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Abstract
We develop a novel a posteriori error estimator for the L2 error committed by the finite element

discretization of the solution of the fractional Laplacian. Our a posteriori error estimator takes advantage
of the semi–discretization scheme using a rational approximation which allows to reformulate the fractional
problem into a family of non–fractional parametric problems. The estimator involves applying the implicit
Bank–Weiser error estimation strategy to each parametric non–fractional problem and reconstructing the
fractional error through the same rational approximation used to compute the solution to the original
fractional problem. We provide several numerical examples in both two and three-dimensions demonstrating
the effectivity of our estimator for varying fractional powers and its ability to drive an adaptive mesh
refinement strategy.

Keywords: Finite element methods, A posteriori error estimation, Fractional partial differential equations, Adaptive
refinement methods, Bank–Weiser error estimator
2020 Mathematics Subject Classification: 65N15, 65N30

1 Introduction
Fractional partial differential equations (FPDEs) have gained in popularity during the last two decades
and are now applied in a wide range of fields [72] such as anomalous diffusion [22, 41, 50, 55, 75],
electromagnetism and geophysical electromagnetism [29, 83], phase fluids [9, 11, 54], porous media
[11, 40, 20, 36], quasi-geostrophic flows [27] and spatial statistics [21, 71].

The main interest in fractional models lies in their ability to reproduce nonlocal behavior with
a relatively small number of parameters [15, 39]. While this nonlocality can be interesting from a
modeling perspective, it also constitutes an ongoing challenge for numerical methods since applying
standard approaches naturally leads to large dense linear systems that are computationally intractable.

In the last decade various numerical methods have been derived in order to circumvent the main
issues associated with the application of standard numerical methods to FPDEs, the two main ones
being the non–locality leading to dense linear systems and, for some particular definitions of the
fractional operator, the evaluation of singular integrals [6, 8].

We focus on discretization schemes based on finite element methods, other methods can be found
e.g. in [1, 67, 78]. Among the methods addressing the above numerical issues, we can cite: methods
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to efficiently solve eigenvalue problems [41], multigrid methods for performing efficient dense matrix–
vector products [6, 8], hybrid finite element–spectral schemes [7], Dirichlet-to-Neumann maps (such
as the Caffarelli–Silvestre extension) [13, 37, 45, 58, 75, 80], semigroups methods [46, 47, 79], rational
approximation methods [2, 66, 68], Dunford–Taylor integrals [21, 23, 24, 26, 28, 31, 61, 68] (which can
be considered as particular examples of rational approximation methods) and reduced basis methods
[48, 49, 52].

Although we focus exclusively on the spectral definition of the fractional Laplacian, there is no
unique definition of the fractional power of the Laplacian operator. The three most frequently found
definitions of the fractional Laplacian are: the integral fractional Laplacian, defined from the principal
value of a singular integral over the whole space Rd [6, 8, 25, 37, 51], the regional fractional Laplacian,
defined by the same singular integral but over a bounded domain only [44, 55, 57, 74] and the spectral
fractional Laplacian, defined from the spectrum of the standard Laplacian over a bounded domain
[7, 14, 17, 46, 66, 73]. The different definitions are equivalent in the entire space Rd, but this is no
longer the case on a bounded domain [22, 55, 70, 72]. These definitions lead to significantly different
mathematical problems associated with infinitesimal generators of different stochastic processes [72,
55].

Efficient methods for solving fractional problems typically rely on a combination of different dis-
cretization methods. For example, [28], which is also the foundation of this work, combines a quadra-
ture scheme for the Dunford–Taylor integral representation of the spectral fractional Laplacian with a
standard finite element method in space. Both the quadrature scheme and the finite element method
induce discretization errors. Each of these schemes is associated with its own discretization error. In
order to achieve a solution to a given accuracy while avoiding wasted computational time, these errors
need to be balanced.

A priori error estimation has been tackled for some definitions of the fractional Laplacian, such as
the integral Laplacian [5, 6, 7, 22, 28, 62] and the spectral fractional Laplacian [13, 14, 17, 28, 73, 75].
Unlike the standard Laplacian equation, solutions to the fractional Laplacian problems often exhibit
strong boundary layers even for smooth data, particularly when the fractional power is low [63]. These
singularities lead to computational difficulties and have to be taken into account using, for example a
priori geometric mesh refinement towards the boundary of the domain [5, 18, 25, 31, 58], or partition
of unity enrichments [30]. We emphasize that [28] contains already an a priori error analysis in the L2

norm for the combined rational sum finite element method that we use in this work.
A posteriori error estimation has also been considered in the literature on fractional equations. A

simple residual based estimator is proposed for the integral fractional Laplacian in [6]. A similar idea is
used in the context of nonlocal variational inequalities in [62, 76]. Gradient-recovery based a posteriori
error estimation has been developed in the context of fractional differential equations in [84]. In [22, 45]
the authors present another estimator, based on the solution to local problems on cylindrical stars,
for the integral fractional Laplacian discretized using the Caffarelli–Silvestre extension. A weighted
residual estimator is derived in [59] in the same context.

To our knowledge, no a posteriori error estimation method has been derived for the spectral frac-
tional Laplacian, discretized using the rational approximation approach of [28].

2 Contribution
The main contribution of this work is the derivation of a novel a posteriori error estimator for the
combined rational finite element approximation of the spectral fractional Laplacian. It is a natural a
posteriori counterpart to the a priori results developed in [28].

Our work starts with the quadrature rule for the Dunford–Taylor integral proposed in the seminal
work [28]. This method, and other rational approximation–based discretization methods, decompose
the original fractional problem into a set of independent parametric non–fractional problems. From
this point we develop an associated set of independent non–fractional a posteriori error estimation
problems. We compute the Bank–Weiser hierarchical estimators [19] of the error between each non–
fractional parametric problem solution and its finite element discretization, then the fractional problem
discretization error is estimated by the sum of the parametric contributions via the rational approxi-
mation.
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Our method leads to a fully local and parallelizable solution technique for the spectral fractional
Laplacian with computable L2 error. Our method is valid for any finite element degree (however, for
the sake of brevity we do not show results with higher degree finite elements) and for one, two and
three dimensional problems [36].

We implement our method in DOLFINx [64], the new problem solving environment of the FEniCS
Project [12]. A simple demonstration implementation is included in the supplementary material.
We show numerical results demonstrating that the estimator can correctly reproduce the a priori
convergence rates derived in [28].

Our newly developed error estimator is then used to steer an adaptive mesh refinement algorithm,
resulting in improved convergence rates for small fractional powers and strong boundary layers.

3 Motivation
Given a fractional power s in (0, 1) and a rational approximation Qκ

s (λ) of the function λ−s, it is
possible to construct a semi-discrete approximation uκ of the solution u to a fractional Laplace equation
as a weighted sum of solutions (ul)l to non–fractional parametric problems. Then, a fully discrete
approximation of u is obtained by discretizing the parametric solutions (ul)l using a finite element
method.

An a posteriori error estimator is then computed as the weighted sum of the Bank–Weiser estimators
of the error between each ul and its finite element discretization. As we will see in the following, the
resulting numerical scheme is simple and its implementation in code is straightforward. Furthermore it
maintains the appealing embarrassingly parallel nature of rational approximation schemes [28, 61, 66].

We remark on why we have chosen to use the Bank–Weiser type error estimator, as opposed to one
of the many other error estimation strategies, e.g. explicit residual, equilibrated fluxes, or recovery-
type estimators (see [10, 43] and references therein). In the case of fractional powers of the Laplacian
operator, the resulting set of parametric problems consists of singularly–perturbed reaction–diffusion
equations. It has been proven in [82] that the Bank–Weiser estimator is robust with respect to the
coefficients appearing in these parametric problems when the error is measured in the natural norm. To
our knowledge, no such robustness, which our numerical experiments do indicate, has been established
for the L2-norm for the Bank–Weiser estimator. Nevertheless, our numerical experiments indicate that
this does appear to be the case. Moreover, the Bank–Weiser estimator can be straightforwardly applied
to higher-order finite element methods and higher-dimension problems. In addition, its computational
stencil is highly local which is particularly appealing for three-dimensional problems see e.g. [36].

In this work we focus on error estimation in the L2 norm, the estimation of the error in the ‘natural’
fractional norm is the topic of ongoing work. For simplicity, we only consider fractional powers of the
Laplacian with homogeneous Dirichlet boundary conditions.

4 Problem statement
For any subset ω of Ω we denote L2(ω) the space of square integrable functions on ω and (·, ·)ω its usual
inner product. Let H1(ω) be the Sobolev space of functions with first order weak derivatives in L2(ω).
The space H1(ω) is endowed with the usual inner product (∇·,∇·)L2(ω) + (·, ·)L2(ω). We will omit the
dependence in ω in the subscripts when ω = Ω. We will make use of the notation ∂v/∂n := ∇v · n for
the normal derivative of a smooth enough function v. We denote H1

0 (Ω) the subspace of functions in
H1(Ω) with a zero trace on Γ.

We consider the family of eigenfunctions {ψi}∞i=1 ⊂ H1
0 (Ω) of the standard Laplacian operator with

uniform zero Dirichlet boundary condition on Ω as well as the corresponding family of eigenvalues
{λi}∞i=1. We assume the Laplacian eigenvalues are sorted in increasing order and we assume λ0 ∈ R is
a lower bound of the spectrum

λ0 � λ1 � · · · � λi � λi+1 � · · · (1)

The family {ψi}∞i=1 is an orthonormal basis of L2(Ω). For s in (0, 1) we introduce the spectral fractional
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Sobolev space Hs and its natural norm

Hs :=

�
v ∈ L2(Ω),

∞�

i=1

λs
i (v,ψi)

2
< ∞

�
, �v�2Hs :=

∞�

i=1

λs
i (v,ψi)

2
. (2)

Especially, for 0 � s � 1 we have H1
0 (Ω) = H1(Ω) ⊆ Hs(Ω) ⊆ L2(Ω) =: H0(Ω) and the norm �·�Hs

coincide with �·�L2 when s = 0 and with |·|H1 when s = 1.

4.1 The spectral fractional Laplacian
Let s be a real number in (0, 1) and f be a given function in L2(Ω). We consider the following fractional
Laplacian problem: we look for a function u such that

(−Δ)su = f in Ω, u = 0 on Γ. (3)

The solution u of eq. (3) is defined using the spectrum of the standard Laplacian [14]

u :=

∞�

i=1

λ−s
i (f,ψi)ψi. (4)

If we notice that
(u,ψi) = λ−s

i (f,ψi) , ∀i � 1, (5)

then, for f in L2(Ω) we can show that

�u�H2s = �f�L2 . (6)

Moreover, we can derive an equivalent formulation of eq. (3). If we multiply eq. (3) by test functions
v in Hs(Ω) and integrate over Ω, we obtain

�

Ω

(−Δ)suv =

�

Ω

fv, ∀v ∈ Hs(Ω). (7)

Now, using the decompositions of u, v and f in the basis (ψi)
+∞
i=1 we have

((−Δ)su, v) =

∞�

i=1

λs
iuivi =

∞�

i,j=1

λ
s/2
i uiλ

s/2
j vj (ψi,ψj) =

�
(−Δ)s/2u, (−Δ)s/2v

�
.

Then, the solution u to eq. (7) satisfies
�
(−Δ)s/2u, (−Δ)s/2v

�
= (f, v) , ∀v ∈ Hs(Ω). (8)

Conversely, if u is solution to eq. (8), we can show eq. (5) which leads to eq. (4) and eq. (3).

4.2 Rational approximation
Our method relies on rational approximations of the real function λ �→ λ−s for s in (0, 1) and λ � λ0

for some fixed λ0 > 0. We are particularly interested in an example provided in [28]. This example is
based on the following expression derived from Euler’s reflection formula

λ−s =
2 sin(πs)

π

� +∞

−∞
e2sy

�
1 + e2y λ

�−1
dy. (9)

Then, the rational approximation is obtained from eq. (9) by discretizing the integral on the right-hand
side with a trapezoidal quadrature rule,

λ−s � Qκ
s (λ) :=

2 sin(πs)

πκ

N(κ)�

l=−M(κ)

e2slκ
�
1 + e2lκ λ

�−1
, (10)

4



where κ > 0 is the fineness parameter and

M(κ) :=

�
π2

4sκ2

�
, and N(κ) :=

�
π2

4(1− s)κ2

�
, (11)

where �·� is the ceiling function.
This particular scheme has some advantages compared to other rational methods. The coefficients

(e2slκ)Nl=−M and (e2lκ)Nl=−M are very easy to compute in comparison with methods based on e.g. best
uniform rational approximations (BURA) (see [2, 66, 68, 69]). This scheme is also among the most
efficient as shown in recent comparison studies (see [68, 81]). Various other examples of rational
approximations can be found e.g. in [2, 3, 60, 66, 81]. We want to highlight again that the error
estimation scheme developed later can be derived in the same manner regardless of the choice of the
rational approximation, as long as it leads to a set of well–posed non–fractional parametric problems.

It has been shown in [28] that Qκ
s converges uniformly to λ−s at an exponential rate as κ → 0.

Especially, the approximation error is bounded by
��λ−s −Qκ

s (λ)
�� � εs(κ), ∀λ � λ0, ∀κ > 0, (12)

with
εs(κ) =

2 sin(πs)

π

�
1

2s
+

1

2(1− s)λ0

� �
1

1− e−π2/(2κ)
+ 1

�
e−π2/(2κ) . (13)

Asymptotically, εs(κ) behaves like e−π2/(2κ) as κ → 0.

5 Discretization
We combine the rational approximation eq. (10) with a finite element method to derive a fully discrete
approximation of the solution u to eq. (8).

5.1 Rational semi-discrete approximation
From eq. (10) we can derive semi-discrete approximations of the solution u to eq. (8) by considering

uκ :=
2 sin(πs)

πκ

N(κ)�

l=−M(κ)

e2slκ ul, (14)

where the functions {ul}Nl=1 are solutions to the parametric problems: for each l in �−M,N�, find ul

in H1
0 such that

(ul, w) + e2slκ (∇ul,∇w) = (f, w) ∀w ∈ H1
0 . (15)

It has been proved in [28] that the semi-discrete approximation uκ converges to u in L2(Ω) at the
same speed as Qκ

s (λ) converges to λ−s. More precisely,

�u− uκ�L2 � εs(κ)�f�L2 , ∀κ > 0. (16)

where εs(κ) is defined in eq. (13).
We can deduce from eq. (16) the following two important points. Firstly, the rational approxima-

tion uκ converges to u exponentially fast in κ. Therefore, it does not constitute a bottleneck in the
rate of convergence when combined with a finite element method to obtain a fully discrete approxima-
tion. Secondly, the right-hand side of eq. (16) is technically an a posteriori estimation of the rational
discretization error since εs(κ) and �f�L2 can be calculated almost entirely using a priori known data.
The only parameter that is not so easily computable in εs is λ0, a lower bound of the spectrum of
the Laplacian on Ω. The bound εs(κ) can be optimized by taking λ0 = λ1 but given its exponential
convergence rate, εs(κ) will not drastically deteriorates if λ0 < λ1. Moreover, precise guaranteed lower
bounds for λ1 could be obtained following e.g. [38, 42].
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5.2 Finite element discretization
In order to get a fully discrete approximation of u, we use a finite element method to discretize
the parametric problems eq. (15). Although it is not mandatory, we use the same mesh and same
finite element space for all the parametric problems. We discuss this choice, and possible alternative
strategies, in section 7.

Let T be a mesh on the domain Ω, composed of cells T = {T}, facets E = {E} (we call facets the
edges in dimension two and the faces in dimension three), and vertices. The mesh T is supposed to be
regular, in Ciarlet’s sense: hT /ρT � γ, ∀T ∈ T , where hT is the diameter of a cell T , ρT the diameter
of its inscribed ball, and γ is a positive constant fixed once and for all. The subset of facets that are
not coincident with the boundary Γ (called interior facets) is denoted EI . Let n+ and n− in Rd be the
outward unit normals to a given edge as seen by two cells T+ and T− incident to a common edge E.
The space of polynomials of order p on a cell T is denoted Pp(T ) and the continuous Lagrange finite
element space of order p on the mesh T is defined by

V p :=
�
vp ∈ H1(Ω), vp|T ∈ Pp(T ) ∀T ∈ T

�
. (17)

We denote V p
0 the finite element space composed by functions of V p vanishing on the boundary Γ. For

a given index l, the finite element discretization of eq. (15) reads: for each l in �−M,N�, find ul,p in
V p
0 such that

(ul,p, vp) + e2lκ (∇ul,p,∇vp) = (f, vp) , ∀vp ∈ V p
0 . (18)

Then, combining eq. (14) with eq. (18) we can give a fully discrete approximation of the solution to
eq. (8)

u ≈ uκ,p :=
2 sin(πs)

πκ

N(κ)�

l=−M(κ)

e2slκ ul,p. (19)

The computation of uκ,p is summarized in the top part of fig. 1.

6 Finite element discretization error analysis
According to what we have seen in section 4.2, the rational approximation error, characterized by
�u−uκ�L2 converges exponentially fast. Consequently, we will consider this error to be negligible and
assume that the rational scheme Qκ

s is precise enough (i.e. κ is small enough) so that

u � uκ. (20)

Our goal is to bound the discretization error in the L2 norm

�u− uκ,p�L2 � �uκ − uκ,p�L2 . (21)

Since for any s ∈ (0, 1), the discrepancy u−uκ,p belongs to Hs(Ω) ⊂ L2(Ω), the error can be measured
in the L2 norm for any value of the fractional power s.

6.1 Heuristics
Let us start with some heuristics motivating the derivation of our a posteriori error estimator. The
main idea is to derive a function ebwκ,T that locally represents the discretization error in the solution to
the fractional problem (uκ − uκ,p)|T on a cell T of the mesh. Thanks to the rational approximation
we notice that

(uκ − uκ,p)|T =
2 sin(πs)

πκ

N�

l=−M

e2slκ(ul − ul,p)|T . (22)

So we can use the framework proposed by Bank and Weiser in [19] to derive solutions ebwl,T such that

ebwl,T � (ul − ul,p)|T , ∀l ∈ �−M,N�, ∀T ∈ T . (23)
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We obtain ebwκ,T using the rational approximation sum

ebwκ,T :=
2 sin(πs)

πκ

N�

l=−M

e2slκ ebwl,T � (uκ − uκ,p)|T , ∀T ∈ T . (24)

Finally, we can estimate the L2 error on the cell T by taking the norm of the function ebwκ,T

�ebwκ,T �L2 ≈ �uκ − uκ,p�|T . (25)

These heuristics are summarized in fig. 1.
We would like to emphasize that the Bank–Weiser estimator is not the only possible choice. In

fact, the Bank–Weiser estimator could be replaced with another estimator based on the solves of local
problems, such as e.g. the one used in [75].

6.2 A posteriori error estimation
Let us now derive our a posteriori error estimation method more precisely. As mentioned in the
last subsection, this estimator is based on a hierarchical estimator computed from the solves of local
Neumann problems on the cells and introduced for the first time by Bank and Weiser in [19].

Let T be a cell of the mesh. We make use of the following local finite element spaces

V p
T :=

�
vp,T ∈ Pp(T ), vp,T = 0 in (Ω \ T ) ∪ (T ∩ ∂Ω)

�
. (26)

Let us now consider two non-negative integers p+ and p− such that p+ > p− � 0 and LT : V
p+

T −→ V
p−
T

the local Lagrange interpolation operator. We introduce the local Bank–Weiser space, defined by

V bw
T := ker(LT ) =

�
vp+,T ∈ V

p+

T , LT (vp+,T ) = 0
�
. (27)

The local parametric Bank–Weiser problem associated to the parametric problems eq. (15) and eq. (18)
reads

�

T

ebwl,T v
bw
T + e2slκ

�

T

∇ebwl,T ·∇vbwT =

�

T

rl,T v
bw
T +

1

2

�

E∈∂T

�

E

Jl,Ev
bw
T , ∀vbwT ∈ V bw

T (28)

where rl,T and Jl,T are defined as follow:

rl,T := f|T − ul,p|T + e2lκ Δul,p|T , and Jl,T := e2lκ
�
∂ul,p

∂n

�

E

. (29)

The solution ebwl,T in V bw
T is the local parametric Bank–Weiser solution. More details about the com-

putation and implementation of the Bank–Weiser solutions can be found in [19, 36].
Then, we derive the local fractional Bank–Weiser solution by summing the local parametric Bank–

Weiser solutions into the rational approximation sum

ebwκ,T :=
2 sin(πs)

πκ

N�

l=−M

e2slκ ebwl,T . (30)

The local fractional Bank–Weiser estimator is then defined as the L2 norm of this local solution

ηbwκ,T := �ebwκ,T �L2(T ). (31)

The global fractional Bank–Weiser estimator is then defined by

ηbwκ
2
:=

�

T∈T
ηbwκ,T

2
. (32)
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Figure 1: Summary of the computation of the fractional solution approximation and of the fractional
Bank–Weiser solution.

7 Adaptive refinement
One of the main applications of a posteriori error estimation is to drive adaptive mesh refinement
algorithms. When the error is unevenly spread across the mesh, refining uniformly is a waste of com-
putational resources leading to suboptimal convergence rates in the number of degrees of freedom. This
problem is compounded for computationally expensive problems like fractional problems. Moreover,
it is known that fractional problems often show a boundary layer behavior, the discretization error is
consequently large in a localized region near the boundary [4, 32, 81]. This problem has been tackled
using graded meshes that are refined near the boundary based on a priori or a posteriori considerations
[22, 45, 62, 73]. As expected, the use of graded meshes improves the convergence of the methods.

Adaptive refinement algorithms are based on the loop

· · · −→ Solve −→ Estimate −→ Mark −→ Refine −→ · · ·

In this work we are concerned with developments in the modules solve and estimate. We are using
totally standard approaches, namely the Dörfler algorithm [53] for the mark module and the Plaza–
Carey algorithm [77] for the refine module.

Rational approximation methods have the advantage of being fully parallelizable due to the inde-
pendence of the parametric problems from each other. Similarly, the local a posteriori error estimation
method we have presented earlier is also parallelizable since the computation of the local Bank–Weiser
solutions on the cells are independent from each other. Our error estimation strategy combines these
advantages and is fully parallelizable both with respect to the parametric problems and local estima-
tors computation. An example of error estimation and adaptive refinement algorithm based on our
method is shown in fig. 2.

The algorithm presented in fig. 2 is based on three loops: one While loop and two For loops.
The While loop is due to the adaptive refinement procedure and can not be parallelized. However,
the two For loops are fully parallelizable and this parallelization can be highly advantageous for large
three-dimensional problems.

Note that there is no guarantee that the mesh we obtain at the end of the main While loop
in fig. 2 is optimal for all the parametric problems. For some of the parametric solutions without
boundary layers the mesh is certainly over-refined. An alternative approach could be to compute the
L2 norms of the parametric Bank–Weiser solutions ebwl,T in order to derive parametric Bank–Weiser
estimators and refine the meshes independently for each parametric problem. This would require the
storage of a possibly different mesh for each parametric problem at each iteration. More importantly,
this would mean summing parametric finite element solutions coming from different and possibly non-
nested meshes. Properly addressing this question is beyond the scope of this study. Nonetheless, we
give some hints the numerical section section 9.1.
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Choose a tolerance ε > 0
Choose an initial mesh Tn=0

Choose κ such that εs(κ)�f�L2 < ε
Generate the rational approximation Qκ

s coefficients
Initialize the estimator ηbwκ = ε+ 1

While ηbwκ > ε:
Initialize the local Bank–Weiser solutions {ebwκ,T }T to zero
Initialize the solution uκ,p to zero

For each parametric problem l ∈ �−M,N�:
Solve eq. (18) on Tn to obtain ul,p

Add (2 sin(πs)/πs) e2slκ ul,p to uκ,p

For each cell T of Tn:
Solve eq. (28) to obtain ebwl,T
Add (2 sin(πs)/πs) e2slκ ebwl,T to ebwκ,T

Compute the L2 norms of {ebwκ,T }T to obtain {ηbwκ,T }T
Take the square root of the sum of {ηbwκ,T

2}T to obtain ηbwκ

If ηbwκ � ε:
Stop the loop
Return uκ,p and ηbwκ

Mark the mesh using {ηbwκ,T }T
Refine the mesh and replace Tn by Tn+1

Figure 2: Error estimation and adaptive refinement algorithm outline in pseudo–code.
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Frac. power 0.1 0.3 0.5 0.7 0.9
Num. param. prob. 408 176 149 176 408

Table 1: Number of parametric problems solved for each fractional power.

8 Implementation
We have implemented our method using the DOLFINX finite element solver of the FEniCS Project
[12]. Each parametric subproblem is submitted to a batch job queue. A distinct MPI communicator
is used for each job. We use a standard first-order Lagrange finite element method and the resulting
linear system is solved using the conjugate gradient method preconditioned using BoomerAMG from
HYPRE [56] via the interface in PETSc [16]. To compute the Bank-Weiser error estimator for each
subproblem we use the methodology outlined in [36] and implemented in the FEniCSx-EE package
[35]. For every subproblem the computed solution and error estimate is written to disk in HDF5
format. A final step, running on a single MPI communicator, reads the solutions and error estimates
for all subproblems, computes the quadrature sums using axpy operations, defines the marked set of
cells to be refined using the Dörfler algorithm [53], and finally refines the mesh using the Plaza–Carey
algorithm [77].

A more complex implementation using a single MPI communicator split into sub-communicators
would remove the necessity of reading and writing the solution and error estimate for each subproblem
to and from disk. However, in practice the cost of computing the parametric solutions massively
dominates all other costs.

9 Numerical results
First, we need to choose the value of κ in order to guarantee that the rational approximation error is
negligible. From eq. (16), we know a bound that depends on s, λ0 and �f�L2 . However, in all our test
cases we know that λ0 = λ1 = 1 is a lower bound for the spectrum of the Laplacian and the data f is
always chosen such that �f�L2 = 1. It turns out that taking κ = 0.26 ensures that �u−uκ�L2 � 10−8,
no matter the choice of s ∈ (0, 1). This choice leads to a different number of parametric problems to
solve for each fractional power, these numbers are detailed in table 1.

When analytical solutions are known, we provide the efficiency indices of the Bank–Weiser estima-
tor, defined by ηbwκ /�uκ − uκ,1�L2 .

9.1 Two-dimensional product of sines test case
We solve eq. (3) on the square Ω = (0,π)2 with data f(x, y) = (2/π) sin(x) sin(y). The analytical
solution to this problem is given by u(x, y) = 2−s(2/π) sin(x) sin(y). Moreover, the analytical solutions
to the parametric problems eq. (15) are also known ul(x, y) = (1 + 2 e2lκ)−1(2/π) sin(x) sin(y). The
problem is solved on a hierarchy of structured (triangular) meshes. For this test case the solution
u shows no boundary layer behavior, therefore adaptive refinement cannot improve the convergence
rate. Consequently we only perform uniform refinement on this case. As we can see on fig. 3, the
Bank–Weiser estimator tends to be very accurate when the mesh is fine enough when s = 0.3 and
s = 0.7. In fact, its accuracy is robust with respect to the fractional power. The efficiency indices are
computed by taking the average of the ratios for the five last meshes of the hierarchy and are shown
for various fractional powers in table 3.

Theorem 4.3 from [28] gives a convergence rate for the finite element scheme depending on the
elliptic regularity index α of the Laplacian over Ω, on the fractional power and on the regularity index
δ of the data f . Since Ω is convex the elliptic "pick-up" regularity index α can be taken to be 1 [22] and
since f is infinitely smooth the coefficient δ can be taken as large as wanted. Consequently, Theorem
4.3 in [28] predicts a convergence rate of dof−1 for this test case. The convergence rates we measure in
practice, shown in table 2, are coherent with this prediction. These rates are computed from a linear
regression fit on the values obtained on the five last meshes of the hierarchy.
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Figure 3: Two-dimensional product of sines test case: the Bank–Weiser estimator ηbw
κ in solid

blue line is compared to the exact error in dashed light blue line for s = 0.3 and s = 0.7.

9.1.1 Parametric problems discretization error

Since we know the analytical solutions to the parametric problems in this case, it is possible to compute
the exact parametric discretization errors �ul − ul,1�L2 , for each l ∈ �−M,N�. It is possible then to
investigate the consequences of using the same mesh for all the parametric problems. In fig. 4 we have
plotted the exact parametric errors after five steps of (uniform) refinement. As we can notice, the same
mesh leads to a wide range of parametric errors values, especially for fractional powers s close to 1.
These errors are particularly low for high values of the index l, when the diffusion part of the operator
is dominant. However, when l becomes less than zero, i.e. when the reaction part is dominant the
mesh seems to have an equal effect on the parametric errors. As expected these results suggest that
the method can be optimized by using different meshes depending on l. In particular, coarser meshes
would be sufficient for high values of l. These results are obtained for uniform refinement, further
investigations deserve to be carried out for adaptive refinement.

As we explained earlier, using a different hierarchy of meshes for each parametric problem may be
computationally advantageous, at the expense of ease of implementation. Several hierarchies of meshes
would need to be stored and, in the case of adaptive mesh refinement, interpolation between possibly
non-nested meshes would be required in order to compute the fractional solution u. To avoid these
complications when adaptive refinement is used, we propose the following:

1. use the same hierarchy of meshes for all the parametric problems but not the same mesh. Some
parametric problems might be solved on coarser meshes from the hierarchy and others on finer
ones. This would allow to keep only one hierarchy of meshes stored in memory. Moreover, it
would avoid the interpolation between non-nested meshes, since meshes from the same hierarchy
being always nested.

2. selectively refine the mesh hierarchy: estimate the error globally for each parametric problem
(this can be done using the local parametric Bank–Weiser solutions) and mark the parametric
problems for which a finer mesh is required, using e.g. a marking algorithm similar to Dörfler’s
marking strategy.

9.2 Three-dimensional product of sines test case
This test case is the three-dimensional equivalent of the last test case. We solve eq. (3) on the
cube Ω = (0,π)3 with data f(x, y, z) = (2/π)3/2 sin(x) sin(y) sin(z). The analytical solution to this
problem is given by u(x, y, z) = 3−s(2/π)3/2 sin(x) sin(y) sin(z). The problem is solved on a hierarchy
of uniformly refined Cartesian (tetrahedral) meshes. As for the two-dimensional case, the solution u
shows no boundary layer behavior and adaptive refinement is not required. For the same reasons as for
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Frac. power 0.1 0.3 0.5 0.7 0.9
Estimator -0.92 -0.97 -0.99 -1.00 -1.00

Exact error -1.00 -1.00 -1.00 -1.00 -0.94

Table 2: Two-dimensional product of sines test case: convergence rates of the Bank–Weiser
estimator and of the exact error for various fractional powers.

Frac. power 0.1 0.3 0.5 0.7 0.9
Est. eff. index 0.86 1.16 1.08 0.96 0.78

Table 3: Two-dimensional product of sines test case: efficiency indices of the Bank–Weiser
estimator for various fractional powers.

the two-dimensional case, Theorem 4.3 from [28] predicts a convergence rate of dof−2/3 for the finite
element scheme. fig. 5 shows the values of the Bank–Weiser estimator and of the exact error (computed
from the knowledge of the analytical solution) for s = 0.3 and s = 0.7. As in the two-dimensional case,
the efficiency indices are relatively robust with respect to the fractional powers. They are shown for
various fractional powers in table 5 and are computed by taking the average of the indices from the
three last meshes of the hierarchy. As we can see, the Bank–Weiser estimator efficiency indices for this
three-dimensional case are not as good as in the two-dimensional case. We have already observed this
behavior for non-fractional problems [34]. We can notice that the convergence rates, given in table 4,
are coherent with the predictions of Theorem 4.3 from [28]. The convergence rates are computed from
a linear regression on the values computed from the three last meshes of the hierarchy.

9.3 Two-dimensional checkerboard test case
We solve the problem introduced in the numerical results of [28]. We consider a unit square Ω = (0, 1)2

with data f : Ω → R given for all (x1, x2) ∈ Ω by

f(x1, x2) =

�
1, if (x1 − 0.5)(x2 − 0.5) > 0,

0, otherwise.
(33)

The data f ∈ H1/2−ε(Ω) for all ε > 0. So in Theorem 4.3 of [28] the index δ < 1/2 and since Ω is convex
again α can be chosen equal to 1. Then, the predicted convergence rate (for uniform refinement) is
ln(

√
dof)dof−β with

β =

�
1, if s > 3

4 ,

s+ 1
4 , otherwise.

(34)

��� ��� �

������������������

�� ��

�� ��

�� �

�� �

�� �

��
�

�
�

��
�
��
�
�

�����

�� �� � �� ��

������������������

�� ��

�� ��

�� ��

�� �

��
�

�
�

��
�
��
�
�

�����

� ��� ���

������������������

�� ��

�� ��

�� ��

�� ��

�� ��

��
�

�
�

��
�
��
�
�

�����

Figure 4: Two-dimensional product of sines text case: variation of the exact parametric errors
with respect to the index l ∈ �−M,N� for three different fractional powers.
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Figure 5: Three-dimensional product of sines test case: the Bank–Weiser estimator ηbw
κ in solid

blue line is compared to the exact error in dashed light blue line for various fractional powers.

Frac. power 0.1 0.3 0.5 0.7 0.9
Estimator -0.56 -0.60 -0.63 -0.65 -0.66

Exact error -0.69 -0.69 -0.69 -0.69 -0.69

Table 4: Three-dimensional product of sines test case: convergence rates of the Bank–Weiser
estimator and of the exact error for various fractional powers.

Frac. power 0.1 0.3 0.5 0.7 0.9
Est. eff. index 2.12 3.20 3.08 2.77 2.45

Table 5: Three-dimensional product of sines test case: efficiency indices of the Bank–Weiser
estimator for various fractional powers.
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Figure 6: Two-dimensional checkerboard test case: for each fractional power we compare the
values of the Bank–Weiser estimator ηbwκ when uniform refinement is performed (dashed light lines)
and when adaptive refinement is performed (solid lines).

Frac. power 0.1 0.3 0.5 0.7 0.9
Theory [28] -0.35 -0.55 -0.75 -0.95 -1.00
Est. (unif.) -0.35 -0.55 -0.76 -0.95 -1.00

Est. (adapt.) -0.65 -0.84 -0.93 -0.97 -1.01

Table 6: Two-dimensional checkerboard test case: convergence slopes of the Bank–Weiser esti-
mator for uniform refinement and for adaptive refinement compared to the values predicted by [28] for
various fractional powers.

The predicted (if we omit the logarithmic term) and calculated convergence rates for different choices
of s are given in table 6. As we can see on this table, the convergence rates for the Bank–Weiser
estimator is globally coherent with the predictions. fig. 6 shows that adaptive refinement improves the
convergence rate for small fractional powers. This is expected, the deterioration in the convergence
rate is due to the boundary layer behavior of the solution that is getting stronger as the fractional
power decreases. When the fractional power is close to 1, the solution behaves like the solution to
a non-fractional problem for which adaptive refinement is no longer needed. This can be seen on
fig. 7, after 10 steps of adaptive refinement, the mesh associated to fractional power s = 0.9 is almost
uniformly refined while the meshes associated to s = 0.5 and s = 0.1 show strongly localized refinement.
This explains why in fig. 6 we barely see any improvement in the convergence rate when the mesh is
adaptively refined compared to uniformly refined when s � 0.7.
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Figure 7: Two-dimensional checkerboard test case: meshes obtained after 10 steps of adaptive
refinement steered by the Bank–Weiser estimator for s = 0.1, s = 0.5 and s = 0.9 from left to right.

Frac. power 0.1 0.3 0.5 0.7 0.9
Theory [28] -0.23 -0.37 -0.50 -0.63 -0.67
Est. (unif.) -0.24 -0.38 -0.52 -0.62 -0.67

Est. (adapt.) -0.33 -0.46 -0.55 -0.65 -0.68

Table 7: Three-dimensional checkerboard test case: convergence slopes of the Bank–Weiser
estimator for uniform refinement and for adaptive refinement compared to the values predicted by [28]
for various fractional powers.

9.4 Three-dimensional checkerboard test case
This test case is the three-dimensional version of the above checkerboard problem. We solve eq. (3)
on the unit cube Ω = (0, 1)3, with data f such that

f(x1, x2, x3) =





1, if (x1 − 0.5)(x2 − 0.5) > 0 and (x3 − 0.5) < 0,

1, if (x1 − 0.5)(x2 − 0.5) < 0 and (x3 − 0.5) > 0,

−1, otherwise.
(35)

The finite element solution u1 and the corresponding mesh after six steps of adaptive refinement are
shown in fig. 8 for the fractional power s = 0.5. As for the two-dimensional case, f ∈ H1/2−ε(Ω)
for all ε > 0. Consequently, once again Theorem 4.3 of [28] predicts a convergence rate (for uniform
refinement) equal to ln

�
dof1/3

�
dof−2β/3 with β given by eq. (34).

Once again, if we omit the logarithmic term, the predicted and calculated convergence rates are
given in table 7. As in the two-dimensional case, the convergence rates of the Bank–Weiser estimator
are globally coherent with the predictions and the boundary layer behavior becomes stronger as the
fractional power decreases leading to poorer convergence rates. section 9.4 shows the values of the
Bank–Weiser estimator for uniform and adaptive refinement and for several fractional powers.

10 Concluding remarks
In this work we presented a novel a posteriori error estimation method for the spectral fractional
Laplacian. This method benefits from the embarrassingly parallel character of both the Bank–Weiser
error estimator and the rational approximation methods, thus keeping the appealing computational
aspects of the underlying methodology in [28]. Here are two important points we want to make to
conclude this paper. First, the Bank–Weiser estimator seems to be equivalent to the L2 exact error
at least when structured meshes are used and when the solution u is smooth. Second, adaptive
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Figure 8: Three-dimensional checkerboard test case: finite element solution and mesh after six
steps of adaptive refinement when s = 0.5. The unit cube domain (0, 1)3 is truncated by the three
planes passing through the point (0.25, 0.25, 0.25) and orthogonal to the vectors (1, 0, 0), (0, 1, 0) and
(0, 0, 1) respectively.
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Figure 9: Three-dimensional checkerboard test case: for each fractional power we compare the
values of the Bank–Weiser estimator ηbwκ when uniform refinement is performed (dashed light lines)
and when adaptive refinement is performed (solid lines).
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refinement methods drastically improves the convergence rate compared to uniform refinement for
fractional powers close to 0.

Finally, we give some future directions that we think are worth considering. More numerical tests
could be performed, especially for higher order elements and/or using variants of the Bank–Weiser
error estimator as considered in [36].

We would like also to study the derivation of an algorithm that allows to use different meshes to
discretize the parametric problems in order to save computational time, as explained in section 9.1.1.
The a posteriori error estimation of the error in the “natural” norm of the problem i.e. the spectral
fractional norm defined in eq. (2) is another extension of this work that is worth to consider. The
replacement of the Bank–Weiser estimator by an anisotropic a posteriori error estimator would improve
the convergence rate even further in case of boundary layers, see e.g. [17, 58], Another interesting
extension would be to test our method on fractional powers of other kinds of elliptic operators, following
[28], on another definition of the fractional Laplacian operator [25] and/or other boundary conditions,
following [14].

Supplementary material
A minimal example of adaptive finite element method for the two–dimensional spectral fractional
Laplacian can be found in the following FEniCSx–Error–Estimation repository https://github.com/
jhale/fenicsx-error-estimation. This minimal example code (LGPLv3) is also archived at https:
//doi.org/10.6084/m9.figshare.19086695.v3. A Docker image [65] is provided in which this code
can be executed.
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Universidad de Concepción

Casilla 160-C, Concepción, Chile
Tel.: 56-41-2661324/2661554/2661316

http://www.ci2ma.udec.cl


