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Centro de Investigación en
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Froth flotation is a common unit operation used in mineral processing. It serves to separate valuable min-
eral particles from worthless gangue particles in finely ground ores. The valuable mineral particles are
hydrophobic and attach to bubbles of air injected into the pulp. This creates bubble-particle aggregates
that rise to the top of the flotation column where they accumulate to a froth or foam layer that is removed
through a launder for further processing. At the same time, the hydrophilic gangue particles settle and are
removed continuously. The drainage of liquid due to capillarity is essential for the formation of a stable
froth layer. This effect is included into a previously formulated hyperbolic system of partial differen-
tial equations that models the volume fractions of floating aggregates and settling hydrophilic solids [R.
Bürger, S. Diehl and M.C. Martı́, IMA J. Appl. Math. 84 (2019) 930–973]. The construction of desired
steady-state solutions with a froth layer is detailed and feasibility conditions on the feed volume fractions
and the volumetric flows of feed, underflow and wash water are visualized in so-called operating charts.
A monotone numerical scheme is derived and employed to simulate the dynamic behaviour of a flotation
column. It is also proven that, under a suitable Courant-Friedrichs-Lewy (CFL) condition, the approxi-
mate volume fractions are bounded between zero and one when the initial data are.

Keywords: froth flotation, sedimentation, drainage, capillarity, three-phase flow, conservation law,
second-order degenerate parabolic PDE, steady states.

2000 Math Subject Classification: 35L65, 35P05, 35R05.

1. Introduction

1.1 Scope

Flotation is a separation process where air bubbles are used to attract hydrophobic particles or droplets
from a mixture of solids in water. The process is used in mineral processing, where valuable mineral
particles are separated out from crushed ore, and in wastewater treatment to remove floating solids,
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FIG. 1.1. Left: Schematic of a flotation column; cf. the Reflux Flotation Cell by Dickinson & Galvin (2014). Right: The
corresponding one-dimensional conceptual model with a non-constant cross-sectional area A(z). Wash water is sprinkled at the
effluent level z = zE and a mixture of aggregates and feed slurry is fed at z = zF, where zU < zF < zE divide the real line into the
zones inside the column and the underflow and effluent zones.

residual chemicals, and droplets of oil and fat. The process is often applied in a column to which both a
mixture of particles (or droplets) and air bubbles are injected. The effluent at the top should consist of
a concentrate of hydrophobic particles that are attached to the bubbles, while the hydrophilic particles
settle to the bottom, where they are removed (see Figure 1.1). A layer of froth at the top is preferred
since the effluent then consists of a minimum amount of water and the froth works as a filter enhancing
the separation process. In our previous models of column froth flotation (with or without simultaneous
sedimentation of hydrophilic particles) (Bürger et al., 2018, 2019, 2020a,b), a particular constitutive
assumption on the bubble velocity leads to a hyperbolic system of partial differential equations (PDEs)
that models the layer of froth with a constant horizontal average volume fraction of bubbles φ , or equiv-
alently, the volume fraction ε = 1−φ of liquid (or suspension with hydrophilic particles) that fills the
interstices outside the bubbles. It is however known that ε varies with the height in the froth because of
capillarity and drainage of liquid; see Neethling & Brito-Parada (2018) and references therein.

It is the purpose of this work to extend the previous hyperbolic model to one that includes capillar-
ity. To this end we partly generalize the well-known drainage equation to hold for all bubble volume
fractions, and partly generalize our previous model of column froth flotation with simultaneous sed-
imentation. The latter is a nonlinear system of PDEs where the unknowns are the volume fractions
of aggregates (bubbles/droplets loaded with hydrophobic particles) and solid hydrophilic particles. A
numerical scheme for the new governing PDE system is presented. We show that the approximate vol-
ume fractions stay between zero and one if a suitable Courant-Friedrichs-Lewy (CFL) condition is used.
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Furthermore, we construct desired steady-state solutions and provide algebraic equations and inequali-
ties that establish the dependence of steady states on the input and control variables. Such dependences
are conveniently visualized in so-called operating charts that constitute a graphical tool for controlling
the process. The particular importance of steady states comes from the application under study; namely
they describe the ability of the model to capture steady operation of the flotation device without the
necessity of permanent control actions.

1.2 Some preliminaries

Froth is assumed to form when the volume fraction of bubbles φ is above a critical value φc = 1− εc
when the bubbles are in contact with each other. Then capillarity forces are involved, which means
that the governing PDE is parabolic, whereas it is hyperbolic in regions without froth. The present
derivation is based on the traditional one by Leonard & Lemlich (1965), Gol'dfarb et al. (1988), and
Verbist et al. (1996), leading to the drainage equation for low liquid content ε . We then combine results
by Neethling et al. (2002) and Stevenson & Stevanov (2004) to obtain a constitutive relationship between
the relative fluid-gas velocity u and the liquid volume fraction ε 6 εc when capillarity forces are present.
With a compatibility condition at εc, we obtain a constitutive relationship of the relative fluid-bubble
velocity u as a function of ε ∈ [0,1], which for ε > εc is the common Richardson & Zaki (1954) power-
law expression for separated bubbles (Galvin & Dickinson, 2014). The resulting generalized drainage
PDE is (in a closed vessel)

∂tε−∂z
(
ε ṽf(ε)

)
= ∂

2
z D̃(ε), (1.1)

where t is time, z is height, ṽf(ε) is a nonlinear fluid-velocity function, and D̃(ε) an integrated diffusion
function modelling capillarity, which is zero for ε > εc.

Equation (1.1) can alternatively be written in terms of the volume fraction of bubbles φ . We assume
that φ denotes the volume fraction of aggregates, by which we mean bubbles that are fully loaded
with hydrophobic particles. Under a common constitutive assumption for the settling of hydrophilic
particles within the liquid outside the bubbles, the following system of PDEs models the combined
flotation-drainage-sedimentation process in a vertical column with a feed inlet of air-slurry mixture at
the height z = zF with the volumetric flow QF(t) (see Figure 1.1):

A(z)∂t

(
φ

ψ

)
+∂z

(
A(z)

(
J(φ ,z, t)

−F̃(ψ,φ ,z, t)

))
= ∂z

(
A(z)γ(z)∂zD(φ)

(
1

−ψ/(1−φ)

))
+QF(t)

(
φF(t)
ψF(t)

)
δzF .

(1.2)

Here, ψ is the volume fraction of solids, A(z) the cross-sectional area of the tank, and J and F̃ are
convective flux functions that depend discontinuously on z at the locations of the feed and wash water
inlets and the outlets at the top and bottom. The system (1.2) is valid for t > 0 and all z ∈ R where the
characteristic function γ(z) = 1 indicates the interior of the tank and γ(z) = 0 outside, and δ is the delta
function. Outside the tank, the mixture is assumed to follow the outlet streams; consequently, boundary
conditions are not needed; conservation of mass determines the outlet volume fractions in a natural way.

Similarly to the role of D̃ in (1.1), the nonlinear function D models the capillarity present when
bubbles are in contact. Precisely, with a function d(φ) (specified later) we define

D(φ) :=
∫

φ

0
d(s)ds. (1.3)
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The function d is assumed to satisfy

d(φ) = D′(φ) =

{
0 for 0 6 φ 6 φc,
> 0 for φc < φ 6 1.

(1.4)

Consequently, at each point (z, t) where φ(z, t) 6 φc, there holds D(φ(z, t)) = 0, and therefore (1.2)
degenerates at such points into a first-order system of conservation laws of hyperbolic type (as was
shown in Bürger et al. (2019)). Since this degeneration occurs for 0 6 φ 6 φc and 0 6 ψ 6 1−φ , that
is, on a set of positive two-dimensional measure, (1.2) is called strongly degenerate. While it is clear
that the first PDE in (1.2) is parabolic for φc < φ 6 1 and this PDE, as well as (1.1), are scalar strongly
degenerate parabolic equations, the same cannot be said about the system. We observe namely that with
A = γ = 1, the diffusion term on the right-hand side can be written as

∂z

(
d(φ)∂zφ

(
1

−ψ/(1−φ)

))
= ∂z

(
BBB(φ ,ψ)

(
∂zφ

∂zψ

))
, BBB(φ ,ψ) := d(φ)

[
1 0

−ψ/(1−φ) 0

]
.

Since at least one of the eigenvalues of BBB(φ ,ψ) is always zero, we observe that even when d(φ) > 0,
the system (1.2) is not strictly parabolic.

1.3 Related work

Modelling flotation and developing strategies to control this process are research areas that have gen-
erated many contributions; see Cruz (1997) and the review by Quintanilla et al. (2021) and references
therein. The development of control strategies requires dynamic models along with a categorization of
steady-state (stationary) solutions of such models. Since the volume fractions depend on both time and
space, the resulting governing equations are PDEs. With the aim of developing controllers, Tian et al.
(2018a,b) and Azhin et al. (2021a,b) use hyperbolic systems of PDEs for the froth or pulp regions cou-
pled to ODEs for the lower part of the column. They include the attachment and detachment processes;
however, the phases seem to have constant velocities, which is not in agreement with the established
drift-flux theory (Wallis, 1969; Rietema, 1982; Brennen, 2005). Nonlinear dependence of the phase
velocities on the volume fractions give rise to discontinuities in the concentration profiles, which is con-
firmed experimentally (Cruz, 1997). Azhin et al. (2021a,b) show continuous steady-state profiles for
their model.

Narsimhan (2010) shows realistic conceptual transient solutions of a bubble-liquid suspension which
is homogeneous initially. The rising bubbles form a layer of foam at the top which can undergo com-
pressibility due to gravity and capillarity. The governing PDE has similarities with (1.1); however, it is
not utilized in all the different regions of solution. Separate equations are derived for the foam region
and boundary assumptions between regions have to be imposed. The purpose of our previous and the
present contributions is to let a single equation such as (1.1) govern the bubble-liquid behaviour under
any dynamic situation.

Phenomenological models for two-phase systems with bubbles rising (or, analogously, particles
settling) in a liquid, are derived from physical laws of conservation of mass and momentum (Bascur,
1991; Bustos et al., 1999; Bürger et al., 2000; Brennen, 2005). Under certain simplifying assumptions
on the stress tensor and partial pressure of the bubbles/solids, one can obtain first- or second-order PDEs
involving one or two constitutive (material specific) functions, respectively.

The resulting first-order PDE modelling such a separation process in a one-dimensional column of
rising bubbles is a scalar conservation law φt + (φ ṽ(φ))z=0 with a drift-flux velocity function ṽ(φ).
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This is in agreement with the drift-flux theory by Wallis (1969). With additional bulk flows due to
the inlets and outlets of the column that theory has mostly been used for steady-state investigations
of flotation columns (Vandenberghe et al., 2005; Stevenson et al., 2008; Dickinson & Galvin, 2014;
Galvin & Dickinson, 2014; Galvin et al., 2014). Models of and numerical schemes for column froth
flotation with the drift-flux assumption and possibly simultaneous sedimentation have been presented
by the authors (Bürger et al., 2018, 2019, 2020a,b).

The analogy of the drift-flux theory for sedimentation is the established solids-flux theory (Kynch,
1952; Ekama et al., 1997; Diehl, 2001, 2008b; Ekama & Marais, 2004; La Motta et al., 2007). With
an additional constitutive assumption on sediment compressibility, the model becomes a second-order
degenerate parabolic PDE (Bürger et al., 2000). Sedimentation in a clarifier-thickener unit is mathemati-
cally similar to the column-flotation case. A full PDE model of such a vessel necessarily contains source
terms and spatial discontinuities at both inlets and outlets. Steady-state analyses, numerical schemes,
dynamic simulations and control of such models can be found in Bürger et al. (2004, 2005) and Diehl
(1996, 1997, 2008a). Because of the discontinuous coefficients and degenerate diffusion term of the
PDE, so-called entropy conditions are needed to guarantee a unique physically relevant solution (Bürger
et al., 2005; Evje & Karlsen, 2000; Diehl, 2009). Those results will be utilized in the present work.

The first-order PDE of the flotation process does not include capillarity in the foam. Such effects
have been studied intensively by Neethling and Cilliers (Neethling et al., 2002; Neethling & Cilliers,
2003) and Neethling and Brito-Parada (Neethling & Brito-Parada, 2018); see more references in Quin-
tanilla et al. (2021). Solids motion in froth can be found in Neethling & Cilliers (2002). It is the aim of
the present contribution to extend our previous hyperbolic PDE model to include capillarity.

1.4 Outline of the paper

In Section 2, we consider a simplified two-phase bubble-fluid system in a closed vessel and derive a gen-
eralized drainage equation governing the flotation of the bubbles with formation of froth and drainage of
liquid from it. In Section 3, we extend the equation derived to the process of column flotation with sed-
imentation of solid particles and with froth drainage at the top. The treatment of the feed inlets and the
definition of the flux density functions in each zone (see Figure 1.1) are detailed. Section 4 is devoted
to the construction of steady-state solutions having a froth layer at the top of the tank and bubble-free
underflow. Necessary conditions for those so-called desired steady-states to appear, in terms of inequal-
ities involving the volumetric flows QU, QF and QW and the incoming volume fractions of aggregates
φF and solids ψF, are derived in Sections 4.4 and 4.5. In Section 5, the numerical scheme for simulation
of the process is introduced. It is proven that under a CFL condition, the approximate volume fractions
of aggregates and solids remain between zero and one provided that the initial data do. The proofs are
outlined in Appendix A. Some simulations are provided in Section 6. They show fill-up of a flotation
column and froth formation, illustrating the response of the system to changes of operating conditions.
Finally, conclusions are drawn in Section 7.

2. A generalized drainage equation in a closed tank

The two-phase system has bubbles of volume fraction φ and phase velocity v, and fluid of volume
fraction ε = 1− φ and phase velocity vf, where 0 6 φ ,ε 6 1. When the bubbles are mono-sized and
separated from each other (i.e., there is no froth), a common expression for their velocity in a closed
container without any bulk flow is (Pal & Masliyah, 1989; Vandenberghe et al., 2005)

v(φ) = vterm(1−φ)nb (separated bubbles),
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where vterm is the velocity of a single bubble far away from others (φ ≈ 0) and nb a dimensionless param-
eter (similar to the Richardson-Zaki exponent within the analogous expression for the sedimentation of
mono-sized and equal-density particles in a liquid, see Section 3.3). We thus let velocities be positive
in the upward direction of the z-axis. The relative velocity of fluid to bubbles is u := vf− v. In a closed
container, the volume-average velocity is zero; hence, 0 = φv+ εvf, and we get

u =− (1− ε)v
ε

− v =− v
ε
=−vtermε

nb−1 (separated bubbles), (2.1)

which is negative because the fluid flows downwards. We also obtain the identities vf = (1− ε)u and
v =−(1−φ)u.

If φ exceeds a certain critical volume fraction φc = 1− εc, the bubbles touch each other and a foam
is formed. The larger φ > φc, or smaller ε < εc, the more deformed are the bubbles. Randomly packed
rigid spheres leave a volume fraction of εc = 1− 0.64 = 0.36; cf. (Brito-Parada et al., 2012, Table 1).
For froth, we assume the value εc = 0.26 (Neethling & Cilliers, 2003, Eq. (21)) and Narsimhan (2010).

We discuss below the most difficult intermediate fluid volume fractions when ε is smaller than, but
close to εc. We consider, however, first a layer of foam with a very low volume fraction of liquid ε

and recall the derivation of the drainage equation (Leonard & Lemlich, 1965; Gol'dfarb et al., 1988;
Verbist et al., 1996). In this case the deformed bubbles are separated by very thin lamellae, which are
separated by channels, so called Plateau borders, which are connected at vertices, or nodes, so that a
network is formed. It is assumed that almost all the liquid is contained in the Plateau borders, whose
cross section is the plane region bounded by three externally tangential circles all of radius r. This
deformed triangular-shaped region has the area

A=C2r2, with C :=
(√

3−π/2
)1/2

. (2.2)

If the radius r changes along the Plateau border, this is related to a pressure difference according to the
Young-Laplace law:

pf = pb−
γw

r
,

where pf and pb are the fluid and bubble pressure, respectively, and γw is the surface tension of water.
The bubble pressure pb is assumed to be constant.

There are three forces acting per volume fraction of the Plateau border:

gravity: ρfggg,

dissipation: − CPBµ

A
uuu =−CPBµ

C2r2 uuu,

capillarity: −∇pf =−
γw

r2 ∇r.

Here, ggg is the gravity acceleration vector, uuu the fluid-bubble relative velocity, µ the fluid viscosity,
and CPBthe dimensionless Plateau border drag coefficient, which can be inferred to be 49.3 from the
numerical calculations by Leonard & Lemlich (1965). The value CPB = 50 is often used in the literature.
The sum of the three forces is zero if one neglects inertial forces. Along a Plateau border tilted an angle θ

from the vertical z-axis, we place a zθ -axis with the coordinate relation z = zθ cosθ . The force balance
along the zθ -axis is

−ρfgcosθ − CPBµ

C2r2 uθ −
γw

r2 ∂zθ
r = 0,
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where the relative fluid-gas velocity in the channel is uθ = uPB/cosθ and uPB is its vertical contribution
from one Plateau border of angle θ , which thus is

uPB =− C2r2

CPBµ

(
ρfg+

γw

r2 ∂zr
)

cos2
θ .

Under the assumption of randomly distributed Plateau borders with respect to the angle 0 6 θ 6 π , the
likelihood that a Plateau border has an angle in the interval (θ ,θ + dθ) is the area 2π sinθ dθ of the
circular strip of the unit sphere divided by its total area 4π . Since

〈cos2〉 :=
∫

π

0
cos2

θ
2π sinθ

4π
dθ =

1
3
,

the relative vertical velocity u is defined as the average vertical relative fluid-gas velocity for many
Plateau borders:

u = 〈uPB〉=−
C2r2ρfg
3CPBµ

(
1+

γw

r2ρfg
∂zr
)
. (2.3)

This velocity can be expressed inA by (2.2), and substituting the resulting expression into the conserva-
tion law ∂tA+∂z(A(1− ε)u) = 0 and setting ε = 0 (recall that vf = (1− ε)u) one obtains the classical
drainage equation for low liquid content.

We want an equation for the volume fraction ε , which is equal to A times the length of Plateau
borders per unit volume; cf. Neethling & Brito-Parada (2018). Then the length L and number of such
channels should be estimated. Since we also want an equation for all 0 6 ε 6 εc, the estimation of such
numbers becomes difficult since the Plateau borders are only narrow channels for small ε , their lengths
are not well defined and the volume and dissipation effect in the nodes varies. Koehler et al. (2000)
presented a relationship between ε , L and r, valid for at least ε up to 0.1. They derived a generalized
foam drainage equation which covers the two limiting cases of channel- and node-dominated models,
respectively. To remove the variable L, Neethling et al. (2002) made the common assumption that for
small ε , bubbles can be assumed to have the form of a tetrakaidecahedron (Kelvin cell) and used the
equation 4πr3

b/3 = (1− ε)22/7L3, where rb is the bubble radius. Thereby, they obtained the algebraic
equation

ε = 0.3316
(

r
rb

)2

(1− ε)2/3 +0.5402
(

r
rb

)3

(1− ε), (2.4)

which is implicit in all its variables. Containing these three variables, they derived a PDE valid for
0 6 ε 6 εc by considering dissipation both from the Plateau borders and the nodes. Assuming rb is
constant, their PDE and algebraic equation defines the unknowns ε and r.

Stevenson (2006) demonstrated that the effective relative fluid-gas velocity u could be very well
approximated by a power law of the type (2.1), at least for fluid volume fraction up to ε ≈ 0.2. In
particular, Stevenson & Stevanov (2004) approximated Equation (2.4) by

r
rb

= mε
nS , with m = 1.28, nS = 0.46.

This equation can be substituted into (2.3) to give

u =−vdrainε
2nS
(
1+dcapε

−(1+nS)∂zε
)

for 0 6 ε < εc, (2.5)
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where the drainage velocity vdrain (with respect to gravity and dissipation) and the dimensionless capillarity-
to-gravity parameter dcap are given by

vdrain :=
m2C2r2

bρfg
3CPBµ

, dcap :=
nSγw

mrbρfg
.

The derivative term in (2.5) models the capillarity that is not present for separated bubbles; see (2.1).
Hence, we suggest the relative fluid-gas velocity

u :=−

{
vdrainε2nS

(
1+dcapε−(1+nS)∂zε

)
for 0 6 ε < εc,

vtermεnb−1 for εc 6 ε 6 1

with the compatibility condition (continuity across ε = εc)

vdrainε
2nS
c = vtermε

nb−1
c ⇔ vdrain

vterm
= ε

n−1−2nS
c . (2.6)

Values for nb in the literature range from 2 to 3.2 (Dickinson & Galvin, 2014; Galvin & Dickinson,
2014; Pal & Masliyah, 1989; Vandenberghe et al., 2005).

Recalling once again that vf = (1− ε)u, we now define the velocity function

ṽf(ε) :=

{
vdrain(1− ε)ε2nS for 0 6 ε < εc,
vterm(1− ε)εnb−1 for εc 6 ε 6 1

and the diffusion function

df(ε) :=

{
vdraindcap(1− ε)εnS for 0 6 ε < εc,
0 for εc 6 ε 6 1,

so that the liquid flux (in a closed vessel) becomes

εvf = ε(1− ε)u =−ε ṽf(ε)−df(ε)∂zε =−ε ṽf(ε)−∂zD̃(ε), (2.7)

where the integrated diffusion function is

D̃(ε) :=
∫

ε

0
df(ξ )dξ =


vdraindcap

(
εnS+1

nS +1
− εnS+2

nS +2

)
for 0 6 ε < εc,

vdraindcap

(
ε

nS+1
c

nS +1
− ε

nS+2
c

nS +2

)
for εc 6 ε 6 1.

(Notice that D̃(ε) is constant, and therefore D̃′(ε) = 0, for εc 6 ε 6 1.) Inserting the expression (2.7)
into the conservation law for the fluid phase ∂tε +∂z(εvf) = 0, we obtain the generalized Equation (1.1)
modelling both rising bubbles and drainage of froth in a closed container.

3. A model of flotation including froth drainage

3.1 Assumption on the tank and mixture

We use a one-dimensional setup of the Reflux Flotation Cell by Dickinson & Galvin (2014); see Fig-
ure 1.1. A mixture of slurry and aggregates is fed at the height z = zF at the volumetric flow QF > 0 and
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wash water is injected at the top effluent level z = zE at QW > 0. At z = zU, a volumetric flow QU > 0
is taken out. In the one-dimensional model on the real line, there are four zones, two inside the vessel
plus the underflow and effluent zones. The resulting effluent volumetric overflow QE := QW +QF−QU
is assumed to be positive so that the mixture is conserved and the vessel is always completely filled. In
comparison to the previous treatments (Bürger et al., 2019, 2020a), here we do not separate the wash
water inlet and the effluent level, i.e., zW = zE. The cross-sectional area is assumed to satisfy

A(z) =

{
AE for z > zF,
AU for z < zF.

Particles trapped in the froth region influence the drainage of fluid (Ata, 2012; Haffner et al., 2015),
but for simplicity we nevertheless assume that the volume fraction of aggregates (bubbles with attached
hydrophobic particles) can be determined as a function of height and time by a single equation. Thus,
the suspension in the interstices outside the bubbles is assumed to behave independently of the volume
fraction of (hydrophilic) particles. Such particles may however settle within the suspension, which
undergoes bulk transport. From now on we denote by φ = 1− ε the volume fraction of aggregates. As
a first approximation in a closed vessel, φ can be obtained by solving (1.1) for ε and setting φ = 1− ε ,
but we proceed to derive an explicit equation for φ since that will be extended to the more complicated
model of a flotation column with in- and outlets.

3.2 Equation for aggregates with froth drainage in a closed tank

We recall the gas-phase velocity v =−(1−φ)u and the compatibility condition (2.6), and define

ṽ(φ) :=

vterm(1−φ)nb for 0 6 φ 6 φc,

vdrain(1−φ)2nS+1 = vterm
(1−φ)2nS+1

(1−φc)2nS+1−nb
for φc < φ 6 1,

(3.1)

d(φ) :=

0 for 0 6 φ 6 φc,

vdraindcapφ(1−φ)nS = vtermdcap
φ(1−φ)nS

(1−φc)2nS+1−nb
for φc < φ 6 1.

(3.2)

With the batch-drift flux function jb(φ) := φ ṽ(φ), where ṽ(φ) is given by (3.1), we can write the
aggregate-phase flux (in a closed container) as

φv =−φ(1−φ)u = φ ṽ(φ)+d(φ)∂z(1−φ) = φ ṽ(φ)−d(φ)∂zφ = jb(φ)−∂zD(φ),

where D(φ) is defined by (1.3). In light of (3.2) we obtain

D(φ) =

0 for 0 6 φ 6 φc,

vdraindcap
ω(φc)−ω(φ)

(nS +1)(nS +2)
for φc < φ 6 1,

(3.3)

where ω(φ) := (1− φ)nS+1((nS + 1)φ + 1) and we reconfirm the property (1.4). The conservation
law ∂tφ + ∂z(φv) = 0 now yields the following equation for the volume fraction φ = φ(z, t) ∈ [0,1] of
aggregates in a closed vessel:

∂tφ +∂z jb(φ) = ∂
2
z D(φ). (3.4)

The graphs of the constitutive functions jb(φ) and D(φ) are drawn in Figure 3.1.
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FIG. 3.1. Left: function jb(φ) = φ ṽ(φ). Right: diffusion function D(φ) modelling capillarity. Note the behaviour of these
functions at the critical concentration φc = 0.74.

3.3 Three phases and constitutive assumptions

The three phases and their volume fractions are the fluid φf, the solids ψ , and the aggregates φ , where
φf+ψ +φ = 1. By suspension we mean the fluid and solid phases. The volume fraction of solids within
the suspension ϕ is defined by

ϕ :=
ψ

ψ +φf
=

ψ

1−φ
.

The drift-flux and solids-flux theories utilize constitutive functions for the aggregate upward batch
flux jb(φ) and the solids batch sedimentation flux fb(ϕ) := ϕvhs(ϕ), where vhs(ϕ) is the hindered-
settling function. For simplicity, we employ the common expression (Richardson & Zaki, 1954)

vhs(ϕ) = v∞(1−ϕ)nRZ , where nRZ > 1. (3.5)

Applying the conservation of mass to each of the three phases, introducing the volume-average
velocity, or bulk velocity, of the mixture q and the relative velocities of both the aggregate-suspension
and the solid-fluid, Bürger et al. (2019) derived the PDE model (1.2) without the capillarity func-
tion D(φ). In particular, the volumetric flows in and out of the flotation column define explicitly

q(z, t) :=


qE := (−QU +QF +QW)/AE for z > zE,

q2 := (−QU +QF)/AE for zF 6 z < zE,
q1 = qU :=−QU/AU for z < zF.

(3.6)

In the underflow and effluent zones all phases are assumed to have the same velocity, i.e., they follow
the bulk flow. Then the total convective fluxes for φ and ϕ are given by

J(φ ,z, t) =


jE(φ , t) := qE(t)φ for z > zE,
j2(φ , t) := q2(t)φ + jb(φ) for zF 6 z < zE,
j1(φ , t) := q1(t)φ + jb(φ) for zU 6 z < zF,
jU(φ , t) := q1(t)φ for z < zU,



FROTH FLOTATION WITH DRAINAGE 11 of 36

F(ϕ,φ ,z, t) =


fE(ϕ,φ , t) :=−(1−φ)qE(t)ϕ for z > zE,
f2(ϕ,φ , t) for zF 6 z < zE,
f1(ϕ,φ , t) for zU 6 z < zF,
fU(ϕ,φ , t) :=−(1−φ)q1(t)ϕ for z < zU

with the zone-settling flux functions (positive in the direction of sedimentation (decreasing z))

fk(ϕ,φ , t) :=(1−φ) fb(ϕ)+
(

jb(φ)− (1−φ)qk(t)
)
ϕ

=(1−φ) fb(ϕ)+
(

jk(φ , t)−qk(t)
)
ϕ, k = 1,2.

With the capillarity function D(φ), the batch flux jb(φ) is extended to jb(φ)−∂zD(φ); cf. (3.4). Hence,
the total flux of the aggregates for any z ∈ R is

Φ(φ ,∂zφ ,z, t) := J(φ ,z, t)− γ(z)∂zD(φ),

where the characteristic function is

γ(z) :=

{
1 for z ∈ [zU,zE),
0 for z /∈ [zU,zE),

and the total flux of the solids in the z-direction is (F and F̃ are positive in the downwards direction of
sedimentation, which is opposite to the z-direction)

Ψ(ψ,∂zψ,φ ,z, t) :=−F̃(ψ,φ ,z, t)+ γ(z)
ψ

1−φ
∂zD(φ), (3.7)

where

F̃(ψ,φ ,z, t) :=

F
(

ψ

1−φ
,φ ,z, t

)
if 0 6 φ < 1,

0 if φ = 1.

The conservation law applied on the two phases with the total fluxes Φ and Ψ yields the governing
system of equations (1.2) in the case capillarity are included. That system defines solutions on the real
line and next we define the outlet concentrations of the flotation column.

3.4 Outlet concentrations

Given the PDE solutions φ = φ(z, t) and ϕ = ϕ(z, t) of (1.2), we define the boundary concentrations at
each in- or outlet by φ

±
U = φ

±
U (t) := φ(z±U , t), etc. Conservation of mass across z = zU yields

j1(φ+
U , t)− ∂zD(φ)|z=z+U

= jU(φ−U , t), (3.8)

f1(ϕ
+
U , t)−ϕ

+
U ∂zD(φ)|z=z+U

= fU(ϕ
−
U , t). (3.9)

The underflow concentrations of the flotation column are defined by φU(t) := φ
−
U (t) and ϕU(t) := ϕ

−
U (t).

These concentrations can in fact be obtained from the solution inside the column (zU < z< zE) from (3.8)
and (3.9) together with a uniqueness condition; see Diehl (2009).

For the effluent level z = zE, the analogous situation holds:

j2(φ−E , t)− ∂zD(φ)|z=z−E
= jE(φ+

E , t), (3.10)
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f2(ϕ
−
E ,φ−E , t)−ϕ

−
E ∂zD(φ)|z=z−E

= fE(ϕ
+
E ,φ+

E , t), (3.11)

In the one-dimensional PDE model (1.2) without boundary conditions, the solution φ = φ(z, t) (analo-
gously for ϕ) in the interval z > zE is governed by the linear transport PDE ∂tφ +(QE/AE)∂zφ = 0 and
the boundary value φ

+
E (t). The effluent outlet concentrations are defined by φE := φ

+
E and ϕE := ϕ

+
E . In

the concluding section, we discuss how bursting bubbles at the top can be incorporated in the model.

4. Steady-state analysis

4.1 Definition of a desired steady state

In the case of no capillarity, Bürger et al. (2019) provided detailed constructions of all steady states,
and Bürger et al. (2020a,b) sorted out the most interesting steady states for the applications and how
to control these by letting the volumetric flows satisfy certain nonlinear inequalities, which can be
visualized in so-called operating charts. We assume that QF, φF, andψF are given variables and that QU
and QW are control variables. The purpose here is to provide an improved model of the froth region
and we therefore focus on the steady states when a layer of froth in zone 2 is possible. We consider
only solutions where the froth layer does not fill the entire zone 2, so that there is at least a small region
above the feed inlet with aggregate volume fraction below the critical one. As mentioned before, it is
assumed that the wash water is sprinkled at the top of the column, which is commonly done and gives
fewer steady states to analyse. A desired steady state is defined to be a stationary solution that has

no aggregates below the feed level ⇒ φU = 0,
no solids above the feed level ⇒ ϕE = 0,

a froth layer that does not fill the entire zone 2 ⇒ φ(z+F )< φc.

(4.1)

The reversed implications do not hold in the two first statements for the following reasons. Since the
bulk flow in zone 1 is directed downwards, there exist steady-state solutions with a standing layer of
aggregates below the feed level. Analogously, if the bulk flow in zone 2 is directed upwards, there may
be a layer of standing solids when their settling velocity is balanced by the upward bulk velocity; see
Bürger et al. (2019).

4.2 Properties of the batch-flux density functions

With ṽ given by (3.1), the continuous batch-drift flux function is

jb(φ) := φ ṽ(φ) =

 jbl(φ) := φvterm(1−φ)nb for 0 6 φ 6 φc,

jbh(φ) := φvterm
(1−φ)2nS+1

(1−φc)2nS+1−nb
for φc < φ 6 1,

where we have introduced the low jbl and high jbh parts of it. Any function u 7→ u(1−u)n has a unique
inflection point at uinfl = 2/(n+1). Figure 4.1 shows the inflection points

φinfl,l(nb) =
2

nb +1
, φinfl,h(nS) =

2
2nS +1+1

=
1

nS +1

of jbl and jbh, as functions of the exponents n and nS, respectively. With the values φc = 0.74 and
nS = 0.46 suggested in the literature (see Section 2), and the interval 2 6 nb 6 3.2, there is only one
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FIG. 4.1. Evolution of the inflection points of jbl and jbh. The literature values 2 6 nb 6 3.2 give an interval (solid black) of
possible φinfl,l that lie entirely below φc = 0.74 (red line). With nS = 0.46, the inflection point (blue dot) φinfl,h = 1/(nS + 1) ≈
0.685 < φc; hence, jbh is strictly convex for φ > φc.

inflection point of jb in 0 6 φ 6 1 and this lies below φc; see Figure 4.2, which also shows that there
may be a jump in the derivative of jb at φ = φc. Since

j′b(φ) =

vterm(1−φ)nb−1(1− (1+nb)φ) for 0 < φ < φc,

vterm
(1−φ)2nS(1− (2+2nS)φ)

(1−φc)2nS+1−nb
for φc < φ < 1,

we get that
j′b(φ

−
c )6 j′b(φ

+
c ) ⇔ nb > 1+2nS ≈ 1.92. (4.2)

When this is satisfied, the exponent in the compatibility condition (2.6) is nonnegative and the entire jb
has only one inflection point φinfl = φinfl,l ∈ (0,φc).

4.3 Properties of the zone flux functions

The zone flux functions jk, fk(·,φ), k = 1,2, have an additional linear term due to the bulk velocity of
the zone. Let j(φ) = jb(φ)+qφ denote a general zone flux function, where we drop the t-variable when
considering steady states. We will sometimes write out the dependence on q; j(φ ;q). The inflection
point φinfl of j is independent of q, however, the local maximum φ M = φ M(q) < φc depends on q. To
provide an explicit definition, we first define

qneg :=− j′b(0), ¯̄q :=− j′b(φinfl).

For q 6 qneg, j(·,q) is decreasing and for q > ¯̄q, j(·,q) is increasing. For intermediate values of q,
the local maximum exists and satisfies 0 = j′(φ M) = j′b(φ

M)+q. Since the restriction ( jb|(0,φinfl))
′ is a
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FIG. 4.2. Plots of jb(φ) (left) and j′b(φ) (right) for nS = 0.46, vterm = 0.3718 and various values of nb that satisfy (4.2).

strictly decreasing function, we can define

φ
M = φ

M(q) :=


0 if q 6 qneg,
(( jb|(0,φinfl)

)′)−1(−q) if qneg < q < ¯̄q,
φinfl if q > ¯̄q.

For qneg < q < 0, there is a zero of j(·;q) which we denote by φZ = φZ(q) ∈ (0,1). For a specific zone
flux functions jk, we use the notation φ M

k = φ M(qk) and φkZ = φM(qk).
In a similar way, one can define the local minimum point, greater than the inflection point, for

0 6 q < ¯̄q. We denote it by φkM = φM(qk). For q > ¯̄q, we define φkM(q) := φinfl. Furthermore, for a
given φkM, we define φkm as the unique value that satisfies

jk(φkm;q) = jk(φkM;q), 0 6 φkm 6 φinfl. (4.3)

Analogous definitions can be made for the flux functions fk(·,φ , t), k = 1,2.

4.4 Construction of steady states

We seek piecewise smooth and piecewise monotone steady-state solutions φ = φ(z) of (1.2). Such
solutions may contain jump discontinuities within or between the zones. In the case D ≡ 0, Bürger
et al. (2019) outlined the details on how to construct unique steady-state solutions and we will not
go through the entire machinery here. The basic idea is to glue together solutions within each zone
in a unique way so that the conservation of mass holds across the zone borders. Two such so-called
Rankine-Hugoniot conditions (jump conditions) are (3.10) and (3.11). Since each such equation has
two unknowns; for example, φ

−
E and φ

+
E in (3.10), another so-called entropy condition in the theory

of degenerate parabolic PDEs with spatially discontinuous coefficients is needed to establish a unique
pair of boundary values (Diehl, 2009). Furthermore, as the values φ

−
E and φ

+
E are obtained, these are

substituted into (3.11) and a similar procedure yields ϕ
−
E and ϕ

+
E .

The new ingredient due to the drainage is the term ∂zD(φ)|z=z−E
in (3.10) and (3.11). The prop-

erty (1.4) implies the following (see Evje & Karlsen (2000); Diehl (2009) for further details). A dis-
continuity of the solution φ(·, t), within or between zones, is possible only between two values in the
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interval 0 6 φ 6 φc. Furthermore, since we are seeking piecewise smooth and piecewise monotone
steady-state solutions, the fact d(φ) > 0 implies that if one of the values of the discontinuity is φc, this
must be the larger value and located on the right; i.e., the left value of the jump φ− < φc. Furthermore,
j2(φ)> j2(φc) for φ− 6 φ 6 φc, and in a right neighbourhood of the jump, φ ′(z)> 0.

With these facts in mind, we now construct steady-state solutions. Let H(z) denote the Heaviside
function and assume that all volumetric flows and feed volume fractions are time independent. A sta-
tionary solution φ = φ(z) of (1.2) satisfies, in the weak sense,

d
dz

(
A(z)

(
J(φ ,z)− γ(z)

dD(φ)

dz

)
−QFφFH(z− zF)

)
= 0, z ∈ R.

Integrating this identity with respect to z yields

A(z)
(
J(φ ,z)− γ(z)d(φ)φ ′(z)

)
−QFφFH(z− zF) =M, z ∈ R, (4.4)

where the constant mass fluxM can be determined by setting z to a value either less than zU or greater
than zE; then one gets

M= AU jU(φU) =−QUφU,

M= AE jE(φE)−QFφF =:ME−QFφF,

where the effluent constant mass flux of aggregatesME := AE jE(φE) = QEφE is also the constant mass
flux above the feed inlet. For a desired steady state satisfying (4.1), we have φU = 0; hence,M= 0 and
the feed mass flux equals the effluent:

φU = 0 ⇔ QFφF =ME.

It is convenient to define the feed mass flux per area unit by

sF :=
QFφF

AE
. (4.5)

With z in zone 2, (4.4) givesM= AE( j2(φ)−D(φ)′)−QFφF, which withM= 0 and (4.5) implies that
the solution φ in zone 2 satisfies

j2(φ)−d(φ)φ ′(z) = sF, zF < z < zE,

sF = qEφE.
(4.6)

The boundary condition in (4.6) also implies that φE can be expressed in terms of given and control
variables (recall that QE > 0):

φE =
AEsF

QE
=

QFφF

QW +QF−QU
. (4.7)

Since we require that there be no aggregates in zone 1, the steady-state solution there is zero. For
any jump across z = zF from this zero volume fraction to any larger value φ̄2, from which there should
be a discontinuity in zone 2 at z = zfr, the bottom of the froth layer, the uniqueness condition (Diehl,
2009) implies that φ̄2 has to lie on an increasing part of j2(·;q2). This corresponds to cases (a) and (c)
in (Bürger et al., 2019, Section 3.2). The latter case can only occur under special circumstances with a
large φ̄2 > φ2M (see definition in Section 4.3). Any small disturbance in a volumetric flow will make the
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case impossible and we therefore ignore that case. Consequently, we consider only φ̄2 ∈ [0,φ M
2 ]. Then

φ̄2 is the smallest positive solution of the jump condition equation at the feed level, namely

sF = j2(φ ;q2), (FJC)

under the conditions (Bürger et al., 2019)

sF 6 j2
(
φ

M
2 ;q2

)
, (FIa)

φ̄2 6 φ1Z, (FIb)

where φ M
2 and φ1Z are defined in Section 4.3. By the properties of j2, we have φ M

2 6 φinfl < φc. There-
fore, φ̄2 < φ M

2 < φc. Then d(φ̄2) = 0, and the equation in (4.6) reduces to (FJC). Again with reference
to Diehl (2009) and without going into details, we claim that the solution in zone 2 is

φ2(z) =


φ̄2, zF < z < zE, if φE 6 φc,{

φ̄2, zF < z < zfr,

φ2par(z), zfr < z 6 zE,
if φE > φc and zfr > zF,

(4.8)

where φ2par(z) is the strictly increasing solution of the ordinary differential equation (see (4.6)):

φ
′(z) =

j2(φ ;q2)− sF

d(φ)
,

φ(zfr) = φc, φ(zE) = φE,

(4.9)

and where zfr is the unknown location of the pulp-froth interface φ = φc, which depends on sF and φE.

See Figure 4.3 for illustrations of some steady-state solutions in zone 2. In (4.8) lies the fact that if
φE > φc, then there is no discontinuity at z = zE, so that φ2par(z−E ) = φ

−
E = φ

+
E = φE. The boundary value

problem (4.9) defines a function Zfr via

zfr = Zfr(φF,QF,QU,QW).

In light of (4.7) and (4.8), necessary conditions for a steady-state solution with a froth region are the
inequalities

φc < φE 6 1 ⇔ QF

(
1− φF

φc

)
< QU−QW 6 QF(1−φF), (Froth1)

zF < Zfr(φF,QF,QU,QW) (Froth2)

that should be satisfied for a steady-state solution with a froth-pulp interface in zone 2. The requirement
that φ2par(z) is strictly increasing from φc to φE means that the left inequality of (Froth1) is equivalent
to Zfr(φF,QF,QU,QW)< zE; hence, the latter inequality need not be invoked.

That φ2par(z) is strictly increasing, required by the entropy condition in Diehl (2009), means that the
right-hand side of (4.9) is positive in the interval [φc,φE). Furthermore, a discontinuity at z = zfr from
φ̄2 up to φc can only occur (according to the entropy condition) if the graph of j2(·;q2) lies above sF in
the interval (φ̄2,φc). These conditions imply (FIa), which we can abandon. The properties of j2(·, ;q2)
(see Section 4.3) imply that we can write these necessary conditions for a solution with a froth region:

sF < j2(φ ;q2) for all φ ∈ (φ M
2 ,φE) ⇔ sF

{
< j2(φ2M;q2) if φ2M < φE,

6 j2(φE;q2) if φ2M > φE,
(Froth3)

where equality holds if and only if φ2M = φE.
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FIG. 4.3. Possible steady-state values for zone 2 with (a, b) q2 > 0 and (c, d) q2 < 0. The case φE > φc is shown in (a) and (c),
where there is a continuously increasing solution φpar(z) ∈ (φc,φE), while φE 6 φc in (b) and (d), where the solution in zone 2 is
the constant φ̄2. For all the cases, we have φc = 0.74, nb = 2.5 and nS = 0.46. For (a) and (b), Q2 := q2AE = 3.6×10−5m3/s, sF =
4.21×10−3 m/s and (a) QW = 2×10−6 m3/s, (b) QW = 8×10−6 m3/s. For (c) we let Q2 =−2×10−6 m3/s, QW = 2×10−6 m3/s
and sF = 2.07×10−4 m/s, while for (d) we used Q2 =−5×10−6 m3/s, QW = 10−5m3/s and sF = 7.1×10−4 m/s.

4.5 Desired steady states and operating charts

From the derivation above concerning the aggregates and from the treatment in Bürger et al. (2019)
concerning the solids, we here summarize the desired steady states that satisfy (4.1):

φSS(z) =


0 for zU < z < zF,
φ̄2 for zF < z < zfr,
φ2par(z) for zfr < z < zE,
φE for z > zE,

(4.10)
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(a) (b) (c) (d)

FIG. 4.4. Examples of desired steady states given by (4.10) and (4.11). We use fixed values of φF = 0.3, ψF = 0.2, QF = 8.9927×
10−5 m3/s and QW = 2× 10−6 m3/s and vary QU, choosing: (a) QU = 5.9972× 10−5 m3/s, (b) QU = 6.0083× 10−5 m3/s, (c)
QU = 6.0155×10−5 m3/s and (d) QU = 6.0171×10−5 m3/s. Once the values of φF, QU, QF and QW are chosen, the values of
the effluent concentration φE are given by (4.7) and used as input in the ODE (4.9) to calculate the value of zfr. In particular, we
get (a) φE = 0.8443, (b) φE = 0.8472, (c) φE = 0.8491 and (d) φE = 0.8495. The values of φF, ψF, QU, QF and QW chosen here
are used in Example 1 in Section 6 to recover these profiles using the numerical method proposed in Section 5.

ϕSS(z) =


0 for z > zF,
ϕ1 ∈ [0,ϕ1m] for zU < z < zF,
ϕU = ϕ1 +AU fb(ϕ1)/QU for z < zU.

(4.11)

Here, φ2par(z) is the solution of the ODE problem (4.9), φE is given by (4.7), ϕ1m is given by (4.3) and
ϕ1 > 0 satisfies the jump condition at the feed level z = zF (ϕ1 is unique if condition (FIas) below holds;
see Bürger et al. (2019))

QFψF = AU f1(ϕ1,0;q1). (FJCs)

In Figure 4.4, we have represented some examples of desired steady states with different values of zfr
obtained by fixing the values of the parameters φF, ψF, QF and QW and choosing different values for QU.
As it can be seen, the location of zfr is very sensitive to the choice of QU. For instance, it changes from
zfr = 0.8027m in (c) to zfr = 0.7081m in (d) with a small variation in QU of−1.6×10−8 m3/s. We now
collect the conditions for obtaining a desired steady state in terms of the input and control variables.

THEOREM 4.1 The desired steady-state solution (4.10) and (4.11) of the PDE system (1.2) is possible
only if the following inequalities are satisfied:

φ̄2 6 φZ(−QU/AU), (FIb)

AU f1
(
ϕM(−QU/AU),0;−QU/AU

)
> QFψF. (FIas)

QF

(
1− φF

φc

)
< QU−QW 6 QF(1−φF), (Froth1)

zF < Zfr(φF,QF,QU,QW), (Froth2)

sF

{
< j2(φ2M;q2) if φ2M < φE,
6 j2(φE;q2) if φ2M > φE,

(Froth3)
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FIG. 4.5. (a–c) Visualization of the conditions of Theorem 4.1 for QW = 2× 10−6 m3/s, φF = 0.3 and ψF = 0.2. (d) Operating
chart showing the intersection of all the conditions, which are true in the white region.

where we recall the definitions of q2 (3.6) and φE (4.7):

q2 =
−QU +QF

AE
, φE =

QFφF

QW +QF−QU
.

Inequalities (FIb) and (FIas) can also be found in (Bürger et al., 2019). We visualize them together
with (Froth1), (Froth2) and (Froth3) in the (QU,QF)-plane for fixed values of QW, φF, ψF and zF; see
Figure 4.5 for the choices QW = 2×10−6 m3/s, φF = 0.3, ψF = 0.2, and zF = 0.33m. All the conditions
are shown together in Figure 4.5 (d), which we call an operating chart. For any chosen point (QU,QF)
in the white region, where all conditions in Theorem 4.1 are satisfied, a desired steady-state solution
given by (4.10) and (4.11) can be reached.
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(a) (b)

(c) (d)

FIG. 4.6. Dependence of the operating chart on the wash water flow QW for φF = 0.3 and ψF = 0.2.

The two inequalities in (Froth1) give rise to a wedge-shaped region with vertex at (QU,QF) =
(QW,0); see Figure 4.5 (c). Thus, each wedge displayed in Figure 4.6 corresponds to a fixed value
of QW, which can be read off at its vertex on the QU-axis. The strict inequality of (Froth1) corresponds
to the lower dashed line of a wedge, and its slope is positive or negative depending on whether φF is
greater or less than φc. The difference in slope of the two lines is φF(1/φc− 1), so the angle of the
wedge increases with φF and decreases with φc. The lower part of the wedge is, however, cut off by
conditions (Froth2) and (Froth3); see Figure 4.5 (c). Figure 4.6 shows also that the white region of the
operating chart thins and will eventually disappear as QW increases.
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(a) (b)

(c) (d)

FIG. 4.7. Operating charts for QW = 2×10−6 m3/s and ψF = 0.2 with (a, c) φF = 0.3 and (b, d) φF = 0.45, showing the graphs
of (QF,QU) 7→ Zfr(φF,QF,QU,QW) obtained by (4.9). The small rectangles in (a, b) are enlarged in Figure 4.8.

Inequality (Froth2) is more involved than the others. For every given set of input and control values,
one has to integrate the ODE of (4.9) backwards from z= zE for given φE towards lower z-values until φc
is reached; the corresponding location defines z = zfr. In Figure 4.7, the surface z = Zfr(φF,QF,QU,QW)
has been computed for two different values of φF and fixed values of QW and ψF. The same red and
black curves as in Figures 4.5 and 4.6 of conditions (Froth1) and (FIb), respectively, limit the white
region in the operating charts. The study of the surface Zfr(φF,QF,QU,QW) is crucial for the choice of
values of QF, QU and QW for which we obtain a desired steady state with a froth region in z = zfr, with
zfr a given value, as we will see in the numerical results in Section 6.
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FIG. 4.8. Enlarged views of the small rectangles marked in Figure 4.7 (a) and (b), respectively, showing contours of the function
(QF,QU) 7→ Zfr(φF,QF,QU,QW).

5. Numerical method

5.1 Discretization and CFL condition

We define a computational domain of N cells by covering the vessel with N− 2 cells and placing
one cell each below and above for the calculation of the outlet volume fractions see Figure 5.1. Given
the column height H, we define ∆z := H/(N−2) and the cell boundaries zi := i∆z, i = 0,1, . . . ,N. Fur-
thermore, we define the cell intervals Ii−1/2 := [zi−1,zi) and Ii := [zi−1/2,zi+1/2). We place the column
between zU := ∆z = z1 and zE := zU +H = (N− 1)∆z = zN−1. The injection point zF is assumed to
belong to one cell Ii−1/2 and we define the dimensionless function

δF,i−1/2 :=
∫

Ii−1/2

δzF(z)dz :=

{
1 if zF ∈ Ii−1/2,
0 otherwise.

The cross-sectional area A = A(z) is allowed to have a finite number of discontinuities and it is
discretized by

Ai :=
1

∆z

∫
Ii

A(z)dz, Ai+1/2 :=
1

∆z

∫
Ii+1/2

A(z)dz.

We simulate NT time steps up to the final time T := NT ∆ t, with the fixed time step ∆ t satisfying the
Courant-Friedrichs-Lewy (CFL) condition

∆ t
(

2‖Q‖∞,T

Amin
+M1‖ṽ′‖∞ +max{β1,β2}

)
6 ∆z, (CFL)
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FIG. 5.1. Grid covering the flotation column for the discretization of φ and ψ . The outlets zU and zE are each fixed on the
boundaries between two cells and the feed inlet zF is then located in a cell.

where

β1 := M1‖ṽ‖∞ +M2
‖d‖∞

∆z
, β2 := M1 max

{
vhs(0),‖v′hs‖∞

}
+M2(1−φc)

‖d‖∞

∆z
,

M1 := max
i=1,2,...,N

{
Ai−1

Ai−1/2
,

Ai

Ai−1/2

}
, M2 := max

i=1,2,...,N

{
Ai−1 +Ai

Ai−1/2

}
,

Amin := min
k=0, 1

2 ,1,
3
2 ,...,N

Ak, ‖Q‖∞,T := max
06t6T

(QF(t)+QW(t)), ‖d‖∞ := max
06φ61

|d(φ)|.

Finally, we set tn := n∆ t for n = 0,1, . . . ,NT .
The time-dependent feed functions are discretized as

Qn
F :=

1
∆ t

∫ tn+1

tn
QF(t)dt, φ

n
F :=

1
∆ t

∫ tn+1

tn
φF(t)dt,

and the same is made for ψF.

5.2 Update of φ

The first equation of (1.2) depends only on φ and is discretized by a simple scheme on the cells Ii−1/2.
The initial data are discretized by

φ
0
i−1/2 :=

1
Ai−1/2∆z

∫
Ii−1/2

φ(z,0)A(z)dz.
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To advance from tn to tn+1, we assume that φ n
i−1/2, i = 1, . . . ,N, are given. With the notation

a+ := max{a,0}, a− := min{a,0}, γi := γ(zi), and qn+
i := q(zi, tn)+,

we define the numerical total flux at z = zi at time t = tn by

Φ
n
i :=


φ n

1/2qn−
0 for i = 0,

φ n
i−1/2qn+

i +φ n
i+1/2qn−

i + γiφ
n
i−1/2ṽ(φ n

i+1/2)− γi
D(φ n

i+1/2)−D(φ n
i−1/2)

∆z
for i = 1, . . . ,N−1,

φ n
N−1/2qn+

N for i = N,
(5.1)

where ṽ(φ) is defined by (3.1). Since the bulk fluxes above and below the tank are directed away from
it, the following terms that appear in (5.1) are zero:

φ
n
−1/2qn+

0 = 0 and φ
n
N+1/2qn−

N = 0 for any values of φ
n
−1/2 and φ

n
N+1/2.

To simplify the presentation, we use the middle line of (5.1) as the definition of Φn
i , i= 0, . . . ,N, together

with φ n
−1/2 := 0 and φ n

N+1/2 := 0. With the notation λ := ∆ t/∆z and Qn+
i := Aiqn+

i etc., the conservation
law on the interval Ii−1/2 implies the update formula

φ
n+1
i−1/2 = φ

n
i−1/2 +

λ

Ai−1/2

(
Ai−1Φ

n
i−1−AiΦ

n
i +Qn

Fφ
n
F δF,i−1/2

)
= φ

n
i−1/2 +

λ

Ai−1/2

(
φ

n
i−3/2Qn+

i−1 +φ
n
i−1/2Qn−

i−1 +(Aγ)i−1φ
n
i−3/2ṽ(φ n

i−1/2)

− (Aγ)i−1

∆z
(D(φ n

i−1/2)−D(φ n
i−3/2))−φ

n
i−1/2Qn+

i −φ
n
i+1/2Qn−

i − (Aγ)iφ
n
i−1/2ṽ(φ n

i+1/2)

+
(Aγ)i

∆z
(D(φ n

i+1/2)−D(φ n
i−1/2))+Qn

Fφ
n
F δF,i−1/2

)
, i = 1, . . . ,N.

(5.2)

THEOREM 5.1 If the CFL condition (CFL) is satisfied and the initial data satisfy 0 6 φ(z,0)6 1, then
the update formula for φ , (5.2), is monotone and produces approximate solutions that satisfy

0 6 φ
n
i−1/2 6 1 for i = 1, . . . ,N and n = 1, . . . ,NT . (5.3)

The proof is outlined in Appendix A.

5.3 Update of ψ

We discretize the initial data by

ψ
0
i−1/2 :=

1
Ai−1/2∆z

∫
Ii−1/2

ψ(z,0)A(z)dz.

A consistent numerical flux corresponding to (3.7) is, for i = 0, . . . ,N,

Ψ
n

i := ψ
n
i−1/2qn+

i +ψ
n
i+1/2qn−

i
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− γi

(
Gn

i
(
ψ

n
i−1/2,ψ

n
i+1/2

)
+

ψn
i+1/2

1−φ n
i+1/2

(
φ

n
i−1/2ṽ(φ n

i+1/2)−
∆Dn−

i
∆z

)
−

ψn
i−1/2

1−φ n
i−1/2

∆Dn+
i

∆z

)
,

where ∆Dn
i := D(φ n

i+1/2)−D(φ n
i−1/2), ∆Dn−

i := (∆Dn
i )
−, and we set

ψ
n
−1/2 := 0 and ψ

n
N+1/2 := 0

with the same motivation as for φ above (these values are irrelevant). Here Gn
i (ψ

n
i−1/2,ψ

n
i+1/2) is the

Engquist-Osher numerical flux (Engquist & Osher, 1981) associated with the function

f n
b,i(ψ) := ψ ṽhs

(
ψ

ψn
max,i

)
, ṽhs(u) :=

{
vhs(u) for u < 1,
0 for u > 1,

(5.4)

where we recall that vhs is given by (3.5), and we define

ψ
n
max,i := min

{
1−φ

n
i−1/2,1−φ

n
i+1/2

}
= 1−max

{
φ

n
i−1/2,φ

n
i+1/2

}
. (5.5)

If ψ̂n
i is the maximum point of f n

b,i, then the Engquist-Osher numerical flux is given by

Gn
i
(
ψ

n
i−1/2,ψ

n
i+1/2

)

=


f n
b,i(ψ

n
i+1/2) if ψn

i−1/2,ψ
n
i+1/2 6 ψ̂n

i ,

f n
b,i(ψ̂

n
i ) if ψn

i−1/2 6 ψ̂n
i < ψn

i+1/2,

− f n
b,i(ψ̂

n
i )+ f n

b,i(ψ
n
i−1/2)+ f n

b,i(ψ
n
i+1/2) if ψn

i+1/2 6 ψ̂n
i < ψn

i−1/2,

f n
b,i(ψ

n
i−1/2) if ψ̂n

i < ψn
i−1/2,ψ

n
i+1/2.

The marching formula is (for i = 1, . . . ,N)

ψ
n+1
i−1/2

= ψ
n
i−1/2 +

λ

Ai−1/2

(
Ai−1Ψ

n
i−1−AiΨ

n
i +Qn

Fψ
n
FδF,i−1/2

)
= ψ

n
i−1/2 +

λ

Ai−1/2

{
ψ

n
i−3/2Qn+

i−1 +ψ
n
i−1/2Qn−

i−1−ψ
n
i−1/2Qn+

i −ψ
n
i+1/2Qn−

i +Qn
Fψ

n
FδF,i−1/2

− (Aγ)i−1

(
Gn

i−1
(
ψ

n
i−3/2,ψ

n
i−1/2

)
+

ψn
i−1/2

1−φ n
i−1/2

(
φ

n
i−3/2ṽ(φ n

i−1/2)−
∆Dn−

i−1

∆z

)
−

ψn
i−3/2

1−φ n
i−3/2

∆Dn+
i−1

∆z

)
+(Aγ)i

(
Gn

i
(
ψ

n
i−1/2,ψ

n
i+1/2

)
+

ψn
i+1/2

1−φ n
i+1/2

(
φ

n
i−1/2ṽ(φ n

i+1/2)−
∆Dn−

i
∆z

)
−

ψn
i−1/2

1−φ n
i−1/2

∆Dn+
i

∆z

)}
.

(5.6)

THEOREM 5.2 Assume that the assumptions of Theorem 5.1 are in effect. If the initial data satisfy
0 6 ψ(z,0)6 1−φ(z,0) and the feed volume fraction ψF(t)6 1−φF(t), then the update formula (5.6)
is monotone and together with (5.2) it produces approximate solutions that satisfy

0 6 ψ
n
i−1/2 6 1−φ

n
i−1/2 for all i and n.

The proof is sketched in Appendix A.
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6. Numerical simulations

We simulate the flotation process in the column in Figure 1.1 with the specific measures AE = 7.225×
10−3 m2 6 AU = 8.365×10−3 m2, zU = 0m, zF = 0.33m, zE = 1m and H = 1m. For all the examples,
we use the parameters given in (Brito-Parada et al., 2012, Table 1) to define vdrain and dcap in (3.1)–(3.3):
ρf = 103 kg/m3, µ = 10−3 Pas, rb = 4.13× 10−4 m, CPB = 50, γw = 3.5× 10−2 N/m, g = 9.81m/s2,
and by Stevenson & Stevanov (2004), nS = 0.46 and m = 1.28, from which we obtain dcap = 3.1045×
10−3 m. For the velocity functions ṽ and vhs, given by (3.1) and (3.5), respectively, we use nb = 2.5,
vterm = 2.7×10−2 m/s, nRZ = 1.5 and v∞ = 5.0×10−3 m/s. The critical volume fraction is φc = 0.74
according to (Neethling & Cilliers, 2003, Eq. (21)).

6.1 Example 1

We show steady-state solutions for fixed QF = 8.9927×10−5 m3/s and QW = 2.0×10−6 m3/s for
various values of QU; see Figure 6.1(a). For these values and with the feed volume fractions φF = 0.3
and ψF = 0.2, we solve the ODE (4.9) to obtain ‘exact’ solutions (i.e., the ODE is solved numerically),
and the value of zfr for each point; see the solid lines in Figure 6.1(c) and (d). The dots in the same plots
show the numerical solutions, which are obtained by simulating a long time from any initial data. All
solutions have the same volume fraction φE at the top, since this is given by the explicit formula (4.7).
Figure 6.1(b) shows the steady state for the solids with particles only below the feed level.

A clear difference between the two types of solution of φ can be seen near the discontinuity. This
is an inaccuracy of the numerical solution, which seems to converge to the exact one as N → ∞; see
Figure 6.2, which shows the steady-state solution for the solid point in Figure 6.1(a) for various values
of N.

6.2 Example 2

We start from a tank filled with only water at time t = 0s, i.e., φ(z,0) = ψ(z,0) = 0 for all z, when we
start pumping aggregates, solids, fluid and wash water with φF = 0.3 and ψF = 0.2. In the white region
of the operating chart in Figure 6.3, we choose the point (diamond symbol) (QU,QF) = (5.85,8.846)×
10−5 m3/s. The wash water volumetric flow is QW = 2.0×10−6 m3/s. Then QE = 1.4496×10−4 m3/s
and one obtains a desired steady state with a thin layer of froth at the top and solids only below the feed
level after about 500s; see Figures 6.4 (a) and 6.5 (a).

Once the system is in steady state at t = 500s, we perform two different changes corresponding
to the points marked with a square (left) and a circle (right) in the operating chart in Figure 6.3 with
the corresponding responses seen in Figures 6.4 and 6.5, respectively. The jump from the middle point
(diamond) to the left point (square) means a jump from QU = 5.85× 10−5 m3/s to the smaller value
5.0× 10−5 m3/s and produces the solution in Figure 6.4. After t = 1000s, there is no froth in zone 2
and the solids volume fraction is slightly higher in the new steady state.

If the jump from the middle point (diamond) instead goes to the right point (circle), i.e., the new
value at t = 500s is the larger QU = 6.3×10−5 m3/s, Figure 6.5 shows the reaction of the system until
t = 2000s. The aggregates fill the entire column while the solids volume fraction has a lower value
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(a) (b)

(c) (d)

FIG. 6.1. Example 1: (a) Contour lines of (QF,QU) 7→ Zfr(φF,QF,QU,QW) for QW = 2× 10−6 m3/s, ψF = 0.2 and φF = 0.3.
(b) Approximate volume fraction of solids ψ computed with N = 3200. (c) Approximate solution (dots) versus exact solution
(solid lines) of volume fraction of aggregates φ corresponding to the four point in plot (a) computed with N = 3200. (d) Enlarged
view of (c).

in the new steady state. We have demonstrated that operating points outside the white region lead to
non-desired steady states.

6.3 Example 3

Again, the tank is filled with only water at time t = 0s when we start feeding it with φF = 0.3 and
ψF = 0.2. The wash water flow is QW = 4.0× 10−6 m3/s and hence the effluent volumetric flow is
QE = 1.75×10−5 m3/s. From the corresponding operating chart in Figure 6.6 (a), we choose the point
of volumetric flows (QU,QF) = (3.15,4.5)×10−5 m3/s lying in the white region. Then a desired steady
state builds up quickly and at t = 250s there is a thin froth layer at the top of in zone 2 and with solids
only in zone 1; see Figure 6.7.
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(a) (b)

FIG. 6.2. Example 1: (a) Approximate solution for the point represented by a dot in Figure 6.1(a) with various values of N.
(b) Enlarged view of (a).

Once the system is in steady state, we change at t = 300s the volumetric flow of the wash water from
QW = 4.0×10−6 m3/s to 1.0×10−6 m3/s and simulate the reaction of the system. In the corresponding
operating chart for this new set of variables, the point (QU,QF) = (3.15,4.5)×10−5 m3/s is no longer
in the white region; see Figure 6.6 (b, circle point), and no desired steady state is feasible. As it can
be seen in Figure 6.7 (a), with less flow of wash water flushing the aggregates out at the top, the froth
layer increases downwards. At time t = 1000s, we make a control action and change the volumetric
flow from QU = 3.15×10−5 m3/s to 3.0×10−5 m3/s so that the new point lies inside the white region
of the corresponding operating chart in Figure 6.6 (b, diamond point). Figures 6.7 (a) and (c) show that
a second desired steady state is reached after t = 1500s. Figures 6.7 (b) and (d) show that the solids
settle in any case.

7. Conclusions

Our previous one-dimensional model of a flotation column, where the movement of rising aggregates
and settling solids follow the drift- and solids-flux theories, is a triangular hyperbolic 2× 2 system of
nonlinear PDEs of the first order. Here, we propose an extended model where the drainage of liquid
in the froth layer due to capillarity is included. The traditional derivation of the drainage PDE, valid
only within the froth, is combined with further experimental findings from the literature to end up in a
constitutive relationship between the relative velocity of aggregates to fluid (or suspension of hydrophilic
solids), which in the governing equations yields a second-order-derivative degenerate nonlinear term.

An analysis of the possible steady states with a froth layer at the top of the column (desired steady
states) leads to several inequalities involving the feed input variables and other control volumetric flows;
see Theorem 4.1. Those inequalities are visualized in operating charts; see Figure 4.6, in which the white
region shows the necessary location of an operating point (QU,QF) for having a desired steady state after
a time of transient behaviour.
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FIG. 6.3. Example 2: An operating charts for φF = 0.3 and ψF = 0.2. The point (QU,QF) = (5.85,8.846)× 10−5 m3/s marked
with a diamond in the white region results in a desired steady state with a froth layer at the top of the column. The points marked
with a square (QU,QF) = (5.0,8.846)×10−5 m3/s and a circle (QU,QF) = (6.3,8.84)×10−5 m3/s result in no froth (Figure 6.4)
or a tank full of froth (Figure 6.5), respectively. (The plot is a zoom of Figure 4.6 (b) and the black curves are smoother than they
here appear due to numerical resolution.)

(a) (b)

FIG. 6.4. Example 2: Simulation with N = 1600 of the volume fractions of (a) aggregates φ and (b) solids ψ from a tank filled of
only water. The initial operating point (QU,QF) = (5.85,8.846)×10−5 m3/s (diamond in Figure 6.3) is at t = 500s changed to
(5.0,8.846)×10−5 m3/s (square in Figure 6.3).

With parameters extracted from the literature, the white region of an operating chart is quite small,
meaning that the existence of a froth layer is very sensitive to small changes in any of the control
variables QU and QW. Different operating points (QU,QF) in the white region give rise to different
thicknesses of the froth layer. Unfortunately, our model anticipates a very sensitive dependence of
the pulp-froth interface location zfr on the operating point; see Figure 4.7, where the yellow surface
shows that the most common values of zfr is close to one, meaning a thin froth layer. The surfaces
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(a) (b)

FIG. 6.5. Example 2: Simulation with N = 1600 of the volume fractions of (a) aggregates φ and (b) solids ψ from a tank filled of
only water. The initial operating point (QU,QF) = (5.85,8.846)×10−5 m3/s (diamond in Figure 6.3) is at t = 500s changed to
(6.3,8.846)×10−5 m3/s (circle in Figure 6.3).

(a) (b)

FIG. 6.6. Example 3. Operating charts for φF = 0.3 and ψF = 0.2 with (a) QW = 3.15×10−5 m3/s, (b) QW = 3.0×10−5 m3/s.
The initial point (QU,QF) = (3.15,4.5)× 10−5 m3/s is marked with a circle and the one after the control action (QU,QF) =
(3.0,4.5)×10−5 m3/s with a diamod. (The curves are smoother than they appear here due to numerical resolution.)

seen in plots (c) and (d) indicate a very large gradient from zfr just below one down to zfr = 0.33 = zF.
(Even finer resolutions indicate that the graph is continuous.) The numerical scheme suggested resolves
discontinuities well and numerical results (e.g., those of Figure 6.5) show that the volume fractions, and
their sum, stay between zero and one, as is proven in Theorems 5.1 and 5.2.

Overall, the steady-state analysis, boundedness properties of the numerical solutions, and simulation
results indicate that the model is useful for the simulation of flotation columns and could be used, for
example, to simulate the effect of various alternative control actions. In light of this practical interest
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(a) (b)

(c) (d)

FIG. 6.7. Example 3: Time evolution of the volume fraction (a, c) of aggregates φ and (b,d) solids ψ computed with N = 1600
and seen from two different angles. A step change down in QW occurs at t = 300s and a control action by decreasing QU is made
at t = 1000s.

it would be desirable to obtain a well-posedness (existence and uniqueness) result for the underlying
model. The first equation of (1.2) (the one for φ ) as a scalar strongly degenerate parabolic equation
with discontinuous flux that is independent of ψ can be handled by known arguments (cf., e.g., Karlsen
et al. (2002, 2003); Bürger et al. (2005)). The corresponding model for D≡ 0 (without capillarity) is a
triangular system of conservation laws for which convergence results of monotone schemes to a weak
solution are available, at least for the case of fluxes without spatial discontinuity (Karlsen et al., 2008;
Coclite et al., 2010). It is not clear at the moment whether the corresponding arguments, based on the
compensated compactness method, can also be applied to the system (1.2). Therefore, well-posedness
of the model is at the moment left as an open problem.

The model of a flotation column with drainage can certainly be extended to include additional pro-
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cesses. For instance, one could incorporate the possibility of bursting bubbles at the top by assuming that
the flotation column is constructed in a way such that a portion α of the froth overflows with unbursting
aggregates, whereas for the portion 1−α , the aggregates burst. The latter means that the gas ‘disap-
pears’ (i.e., is released into the surrounding air), whereas the suspension and the hydrophobic particles
attached to the bursting bubbles follow the effluent stream. There is practical interest in quantifying this
effect (Neethling & Brito-Parada, 2018). Hence, the effluent volume fraction of aggregates would then
be φE := αφ

+
E , and the solids ϕE := ϕ

+
E . Under the present assumptions, the factor α does not influence

the solution inside the column. It could however depend on the wash water flow, and this could be
an extension of the present model. Another thinkable extension could consist in the explicit descrip-
tion of the aggregation process itself. A common variant of the column drawn in Figure 1.1 has gas
feed and pulp feed at different levels, which form a so-called collection zone where the attachment of
hydrophobic particles takes place. Such a description would compel a distinction between hydrophobic
and hydrophilic particles as distinct solid phases.
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A. Proofs of boundedness of numerical solutions

We outline the proofs of Theorems 5.1 and 5.2, which are both based on monotonicity arguments. The
calculations are straightforward in both cases; details for the case D ≡ 0 are provided by Bürger et al.
(2022).

Outline of the proof of Theorem 5.1

Assume that φ n
i−1/2 and φ̃ n

i−1/2, i∈Z, n = 0,1,2, . . . are two numerical solutions produced by the numer-
ical scheme (5.2). Then monotonicity means that if φ n

i−1/2 6 φ̃ n
i−1/2 for all i, then φ

n+1
i−1/2 6 φ̃

n+1
i−1/2 for

all i, for all n= 0,1,2, . . . . For the case of a three-point scheme such as (5.2) this property can be verified
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by showing that ∂φ
n+1
i−1/2/∂φ n

k−1/2 > 0 for all i and k = i−1, i, i+1. In fact, we have

∂φ
n+1
i−1/2

∂φ n
i−3/2

=
λ

Ai−1/2

(
Qn+

i−1 +(Aγ)i−1
(
ṽ(φ n

i−1/2)+d(φ n
i−3/2)/∆z

))
> 0,

∂φ
n+1
i−1/2

∂φ n
i+1/2

=
λ

Ai−1/2

(
−Qn−

i +(Aγ)i
(
−φ

n
i−1/2ṽ′(φ n

i+1/2)+d(φ n
i+1/2)/∆z

))
> 0,

∂φ
n+1
i−1/2

∂φ n
i−1/2

= 1+
λ

Ai−1/2

(
Qn−

i−1 +(Aγ)i−1φ
n
i−3/2ṽ′(φ n

i−1/2)−Qn+
i − (Aγ)iṽ(φ n

i+1/2)

−
(
(Aγ)i−1 +(Aγ)i

)
d(φi−1/2)/∆z)

)
> 1−λ

(
2‖Q‖∞,T

Amin
+M1

(
‖ṽ′‖∞ +‖ṽ‖∞

)
+M2

‖d‖∞

∆z

)
> 0,

where we have used the CFL condition (CFL). The rest of the proof, the boundedness 0 6 φ n
i−1/2 6 1,

follows by standard arguments, namely one verifies that if φ n
i−1/2 = 0 for all i, then φ

n+1
i−1/2 = 0 for all i

and likewise that if φ n
i−1/2 = 1 for all i, then φ

n+1
i−1/2 = 1 for all i. Thus, appealing to the monotonicity of

the scheme, one deduces that if 0 6 φ n
i−1/2 6 1 for all i, then 0 6 φ

n+1
i−1/2 6 1 for all i, which proves (5.3).

Proof of Theorem 5.2

The proof is similar to that of Theorem 5.1. We note that (5.6) is again a three-point scheme, and show
that ∂ψ

n+1
i−1/2/∂ψn

k−1/2 > 0 for all i = 1, . . . ,N and k = i−1, i, i+1. The contributions of the terms that
contain D to ∂ψn

i−1/2/∂ψn
i−3/2 and ∂ψn

i−1/2/∂ψn
i−3/2 are

λ (Aγ)i−1

Ai−1/2(1−φ n
i−3/2)

∆Dn+
i−1

∆z
> 0 and − λ (Aγ)i

Ai+1/2(1−φ n
i+1/2)

Dn−
i−1

∆z
> 0,

respectively. Now we utilize the estimations similar to those in the previous proof (see Bürger et al.
(2022)) and add the terms with D to obtain

∂Kn
i−1/2

∂ψn
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> 1−λ
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.

It is easy to estimate the integrated terms

∆Dn
i = D(φ n

i+1/2)−D(φ n
i−1/2)6 ‖d‖∞(1−φc).

Hence, we obtain with (CFL)
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The inequalities proven imply that ψ
n+1
i−1/2 is a non-decreasing of each of ψn

k−1/2 for k = i− 1, i, i+ 1,
and therefore the scheme is monotone. Writing the scheme as
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Now we use that ∆Dn−
i +∆Dn+

i = ∆Dn
i = D(φi+1/2)−D(φi−1/2), that ψn

F,k 6 1− φ n
F,k and the update

formula for φ (5.2) to obtain
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since the latter parenthesis is zero irrespective of whether there is a source in the cell; Qn
i−1−Qn

i +Qn
F =

0, or not; Qn
i−1−Qn

i = 0.
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