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Abstract

In this work, we propose and analyze a Morley-type virtual element method to approximate the Stommel-
Munk model in stream-function form. The discretization is based on the fully nonconforming virtual element
approach presented in [5, 47]. The analysis restricts to simply connected polygonal domains, not necessarily
convex. Under standard assumptions on the computational domain we derive some inverse estimates, norm
equivalence and approximation properties for an enriching operator Eh defined from the nonconforming space
into its H2-conforming counterpart. With the help of these tools we prove optimal error estimates for the
stream-function in broken H2-, H1- and L2-norms under minimal regularity condition on the weak solution.
Employing postprocessing formulas and adequate polynomial projections we compute from the discrete stream-
function further fields of interest, such as: the velocity and vorticity. Moreover, for these postprocessed
variables we establish error estimates. Finally, we report practical numerical experiments on different families
of polygonal meshes.

Key words: nonconforming virtual element, ocean circulation model, stream-function, error estimates, polygonal
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1 Introduction

The Stommel-Munk model in stream-function form is a linear fourth-order partial differential equation given by:

εM∆2ψ − εS∆ψ − ∂xψ = f in Ω, (1.1)

with the boundary conditions:
ψ = ∂nψ = 0 on ∂Ω, (1.2)

where Ω ⊂ R2 is a simply connected domain with polygonal boundary ∂Ω, ∂n denotes the normal derivative, ψ is
the stream-function of the horizontal velocity field u and f is the wind forcing term. In the model, the parameters
εM and εS are the non-dimensional scale Munk and Stommel numbers, respectively, which are defined by:

εM =
A

βL3
and εS =

γ

βL
,

where A is the eddy viscosity parametrization, L is the characteristic length scale, β is the coefficient multiplying
the y-coordinate in the β-plane approximation and γ is the coefficient of the linear drag (or the Rayleigh friction),
as might be generated by a bottom Ekman layer (for further details, see for instance [43, 36, 19, 25]).

The Stommel-Munk model can be seen as a simplification of the Quasi-Geostrophic equations of the ocean
(QGE) [25, 28, 27], both models are characterized by the presence of the biharmonic operator ∆2ψ, the rotational
term ∂xψ, the source term f and they have the same boundary conditions (1.2), but the difference between
these models lies in the presence of the nonlinear Jacobian operator in the QGE, whereas the linear Stommel-
Munk model instead contains the Laplacian operator ∆ψ. Despite the simplifications, the Stommel-Munk model
turns out to be adequate to understand the large scale wind-driven ocean circulation at mid-latitudes due to the
model preserves principal features of these currents (the wind forcing and the effects of rotation). The above
fact converts the Stommel-Munk model in a standard problem in the geophysical fluid dynamics literature (see
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for instance [43, 41, 34]), for which different finite element discretizations have been studied, for instance, using
the stream function-vorticity formulation (see [36, 24, 19]) and stream-function form. In particular, for the last
formulation in [29] a B-spline based finite element discretization is introduced and error analysis for this scheme
is developed in [42]. In [28] a discrete variational formulation based in C0-discontinuous Galerkin method is
provided and error estimate for the scheme is performed. In the present contribution, we develop and analyze
a nonconforming Morley-type virtual element scheme to approximate the Stommel-Munk model formulated in
terms of the stream-function. This formulation have outstanding characteristics, such as: there is only one scalar
unknown in the system, the streamlines is one of the most useful tools in flow visualization. Moreover, in this
work we propose to obtain two variables of great interest in oceanic fluid dynamics: the velocity and vorticity
fields, from the discrete stream-function by using postprocessing formulas.

The development of adequate numerical schemes for discretizing PDEs on general polytopal meshes have
undergone an intensive research in the past years. Different approaches have been proposed (see for instance [8]
and the references therein) and among them we can find the Virtual Element Method (VEM), which since its
introduction in the pioneering work [7] it has enjoyed a broad success in numerical modeling of scientific and
engineering applications due to its elegant construction and promising results. A wide variety of problems have
been addressed using the conforming VEM approach; see for instance [4, 3, 17, 21, 39], where second- and fourth-
order problems have been analyzed. Moreover, in fluid mechanic the models studied, include: Stokes, Brinkman,
Navier-Stokes flows and QGE; see for instance [15, 9, 11, 37, 10, 1, 38], where primal and mixed formulations
have been considered.

On the other hand, the nonconforming VEM approach, also has presented a growing interest recently. Different
schemes for several problems have been developed, for instance, second-order elliptic and fluid mechanic problems
have been studied in [6, 16, 31, 32, 33, 48, 49]. Moreover, for fourth-order equations in [45] a H2-nonconforming
VEM for plate bending problems is analyzed, which the numerical solution turns to be C0-continuous. Subse-
quently, in [5] a fully nonconforming VEM for biharmonic problems is developed. In this space the approximated
solution does not require the global C0-regularity. Besides, in [47] the authors, presented a VEM also for plate
bending problems using the same degrees of freedom considered in [5]. However, the construction of the local
virtual space have a different approach. The above fully nonconforming VEMs, in the lowest-order case (k = 2)
can be seen as the extension of the Morley finite element [40] to polygonal meshes. For further nonconforming
VEM involving fourth-order problems, see the references [18, 26, 46, 30, 44, 23].

In the present work, we propose and analyze a nonconforming Morley-type virtual element discretization for
the Stommel-Munk model (cf. (1.1)-(1.2)) with applications in large scale wind-driven oceanic circulation. We
consider an enhanced nonconforming virtual space based on the approach presented in [30] (see also [5, 47] and
[3]) to approximate the stream-function variable. This virtual element is characterized by not requiring any
global C0-regularity for the discrete solution and can be taken as a generalization of the classical Morley element
to general polygonal meshes. Employing suitable projections operators, which are computable using only the
degrees of freedom we construct the respective discrete bilinear forms and discrete load term. Then, we write a
discrete virtual formulation and we prove its well-posedness by using the Lax-Milgram Theorem. We introduce
an enriching operator from the enhanced nonconforming virtual space into its H2-conforming counterpart (see
[4]). For the enhanced H2-conforming virtual space we recall its construction and we derive inverse inequalities
and an equivalence between L2- and `2-norms, which are key tools to establish some approximation properties
involving the enriching operator, the bilinear form associated to the inner product H2 and the consistency error.
Then, with the help of these results we prove optimal error estimates for the stream-function in broken H2-, H1-
and L2-norms under the minimal regularity of the weak solution (cf. Theorem 2.2). Moreover, we propose to
compute further variables of interest, such as: the velocity field and the fluid vorticity by a simple postprocess
of the discrete VEM stream-function and using suitable projections, which are computable from the degrees of
freedom. Finally, we point out that, the present contribution is a good stepping stones for the nonlinear one- and
two-layers QGE (see [25, 38, 27, 35]).

The remaining part of the manuscript is organized as follows: in Subsection 1.1 we introduce some notations
that will be used throughout the paper. In Section 2 we write a weak formulation for the system (1.1)-(1.2).
In Section 3 we introduce the fully nonconforming virtual element scheme of the weak formulation. In Section
4 we present some preliminary results including the construction of an enriching operator from the enhanced
nonconforming virtual space into its H2-conforming counterpart. Besides, we derive useful tools to establish the
optimal error estimate in broken H2-norm up to the regularity of the weak solution. Moreover, we obtain optimal
error estimates in broken H1- and L2-norms by using duality arguments and under the same regularity of the
continuous solution. In Section 5 we compute the velocity field and fluid vorticity by a simple postprocess of
the discrete VEM stream-function. Finally, in Section 6 we report some numerical experiments exhibiting the
behaviour of our virtual scheme and confirming the our theoretical results.

The major contribution of the article can be summarized as follows:

• In this article, we extend the fully nonconforming virtual element approach [5, 47] (see also [30]) to solve

2



the fourth order Stommel-Munk model on polygonal meshes and we establish error estimates in broken
H2-, H1- and L2-norms under the minimal regularity by introducing enriching operator as mentioned in
Section 4.2. Furthermore, the error estimations in broken L2- and H1-norms have been derived assuming
the source term f belongs to L2(Ω). Moreover, we have proposed novel strategies to compute the velocity
and vorticity fields as a postprocess of the discrete stream-function using suitable polynomial projections.

1.1 Notations

From now on, we will follow the usual notation for Sobolev spaces, seminorms and norms [2]. We will denote a
simply connected polygonal Lipschitz bounded domain of R2 by Ω and n = (ni)1≤i≤2 is the outward unit normal
vector to the boundary ∂Ω, while the vector t = (ti)i=1,2 is the unit tangent to ∂Ω oriented such that t1 = −n2,
t2 = n1. In addition, for any vector field v = (vi)i=1,2 and any scalar function ϕ, we define the differential
operators:

rot v := ∂1v2 − ∂2v1, ∇ϕ :=

(
∂1ϕ
∂2ϕ

)
and curl ϕ :=

(
∂2ϕ
−∂1ϕ

)
.

Moreover, D2ϕ := (∂ijϕ)i,j=1,2 denotes the matrix Hessian of ϕ.

In addition, in this work, c and C, with or without superscripts and subscripts, tildes or hats, will represent a
strictly positive constant independent of the mesh parameter h, whose value can change in different occurrences.

2 The continuous formulation

Let V := {ϕ ∈ H2(Ω) : ϕ = ∂nϕ = 0 on ∂Ω}. Then, we have that a variational formulation of problem
(1.1)-(1.2) is given as follows: seek ψ ∈ V, such that

A(ψ, φ) = F (φ) ∀φ ∈ V, (2.1)

where
A(ϕ, φ) := εMAD(ϕ, φ) + εSA∇(ϕ, φ)−Askew(ϕ, φ) ∀ϕ, φ ∈ V, (2.2)

and the forms AD(·, ·), A∇(·, ·), Askew(·, ·) and F (·) are defined by:

AD : V × V −→ R, AD(ϕ, φ) :=

∫
Ω

D2ϕ : D2φ ∀ϕ, φ ∈ V, (2.3)

A∇ : V × V −→ R, A∇(ϕ, φ) :=

∫
Ω

∇ϕ · ∇φ ∀ϕ, φ ∈ V, (2.4)

Askew : V × V −→ R, Askew(ϕ, φ) :=
1

2

∫
Ω

∂xϕφ−
1

2

∫
Ω

∂xφϕ ∀ϕ, φ ∈ V, (2.5)

F : V −→ R, F (φ) :=

∫
Ω

fφ ∀φ ∈ V. (2.6)

Remark 2.1 We recall that the classical variational formulation of problem (1.1)-(1.2) is given by: find ψ ∈ V,
such that

εMAD(ψ, φ) + εSA∇(ψ, φ)−A0(ψ, φ) = F (φ) ∀φ ∈ V,

where

A0(ψ, φ) :=

∫
Ω

∂xψ φ.

We observe that the bilinear form A0(·, ·) is equal to the skew-symmetric form Askew(·, ·) defined in (2.5). However,
their discrete versions will lead to different bilinear forms, in general. Therefore, we point out that, our virtual
method will be based on the weak formulation (2.1), keeping the skew-symmetric property for the bilinear form
Askew(·, ·), which allows making the analysis of the scheme in a straightforward way.

We endow the space V with the norm ‖ϕ‖V := (AD(ϕ,ϕ))1/2 ∀ϕ ∈ V, then the forms defined in (2.3)-(2.6)
are continuous. More precisely, in the following lemma we summarize some properties for the forms defined in
(2.2) and (2.6), which will be used to establish the well-posedness of problem (2.1).

Lemma 2.1 For all ϕ, φ ∈ V, there exists a positive constants CA, such that the forms A(·, ·) and F (·), defined
in (2.2) and (2.6), respectively, satisfy the following properties:
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• |A(ϕ, φ)| ≤ CA‖ϕ‖V‖φ‖V ; • A(φ, φ) ≥ εM ‖φ‖2V ; • |F (φ)| ≤ ‖F‖−2,Ω‖φ‖V .

Theorem 2.1 There exists a unique ψ ∈ V solution to problem (2.1), which satisfies the following continuous
dependence on the data

‖ψ‖V ≤ C‖F‖−2,Ω,

where C is a positive constant.

Proof. It is an immediate consequence of Lemma 2.1 and the Lax-Milgram Theorem. �

Now, we will state an additional regularity result for the solution of problem (2.1).

Theorem 2.2 Let ψ ∈ V be the unique solution of problem (2.1). If F ∈ H−1(Ω), then there exist s ∈ (1/2, 1]
and Creg > 0 such that ψ ∈ H2+s(Ω) and

‖ψ‖2+s,Ω ≤ Creg‖F‖−1,Ω.

Proof. The proof follows from the classical regularity result for the biharmonic problem with homogeneous
Dirichlet boundary conditions (see for instance [12]). �

3 Nonconforming virtual element discretization

In this section we will introduce a Morley-type VEM for the numerical approximation of problem (2.1) on general
polygonal meshes, which is based on the fully nonconforming virtual element approach [5, 47, 30]. First, we
introduce some notations to present the local and global nonconforming virtual space. Successively, we introduce
some projectors on polynomial spaces to construct the discrete bilinear forms and discrete functional. Finally, we
write the discrete problem and we establish its well-posedness by using the Lax-Milgram Theorem.

3.1 Notations and basic setting

Henceforth, we will denote by K a general polygon, by hK and ∂K its diameter and boundary, respectively.
Moreover, we will denote by NK the number of vertices of K. Let {Th}h>0 be a sequence of decompositions of Ω
into general non-overlapping simple polygons K, where h := maxK∈Th

hK . We will denote the set of the edges in

Th by Eh, we decompose this set as Eh := E int
h ∪E bdry

h , where E int
h and E bdry

h are the set of interior and boundary

edges, respectively. Analogously, we will denote by Vh := V int
h ∪ V bdry

h the set of the all vertices in Th, where

V int
h and V bdry

h are the the set of interior and boundary vertices, respectively.

Additionally, for each K ∈ Th, we denote by nK its unit outward normal vector and by tK its tangential vector
along the boundary ∂K. Besides, we will use the notation ne and te for a unit normal and tangential vector of
an edge e ∈ Eh, respectively.

For any subset D ⊂ R2 and each integer ` ≥ 0 we denote by P`(D) the space of polynomials of degree up to `
defined on D. Moreover, we define the piecewise `-order polynomial space by:

P`(Th) := {q ∈ L2(Ω) : q|K ∈ P`(K) ∀K ∈ Th}.

Next, for any integer number t > 0, we introduce the following broken Sobolev space

Ht(Th) := {φ ∈ L2(Ω) : φ|K ∈ Ht(K) ∀K ∈ Th}

endowed with the following broken seminorm

|φ|t,h :=
( ∑
K∈Th

|φ|2t,K
)1/2

. (3.1)

Now, we will define the jump operator denoted by [[·]], as follow: for each function φ ∈ H2(Th) and for an internal
edge e ∈ E int

h , we define [[φ]] := φ+ − φ−, where φ± denotes the trace of φ|K± , with e ⊆ ∂K+ ∩ ∂K−. For a

boundary edge e ∈ E bdry
h , the operator jump is define as: [[φ]] := φ|e.

We introduce a subspace of H2(Th) with certain continuity, given by:

H2,NC(Th) :=

{
φh ∈ H2(Th) : φh continuous at internal vertices,

φh(vi) = 0 ∀vi ∈ V bdry
h ,

∫
e

[[∂neφh]] = 0 ∀e ∈ Eh

}
.

(3.2)
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For the theoretical analysis, we suppose that Th satisfies the following assumptions: there exists a real number
ρ > 0 such that, every K ∈ Th, we have

A1 : K is star-shaped with respect to every point of a ball of radius ≥ ρhK ;

A2 : the ratio between the shortest edge and the diameter hK of K is larger than ρ.

We decompose the continuous forms defined in (2.2)-(2.5) as follows:

AD(ϕ, φ) =
∑
K∈Th

AKD (ϕ, φ) :=
∑
K∈Th

∫
K

D2ϕ : D2φ ∀ϕ, φ ∈ V,

A∇(ϕ, φ) =
∑
K∈Th

AK∇(ϕ, φ) :=
∑
K∈Th

∫
K

∇ϕ · ∇φ ∀ϕ, φ ∈ V,

Askew(ϕ, φ) =
∑
K∈Th

AKskew(ϕ, φ) :=
∑
K∈Th

1

2

∫
K

∂xϕφ−
1

2

∫
K

∂xφϕ ∀ϕ, φ ∈ V.

Also, we split

A(ϕ, φ) =
∑
K∈Th

AK(ϕ, φ) :=
∑
K∈Th

(εMA
K
D (ϕ, φ) + εS A

K
∇(ϕ, φ)−AKskew(ϕ, φ)) ∀ϕ, φ ∈ V.

3.2 Local and global nonconforming virtual element spaces

For every polygon K ∈ Th, we introduce the following preliminary local virtual space (for further details see [30,
Section 3.4] and [5, 47, 3]):

Ṽh(K) :=
{
φh ∈ H2(K) : ∆2φh ∈ P2(K), φh|e ∈ P2(e), ∆φh|e ∈ P0(e) ∀e ⊆ ∂K

}
.

Next, for a given φh ∈ Ṽh(K), we introduce the following set of linear operators (which will be degrees of
freedom after of the enhancement technique):

• D1: the values of φh(vi) for all vertex vi of the polygon K;

• D2: the moments ∫
e

∂neφh ∀ edge e ⊆ ∂K.

For each polygon K, we define the following projector

ΠD
K : Ṽh(K) −→ P2(K) ⊆ Ṽh(K),

φh 7−→ ΠD
Kφh,

where ΠD
Kφh is the solution of the local problems:

AKD (ΠD
Kφh, q) = AKD (φh, q) ∀q ∈ P2(K),

Π̂D
Kφh = φ̂h

∫
∂K

∇ΠD
Kφh =

∫
∂K

∇φh,

and the operator (̂·) is defined as follows:

ϕ̂h :=
1

NK

NK∑
i=1

ϕh(vi), (3.3)

and vi, 1 ≤ i ≤ NK are the vertices of K.

Moreover, as stated by the following lemma, the polynomial projection ΠD
K is computable using the sets D1

and D2 (for more details see [47, 30]).

Lemma 3.1 The operator ΠD
K : Ṽh(K) −→ P2(K) is explicitly computable for every φh ∈ Ṽh(K), using only the

information of the linear operators D1 and D2.
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Now, for each K ∈ Th we introduce the enhanced fully nonconforming virtual space:

Vh(K) :=

{
φh ∈ Ṽh(K) :

∫
e

(φh −ΠD
Kφh) = 0 ∀e ⊆ ∂K,

∫
K

p(φh −ΠD
Kφh) = 0 ∀p ∈ P2(K)

}
. (3.4)

The following result summarize the main properties of the local virtual space Vh(K). The proof can be obtained
following the arguments in [5, 47, 3, 30].

Proposition 3.1 For each polygon K, the space Vh(K) defined in (3.4) satisfies the following properties:

• P2(K) ⊆ Vh(K).

• The sets of linear operators D1 and D2 constitutes a set of degrees of freedom for Vh(K).

• The operator ΠD
K : Vh(K) −→ P2(K) is computable using the degrees of freedom D1 and D2.

Now, for every decomposition Th of Ω into polygons K, we introduce the fully nonconforming global virtual
space to the numerical approximation of problem (2.1) as follows:

Vh :=
{
φh ∈ H2,NC(Th) : φh|K ∈ Vh(K) ∀K ∈ Th

}
, (3.5)

where the space H2,NC(Th) is defined in (3.2).

It is observed that Vh ⊆ H2,NC(Th) but Vh * V. Furthermore, we have that the nonconforming virtual element
does not require the C0-continuity over Ω.

3.3 Polynomial projection operators

In this subsection, we introduce further polynomial projections, which will be useful to build the respective
discrete forms.

First, for all m ∈ N∪ {0}, we consider the usual L2(K)-projection onto the polynomial space Pm(K): for each
φ ∈ L2(K), the function Πm

Kφ ∈ Pm(K) is defined as the unique function satisfying

(q, φ−Πm
Kφ)0,K = 0 ∀q ∈ Pm(K). (3.6)

Lemma 3.2 Let Π2
K be the operator defined in (3.6), with m = 2. Then, for each φh ∈ Vh(K) we have that the

polynomial functions Π2
Kφh and Π2

K(∂xφh) are computable using only the information of the degrees freedom D1

and D2.

Proof. Let φh ∈ Vh(K). Then the function Π2
Kφh is easily obtained from the definition of the space Vh(K) (cf.

(3.4)). On the other hand, using integration by parts and the definition of Π2
Kφh, for all q ∈ P2(K), we have∫

K

∂xφhq = −
∫
K

φh∂xq +

∫
∂K

φhqn
x
K = −

∫
K

(Π2
Kφh)∂xq +

∫
∂K

φhqn
x
K ,

where nxK is the first component of normal vector nK . We notice that the first term on the right hand side of
the above equality depends only on Π2

Kφh, hence computable using the degrees of freedom (see Proposition 3.1).
The boundary integral is computable using D1 and the moments of ΠD

Kφh on the each edge e ⊆ ∂K (cf. (3.4)).
�

Next, for each polygon K, we define the projector Π∇K : Vh(K) −→ P2(K) ⊆ Vh(K), as the solution of the local
problems:

AK∇(Π∇Kφh, q) = AK∇(φh, q) ∀q ∈ P2(K), (3.7a)

Π̂∇Kφh = φ̂h, (3.7b)

and the operator (̂·) is defined in (3.3).

The following result establishes that the polynomial projection Π∇K is computable from the sets D1 and D2.
The result follows the same arguments used in the proof of Lemma 3.2.

Lemma 3.3 The operator Π∇K : Vh(K) −→ P2(K) is explicitly computable for every φh ∈ Vh(K), using only the
information of the linear operators D1 and D2.
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3.4 Construction of the discrete forms

In the present section, we will build the discrete version of the continuous local forms defined in (2.3)-(2.6) by
using the operators introduced in the above subsection.

First, let SKD (·, ·) and SK∇ (·, ·) be any symmetric positive definite bilinear forms to be chosen as to satisfy:

c0A
K
D (φh, φh) ≤ SKD (φh, φh) ≤ c1AKD (φh, φh) ∀φh ∈ Vh(K), with ΠD

Kφh = 0,

c2A
K
∇(φh, φh) ≤ SK∇ (φh, φh) ≤ c3AK∇(φh, φh) ∀φh ∈ Vh(K), with Π∇Kφh = 0,

(3.8)

with c0, c1, c2 and c3 positive constants independent of h and K. A classical choice for the bilinear forms SKD (·, ·)
and SK∇ (·, ·) satisfying (3.8) is given by the Euclidean scalar product associated to the degrees of freedom scaled
appropriately (see [6, 5, 47]). More precisely, we choose the following representation:

SKD (ϕh, φh) := h−2
K

NK
dof∑
i=1

dofi(ϕ)dofi(φ) and SK∇ (ϕh, φh) :=

NK
dof∑
i=1

dofi(ϕ)dofi(φ),

for all ϕh, φh ∈ Vh(K), where NK
dof denote the number of degrees freedom of Vhk (K) and dofi is the operator that

to each smooth enough function φ associates the ith local degree of freedom dofi(φ), with 1 ≤ i ≤ NK
dof .

Thus, we define the following global form Ah : Vh × Vh −→ R, given by:

Ah(ϕh, φh) =
∑
K∈Th

Ah,K(ϕh, φh) =
∑
K∈Th

(εMA
h,K
D (ϕh, φh) + εMA

h,K
∇ (ϕh, φh)−Ah,Kskew(ϕh, φh)), (3.9)

where the discrete local bilinear forms, Ah,KD : Vh(K) × Vh(K) −→ R, Ah,K∇ : Vh(K) × Vh(K) −→ R and

Ah,Kskew : Vh(K) × Vh(K) −→ R, approximating the continuous bilinear forms AKD (·, ·), AK∇(·, ·) and AKskew(·, ·) are
given by

Ah,KD (ϕh, φh) := AKD
(
ΠD
Kϕh,Π

D
Kφh

)
+ SKD

(
(I −ΠD

K)ϕh, (I −ΠD
K)φh

)
, (3.10)

Ah,K∇ (ϕh, φh) := AK∇
(
Π∇Kϕh,Π

∇
Kφh

)
+ SK∇

(
(I −Π∇K)ϕh, (I −Π∇K)φh

)
, (3.11)

Ah,Kskew(ϕh, φh) :=
1

2

∫
K

Π2
K(∂xϕh) Π2

Kφh −
1

2

∫
K

Π2
K(∂xφh) Π2

Kϕh. (3.12)

The following result establishes the usual consistency and stability properties for the discrete local forms.

Proposition 3.2 The local bilinear forms AKD (·, ·), AK∇(·, ·), AK(·, ·), Ah,KD (·, ·), Ah,K∇ (·, ·) and Ah,K(·, ·) on each
element K satisfy

• Consistency: for all h > 0 and for all K ∈ Th, we have that

Ah,K(q, φh) = AK(q, φh) ∀q ∈ P2(K), ∀φh ∈ Vh(K), (3.13)

• Stability and boundedness: There exist positive constants αi, i = 1, . . . , 4 independent of K, such that:

α1A
K
D (φh, φh) ≤ Ah,KD (φh, φh) ≤ α2A

K
D (φh, φh) ∀φh ∈ Vh(K), (3.14)

α3A
K
∇(φh, φh) ≤ Ah,K∇ (φh, φh) ≤ α4A

K
∇(φh, φh) ∀φh ∈ Vh(K). (3.15)

Proof. The proof follows standard arguments in the VEM literature (see [7, 5, 47]). �

Finally, we consider the following approximation of the functional defined in (2.6):

Fh(φh) :=
∑
K∈Th

Fh,K(φh) ∀φh ∈ Vh, (3.16)

where, for the local functional Fh,K(·), is defined by:

Fh,K(φh) :=

∫
K

Π2
Kfφh ≡

∫
K

fΠ2
Kφh ∀φh ∈ Vh(K).

For the continuous bilinear forms A?(·, ·), with ? ∈ {D,∇, skew}, we adopt the following notation:

A?(ϕh, φh) :=
∑
K∈Th

AK? (ϕh, φh) ∀ϕh, φh ∈ Vh. (3.17)

We also adopt the same notation by the bilinear form A(·, ·) and the functional F (·).

7



3.5 Discrete problem and its well-posedness

In this subsection, we present the discrete virtual element formulation and we establish its well-posedness by
using the Lax-Milgram Theorem.

The fully nonconforming virtual element problem reads as: seek ψh ∈ Vh, such that

Ah(ψh, φh) = Fh(φh) ∀φh ∈ Vh, (3.18)

where Ah(·, ·) is the discrete bilinear forms defined in (3.9) and Fh(·) is the discrete functional introduced in
(3.16).

The following lemma establishes properties for the application | · |2,h defined in (3.1), with t = 2.

Lemma 3.4 For all φh ∈ Vh, the following inequality holds:

‖φh‖0,Ω + |φh|1,h ≤ C|φh|2,h,

where C is a positive constant, independent of h. Moreover, we have that | · |2,h is a norm on the space Vh.

Proof. The proof is established in [47, Lemma 5.1]. �

The following result establishes some properties for the discrete forms defined in the last subsection, which will
be used to conclude the well-posedness of the discrete problem (3.18). The proof follows from the definition of
the respective forms.

Lemma 3.5 For all ϕh, φh ∈ Vh, there exist positive constants CAh , α̃, CFh , independent of h, such that the
forms defined in (3.12), (3.9) and (3.16) satisfy the following properties:

|Ah(ϕh, φh)| ≤ CAh |ϕh|2,h|φh|2,h, Ah(φh, φh) ≥ α̃|φh|22,h, (3.19)

Ah,Kskew(φh, φh) = 0, |Fh(φh)| ≤ CFh‖f‖0,Ω|φh|2,h. (3.20)

We have the following result of existence and uniqueness.

Theorem 3.1 The discrete problem (3.18) admits a unique solution ψh ∈ Vh, which satisfies the following
continuous dependence on the data

|ψh|2,h ≤ C‖f‖0,Ω,

where the positive constant C is independent of h.

Proof. It is an immediate consequence of Lemma 3.5 and the Lax-Milgram Theorem. �

4 Convergence analysis

In this section we will establish error estimates for the nonconforming VEM presented in Section 3.5. First, we
present some preliminary results useful for the analysis. Successively, we introduce an enriching operator Eh from
the nonconforming space Vh into its conforming counterpart. Then, we derive some approximation properties
involving this operator and the bilinear form AD(·, ·) (cf. (2.3)). By using the above tools we establish an error
estimate in broken H2-norm under minimal regularity condition on the stream-function ψ (cf. Theorem 2.2).
Finally, by using duality arguments we derive error estimates in broken H1- and L2-norms under the same
regularity of the weak solution and assuming the source term f belongs to L2(Ω).

4.1 Preliminary results

We start recalling an important approximation result for polynomials on star-shaped domains (see, for instance
[13, 30]).

Proposition 4.1 Assume that A1 is satisfied. Then, for every φ ∈ H2+t(K), with t ∈ [0, 1], there exist φπ ∈
P2(K) and C > 0, independent of h, such that

‖φ− φπ‖`,K ≤ Ch2+t−`
K |φ|2+t,K , ` = 0, 1, 2.

We have the following approximation result in the virtual space Vh (see [5, 47, 30]).
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Proposition 4.2 Assume that A1 −A2 are satisfied. Then, for each φ ∈ H2+t(Ω), with t ∈ [0, 1], there exist
φI ∈ Vh and C > 0, independent of h, such that

‖φ− φI‖`,K ≤ Ch2+t−`
K |φ|2+t,K , ` = 0, 1, 2.

We have the following estimation involving the continuous and discrete functionals.

Proposition 4.3 Let f ∈ L2(Ω) and let F (·) and Fh(·) be the functionals defined in (2.6) and (3.16), respectively.
Then under assumption A1, we have the following estimate:

‖F − Fh‖V′h := sup
φh∈Vh
φh 6= 0

|F (φh)− Fh(φh)|
|φh|2,h

≤ Ch2‖f‖0,Ω.

Proof. The proof follows from the definition of the functionals F (·) and Fh(·), together with approximation
property of the projector Π2

K . �

We finish this subsection presenting some technical lemmas, which will be useful in the next sections. Proof of
this results can be obtained following arguments of [13, 20, 26].

Lemma 4.1 There exists C̃ > 0, independent of hK , such that

‖q‖0,K ≤ C̃h−iK ‖q‖−i,K ∀q ∈ P`(K), ` ≥ 0, i = 1, 2.

Lemma 4.2 If the assumption A1 is satisfied, for each ε > 0, there exist positive constants C,Cε, independent
of hK , such that

‖ϕ‖0,∂K ≤ C1(εh
1/2
K |ϕ|1,K + Cεh

−1/2
K ‖ϕ‖0,K) ∀ϕ ∈ H1(K),

|ϕ|1,K ≤ C2(εhK |ϕ|2,K + Cεh
−1
K ‖ϕ‖0,K) ∀ϕ ∈ H2(K).

Lemma 4.3 The projection Π̃0
e : L2(K) −→ P0(e) defined by the following average Π̃0

eϕ :=
1

he

∫
e

ϕds, satisfies

‖ϕ− Π̃0
eϕ‖0,e ≤ Ch

1/2
K |ϕ|1,K ∀ϕ ∈ H1(K).

4.2 Enriching operator

In this subsection, we will focus on proposing and analyzing an enriching operator Eh from the enhanced noncon-
forming space Vh into its H2-conforming counterpart. Following the ideas of [26], we can construct an enriching
operator Eh : Vh −→ VC

h , where VC
h is the enhanced H2-conforming virtual element space considered in [4]. The

construction is based on the degrees of freedom of VC
h .

For the sake of completeness, we will recall the construction of the virtual enhanced H2-conforming space of
lowest order and the enriching operator Eh.

Conforming virtual local space. For every polygon K ∈ Th, we introduce the following preliminary finite
dimensional space [4]:

ṼC
h (K) :=

{
φh ∈ H2(K) : ∆2φh ∈ P2(K), φh|∂K ∈ C0(∂K), φh|e ∈ P3(e) ∀e ⊆ ∂K,

∇φh|∂K ∈ [C0(∂K)]2, ∂neφh|e ∈ P1(e) ∀e ⊆ ∂K
}
,

Next, for a given φh ∈ ṼC
h (K), we introduce two sets Dv

1 and D∇2 of linear operators from the local virtual

space ṼC
h (K) into R:

• Dv
1 : the values of φh(v) for all vertex v ∈ ∂K,

• D∇2 : the values of hv∇φh(v) for all vertex v ∈ ∂K,

where hv is a characteristic length attached to each vertex v, for instance to the maximum diameter of the
elements with v as a vertex. Now, we consider the operator ΠD,C

K : ṼC
h (K) −→ P2(K) ⊆ ṼC

h (K) associated to the
conforming approach, which is computable using the sets Dv

1 and D∇2 (for more details see [4, Lemma 2.1]).

Next, for each K ∈ Th, we introduce the conforming local enhanced virtual space as follows:

VC
h (K) :=

{
φh ∈ ṼC

h (K) : (φh −ΠD,C
K φh, q)0,K = 0 ∀q ∈ P2(K)

}
. (4.1)

In this space the sets Dv
1 and D∇2 constitutes a set of degrees of freedom.

9



Conforming virtual global space. For every decomposition Th of Ω into polygons K, we define the conform-
ing virtual spaces VC

h :
VC
h :=

{
φh ∈ V : φh|K ∈ VC

h (K) ∀K ∈ Th

}
. (4.2)

For a vertex v ∈ Vh, we denote by ω(v) the union of all elements in Th, sharing the vertex v and by N(v) the
number of elements of ω(v). For any ϕh ∈ Vh, we introduce the piecewise L2-projection Π2, as follows:

Π2ϕh|K = Π2
K(ϕh|K),

where Π2
K is the L2-projection from Vh(K) onto P2(K) (cf. Lemma 3.2) and Vh(K) is the local nonconforming

virtual space defined in (3.4). For each function ϕh ∈ Vh, the function Ehϕh ∈ VC
h in the conforming counterpart

will be constructed as follows:

Eh(ϕh)(x) =

NC
dof∑
i=1

Di(Eh(ϕh))χi(x),

where the functions {χi}
NC

dof
i=1 are the set of shape basis functions associated to space VC

h and NC
dof := dim(VC

h ).
More precisely, the values of degrees of freedom for the enriching operator are determined as follows:

1. For the values at interior vertices v ∈ V int
h , we consider:

Dv
1 (Ehϕh) :=

1

N(v)

∑
K̃∈ω(v)

Π2ϕh|K̃(v).

2. For the gradient values at interior vertices v ∈ V int
h , we consider:

D∇1 (Ehϕh) :=
1

N(v)

∑
K̃∈ω(v)

hv∇(Π2ϕh|K̃)(v).

We will denote by χ(·) := {χv,χ∇} the degrees of freedom vector corresponding to the H2-conforming virtual
element space VC

h (K), with χv collecting the degrees of freedom in Dv
1 and χ∇ the degrees of freedom in D∇2 .

In what follows, we will derive some approximation properties for the operator Eh. To do that, first we will
establish two technical tools: inverse inequalities for the enhanced H2-conforming virtual space VC

h (K) defined
in (4.2) and a norm equivalence between the degrees of freedom vector χ and L2-norm.

In order to establish the results mentioned above, first we will consider three preliminary lemmas. We start
with an H2-orthogonal decomposition.

Lemma 4.4 Any function φ ∈ H2(K) admits the decomposition φ = φ1 + φ2, where

1. φ1 ∈ H2(K), φ1|∂K = φ|∂K , ∂nK
φ1 = ∂nK

φ and ∆2φ1 = 0 in K.

2. φ2 ∈ H2
0 (K), ∆2φ2 = ∆2φ in K.

Moreover, this decomposition is H2-orthogonal in the sense that

|φ|22,K = |φ1|22,K + |φ2|22,K .

Proof. Let φ ∈ H2(K), then we can choose φ2 as the H2-projection of φ to H2
0 (K), i.e., we define φ2 ∈ H2

0 (K)
as the unique solution of the following local problem:∫

K

D2φ2 : D2ϕ =

∫
K

D2φ : D2ϕ ∀ϕ ∈ H2
0 (K).

Thus, we define φ1 := (φ − φ2) ∈ H2(K). We notice that by construction the functions φ1 and φ2 satisfy the
properties of lemma. �

For the functions φ1 and φ2 of the above decomposition, we will derive useful inequalities to establish an inverse
estimate in the H2-conforming virtual space VC

h (K). For the biharmonic part, we have the next inequality.

Lemma 4.5 For any ε > 0, there exist positive constants C,Cε, independent of hK , such that

|φ1|2,K ≤ C(ε|φ|2,K + Cεh
−2
K ‖φ‖0,K).
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Proof. Let φ ∈ VC
h (K) and φ1 ∈ H2(K) such that Lemma 4.4 holds true. Then, we define the space

Sφ1
(K) :=

{
ϕ ∈ H2(K) : ϕ|∂K = φ1|∂K , ∂nK

ϕ = ∂nK
φ1

}
.

For each ϕ ∈ Sφ1
(K) we have that ϕ−φ1 ∈ H2

0 (K). Then, since ∆2φ1 = 0 in K, applying integration by part
we get ∫

K

D2φ1 : D2(ϕ− φ1) = 0,

which implies
|ϕ|22,K = |φ1|22,K + |ϕ− φ1|22,K .

Therefore,
|φ1|2,K ≤ |ϕ|2,K ∀ϕ ∈ Sφ1

(K). (4.3)

Now, for every K ∈ Th, let TK be the sub-triangulation obtained by connecting each vertex of K with the center
of the ball with respect to which K is starred (cf. Assumption A1). Then, on each triangle of TK we consider
the reduced Hsieh-Clough-Tocher element (HCT) defined in [22]. Thus, for φ ∈ VC

h (K) we choose the interpolant
IKφ in the HCT element, for which it is fulfilled that

IKφ|∂K = φ|∂K = φ1|∂K and ∂nK
(IKφ) = ∂nK

φ = ∂nK
φ1.

Hence, IKφ ∈ Sφ1(K) and by the definition of IKφ, we also have the following estimate

‖IKφ‖0,K ≤ C(h
1/2
K ‖IKφ‖0,∂K + h

3/2
K ‖∂nK

(IKφ)‖0,∂K)

= C(h
1/2
K ‖φ‖0,∂K + h

3/2
K ‖∂nK

φ‖0,∂K).
(4.4)

Then, taking ϕ = IKφ ∈ Sφ1
(K) in (4.3) and using the inverse inequality for polynomials (cf. Lemma 4.1) and

estimate (4.4), we obtain

|φ1|2,K ≤ |IKφ|2,K ≤ Ch−2
K ‖IKφ‖0,K ≤ C(h

−3/2
K ‖φ‖0,∂K + h

−1/2
K ‖∂nK

φ‖0,∂K). (4.5)

Next, we will estimate the two terms on the right hand side of (4.5). Indeed, from Lemma 4.2, for every ε > 0,
there exist C,Cε > 0, independent of h, such that

h
−3/2
K ‖φ‖0,∂K ≤ Ch−3/2

K (εh
1/2
K |φ|1,K + Cεh

−1/2
K ‖φ‖0,K) ≤ C(ε|φ|2,K + Cεh

−2
K ‖φ‖0,K). (4.6)

Now, for the second term in (4.5) we notice that

‖∇φ‖20,∂K =

∫
∂K

∇φ · ∇φ = ‖∂nK
φ‖20,∂K + ‖∂tKφ‖20,∂K ≤ (‖∂nK

φ‖0,∂K + ‖∂tKφ‖0,∂K)2. (4.7)

From the above identity and Lemma 4.2, for every ε > 0, there exist C,Cε > 0, independent of h, such that

h
−1/2
K ‖∂nK

φ‖0,∂K ≤ C(ε|φ|2,K + Cεh
−2
K ‖φ‖0,K). (4.8)

Then, the desired result follows inserting the estimates (4.6) and (4.8) in (4.5). �

For the function φ2 of the decomposition in Lemma 4.4, we have the following result.

Lemma 4.6 For any ε > 0, there exists positive constants C,Cε, independent of hK , such that

|φ2|2,K ≤ C(ε|φ|2,K + Cεh
−2
K ‖φ‖0,K).

Proof. Let φ ∈ VC
h (K) and φ2 ∈ H2(K) such that the Lemma 4.4 holds true. Then, since φ2 ∈ H2

0 (K) and
∆2φ2 = ∆2φ ∈ P2(K) in K, we use an integration by part, the Cauchy-Schwarz and inverse inequalities for
polynomials (cf. Lemma 4.1) to obtain

|φ2|22,K =

∫
K

φ2∆2φ2 ≤ ‖∆2φ2‖0,K‖φ2‖0,K ≤ Ch−2
K ‖∆

2φ2‖−2,K‖φ2‖0,K ≤ Ch−2
K |φ2|2,K‖φ2‖0,K .

From the above estimate, Lemma 4.4 and the triangle inequality, we get

|φ2|2,K ≤ Ch−2
K ‖φ2‖0,K = Ch−2

K ‖φ− φ1‖0,K ≤ Ch−2
K ‖φ‖0,K + Ch−2

K ‖φ1‖0,K . (4.9)
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In what follows, we will establish estimates for the second term on the right hand side in (4.9). Applying the
Poincaré–Friedrichs inequality for H2 functions, Cauchy-Schwarz inequality and using (4.7), we get

‖φ1‖0,K ≤ C
(
h2
K |φ1|2,K +

∣∣∣∣∫
∂K

φ1

∣∣∣∣+ hK

∣∣∣∣∫
∂K

∇φ1

∣∣∣∣)
≤ C(h2

K |φ1|2,K + h
1/2
K ‖φ1‖0,∂K + h

3/2
K (‖∂nK

φ1‖0,∂K + ‖∂tKφ1‖0,∂K)).

(4.10)

Now, we observe that φ1|e = φ|e ∈ P3(e) ∀e ⊆ ∂K. Then, by using standard inverse estimate for polynomials
in one variable, we have

‖∂tKφ1‖0,∂K ≤ Ch−1
K ‖φ1‖0,∂K .

Thus, inserting the above estimation in (4.10) we get

‖φ1‖0,K ≤ C(h2
K |φ1|2,K + h

1/2
K ‖φ‖0,∂K + h

3/2
K ‖∂nK

φ‖0,∂K),

where we have used the fact that φ1|∂K = φ|∂K and ∂nK
φ1 = ∂nK

φ. Now, employing the above estimates and
both inequalities of Lemma 4.2 we get

‖φ1‖0,K ≤ (h2
K |φ1|2,K + h

3/2
K ‖∂nK

φ‖0,∂K + h
1/2
K ‖φ‖0,∂K)

≤ C(h2
K |φ1|2,K + εh2

K |φ|2,K + Cε‖φ‖0,K),

which implies along with Lemma 4.5 that

h−2
K ‖φ1‖0,K ≤ C(|φ1|2,K + ε|φ|2,K + Cεh

−2
K ‖φ‖0,K)

≤ C(ε|φ|2,K + Cεh
−2
K ‖φ‖0,K).

(4.11)

From the estimates (4.9) and (4.11) for any ε > 0, there exists positive constants C,Cε, independent of hK ,
such that

|φ2|2,K ≤ C(h−2
K ‖φ‖0,K + Ch−2

K ‖φ1‖0,K) ≤ C(ε|φ|2,K + Cεh
−2
K ‖φ‖0,K).

The proof is complete. �

We have the following inverse inequalities for the H2-conforming space VC
h defined in (4.1).

Lemma 4.7 For any φh ∈ VC
h (K), there exists a positive constant C, independent of hK , such that

|φh|2,K ≤ Ch−2
K ‖φh‖0,K and |φh|1,K ≤ Ch−1

K ‖φh‖0,K . (4.12)

Proof. Let φh ∈ VC
h (K) and φh,1, φh,2 such that Lemma 4.4 holds true. Then, employing the triangle inequality

together with Lemmas 4.5 and 4.6, we have

|φh|2,K ≤ |φh,1|2,K + |φh,2|2,K ≤ C(ε|φh|2,K + Cεh
−2
K ‖φh‖0,K),

where C and Cε are independent of hK . Then, choosing ε small enough and absorbing the term Cε|φh|2,K on
the left hand side of the above estimate we obtain the first inverse inequality in (4.12). The second inequality in
(4.12) is an immediate consequence of the first estimate and Lemma 4.2. �

Now we will establish a norm equivalence between the degrees of freedom vector χ and the L2-norm.

Lemma 4.8 For any φh ∈ VC
h (K), there exist positive constants C1 and C2, independent of hK , such that

C1hK‖χ(φh)‖`2 ≤ ‖φh‖0,K ≤ C2hK‖χ(φh)‖`2 .

Proof. Let φh ∈ VC
h (K). Then, for the lower bound, we have the φh|∂K and ∂nK

φh are polynomial functions on
each edge of ∂K. Therefore, using standard scaling argument we have

hK‖χ(φh)‖`2 ≤ C(h
1/2
K ‖φh‖0,∂K + h

3/2
K ‖∂nK

φh‖0,∂K).

Now, following similar arguments to those used in Lemmas 4.5 and 4.6, we have

hK‖χ(φh)‖`2 ≤ C(h2
K |φh|2,K + ‖φh‖0,K).

Therefore, applying the first the inverse inequality in (4.12) we get

hK‖χ(φh)‖`2 ≤ C‖φh‖0,K .

To obtain the upper bound we proceed as in [26, Lemma 3.6]. �

Employing the above lemmas, we can establish the following approximation properties for the enriching operator
Eh, which will play a important role to obtain a priori error estimate of our scheme under minimal regularity
condition on the exact solution.
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Lemma 4.9 For all ϕh ∈ Vh, there exists C > 0 independent of h, such that

‖ϕh − Ehϕh‖0,Ω + h|ϕh − Ehϕh|1,h + h2|Ehϕh|2,Ω ≤ Ch2|ϕh|2,h.

Proof. First we will proof ‖ϕh−Ehϕh‖0,Ω ≤ Ch2|ϕh|2,h. Indeed, for all ϕh ∈ Vh, the function (Π2ϕh−Ehϕh)|K ∈
VC
h (K). Then, by using the triangle inequality, the Bramble-Hilbert Lemma and Lemma 4.8, we get

‖ϕh − Ehϕh‖0,K ≤ ‖ϕh −Π2
Kϕh‖0,K + ‖Π2

Kϕh − Ehϕh‖0,K
≤ Ch2

K |ϕh|2,K + hK‖χ(Π2
Kϕh − Ehϕh)‖`2 .

(4.13)

Now, by using the argument employed in [26, Lemma 4.2], we have that

‖χ(Π2
Kϕh − Ehϕh)‖`2 ≤ hK |ϕh|2,K .

Then, inserting the above estimate in (4.13), we obtain

‖ϕh − Ehϕh‖0,K ≤ Ch2
K |ϕh|2,K ∀ϕh ∈ Vh. (4.14)

Next, let ϕπ ∈ P2(K) the polynomial such that Proposition 4.1 holds true with respect to ϕh. Then, using
triangle and inverse inequalities for polynomial and for H2-conforming space (cf. Lemma 4.7) together with
Lemma 4.8, we have

|ϕh − Ehϕh|2,K ≤ |ϕh − ϕπ|2,K + |Π2
K(ϕπ − ϕh)|2,K + |Π2

Kϕh − Ehϕh|2,K
≤ C(|ϕh|2,K + h−2

K ‖ϕπ − ϕh‖0,K + h−2
K ‖Π

2
Kϕh − Ehϕh‖0,K)

≤ C(|ϕh|2,K + h−2
K h2

K |ϕh|2,K + h−2
K h2

K |ϕh|2,K)

≤ C|ϕh|2,K .

(4.15)

Thus, summing on each K ∈ Th in (4.14) and (4.15), and using triangle inequality we obtain

‖ϕh − Ehϕh‖0,Ω ≤ Ch2|ϕh|2,h and |Ehϕh|2,Ω ≤ C|ϕh|2,h. (4.16)

On the other hand, using the second inequality in Lemma 4.2 and (4.14), for (ϕh − Ehϕh)|K ∈ H2(K), there
exists a constant C > 0, independent to hK , such that

|ϕh − Ehϕh|1,K ≤ C(hK |ϕh − Ehϕh|2,K + h−1
K ‖ϕh − Ehϕh‖0,K)

≤ Ch|ϕh|2,K .

Then, from the above inequality, we obtain

|ϕh − Ehϕh|1,h ≤ Ch|ϕh|2,h. (4.17)

The proof of the theorem follows from (4.16) and (4.17). �

Now, using Lemma 4.9 we will establish two estimations involving the bilinear form AD(·, ·) defined in (2.3)
keeping the notation (3.17).

Lemma 4.10 Let ϕ ∈ H2+t(Ω), with t ∈ [0, 1]. Then, for all φh ∈ Vh we have

AD(ϕ, φh − Ehφh) ≤ Cht‖ϕ‖2+t,Ω|φh|2,h.

Proof. Following similar arguments in [14, Section 4.1], it is enough to prove the estimation for t = 0 and t = 1.
Indeed, let ϕ ∈ H2(Ω), then for any φh ∈ Vh, by using the Cauchy-Schwarz inequality and Lemma 4.9, we have

AD(ϕ, φh − Ehφh) =
∑
K∈Th

AKD (ϕ, φh − Ehφh) ≤ C‖ϕ‖2,Ω|φh|2,h. (4.18)

Now, let ϕ ∈ H3(Ω). Then, for all φh ∈ Vh, by using integration by part (see [47]), we have that

AD(ϕ, φh − Ehφh) = −
∑
K∈Th

∫
K

∇(∆ϕ) · ∇(φh − Ehφh) +
∑
K∈Th

∫
∂K

(
∆ϕ− ∂2ϕ

∂t2
K

)
∂(φh − Ehφh)

∂nK

+
∑
K∈Th

∫
∂K

∂2ϕ

∂nK∂tK

∂(φh − Ehφh)

∂tK
=: T1 + T2 + T3.

(4.19)
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Next, we will bound the terms T1, T2 and T3. Indeed, for the term T1, we use the Cauchy-Schwarz inequality and
Lemma 4.9, we have

T1 ≤

( ∑
K∈Th

‖∇(∆ϕ)‖20,K

)1/2( ∑
K∈Th

‖∇(φh − Ehφh)‖20,K

)1/2

≤ ‖ϕ‖3,Ω|φh − Ehφh|1,h ≤ Ch‖ϕ‖3,Ω|φh|2,h.

(4.20)

Now, we will bound the terms T2 and T3. For convenience, we set

ζ2 :=

(
∆ϕ− ∂2ϕ

∂t2
e

)
and ζ3 :=

∂2ϕ

∂ne∂te
.

By using the fact that Ehφh ∈ VC
h ⊂ C1(Ω̄) ∩ V and the definition of the space Vh, we have:∫
e

p0[[∇(φh − Ehφh) · ne]] = 0 ∀p0 ∈ P0(e). (4.21)

Then, for the term T2 from (4.21), with p0 = Π̃0
eζ2 ∈ P0(e) (cf. Lemma 4.3), we obtain

T2 =
∑
K∈Th

∫
∂K

ζ2 ∇(φh − Ehφh) · nK =
∑
e∈Eh

∫
e

(ζ2 − Π̃0
eζ2)[[∇(φh − Ehφh) · ne]]

≤

( ∑
e∈Eh

|e|−1‖ζ2 − Π̃0
eζ2‖20,e

)1/2( ∑
e∈Eh

|e|‖[[∇(φh − Ehφh) · ne]]‖20,e

)1/2

≤ Ch‖ϕ‖3,Ω|φh|2,h,

(4.22)

where we have used the trace inequality (cf. Lemma 4.2) and Lemma 4.9.

Since φh −Ehφh is continuous at internal vertices and vanishes at boundary vertices. Then, for all p0 ∈ P0(e),
we obtain∫

e

p0

[[∂(φh − Ehφh)

∂te

]]
= −

∫
e

∂p0

∂te
[[φh − Ehφh]] + ([[φh − Ehφh]]p0)(v2)− ([[φh − Ehφh]]p0)(v1) = 0,

where we have used the fact that the jump [[φh − Ehφh]] is zero when evaluated at the endpoints v1 and v2 of

edge e ∈ E int
h . Thus, taking p0 = Π̃0

eζ3 ∈ P0(e) in the above identity, we have that

T3 =
∑
e∈Eh

∫
e

ζ3

[[∂(φh − Ehφh)

∂te

]]
=
∑
e∈Eh

∫
e

(ζ3 − Π̃0
eζ3)

[[∂(φh − Ehφh)

∂te

]]

≤

( ∑
e∈Eh

|e|−1‖ζ3 − Π̃0
eζ3‖20,e

)1/2( ∑
e∈Eh

|e| ‖[[∇(φh − Ehφh) · tK ]]‖20,e

)1/2

.

Now, employing the same arguments used to obtain the estimation (4.22), we get

T3 ≤ Ch‖ϕ‖3,Ω|φh|2,h. (4.23)

Inserting (4.20), (4.22) and (4.23) in (4.19), we obtain

AD(ϕ, φh − Ehφh) ≤ Ch‖ϕ‖3,Ω|φh|2,h ∀ϕ ∈ H3(Ω). (4.24)

Then, from (4.18), (4.24) and arguments the real method of interpolation (see [14, Equation (4.2)] and [2]), we
have the desired result. �

Furthermore, for the bilinear form AD(·, ·) we have the following result.

Lemma 4.11 For ϕ ∈ H2+t(Ω) and χ ∈ H2+t(Ω) ∩ V, with t ∈ [0, 1], it holds:

AD(ϕ, χ− χI) ≤ Ch2t‖ϕ‖2+t,Ω‖χ‖2+t,Ω,

where χI ∈ Vh is the interpolant of χ in the virtual space Vh (cf. Proposition 4.2).

Proof. Let ϕ ∈ H2(Ω) and χ ∈ V. Then, by using Proposition 4.2 we have that

AD(ϕ, χ− χI) =
∑
K∈Th

AKD (ϕ, χ− χI) ≤ C‖ϕ‖2,Ω|χ− χI |2,h ≤ C‖ϕ‖2,Ω‖χ‖2,Ω.
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Now, for ϕ ∈ H3(Ω) and χ ∈ H3(Ω)∩V, the proof follows from the same arguments used in Lemma 4.10, setting
χ ∈ C1(Ω̄) ∩ V and χI ∈ Vh instead of Ehφh and φh, respectively, and employing Proposition 4.2. Indeed, using
an integration by part as in (4.19), we have that

AD(ϕ, χ− χI) = −
∑
K∈Th

∫
K

∇(∆ϕ) · ∇(χ− χI) +
∑
K∈Th

∫
∂K

(
∆ϕ− ∂2ϕ

∂t2
K

)
∂(χ− χI)
∂nK

+
∑
K∈Th

∫
∂K

∂2ϕ

∂nK∂tK

∂(χ− χI)
∂tK

=: TA1 + TA2 + TA3 .

For the term TA1 , we use the Cauchy-Schwarz inequality and Proposition 4.2, to obtain

TA1 ≤ Ch2‖ϕ‖3,Ω‖χ‖3,Ω,

while the terms TA2 and TA3 are bounded as in Lemma 4.10 and using Proposition 4.2, as follows:

TA2 + TA3 ≤ Ch2‖ϕ‖3,Ω‖χ‖3,Ω.

The proof follows combining the above estimates and arguments the real method of interpolation. �

4.3 A priori estimation

In this subsection we will establish an error estimate in broken H2-norm under minimal regularity condition on
the exact stream-function ψ, i.e., ψ ∈ H2+s(Ω), with s ∈ (1/2, 1] (cf. Theorem 2.2).

First, we start noticing that for all φh ∈ Vh the consistency error (also called nonconformity error) is given by:

Nh(ψ, φh) := A(ψ, φh)− F (φh), (4.25)

where ψ ∈ H2+s(Ω) ∩ V is the solution of problem (2.1). Moreover, we have the following estimation for the
consistency error Nh(ψ, ·) defined above.

Lemma 4.12 Let ψ be the solution of problem (2.1). Then, for all φh ∈ Vh, there exists a constant C > 0,
independent to h, such that

Nh(ψ, φh) ≤ Chs(‖ψ‖2+s,Ω + ‖f‖0,Ω)|φh|2,h,
where Nh(ψ, ·) is the consistency error defined by the relation (4.25) and s ∈ (1/2, 1] is such that ψ ∈ H2+s(Ω)∩V
(cf. Theorem 2.2).

Proof. For all φh ∈ Vh, we have that Ehφh ∈ VC
h ⊂ V. Then, taking Ehφh as test function in (2.1), we obtain

A(ψ,Ehφh) = F (Ehφh). (4.26)

Thus, from (4.25) and (4.26), we get

Nh(ψ, φh) := A(ψ, φh)− F (φh) = A(ψ, φh)− F (φh − Ehφh)− F (Ehφh)

= εMAD(ψ, φh − Ehφh) + εSA∇(ψ, φh − Ehφh)

−Askew(ψ, φh − Ehφh)− F (φh − Ehφh).

From the above identity, the Cauchy-Schwarz inequality, continuity of the forms A∇(·, ·), Askew(·, ·) and F (·),
Lemmas 4.10 and 4.9, we get

Nh(ψ, φh) ≤ CεMhs‖ψ‖2+s,Ω|φh|2,h + εS |ψ|1,Ω|φh − Ehφh|1,h
+ C(|φh − Ehφh|1,h + ‖φh − Ehφh‖0,Ω)‖ψ‖2,Ω + C‖f‖0,Ω‖φh − Ehφh‖0,Ω
≤ Chs(‖ψ‖2+s,Ω + ‖f‖0,Ω)|φh|2,h.

The proof is complete. �

We have the following Strang-type result.

Lemma 4.13 Under the mesh assumptions A1 −A2. Let ψ and ψh be the unique solutions to problems (2.1)
and (3.18), respectively. Then, for each approximation ψI of ψ in Vh and for every approximation ψπ of ψ in
P2(Th), there exists a positive constant C, independent of h, such that

|ψ − ψh|2,h ≤ C
(
|ψ − ψI |2,h + |ψ − ψπ|2,h + ‖F − Fh‖V′h + sup

φh∈Vh
φh 6= 0

Nh(ψ, φh)

|φh|2,h

)
,

where Nh(ψ, φh) is the consistency error defined in (4.25).
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Proof. Let ψI ∈ Vh be the interpolant of ψ such that Proposition 4.2 holds true. We set δh := (ψh − ψI) ∈ Vh.
Then,

|ψ − ψh|2,h ≤ |ψ − ψI |2,h + |δh|2,h. (4.27)

By using the property (3.19) and the consistency of bilinear form Ah,K(·, ·) (cf. (3.13)), we have

α̃|δh|22,h ≤ Ah(δh, δh) = Ah(ψh, δh)−Ah(ψI , δh)

= Fh(δh)− F (δh)−Nh(ψ, δh)−
∑
K∈Th

Ah,K(ψI − ψπ, δh) +
∑
K∈Th

AK(ψ − ψπ, δh).

From the above it follows that

|δh|2,h ≤ C
(
|ψ − ψI |2,h + |ψ − ψπ|2,h + ‖F − Fh‖V′h + sup

φh∈Vh
φh 6= 0

Nh(ψ, φh)

|φh|2,h

)
. (4.28)

Thus, from (4.27) and (4.28), we conclude the proof. �

The following theorem provides the rate of convergence of our virtual element scheme.

Theorem 4.1 Under the mesh assumption A1−A2. Let ψ and ψh be the unique solutions of problem (2.1) and
problem (3.18), respectively. Then, there exists a positive constant C, independent of h, such that

|ψ − ψh|2,h ≤ Chs(‖ψ‖2+s,Ω + ‖f‖0,Ω),

where s ∈ (1/2, 1] is such that ψ ∈ H2+s(Ω) ∩ V (cf. Theorem 2.2).

Proof. The proof follows combining Theorem 4.13, Propositions 4.1, 4.2, 4.3 and Lemma 4.12. �

4.4 Error estimate in H1- and L2

In this section we establish error estimates in broken H1- and L2-norms for the stream-function using duality
arguments, under same regularity of the weak solution ψ and of the source term f consider in Theorem 4.1.

Theorem 4.2 Under the mesh assumption A1 − A2. Let ψ and ψh be the unique solutions of problems (2.1)
and (3.18), respectively. Then, there exists a positive constant C, independent of h, such that

‖ψ − ψh‖0,Ω + |ψ − ψh|1,h ≤ Ch2s(‖ψ‖2+s,Ω + ‖f‖0,Ω), (4.29)

where s ∈ (1/2, 1] is such that ψ ∈ H2+s(Ω) ∩ V (cf. Theorem 2.2).

Proof. In order to prove the H1 estimate in (4.29), let ψI ∈ Vh be the interpolant of ψ such that Proposition 4.2
holds true. We set δh := (ψh − ψI) ∈ Vh. Then, we write

ψh − ψ = (ψh − ψI) + (ψI − ψ) = (ψI − ψ) + (δh − Ehδh) + Ehδh.

Thus, by using the triangle inequality together Proposition 4.2, Lemma 4.9 and Theorem 4.1, we have

|ψ − ψh|1,h ≤ |ψ − ψI |1,h + |δh − Ehδh|1,h + |Ehδh|1,h
≤ Ch2s‖ψ‖2+s,Ω + ‖∇Ehδh‖0,Ω.

(4.30)

In what follows, we will estimate the term ‖∇Ehδh‖0,Ω. To do that, we consider the following auxiliary problem:
find φ ∈ V, such that

A(w, φ) =

∫
Ω

∇(Ehδh) · ∇w ∀w ∈ V, (4.31)

where the bilinear form A(·, ·) is defined in (2.2). From Theorem 2.2, we have that φ ∈ H2+s(Ω) ∩ V and

‖φ‖2+s,Ω ≤ C‖∇Ehδh‖0,Ω. (4.32)

where C > 0 is a constant independent of h.

Then, taking w = Ehδh ∈ VC
h ⊂ V as test function, adding and subtracting δh in problem (4.31), we obtain

‖∇Ehδh‖20,Ω = A(Ehδh, φ) = A(Ehδh − δh, φ) +A(δh, φ) =: T1 + T2. (4.33)
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We will estimate the terms T1 and T2 in the above identity. Indeed, for the T1, we use the definition of bilinear
form A(·, ·), Proposition 4.2, together with Lemma 4.10, Theorem 4.1 and the triangle inequality, to obtain

T1 := εMAD(Ehδh − δh, φ) + εSA∇(Ehδh − δh, φ)−Askew(Ehδh − δh, φ)

≤ Chs‖φ‖2+s,Ω|δh|2,h + |Ehδh − δh|1,h|φ|1,Ω
+ C(|Ehδh − δh|1,h‖φ‖0,Ω + |φ|1,Ω‖Ehδh − δh‖0,Ω)

≤ Chshs(‖ψ‖2+s,Ω + ‖f‖0,Ω)‖φ‖2+s,Ω.

Then, from the above estimate and (4.32) we obtain

T1 ≤ Ch2s(‖ψ‖2+s,Ω + ‖f‖0,Ω)‖∇Ehδh‖0,Ω. (4.34)

To bound the term T2, we consider φI ∈ Vh the interpolant of φ such that Proposition 4.2 holds true. Then,
rewriting δh = (ψh−ψ) + (ψ−ψI), adding and subtracting φI , and using the bilineality of form A(·, ·), we obtain

T2 := A(δh, φ) = A(ψ − ψI , φ) +A(ψh − ψ, φ− φI) +A(ψh − ψ, φI)
= T a2 + T b2 + T c2 .

(4.35)

Now, we will estimate each term in (4.35). Indeed, we use again the definition of bilinear form A(·, ·), Proposition
4.2, Lemma 4.11 and Theorem 4.1, to obtain

T a2 := εMAD(ψ − ψI , φ) + εSA∇(ψ − ψI , φ)−Askew(ψ − ψI , φ)

≤ Ch2s‖φ‖2+s,Ω‖ψ‖2+s,Ω + |ψI − ψ|1,h|φ|1,Ω
+ C(|φ|1,Ω‖ψI − ψ‖0,Ω + ‖φ‖0,Ω|ψI − ψ|1,h)

≤ Ch2s‖ψ‖2+s,Ω‖∇Ehδh‖0,Ω.

(4.36)

For T b2 , we use the continuity of bilinear form A(·, ·), Proposition 4.2, Theorem 4.1 and (4.32), to get

T b2 := A(ψh − ψ, φ− φI) ≤ Ch2s(‖ψ‖2+s,Ω + ‖f‖0,Ω)‖∇Ehδh‖0,Ω (4.37)

Finally, we will bound the term T c2 in (4.35), as follow: we use the bilineality of form A(·, ·), add and subtract
adequate terms, and we use the fact that Ah(ψh, φI) = Fh(φI) and A(ψ, φ) = F (φ), to get

T c2 := A(ψh − ψ, φI) = A(ψh, φI)−A(ψ, φI)

= (A(ψh, φI)−Ah(ψh, φI)) + (Fh(φI)− F (φI)) + F (φI − φ) +A(ψ, φ− φI)
(4.38)

Next, from (4.36), continuity of functional F (·) and Proposition 4.2, we have

A(ψ, φ− φI) + F (φI − φ) ≤ Ch2s(‖ψ‖2+s,Ω + ‖f‖0,Ω)‖∇Ehδh‖0,Ω. (4.39)

By using the definition of the functionals F (·) and Fh(·) (cf. (2.6) and (3.16)), approximation properties of the
projector Π2

K , the Hölder and triangle inequalities together with Proposition 4.2, we have

Fh(φI)− F (φI) ≤
∑
K∈Th

‖f‖0,K‖φI −Π2
KφI‖0,K ≤ Ch2s‖f‖0,Ω‖∇Ehδh‖0,Ω. (4.40)

The last term in (4.38) is bounded as follow: let ψπ, φπ be the approximations of ψ and φ in P2(Th), such that
Proposition 4.1 hold true. Then, adding and subtracting these terms and by using the consistency of bilinear
form A(·, ·) (cf. (3.13)), we have:

A(ψh, φI)−Ah(ψh, φI) =
∑
K∈Th

[AK(ψh − ψπ, φI − φπ)−Ah,K(ψh − ψπ, φI − φπ)]

≤ Ch2s(‖ψ‖2+s,Ω + ‖f‖0,Ω)‖∇Ehδh‖0,Ω,
(4.41)

where we have used the continuity of bilinear forms Ah,K(·, ·), AK(·, ·) together with Propositions 4.1 and 4.2,
Theorem 4.1 and estimate (4.32). Thus, from (4.39)-(4.41), we obtain

T c2 ≤ Ch2s(‖ψ‖2+s,Ω + ‖f‖0,Ω)‖∇Ehδh‖0,Ω. (4.42)

Then, inserting the estimates (4.36), (4.37) and (4.42) in (4.35), we have that

T2 ≤ Ch2s(‖ψ‖2+s,Ω + ‖f‖0,Ω)‖∇Ehδh‖0,Ω. (4.43)
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Therefore, from (4.33), (4.34) and (4.43), we get

‖∇Ehδh‖0,Ω ≤ Ch2s(‖ψ‖2+s,Ω + ‖f‖0,Ω). (4.44)

Thus, the H1 estimate in (4.29) follows from (4.30) and (4.44).

On the other hand, the L2 estimate in (4.29) follows from the triangle inequality, Proposition 4.2, Lemma 4.9
and Theorem 4.1. In fact,

‖ψ − ψh‖0,Ω ≤ ‖ψ − ψI‖0,Ω + ‖δh − Ehδh‖0,Ω + ‖Ehδh‖0,Ω
≤ Ch2+s‖ψ‖2+s,Ω + Ch2(|ψh − ψ|2,h + |ψ − ψI |2,h) + C|Ehδh|1,Ω
≤ Ch2s(‖ψ‖2+s,Ω + ‖f‖0,Ω),

where we have used norm equivalence in V and estimate (4.44). The proof is complete. �

5 Computing further fields of interest

In this section we compute discrete velocity and vorticity fields using the discrete stream-function obtained with
the nonconforming virtual scheme (3.18) and suitable projections, which are computable from the degrees of
freedom D1 and D2. Moreover, we establish error estimates for these postprocessed variables, which are fields of
great importance in oceanic fluid dynamics [19, 24, 36, 41, 43].

5.1 Computing the velocity field

We begin with the horizontal fluid velocity. First, we notice that if ψ ∈ V is the unique solution of the weak
formulation (2.1), then

u = curl ψ. (5.1)

At the discrete level, we compute the velocity as a post-processing of the discrete stream-function ψh as follow:
if ψh is the unique solution of (3.18). Then, the function

uh := Π1curl ψh (5.2)

is a computable approximation of the velocity, where we have used the notation

(Π1w)|K = Π1
K(w|K) ∀w ∈ [L2(Ω)]2 and ∀K ∈ Th.

We observe that the function (5.2) is computable using the degrees of freedom D1 and D2 introduced in
Section 3.2. Indeed, applying integration by parts, for all q ∈ [P1(K)]2 we have∫

K

curl ψh · q =

∫
K

ψh rot q−
∫
∂K

φh(q · tK) = rot q

∫
K

(Π2
Kψh)−

∫
∂K

φh(q · tK).

Clearly, both terms above are computable using the sets D1 and D2.

The following result establishes the order of convergence between the exact and the discrete velocity:

Theorem 5.1 Assume that the hypotheses of Theorem 4.1 hold true, then there exists a positive constant C,
independent of h, such that

‖u− uh‖0,Ω + hs|u− uh|1,h ≤ Ch2s(‖ψ‖2+s,Ω + ‖f‖0,Ω),

where s ∈ (1/2, 1] is such that ψ ∈ H2+s(Ω) ∩ V (cf. Theorem 2.2).

Proof. From (5.1) and (5.2), the triangle inequality, stability and approximation properties of projector Π1
K , we

have:

|u− uh|21,h =
∑
K∈Th

|curl ψ −Π1
Kcurl ψh|21,K

≤ C

( ∑
K∈Th

h2s
K ‖curl ψ‖21+s,K +

∑
K∈Th

|Π1
Kcurl (ψ − ψh)|21,K

)
≤ Ch2s

(
‖ψ‖22+s,Ω + ‖f‖20,Ω

)
,

where we have used Theorem 4.1.

The proof of the L2 estimate is obtained repeating the above arguments and using Theorem 4.2. �
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5.2 Computing the vorticity field

Now, we will present an strategy to compute the fluid vorticity ω as a postprocess from the discrete stream-function
ψh of the VEM (3.18) by using the projection Π0

K defined in (3.6), with m = 0.

We recall that the vorticity ω = rot u, then using the identity u = curl ψ, we get

ω = rot u = rot(curl ψ) = −∆ψ. (5.3)

We compute a discrete vorticity as follows: if ψh ∈ Vh is the unique solution of (3.18), then the function

ωh := −Π0(∆ψh) (5.4)

is an approximation of the fluid vorticity, where we have used the notation

(Π0v)|K = Π0
K(v|K) ∀v ∈ L2(Ω) and ∀K ∈ Th.

We observe that the function defined (5.4) is fully computable using directly the degree of freedom D2. Indeed,
by using the definition of Π0

K and integration by parts, we obtain

ΠK
0 ∆ψh =

1

|K|

∫
∂K

∂nK
ψh,

where |K| denotes the area of polygon K.

We have the following convergence result for the discrete vorticity.

Theorem 5.2 Assume that the hypotheses of Theorem 4.1 hold true, then there exists a positive constant C,
independent of h, such that

‖ω − ωh‖0,Ω ≤ Chs(‖ψ‖2+s,Ω + ‖f‖0,Ω),

where s ∈ (1/2, 1] is such that ψ ∈ H2+s(Ω) ∩ V (cf. Theorem 2.2).

Proof. The proof follows from (5.3), (5.4) and the same arguments used in Theorem 5.1. �

Remark 5.1 We note that following the same arguments as in this section we can recover the potential vorticity
variable, given by (see [25, Equation (6)]):

q := − U

βL2
∆ψ + y,

where L is the characteristic length scale, β is the coefficient multiplying the y-coordinate in the β-plane approxi-
mation and U is the Sverdrup velocity (for further details see for instance [25]). A result analogous to Theorem 5.2
can be proven in this case.

6 Numerical results

In this section, we would like to discuss three numerical experiments to justify our theoretical estimates derived
in Sections 4 and 5. Numerical experiments are performed over different type of polygonal meshes such as square,
non-convex, uniform polygon, and Voronoi mesh (see Figure 1). For all test cases, errors are computed in broken
H2-, H1- and L2-norms and the Munk and Stommel parameters are chosen as εM = 6 × 10−5 and εS = 0.05,
respectively, for the first and third test, while for the second example we have set εM = εS = 1. In the first
numerical test, we have considered a solution with a boundary layer on the left hand side. In second example, we
consider a non-convex L-shaped domain to justify theoretical rate of convergence in different norms. In the third
test we investigate the behaviour of our scheme considering a realistic problem with the wind forcing term. In
addition, by using post-processing technique, we have computed discrete velocity and vorticity fields from discrete
stream-function ψh as described in Section 5. We compute the errors for stream-function ψ, velocity u, and
vorticity ω fields in different computable norms as follows

• Ei(ψ) := |ψ −ΠDψh|i,h ∀i ∈ {0, 1, 2};

• Ei(u) := |u− uh|i,h = |curl ψ −Π1curl ψh|i,h ∀i ∈ {0, 1};

• E0(ω) := ‖ω − ωh‖0,Ω = ‖∆ψ −Π0(∆ψh)‖0,Ω.

Further, we introduce, the notation Ri(η), i ∈ {0, 1, 2} to denote the rate of convergence in broken H2-, H1- and
L2-norms, where η ∈ {ψ,u, ω}.
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(a) (b) (c) (d)

Figure 1: Domain discretized with different meshes: (a) Square, (b) non-convex mesh, (c) regular polygon and
(d) Voronoi mesh.

(a) Numerical solution (b) Exact solution

Figure 2: Test 1. Numerical approximation of stream function of western boundary layer problem. Computational
domain is discretized with square mesh with mesh size h = 1/64.

6.1 Test 1. Western boundary layer

Inspired by [19, 25], we have examined western boundary layer model problem on square domain Ω := (0, 1)2.
The analytical solution is given by

ψ(x, y) =
1

π2

(
(1− x)(1− e−5x) sin(πy)

)2
.

Further, the right hand side force function f is computed using (1.1).

(a) Numerical solution (b) Exact solution

Figure 3: Test 1. Numerical approximation of vorticity of western boundary layer problem. Computational
domain is discretized with square mesh with mesh size h = 1/64.

In Figure 2, we have posted the discrete stream-function ψh and exact stream-function ψ and it is noticed
that a thin boundary layer appeared near x = 0, corresponding to a western boundary layer. In Figure 3, the
approximated and exact vorticity of the above mentioned problem are displayed. The rate of convergence of
stream-function ψh is displayed in Figure 4. Using post-processing technique, we approximate corresponding
velocity u, and vorticity field ω in Figure 5. In continuation, we would like to highlight that the presence of small
coefficients Munk and Stommel parameters affect the decay of errors in different norms for stream-function as
well as velocity and vorticity field for coarse meshes which eventually reduce the rate of convergence as shown in
Figure 4 and in Figure 5, respectively. However, for finer mesh, experimental order of convergence matches with
the theoretical order of convergence.
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Figure 4: Test 1: Convergence of the stream-function ψ in broken H2-, H1- and L2-norms with mesh refinement
for different types of discretization.
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Figure 5: Test 1: Convergence of the velocity u in broken H1- and L2-norms and vorticity ω in L2-norm with
mesh refinement for different types of discretization.

6.2 Test 2. L-shaped domain with exact solution

In this example we solve the Stommel-Munk model (1.1) on an L-shaped domain: Ω := (−1, 1)2 \([0, 1)×(−1, 0]).
For the experiment, we have considered a triangular mesh with coefficients εM = 1 and εS = 1 and we take the
right hand side term and nonhomogeneous Dirichlet boundary conditions in such a way that the exact solution
in polar coordinates is given by

ψ(r, θ) = r5/3 sin
(5θ

3

)
.

The analytical solution ψ is singular at the re-entrant corner of the computational domain Ω. Further, we
have ψ ∈ H 8

3−ε(Ω) for ε > 0. From the analysis and according to the regularity it is predicted that the order
of convergence for stream-function ψ is O(h2/3) in broken H2-norm and which is clearly observed in Table 1.
In the same table it can be observed that the error of stream-function approximation in H1-norm decay slightly
higher order than the expected rate of convergence. Moreover, we notice that the rates of convergence predicted
in Theorems 5.1 and 5.2 are attained by the postprocessed variables velocity and vorticity.
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(a) Numerical solution (b) Exact solution

Figure 6: Test 2. Non-convex domain

h E2(ψ) R2(ψ) E1(ψ) R1(ψ) E0(ψ) R0(ψ) E1(u) R1(u) E0(u) R0(u) E0(ω) R0(ω)

1/2 5.5569e-1 — 6.4046e-2 — 1.2167e-2 — 5.4887e-1 — 6.4153e-2 — 2.4074e-1 —
1/4 3.7465e-1 0.56 2.5424e-2 1.33 3.6058e-3 1.75 3.7410e-1 0.55 2.5419e-2 1.33 1.5905e-1 0.60
1/8 2.3728e-1 0.65 8.8470e-3 1.52 1.3224e-3 1.44 2.3727e-1 0.66 8.8415e-3 1.52 1.0174e-1 0.64

1/16 1.4764e-1 0.68 3.1226e-3 1.50 5.5058e-4 1.27 1.4731e-1 0.68 3.1225e-3 1.50 6.5059e-2 0.65
1/32 9.1830e-2 0.68 1.1808e-3 1.40 2.3605e-4 1.22 9.1760e-2 0.68 1.1808e-3 1.40 4.1388e-2 0.65

Table 1: Test 2. Errors for the stream-function in broken H2-, H1- and L2-norms obtained with εM = 1 and
εS = 1.

6.3 Test 3. Real example with the wind forcing term

In this section, we would like to study one more realistic example where the external force function is considered
from the derivatives of wind stress as mentioned in [19]. The computational domain is considered as Ω :=
(0, 3)× (0, 1) \ {(0, 3/2]× [1/2, 1)} and the forcing term f = sin(πy). In Figure 7, we have depicted the numerical
approximations of the stream-function and velocity fields, together with the streamlines obtained with a Voronoi
mesh with 18817 degree of freedom, εM = 6 × 10−5 and εS = 0.05. The numerical solution have analogous
behaviour as mentioned in [19]. Further, the numerical solution near the corner are well captured which validate
the capability of our algorithm.
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Figure 7: Test 3. Numerical approximation of velocity field uh and stream function ψh.
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