‖Cε g2 ‖σ − σh‖X2

}
. (4.24)

In turn, using the foregoing bound in (4.20), and performing some algebraic arrangements, we get

‖σ − σh‖X2 + ‖u− uh‖M1 ≤ C̄0

{
dist(σ, X2,h) + dist(u,M1,h) + dist(φ,Hh)

}
+ C̄1 Lf Lg ‖u− uh‖M1 + C̄2 Lf Lϑ g2 ‖σ − σh‖X2 ,

(4.25)

where C̄0 := ĈST max
{

1, Lf ‖ir‖ C̃ST
}

, and C̄1 and C̄2 are positive constants depending only on

ĈST , C̃ST , ‖ir‖, ‖is‖, ‖iε‖, Cr,ε, and Cε.

According to the previous analysis, we are now in a position to establish the announced Céa
estimate.
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Theorem 4.5. Assume that the data satisfy

C̄1 Lf Lg ≤
1

2
and C̄2 Lf Lϑ g2 ≤

1

2
. (4.26)

Then, there exists a positive constant C, independent of h, such that

‖σ − σh‖X2 + ‖u− uh‖M1 + ‖φ− φh‖1,Ω

≤ C
{

dist(σ, X2,h) + dist(u,M1,h) + dist(φ,Hh)
}
.

(4.27)

Proof. It suffices to employ the assumptions from (4.26) in (4.25), and then combine the resulting
estimate with (4.24).

5 Specific finite element subspaces

We now restrict our analysis to the 2D case and define specific finite element subspaces X2,h ⊆ X2,
M2,h ⊆ M2, X1,h ⊆ X1, M1,h ⊆ M1, and Hh ⊆ H1

0(Ω), satisfying the abstract hypotheses (H.1) and
(H.2) that were introduced in Section 4.2 in order to guarantee the well-posedness of the Galerkin
scheme (4.1).

5.1 Preliminaries

We begin by letting
{
Th
}
h>0

be a regular family of triangulations of Ω̄, which are made of triangles K

of diameters hK , and define the meshsize h := max
{
hK : K ∈ Th

}
, which also serves as the index of

Th. Then, given an integer k ≥ 0 and K ∈ Th, we let Pk(K) be the space of polynomials defined on K
of degree ≤ k, and denote its vector version by Pk(K). In addition, we let RTk(K) = Pk(K)⊕Pk(K)x
be the local Raviart-Thomas space defined on K of order k, where x stands for a generic vector in
R2, and denote by RTk(K) its corresponding tensor counterpart, that is, letting τ i be the i-th row of
a tensor τ , we set

RTk(K) :=
{
τ ∈ H(div;K) : τ i ∈ RTk(K) ∀ i ∈

{
1, 2
}}

.

In turn, we let Pk(Th) and RTk(Th) be the corresponding global versions of Pk(K) and RTk(K),
respectively, that is

Pk(Th) :=
{
vh ∈ L2(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
,

and
RTk(Th) :=

{
τ h ∈ H(div; Ω) : τ h|K ∈ RTk(K) ∀K ∈ Th

}
.

We stress here that for each t ∈ [1,+∞] there hold Pk(Th) ⊆ Lt(Ω) and RTk ⊆ Ht(divt; Ω) (cf.
(3.6)), which is implicitly utilized below in Section 5.2 to define the announced specific finite element
subspaces. Some useful properties concerning Pk(Th) and RTk(Th) are needed first. For this purpose,
we now introduce for each t ∈ (1,+∞) the space

Ht :=
{
τ ∈ Ht(divt; Ω) : τ |K ∈W1,t(K) ∀K ∈ Th

}
,

and let Πk
h : Ht → RTk(Th) be the global Raviart-Thomas interpolation operator (cf. [5, Section 2.5]).

Then, we recall from [5, Proposition 2.5.2 and eq. (2.5.27)] that the commuting diagram property
states that

div(Πk
h(τ )) = Pk

h(div(τ )) ∀ τ ∈ Ht , (5.1)
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where Pk
h : L1(Ω)→ Pk(Th) is the usual orthogonal projector with respect to the L2(Ω)-inner product,

that is given w ∈ L1(Ω), Pk
h(w) is the unique element in Pk(Th) satisfying∫

Ω
Pk
h(w) · vh =

∫
Ω
w · vh ∀vh ∈ Pk(Th) . (5.2)

Regarding the approximation properties of Pk
h and Πk

h in the present context of the Banach spaces
Lt(Ω) and Ht

0(divt; Ω), we remark that they follow in the usual way by employing now the Wm,t

version of the Deny-Lions Lemma (cf. [11, Lemma B.67] with integer m ≥ 0 and t ∈ (1,+∞), the
associated scaling estimates (cf. [11, Lemma 1.101]), and the regularity of {Th}h>0. Indeed, one
deduces the existence of positive constants C1, C2, independent of h, such that for integers l and m
verifying 0 ≤ l ≤ k + 1 and 0 ≤ m ≤ l, there hold

|w −Pk
h(w)|m,t;Ω ≤ C1 h

l−m |w|l,t;Ω ∀w ∈Wl,t(Ω) , (5.3)

and

|div(τ )− div(Πk
h(τ ))|m,t;Ω ≤ C1 h

l−m |div(τ )|l,t;Ω ∀ τ ∈Wl,t(Ω) with div(τ ) ∈Wl,t(Ω) , (5.4)

whereas for integers l and m verifying 1 ≤ l ≤ k + 1 and 0 ≤ m ≤ l, there holds

|τ −Πk
h(τ )|m,t;Ω ≤ C2 h

l−m |τ |l,t;Ω ∀ τ ∈ Wl,t(Ω) . (5.5)

Note that actually (5.4) follows from (5.1) and a direct application of (5.3) to w = div(τ ). Also, we
highlight that (5.3) is first derived for 1 ≤ l ≤ k + 1, and then using only the scaling estimates one
proves the stability of Pk

h, that is the existence of a positive constant c, independent of h, such that

‖Pk
h(w)‖0,t;Ω ≤ c ‖w‖0,t;Ω ∀w ∈ Lt(Ω) . (5.6)

In turn, employing the triangle inequality and (5.5) with l = 1 andm = 0, we conclude the boundedness
of Πk

h : W1,t(Ω)→ Lt(Ω), which means that there exists a positive constant C, independent of h, such
that

‖Πk
h(τ )‖0,t;Ω ≤ C ‖τ‖1,t;Ω ∀ τ ∈W1,t(Ω) . (5.7)

Finally, taking in particular m = 0 in (5.5) and (5.4), we readily find that there exists a positive
constant C3, independent of h, such that for 1 ≤ l ≤ k + 1 there holds

‖τ −Πk
h(τ )‖t,divt;Ω ≤ C3 h

l
{
|τ |l,t;Ω + |div(τ )|l,t;Ω

}
(5.8)

for all τ ∈Wl,t(Ω) with div(τ ) ∈Wl,t(Ω).

5.2 The finite element subspaces

Appropriate finite element subspaces approximating the unknowns of the pseudostress-based mixed
variational formulation for the elasticity problem are defined as follows

X2,h := X2 ∩ RTk(Th) :=
{
ζh ∈ Hr

0(divr; Ω) : ζh|K ∈ RTk(K) ∀K ∈ Th
}
,

M2,h := M2 ∩ Pk(Th) :=
{
vh ∈ Ls(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
,

X1,h := X1 ∩ RTk(Th) :=
{
τ h ∈ Hs

0(divs; Ω) : τ h|K ∈ RTk(K) ∀K ∈ Th
}
,

M1,h := M1 ∩ Pk(Th) :=
{
vh ∈ Lr(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
.

(5.9)
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In turn, the unknown of the diffusion problem is approximated by Lagrange finite elements of degree
≤ k + 1, that is

Hh :=
{
ψh ∈ C(Ω) ∩H1

0(Ω) : ψh|K ∈ Pk+1(K) ∀K ∈ Th
}
. (5.10)

Regarding the definitions in (5.9) we stress that, while the pairs
(
X2,h,M2,h

)
and

(
X1,h,M1,h

)
are

topologically different, they do coincide algebraically, and hence the stiffness matrices associated to
the bilinear forms b1 and b2 are exactly the same. Moreover, since div(Xi,h) ⊆ Mi,h, i ∈

{
1, 2
}

, it
follows that the corresponding discrete kernels of the bilinear forms b1 and b2 coincide as well, and
that they are given by the space

Kkh,0 :=
{
τ h ∈ Kkh :

∫
Ω

tr(τ h) = 0
}
, (5.11)

where
Kkh :=

{
τ h ∈ RTk(Th) : div(τ h) = 0

}
. (5.12)

Moreover, similarly as derived for the vector version in [10, Lemma 2.1] (see also [20, Lemma 4.1] for
a slight variant of it), one can show that

Kkh = curl
(
Pk+1,0(Th)

)
, (5.13)

where

Pk+1,0(Th) :=
{
φh ∈ H1(Ω) : φh|K ∈ Pk+1(K) ∀K ∈ Th ,

∫
Ω
φh = 0

}
,

and curl is the usual curl operator acting component-wise.

Now, we let Θk
h : L1(Ω)→ Kkh be the L2(Ω)-orthogonal projector, that is, given ζ ∈ L1(Ω), Θk

h(ζ)
is the unique element in Kkh satisfying∫

Ω
Θk
h(ζ) : τ h =

∫
Ω
ζ : τ h ∀ τ h ∈ Kkh . (5.14)

Then, proceeding analogously to the vector version in [10, Theorem 3.1] (see also [20, Lemma 4.2] for
a slight variant of it), and employing now (5.13), it can be proved in the present tensor version that
for each t ∈ (1,+∞) and for each integer k ≥ 0, there exist positive constants Ckt and C̄kt , independent
of h, such that, defining

ckt :=



Ckt if Ω is convex ,

C̄kt
{
− log(h)

}|1−2/t|
if Ω is non-convex and k = 0 ,

C̄kt if Ω is non-convex and k ≥ 1 ,

(5.15)

there holds
‖Θk

h(τ )‖0,t;Ω ≤ ckt ‖τ‖0,t;Ω ∀ τ ∈ H̃t(divt; Ω) , (5.16)

where
H̃t(divt; Ω) :=

{
τ ∈ Ht(divt; Ω) : div(τ ) = 0 in Ω

}
. (5.17)

Whether the boundedness property (5.16) is satisfied or not in 3D is, up to our knowledge, still an
open problem, and this fact is precisely the reason why we have restricted the analysis in the present
Section 5 to the 2D case.
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5.3 The discrete inf-sup conditions for Sh

In this section we show that the specific finite element subspaces introduced in Section 5.2 (cf. (5.9))
verify the hypotheses (H.1) and (H.2). To this end, we first introduce the deviatoric of Kkh, that is

Kk,dh :=
{
τ dh : τ h ∈ Kkh

}
, (5.18)

and let Θk,d
h : L1(Ω)→ Kk,dh be the projector defined for each τ ∈ L1(Ω) as∫

Ω
Θk,d
h (τ ) : ζh =

∫
Ω
τ : ζh ∀ ζh ∈ K

k,d
h . (5.19)

Then, we have the following identity relating Θk,d
h and Θk

h.

Lemma 5.1. There holds

Θk,d
h

(
Θk
h(τ )

)
=
(
Θk
h(τ )

)d ∀ τ ∈ L1(Ω) . (5.20)

Proof. Given τ ∈ L1(Ω), it follows from (5.18) and (5.19) that for each τ h ∈ Kkh there holds∫
Ω

Θk,d
h

(
Θk
h(τ )

)
: τ dh =

∫
Ω

Θk
h(τ ) : τ dh =

∫
Ω

(
Θk
h(τ )

)d
: τ dh .

Hence, since both Θk,d
h

(
Θk
h(τ )

)
and

(
Θk
h(τ )

)d
belong to Kk,dh , the identity (5.20) is concluded.

We suppose from now on that the operators Θk
h satisfy the following asymptotic property: for each

t ∈ (1,+∞) and for each integer k ≥ 0 there exists hkt > 0 such that

||| I−Θk
h |||t := sup

τ∈H̃t(divt;Ω)

τ 6=0

‖τ −Θk
h(τ )‖0,t;Ω

‖τ‖0,t;Ω
< 1 ∀h ≤ hkt . (5.21)

Numerical evidences supporting this assumption are provided later on in Section 6.

As a consequence of Lemma 5.1 and (5.21), we are able to provide next the Lt(Ω)-stability of Θk,d
h

when restricted to H̃t(divt; Ω).

Lemma 5.2. For each t ∈ (1,+∞) and for each integer k ≥ 0, there exists a positive constant ck,dt
such that

‖Θk,d
h (τ )‖0,t;Ω ≤ ck,dt ‖τ‖0,t;Ω ∀ τ ∈ H̃t(divt; Ω) , ∀h ≤ hkt . (5.22)

Proof. Given τ ∈ H̃t(divt; Ω), we first observe, thanks to the idempotence property of I−Θk
h, that

Θk,d
h (τ )−Θk,d

h

(
Θk
h(τ )

)
= Θk,d

h

(
(I−Θk

h)(τ )
)

= Θk,d
h

(
(I−Θk

h)m(τ )
)

∀m ∈ N ,

from which it follows that

‖Θk,d
h (τ )−Θk,d

h

(
Θk
h(τ )

)
‖0,t;Ω ≤ ‖Θk,d

h ‖t ||| I−Θk
h |||mt ‖τ‖0,t;Ω ∀m ∈ N , (5.23)

where

‖Θk,d
h ‖t := sup

τ∈L1(Ω)

τ 6=0

‖Θk,d
h (τ )‖0,t;Ω
‖τ‖0,t;Ω

.
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In this way, invoking (5.21), taking lim
m→+∞

in (5.23), and employing (5.20) (cf. Lemma 5.1), we

conclude that
Θk,d
h (τ ) =

(
Θk
h(τ )

)d ∀h ≤ hkt . (5.24)

On the other hand, simple algebraic computations and (3.33) give

‖tr(τ ) I‖0,t;Ω = n1/t ‖tr(τ )‖0,t;Ω ≤ n ‖τ‖0,t;Ω ,

which readily implies
‖τ d‖0,t;Ω ≤ 2 ‖τ‖0,t;Ω ∀ τ ∈ Lt(Ω) . (5.25)

Hence, employing (5.25) and (5.16), we deduce from (5.24) that

‖Θk,d
h (τ )‖0,t;Ω ≤ 2 ckt ‖τ‖0,t;Ω ∀h ≤ hkt , (5.26)

which constitutes the required inequality (5.22) with ck,dt = 2 ckt .

Having proved Lemma 5.2, we proceed in what follows to establish the discrete analogues of Lemmas
3.4 and 3.5, for which we suitably adapt their respective proofs to the present context. We begin with
the discrete inf-sup conditions for a.

Lemma 5.3. Assume that r and s satisfy the final ranges specified by (3.70) and (3.71), that is
r ∈

(
2, 2n

n−1

]
and s ∈

[
2n
n+1 , 2

)
. Then, there exist positive constants Md and αd such that for each

λ > Md and for each h ≤ h0 := min
{
hkr , h

k
s

}
, there hold

sup
τh∈K

k
h,0

τh 6=0

a(ζh, τ h)

‖τ h‖X1

≥ αd ‖ζh‖X2 ∀ ζh ∈ Kkh,0 , (5.27)

and
sup

ζh∈Kkh,0

a(ζh, τ h) > 0 ∀ τ h ∈ Kkh,0, τ h 6= 0 . (5.28)

Proof. Similarly to the proof of Lemmas 3.4, we first observe that, given ζh ∈ Kkh,0, there holds the
discrete analogue of (3.45), namely

sup
τh∈K

k
h,0

τh 6=0

a(ζh, τ h)

‖τ h‖X1

≥ 1

µ
sup

τh∈K
k
h,0

τh 6=0

∫
Ω
ζdh : τ dh

‖τ h‖X1

− C̃r

n1/s
(
nλ+ (n+ 1)µ

) ‖ζdh‖0,r;Ω , (5.29)

whence the rest of the proof reduces to get a suitable lower bound for the supremum on the right hand
side of (5.29). To this end, we proceed as in (3.46) and set

ζh,s :=

{
|ζdh|r−2 ζdh if ζdh 6= 0,

0 if ζdh = 0 ,
(5.30)

which belongs to Ls(Ω) and satisfies (cf. (3.47))∫
Ω
ζdh : ζh,s = ‖ζdh‖r0,r;Ω = ‖ζh,s‖s0,s;Ω = ‖ζdh‖0,r;Ω ‖ζh,s‖0,s;Ω . (5.31)

Then, we recall the definition of the operator Ds (cf. Lemma 3.2) and let τ̃ h ∈ Kkh (cf. (5.12)) such

that τ̃ dh = Θk,d
h (Ds(ζh,s)) ∈ K

k,d
h (cf. (5.18)). In this way, defining the constant

ch :=
1

n|Ω|

∫
Ω

tr(τ̃ h) ∈ R ,
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it follows that τ̃ h − chI ∈ Kkh,0, and hence

sup
τh∈K

k
h,0

τh 6=0

∫
Ω
ζdh : τ dh

‖τ h‖X1

≥

∫
Ω
ζdh : (τ̃ h − chI)d

‖τ̃ h − chI‖0,s;Ω
=

∫
Ω
ζdh : τ̃ dh

‖τ̃ h − chI‖0,s;Ω
. (5.32)

Now, employing the characterization of Θk,d
h (cf. (5.19)), the identity (3.30) satisfied by Ds, and (5.31),

we find that ∫
Ω
ζdh : τ̃ dh =

∫
Ω
ζdh : Θk,d

h (Ds(ζh,s)) =

∫
Ω
ζdh : Ds(ζh,s)

=

∫
Ω
ζdh : ζh,s = ‖ζdh‖0,r;Ω ‖ζh,s‖0,s;Ω .

(5.33)

In turn, applying (3.32) (cf. Lemma 3.3) to τ̃ h − chI, and making use of the boundedness of Θk,d
h (cf.

(5.22)) and Ds (cf. Lemma 3.2), we get

‖τ̃ h − chI‖0,s;Ω ≤ Ĉs ‖τ̃ dh‖0,s;Ω = Ĉs ‖Θk,d
h (Ds(ζh,s))‖0,s;Ω

≤ Ĉs c
k,d
s ‖Ds‖ ‖ζh,s‖0,s;Ω ∀h ≤ hks .

(5.34)

Therefore, replacing (5.33) and (5.34) back into (5.32), and then the resulting estimate in (5.29), we
arrive at

sup
τh∈K

k
h,0

τh 6=0

a(ζh, τ h)

‖τ h‖X1

≥

{
1

µ Ĉs c
k,d
s ‖Ds‖

− C̃r

n1/s
(
nλ+ (n+ 1)µ

)} ‖ζdh‖0,r;Ω ∀h ≤ hks , (5.35)

from which, choosing λ sufficiently large such that

C̃r

n1/s
(
nλ+ (n+ 1)µ

) <
1

2µ Ĉs c
k,d
s ‖Ds‖

,

that is
λ > Ms,d :=

µ

n1+1/s
max

{
2µ Ĉs C̃r c

k,d
s ‖Ds‖ − n1/s(n+ 1), 0

}
,

and applying (3.32) to ζh, we conclude (5.27), with αd := 1

2µ Ĉs Ĉr c
k,d
s ‖Ds‖

, for each h ≤ hks . Similarly,

given τ h ∈ Kkh,0, τ h 6= 0, we proceed analogously as above, but exchanging the roles of τ h and ζh,
and obtain

sup
ζh∈Kkh,0

a(ζh, τ h) ≥ sup
ζh∈K

k
h,0

ζh 6=0

a(ζh, τ h)

‖ζh‖X2

≥ 1

2µ Ĉr Ĉs c
k,d
r ‖Dr‖

‖τ h‖X1 > 0 ∀h ≤ hkr , (5.36)

for
λ > Mr,d :=

µ

n1+1/r
max

{
2µ Ĉr C̃s c

k,d
r ‖Dr‖ − n1/r(n+ 1), 0

}
,

which proves (5.28) for each h ≤ hkr . Finally, defining Md := max{Ms,d,Mr,d}, the proof is completed.

The discrete inf-sup conditions for the bilinear forms bi, i ∈ {1, 2}, are provided next.
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Lemma 5.4. Assume that r and s satisfy the final ranges specified by (3.70) and (3.71), that is
r ∈

(
2, 2n

n−1

]
and s ∈

[
2n
n+1 , 2

)
. Then, there exist positive constants β1,d, β2,d, independent of h, such

that for each i ∈ {1, 2} there holds

sup
τh∈Xi,h
τ 6=0

bi(τ h,vh)

‖τ h‖Xi
≥ βi,d ‖vh‖Mi ∀vh ∈Mi,h . (5.37)

Proof. We adapt the proof of Lemma 3.5 to show (5.37) only for i = 2 since the case i = 1 is analogous.
Indeed, given vh ∈M2,h ⊆ M2 = Ls(Ω), we follow (3.52) and define first

vh,r :=

{
|vh|s−2 vh if vh 6= 0 ,

0 if vh = 0 ,
(5.38)

which belongs to Lr(Ω) and, as in (3.53), satisfies∫
Ω
vh · vh,r = ‖vh‖s0,s;Ω = ‖vh,r‖r0,r;Ω = ‖vh‖0,s;Ω ‖vh,r‖0,r;Ω . (5.39)

Next, proceeding similarly to the proof of [20, Lemma 5.4], we let O be a bounded convex polygonal
domain containing Ω̄, and introduce

g =

{
vh,r in Ω ,
0 on O\Ω̄ ,

(5.40)

which is clearly seen to belong to Lr(O) with ‖g‖0,r;O = ‖vh,r‖0,r;Ω. Then, applying the elliptic
regularity result provided in [13, Corollary 1], we deduce that there exists a unique z ∈ W2,r(O) ∩
W1,r

0 (O) solution of
∆z = g in O , z = 0 on ∂O , (5.41)

and that there exists a positive constant Creg, depending only on O, such that

‖z‖2,r;O ≤ Creg ‖vh,r‖0,r;Ω . (5.42)

In this way, defining now ζ := ∇z|Ω ∈W1,r(Ω), it follows from (5.40), (5.41), and (5.42) that

div(ζ) = vh,r in Ω and ‖ζ‖1,r;Ω ≤ Creg ‖vh,r‖0,r;Ω . (5.43)

Thus, letting ζh be the Hr
0(divr; Ω)-component (cf. (3.13)) of Πk

h(ζ), and employing the commuting
diagram property (5.1) and the identity from (5.43), we observe that

div(ζh) = div(Πk
h(ζ)) = Pk

h(div(ζ)) = Pk
h(vh,r) in Ω , (5.44)

so that, applying the stability estimate of Pk
h (cf. (5.6)), it follows that

‖div(ζh)‖0,r;Ω ≤ c ‖vh,r‖0,r;Ω . (5.45)

On the other hand, according to (3.13) and the notations introduced there, and using the triangle and
Holder inequality, and (3.33), it is easy to show that for each t ∈ (1,+∞) there holds

‖τ 0‖0,t;Ω ≤ 2 ‖τ‖0,t;Ω ∀ τ ∈ Ht(divt; Ω) . (5.46)

Hence, employing now (5.46), the stability estimate of Πk
h (cf. (5.7)), and the inequality from (5.43),

we find that
‖ζh‖0,r;Ω ≤ 2 ‖Πk

h(ζ)‖0,r;Ω ≤ 2C ‖ζ‖1,r;Ω ≤ 2C Creg ‖vh,r‖0,r;Ω , (5.47)
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which, jointly with (5.45), yield the existence of a positive constant Ĉ, independent of h, such that
(cf. (3.7))

‖ζh‖X2 = ‖ζh‖0,r;Ω + ‖div(ζh)‖0,r;Ω ≤ Ĉ ‖vh,r‖0,r;Ω . (5.48)

Finally, bearing in mind (5.44), (5.2), (5.39), and (5.48), we obtain

sup
τh∈X2,h

τh 6=0

b2(τ h,vh)

‖τ h‖X2

≥

∫
Ω
vh · div(ζh)

‖ζh‖X2

=

∫
Ω
vh ·Pk

h(vh,r)

‖ζh‖X2

=

∫
Ω
vh · vh,r

‖ζh‖X2

=
‖vh‖0,s;Ω ‖vh,r‖0,r;Ω

‖ζh‖X2

≥ 1

Ĉ
‖vh‖M2 ,

which yields (5.37) for i = 2 with β2,d := 1

Ĉ
.

5.4 The rates of convergence

The rates of convergence of the Galerkin scheme (4.1) with the specific finite element subspaces
introduced in Section 5.2 are provided next. To this end, we first collect the approximation properties
of X2,h and M1,h (cf. (5.9)), which follow from (5.8) (for t = r) and (5.3) (for m = 0 and t = r),
respectively, along with interpolation estimates of Sobolev spaces. More precisely, they are given as
follows:

(APσh ) there exists C > 0, independent of h, such that for each l ∈ [1, k+1], and for each τ ∈Wl,r(Ω)
with div(τ ) ∈Wl,r(Ω), there holds

dist(τ , X2,h) := inf
τh∈X2,h

‖τ − τ h‖r,divr;Ω ≤ C hl
{
‖τ‖l,r;Ω + ‖div(τ )‖l,r;Ω

}
.

(APuh ) there exists C > 0, independent of h, such that for each l ∈ [0, k+1], and for each v ∈Wl,r(Ω),
there holds

dist(v,M1,h) := inf
vh∈M1,h

‖v − vh‖0,r;Ω ≤ C hl ‖v‖l,r;Ω .

In turn, the approximation property of Hh, which makes use of interpolation estimates of Sobolev
spaces as well, is stated as indicated below (cf. [11, Corollary 1.109]):

(APφ
h) there exists C > 0, independent of h, such that for each l ∈ (0, k+1], and for each ϕ ∈ Hl+1(Ω),

there holds
dist(ϕ,Hh) := inf

ϕh∈Hh
‖ϕ− ϕh‖1,Ω ≤ C hl ‖ϕ‖l+1,Ω .

Consequently, we can state the following main theorem.

Theorem 5.5. Let (σ,u, φ) ∈ X2 ×M1 × H1
0(Ω) be the unique solution of (3.21) with φ ∈ W (cf.

(3.64)), and let (σh,uh, φh) ∈ X2,h×M1,h×Hh be a solution of (4.1) with φh ∈Wh (cf. (4.10)), whose
existences are guaranteed by Theorems 3.12 and 4.4, respectively. Assume that (4.26) (cf. Theorem
4.5) holds, and that there exists l ∈ [1, k + 1] such that σ ∈Wl,r(Ω), div(σ) ∈Wl,r(Ω), u ∈Wl,r(Ω)
and φ ∈ Hl+1(Ω). Then there exists a constant C > 0, independent of h, such that

‖σ − σh‖X2 + ‖u− uh‖M1 + ‖φ− φh‖1,Ω

≤ C hl
{
‖σ‖l,r;Ω + ‖div(σ)‖l,r;Ω + ‖u‖l,r;Ω + ‖φ‖l+1,Ω

}
.

Proof. It follows directly from the Céa estimate (4.27) and the above approximation properties.
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6 Numerical results

In this section we report numerical experiments illustrating the performance of the Galerkin scheme
(4.1) with the specific finite element spaces defined in (5.9), and confirming the theoretical rates of
convergence provided by Theorem 5.5. We begin by recalling that part of the analysis developed in
Section 5, namely the one referring to the discrete inf-sup conditions for the bilinear form a, depends
on the hypothesis (5.21), which establishes an asymptotic behavior of the operators Θk

h. However,
since proving this assumption has remained elusive, in what follows we present numerical evidence
supporting its eventual validity. To this end, we now consider the convex and non-convex domains
given by ΩS := (0, 1)2 and ΩL := (−1, 1)2 \ [0, 1]2, respectively, and let τ 1, τ 2, and τ 3 be the tensor
fields defined for each x := (x1, x2)t ∈ ΩS ∪ ΩL as:

τ 1 := curl

(
exp(−x2

1 − x2
2)

exp(−x1x2)

)
=

(
−2x2 exp(−x2

1 − x2
2) 2x1 exp(−x2

1 − x2
2)

−x1 exp(−x1x2) x2 exp(−x1x2)

)
,

τ 2 := curl

(
π−1 sin(πx1) cos(πx2)

π−1 cos(πx1) sin(πx2)

)
=

(
− sin(πx1) sin(πx2) − cos(πx1) cos(πx2)

cos(πx1) cos(πx2) sin(πx1) sin(πx2)

)
and

τ 3 := curl

(
1

3

{
(x1 − 2)2 + (x2 − 2)2

}3/2
(

1

1

))
=
√

(x1 − 2)2 + (x2 − 2)2

(
x2 − 2 2− x1

x2 − 2 2− x1

)
,

which are clearly all divergence-free. Then, for p = 4
3 , k ∈ {0, 1}, and five regular triangulations Th of

ΩS and ΩL, respectively, we compute the expressions

ckh,S(τ ) :=
‖τ −Θk

h(τ )‖0,p;ΩS
‖τ‖0,p;ΩS

and ckh,L(τ ) :=
‖τ −Θk

h(τ )‖0,p;ΩL
‖τ‖0,p;ΩL

∀ τ ∈
{
τ 1, τ 2, τ 3

}
,

which are displayed below in Table 6.1. We observe there that these values remain not only below 1,
as requested by (5.21), but they actually approach 0 as the meshsize h tends to 0.

ΩS ΩL
τ h c0

h,S(τ ) c1
h,S(τ ) h c0

h,L(τ ) c1
h,L(τ )

0.1414 6.91e-02 1.58e-03 0.1414 8.43e-02 2.21e-03
0.0707 3.49e-02 4.00e-04 0.0471 2.85e-02 2.50e-04

τ 1 0.0471 2.33e-02 1.78e-04 0.0283 1.71e-02 9.05e-05
0.0202 1.00e-02 3.29e-05 0.0202 1.22e-02 4.63e-05
0.0109 5.40e-03 9.56e-06 0.0177 1.07e-02 3.54e-05

0.1414 1.52e-01 8.71e-03 0.1414 1.53e-01 8.79e-03
0.0707 7.66e-02 2.21e-03 0.0471 5.11e-02 9.88e-04

τ 2 0.0471 5.11e-02 9.85e-04 0.0283 3.07e-02 3.56e-04
0.0202 2.19e-02 1.82e-04 0.0202 2.19e-02 1.82e-04
0.0109 1.18e-02 5.28e-05 0.0177 1.92e-02 1.39e-04

0.1414 2.07e-02 1.63e-04 0.1414 1.44e-02 7.89e-05
0.0707 1.04e-02 4.08e-05 0.0471 4.81e-03 8.80e-06

τ 3 0.0471 6.90e-03 1.82e-05 0.0283 2.89e-03 3.17e-06
0.0202 2.96e-03 3.34e-06 0.0202 2.06e-03 1.62e-06
0.0109 1.59e-03 9.68e-07 0.0177 1.81e-03 1.24e-06

Table 6.1: Numerical evidence eventually supporting (5.21).

Next, we consider the finite element subspaces defined in (5.9) with k ∈ {0, 1, 2}, to illustrate the
performance of the mixed-primal finite element scheme (4.1) and confirm the rates of convergence
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provided by Theorem 5.5, through three numerical examples. We begin by noticing that the total
number of degrees of freedom (or unknowns) of (4.1) is given for n = 2 by

N :=
{

number of nodes of Th
}

+
(
2(k + 1) + k

)
×
{

number of edges of Th
}

+
(
2k(k + 1) + (k + 1)(k + 2) + 1

2k(k − 1)
)
×
{

number of elements of Th
}

+ 1 ,

whereas for n = 3 it becomes

N :=
{

number of nodes of Th
}

+ k ×
{

number of edges of Th
}

+
(
2k2 + 4k + 3

)
×
{

number of faces of Th
}

+
(

13k3+42k2+53k+18
6

)
×
{

number of elements of Th
}

+ 1 .

Now, regarding the resolution itself of (4.1), we remark that the null integral mean condition for the
traces of tensors in the space X2,h (cf. (5.9)) is imposed via a real Lagrange multiplier, and that the
nonlinear algebraic systems obtained are solved following the discrete fixed-point strategy suggested
by (4.5), whose computational implementation is given by a C++ code. We take as initial guess the
trivial solution, and remark in advance that for each one of the examples to be reported below, three
iterations are required to achieve a tolerance of 10−6.

Furthermore, given r as specified in (3.70), we introduce the individual errors:

e(σ) := ‖σ − σh‖r,divr;Ω , e(u) := ‖u− uh‖0,r;Ω ,

e(φ) := ‖φ− φh‖1,Ω and e(ρ) := ‖ρ− ρh‖0,r;Ω ,
where, according to (2.7) and (3.14), ρh is computed as:

ρh := σh + σt
h −

(
λ+ 2µ

nλ+ (n+ 1)µ
tr(σh) − nλ+ 2µ

n|Ω|

∫
Γ
uD · ν

)
I . (6.1)

In this way, the respective experimental rates of convergence are defined as:

r(∗) :=
log(e(∗) / e′(∗))

log(h /h′)
∀ ∗ ∈

{
σ,u, φ,ρ

}
,

where e(∗) and e′(∗) denote errors computed on two consecutive meshes of sizes h and h′, respectively.

In what follows we proceed to report on the numerical experiments obtained. The first example
uses a smooth manufactured solution to illustrate that the optimal rates of convergence of our method
are indeed attained in this case. The second one considers a singular solution to confirm that precisely
the lack of smoothness directly affects the order of convergence. Finally, and while, as shown in
Section 5, the discrete analysis using the specific finite element subspaces introduced in Section 5.2
has been guaranteed only in 2D, the third example illustrates the applicability of the method to a
three-dimensional problem as well. In each case we let E and ν be the Young modulus and Poisson
ratio, respectively, of the isotropic linear elastic solid occupying the region Ω, so that the corresponding
Lamé parameters are given by:

µ :=
E

2(1 + ν)
and λ :=

Eν

(1 + ν)(1− 2ν)
. (6.2)

Example 1. We consider the very same example from [16, Example 1, Section 5], which means that
we let Ω = (0, 1)2, and adequately manufacture the data so that the exact solution of (2.1) is given
by the smooth functions

u(x) =

 1
20 sin(πx1) cos(πx2) + 1

2λx
2
1

1
20 cos(πx1) sin(πx2) + 1

2λx
2
2

 and φ(x) = x1x2(x1 − 1)(x2 − 1) ,
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k h N e(σ) r(σ) e(u) r(u) e(φ) r(φ) e(ρ) r(ρ)

0.0333 19982 5.26e+01 −− 9.33e-04 −− 7.82e-03 −− 2.07e+01 −−
0.0270 30342 4.26e+01 1.00 7.54e-04 1.02 6.54e-03 0.85 1.68e+01 1.00
0.0217 46830 3.43e+01 1.00 6.05e-04 1.01 5.34e-03 0.93 1.35e+01 1.00

0 0.0185 64478 2.92e+01 1.00 5.14e-04 1.01 4.60e-03 0.93 1.15e+01 1.00
0.0164 82230 2.59e+01 1.00 4.55e-04 1.01 4.06e-03 1.01 1.02e+01 1.00
0.0139 114482 2.19e+01 1.00 3.85e-04 1.00 3.44e-03 1.01 8.63e+00 1.00
0.0122 148422 1.92e+01 1.00 3.38e-04 1.00 3.02e-03 1.01 7.58e+00 1.00

0.0333 65162 6.67e-01 −− 1.21e-05 −− 6.77e-05 −− 2.39e-01 −−
0.0270 99014 4.38e-01 2.00 7.93e-06 2.01 4.22e-05 2.25 1.58e-01 1.99

1 0.0217 152906 2.84e-01 2.00 5.13e-06 2.00 2.82e-05 1.85 1.02e-01 1.99
0.0185 210602 2.06e-01 2.00 3.72e-06 2.00 2.02e-05 2.07 7.42e-02 1.99
0.0164 268646 1.61e-01 2.00 2.91e-06 2.00 1.54e-05 2.23 5.82e-02 1.99

0.0333 135542 5.74e-03 −− 1.06e-07 −− 9.87e-07 −− 1.97e-03 −−
0.0270 206018 3.06e-03 3.00 5.63e-08 3.00 4.75e-07 3.49 1.05e-03 3.00

2 0.0217 318230 1.59e-03 3.00 2.93e-08 3.00 2.48e-07 2.99 5.48e-04 3.00
0.0185 438374 9.85e-04 3.00 1.81e-08 3.00 1.54e-07 2.94 3.39e-04 3.00
0.0164 559250 6.83e-04 3.00 1.26e-08 3.00 1.08e-07 2.96 2.35e-04 3.00

Table 6.2: History of convergence for Example 1 with r = 3.

for all x := (x1, x2)t ∈ Ω, whereas the body load, the diffusive source, and the tensorial diffusivity,
are given, respectively, by

f(φ) =

 1
10 cos2(φ)

− 1
10 sin(φ)

 , g(u) =
1

10

(
1 +

1

1 + |u|

)
and ϑ(σ) = I +

1

10
σ2 .

It is important to remark here that the second and fifth equations of (2.8) actually include additional
explicit source terms that are added to f(φ) and g(u), respectively. However, yielding only slight
modifications of the functionals Fφ and Gu in (3.21), this fact does not compromise the continuous
and discrete analyses. In addition, we take Young’s modulus E = 103 and Poisson’s ratio ν = 0.4,
which, according to (6.2), implies that µ = 357.1429 and λ = 1428.5714. Thus, in Tables 6.2 and 6.3
we summarize the convergence history of the Galerkin scheme (4.1) with r = 3 and r = 4, respectively.
In particular, we stress that the optimal order of convergence O(hk+1) predicted by Theorem 5.5 is
attained by all the unknowns. Some components and magnitudes of the discrete solutions are displayed
in Figure 6.1. Furthermore, in order to compare our discrete scheme (4.1) with those proposed in [16],
beyond the fact that they all confirm their theoretical rates of convergence, we first point out that the
unknowns σ from the present paper and [16] do not coincide, and hence their numerical approximations
σh and associated errors are not comparable. Actually, the stress σ from [16] corresponds to our ρ,
whose discrete approximation ρh (cf. (6.1)) lies only in Lr(Ω). Consequently, we extract from Tables
6.2 and 6.3, and [16, Table 1], the necessary information to display in Figures 6.2 and 6.3 the error
history for the unknowns u and φ only. The methods from [16] are referred to as “PEERS-Lagrange
scheme with k = 0”, “Augmented scheme with k = 0”, and “Augmented scheme with k = 1”, whereas
those regarding (4.1) are named “Pseudostress-based scheme with k = 0” and “Pseudostress-based
scheme with k = 1”, additionally indicating for the latter the value of r (and hence of s) with which
the corresponding norms are defined. Nevertheless, we observe from Figures 6.2 and 6.3 that, at least
for this example, there is almost no difference between the curves obtained with r = 3 and r = 4
for both values of k. Finally, according to the aforementioned figures, and based on the comparison
between schemes that use the same polynomial degree k, we infer that in general (4.1) requires less
degrees of freedom than the methods from [16] to achieve a given accuracy. This fact is particularly
notorious for the unknown u with k ∈

{
0, 1
}

, and specially with k = 1, whereas for φ it is observed
only with k = 0 since with k = 1 the respective curves are very close to each other and therefore no
substantial difference is noticed.
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k h N e(σ) r(σ) e(u) r(u) e(φ) r(φ) e(ρ) r(ρ)

0.0333 19982 5.48e+01 −− 9.73e-04 −− 7.82e-03 −− 2.15e+01 −−
0.0270 30342 4.44e+01 1.00 7.86e-04 1.02 6.24e-03 1.08 1.75e+01 1.00
0.0217 46830 3.57e+01 1.00 6.30e-04 1.01 4.94e-03 1.07 1.41e+01 1.00

0 0.0185 64478 3.04e+01 1.00 5.36e-04 1.01 4.20e-03 1.02 1.20e+01 1.00
0.0164 82230 2.70e+01 1.00 4.74e-04 1.01 3.71e-03 1.00 1.06e+01 1.00
0.0139 114482 2.28e+01 1.00 4.02e-04 1.00 3.12e-03 1.05 8.99e+00 1.00
0.0122 148422 2.00e+01 1.00 3.53e-04 1.00 2.74e-03 1.01 7.89e+00 1.00

0.0333 65162 7.08e-01 −− 1.28e-05 −− 6.77e-05 −− 2.55e-01 −−
0.0270 99014 4.66e-01 2.00 8.43e-06 2.01 4.22e-05 2.25 1.68e-01 1.99

1 0.0217 152906 3.01e-01 2.00 5.45e-06 2.00 2.82e-05 1.85 1.09e-01 1.99
0.0185 210602 2.19e-01 2.00 3.95e-06 2.00 2.02e-05 2.07 7.92e-02 1.99
0.0164 268646 1.71e-01 2.00 3.10e-06 2.00 1.54e-05 2.23 6.21e-02 1.99

0.0333 135542 6.21e-03 −− 1.14e-07 −− 9.87e-07 −− 2.17e-03 −−
0.0270 206018 3.31e-03 3.00 6.09e-08 3.00 5.45e-07 2.83 1.16e-03 3.00

2 0.0217 318230 1.72e-03 3.00 3.17e-08 3.00 2.88e-07 2.94 6.02e-04 3.00
0.0185 438374 1.07e-03 3.00 1.96e-08 3.00 1.77e-07 3.01 3.72e-04 3.00
0.0164 559250 7.39e-04 3.00 1.36e-08 3.00 1.22e-07 3.09 2.58e-04 3.00

Table 6.3: History of convergence for Example 1 with r = 4.

Figure 6.1: Some components and magnitudes of the solution of Example 1 with k = 2 and N = 559250

Example 2. We let Ω be the L-shaped (and hence non-convex) domain given by (−1, 1)2 \ [0, 1]2, and,

again, suitably perturb the definition of the functionals Fφ and Gu, so that, letting θ := arctan
(
x2
x1

)
,

the exact solution of (2.1) reduces to:

u(x) =

(
|x|2/3 sin(θ)

−|x|2/3 cos(θ)

)
and φ(x) = ex2

(
x1 −

1

2

)3

,
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Figure 6.2: Example 1, log(e(u)) vs. log(N) for the present scheme (4.1) and those from [16].

Figure 6.3: Example 1, log(e(φ)) vs. log(N) for the present scheme (4.1) and those from [16].
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k h N e(σ) r(σ) e(u) r(u) e(φ) r(φ) e(ρ) r(ρ)

0.0566 20927 4.51e+02 −− 1.98e-02 −− 2.72e-01 −− 7.75e+00 −−
0.0471 30062 5.09e+02 -0.66 1.65e-02 1.00 2.26e-01 1.00 7.30e+00 0.33
0.0372 48110 5.94e+02 -0.66 1.30e-02 1.00 1.79e-01 1.00 6.75e+00 0.33

0 0.0321 64418 6.54e+02 -0.66 1.12e-02 1.00 1.54e-01 1.00 6.43e+00 0.33
0.0283 83102 7.12e+02 -0.66 9.90e-03 1.00 1.36e-01 1.00 6.16e+00 0.33
0.0240 115583 7.94e+02 -0.66 8.39e-03 1.00 1.15e-01 1.00 5.83e+00 0.33
0.0208 153410 8.73e+02 -0.66 7.28e-03 1.00 9.99e-02 1.00 5.56e+00 0.33

0.0566 68102 4.49e+02 −− 7.47e-04 −− 2.77e-03 −− 4.97e+00 −−
0.0471 97922 5.06e+02 -0.66 5.87e-04 1.32 1.93e-03 2.00 4.67e+00 0.33

1 0.0372 156866 5.92e+02 -0.66 4.30e-04 1.32 1.20e-03 2.00 4.32e+00 0.33
0.0321 210146 6.52e+02 -0.66 3.55e-04 1.32 8.95e-04 2.00 4.11e+00 0.33
0.0283 271202 7.10e+02 -0.66 3.00e-04 1.32 6.93e-04 2.00 3.94e+00 0.33

0.0566 141527 4.60e+02 −− 2.50e-04 −− 1.68e-05 −− 3.93e+00 −−
0.0471 203582 5.19e+02 -0.66 1.97e-04 1.32 1.08e-05 2.41 3.69e+00 0.33

2 0.0372 326270 6.07e+02 -0.66 1.44e-04 1.32 6.58e-06 2.10 3.41e+00 0.33
0.0321 437186 6.69e+02 -0.66 1.19e-04 1.32 5.04e-06 1.82 3.25e+00 0.33
0.0283 564302 7.28e+02 -0.66 1.00e-04 1.32 4.08e-06 1.65 3.12e+00 0.33

Table 6.4: History of convergence for Example 2 with r = 3.

for all x := (x1, x2)t ∈ Ω, whereas the body load, the diffusive source, and the tensorial diffusivity,
are given, respectively, by

f(φ) =

 1
40φ

1
40φ(1− φ)

 , g(u) = −|u| and ϑ(σ) =

(
1 +

1

10

(
1 + |σ|2

)−1/2
)
I .

In addition, we take E = 100 and ν = 0.33, whence the resulting Lamé parameters are given in
this case (cf. (6.2)) by µ = 37.5940 and λ = 72.9766. Due to the singularity of the vector field
u at the origin, in this example we do not expect to attain the theoretical orders of convergence
guaranteed by Theorem 5.5. In fact, in Tables 6.4 and 6.5 we display the corresponding convergence
history with r = 3 and r = 4, respectively, from which we realize that sub-optimal, and even negative
experimental rates of convergence are obtained. In turn, it is interesting to observe in this case that,
differently from Example 1, these rates change not only with k but also with r, which must be certainly
connected to the Wl,r(Ω)-regularity of the solution, most likely with a non-integer l depending on r.
For instance, this was obtained for the regularity result of the Poisson problem in a non-convex domain,
with homogeneous Neumann boundary conditions, and source term in Lr(Ω) (see [20, Lemma B.1]
for details). Anyhow, the usual way of recovering optimal rates of convergence in theses cases is by
applying an adaptive strategy based on a posteriori error estimates. This is precisely the subject of
an undergoing work to be communicated in a forthcoming contribution.

Example 3. Finally, and while not supported by the theory, we consider the three dimensional
domain Ω = (0, 1)3, and choose the data so that the exact solution is given by

u(x) = ex1+x2+x3

 sin(πx1)
sin(πx2)
sin(πx3)

 and φ(x) = −64x1x2x3(x1 − 1)(x2 − 1)(x3 − 1) ,

for all x := (x1, x2, x3)t ∈ Ω. In addition, the body load, the diffusive source, and the tensorial
diffusivity are given, respectively, by

f(φ) =

 φ
1− φ
φ

 , g(u) = x1 + x2 + x3 and ϑ(σ) = I +
1

10
σ2 .
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k h N e(σ) r(σ) e(u) r(u) e(φ) r(φ) e(ρ) r(ρ)

0.0566 20927 7.91e+02 −− 1.91e-02 −− 2.72e-01 −− 1.21e+01 −−
0.0471 30062 9.19e+02 -0.82 1.60e-02 0.99 2.26e-01 1.00 1.17e+01 0.17
0.0372 48110 1.12e+03 -0.83 1.26e-02 0.99 1.79e-01 1.00 1.13e+01 0.17

0 0.0321 64418 1.26e+03 -0.83 1.09e-02 0.99 1.54e-01 1.00 1.10e+01 0.17
0.0283 83102 1.40e+03 -0.83 9.61e-03 1.00 1.36e-01 1.00 1.08e+01 0.17
0.0240 115583 1.61e+03 -0.83 8.15e-03 1.00 1.15e-01 1.00 1.05e+01 0.17
0.0208 153410 1.81e+03 -0.83 7.08e-03 1.00 9.99e-02 1.00 1.02e+01 0.17

0.0566 68102 8.29e+02 −− 1.20e-03 −− 2.77e-03 −− 9.05e+00 −−
0.0471 97922 9.64e+02 -0.83 9.74e-04 1.16 1.93e-03 2.00 8.78e+00 0.17

1 0.0372 156866 1.17e+03 -0.83 7.40e-04 1.16 1.20e-03 2.00 8.44e+00 0.17
0.0321 210146 1.32e+03 -0.83 6.24e-04 1.16 8.95e-04 2.00 8.24e+00 0.17
0.0283 271202 1.47e+03 -0.83 5.37e-04 1.16 6.93e-04 2.00 8.06e+00 0.17

0.0566 141527 8.91e+02 −− 4.38e-04 −− 1.68e-05 −− 7.87e+00 −−
0.0471 203582 1.04e+03 -0.83 3.54e-04 1.16 1.08e-05 2.41 7.63e+00 0.17

2 0.0372 326270 1.26e+03 -0.83 2.69e-04 1.16 6.58e-06 2.10 7.34e+00 0.17
0.0321 437186 1.42e+03 -0.83 2.27e-04 1.17 5.04e-06 1.82 7.16e+00 0.17
0.0283 564302 1.58e+03 -0.83 1.95e-04 1.17 4.08e-06 1.65 7.01e+00 0.17

Table 6.5: History of convergence for Example 2 with r = 4.

k h N e(σ) r(σ) e(u) r(u) e(φ) r(φ) e(ρ) r(ρ)

0.3542 9487 3.17e+03 −− 1.17e+00 −− 8.33e-01 −− 1.52e+03 −−
0.3130 13844 2.81e+03 0.97 1.04e+00 0.91 7.37e-01 0.99 1.35e+03 0.93
0.2804 18203 2.52e+03 0.99 9.26e-01 1.08 6.60e-01 0.99 1.21e+03 1.04

0 0.2657 22188 2.39e+03 1.00 8.76e-01 1.05 6.24e-01 1.06 1.14e+03 1.00
0.2519 26479 2.26e+03 1.00 8.30e-01 1.01 5.90e-01 1.04 1.08e+03 1.09
0.1832 82222 1.55e+03 1.18 5.86e-01 1.09 4.35e-01 0.96 7.78e+02 1.03
0.1475 152258 1.25e+03 1.02 4.71e-01 1.00 3.55e-01 0.94 6.35e+02 0.94

0.3542 40854 2.37e+02 −− 1.00e-01 −− 2.23e-02 −− 1.05e+02 −−
0.3130 59920 1.85e+02 1.99 7.88e-02 1.94 1.75e-02 1.97 8.15e+01 2.07

1 0.2804 78912 1.49e+02 2.00 6.32e-02 2.00 1.40e-02 2.01 6.58e+01 1.95
0.2657 96220 1.33e+02 2.00 5.68e-02 2.00 1.26e-02 2.00 5.90e+01 2.00
0.2519 114932 1.20e+02 2.00 5.10e-02 2.02 1.13e-02 2.01 5.31e+01 2.01

0.3542 106570 1.32e+01 −− 5.08e-03 −− 3.92e-03 −− 5.96e+00 −−
0.3130 156755 9.09e+00 3.00 3.53e-03 2.95 2.71e-03 2.99 4.11e+00 3.01

2 0.2804 206621 6.53e+00 3.01 2.55e-03 2.97 1.95e-03 3.01 2.95e+00 3.01
0.2657 251985 5.55e+00 3.00 2.17e-03 2.99 1.66e-03 3.00 2.51e+00 3.00
0.2519 301137 4.74e+00 3.00 1.85e-03 3.00 1.41e-03 2.99 2.14e+00 3.00

Table 6.6: History of convergence for Example 3 with r = 3.

As for Example 2, we take again E = 100 and ν = 0.33, which yields µ = 37.5940 and λ = 72.9766.
In addition, we employ the software TetGen (cf. [24]) to generate triangulations of Ω made of tetra-
hedrons. In this way, in Table 6.6 we present the convergence history of (4.1) with k ∈ {0, 1, 2} and
r = 3, from which we observe that the same orders from 2D (cf. Example 1) are attained in all these
cases. This fact suggests, in coherence with the remark at the end of Section 5.2, that only some
technical issues might be stopping us of extending the theoretical analysis to the 3D case. Finally,
some components of the approximate solution are depicted in Figure 6.4.
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