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Stéphane P. A. Bordas, Raphaël Bulle,
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Abstract. In the seminal paper of Bank and Weiser [Math. Comp., 44 (1985), pp. 283–301] a
new a posteriori estimator was introduced. This estimator requires the solution of a local Neumann
problem on every cell of the finite element mesh. Despite the promise of Bank–Weiser type estima-
tors, namely locality, computational efficiency, and asymptotic sharpness, they have seen little use
in practical computational problems. The focus of this contribution is to describe a novel imple-
mentation of hierarchical estimators of the Bank–Weiser type in a modern high-level finite element
software with automatic code generation capabilities. We show how to use the estimator to drive
(goal-oriented) adaptive mesh refinement for diverse Poisson problems and for mixed approximations
of the nearly-incompressible elasticity problems. We provide comparisons with various other used
estimators. Two open source implementations in the DOLFIN and DOLFINx solvers of the FEniCS
Project are provided as supplementary material.
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1. Introduction. A posteriori error estimation [3] is the de facto tool for as-
sessing the discretization error of finite element method (FEM) simulations, and iter-
atively reducing that error using adaptive mesh refinement strategies [65].

This paper is concerned with the description and justification of an implementa-
tion of an error estimator introduced in the seminal paper of Bank and Weiser [17,
Section 6]. In that paper an error estimate was derived involving the solution of local
Neumann problems on a special finite element built on nested or hierarchical spaces.
Despite its excellent performance and low computational cost, this estimator has seen
relatively sparse use in practical computational problems. The overarching goal of
this contribution is to provide access to an efficient, generic and extensible implemen-
tation of Bank–Weiser type estimators in a modern and widely used finite element
software, specifically, the FEniCS Project [5].

1.1. Background. The literature on a posteriori error estimation and adaptive
finite element methods is vast, so we focus on articles on practical software implemen-
tations of adaptive finite element methods and comparative performance studies.
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The T-IFISS [26] software package, based on the existing IFISS [40] package, is
a finite element software written in MATLAB/Octave with a focus on a posteriori
error estimation and adaptive finite element methods. Recently [25], T-IFSS has
been extended to solve adaptive stochastic Galerkin finite element methods. The
stated emphasis of T-IFISS [26] is on being a laboratory for experimentation and
exploration, and also to enable the rapid prototyping and testing of new adaptive finite
element methods. A number of estimation and marking strategies are implemented
in T-IFISS, although not the Bank–Weiser estimator we consider in this paper. T-
IFISS only works for two-dimensional problems and it was never intended to be a
high-performance code suitable for large-scale computations e.g. high-performance
computing systems using the Message Passing Interface (MPI).

The PLTMG package [16] is one of the oldest open finite element softwares for
solving elliptic problems that is still under active maintenance, and includes many
advanced features such as hp-adaptive refinement, a posteriori error estimation, do-
main decomposition and multigrid preconditioning. The a posteriori error estimation
is based on a superconvergent patch recovery estimation technique introduced in [18].
PLTMG only works in two dimensions and is naturally limited from a usability per-
spective due to the programming tools available at its inception (Fortran and ANSI
C).

In [42] an adaptive first-order polynomial finite element method was implemented
in a code called p1afem using MATLAB. The primary goal was to show how the basic
finite element algorithm could be implemented efficiently using MATLAB’s vectoriza-
tion capabilities. A standard residual estimator [13] is used to drive an adaptive mesh
refinement algorithm. Again, like T-IFISS, p1afem only works in two dimensions.

The widely used deal.ii finite element software [11] includes excellent support
for scalable adaptive mesh refinement in two and three dimensions, particularly when
built with the p4est library [29]. The only estimator included deal.ii library by default
is the well-established explicit Kelly estimator [54]. As the deal.ii documentation
points out “in spite of the name, [the] Kelly estimator is not truly an a posteriori
error estimator, even if applied to the Poisson problem only. It gives good hints for
mesh refinement, but the estimate is not to be trusted.” Of course, ‘true’ a posteriori
error estimates can be implemented by the user in C++ using the provided interfaces.
Similarly, the libmesh finite element software [58] also includes the Kelly estimator as
standard, and allows for more refined approaches to be implemented by the user.

In [73] a novel methodology for automatically deriving adaptive finite element
methods from the high-level specification of the goal functional and (potentially non-
linear) residual equation was implemented in the FEniCS Project. The emphasis of the
paper [73], in contrast with the T-IFISS toolbox [26], is on the automatic construction
of goal-oriented adaptive finite element methods, without much knowledge required on
the part of the user. The implicit residual problems are automatically localised using
bubble functions living on the interior and facets of the cell, and the dual problem [44]
is derived and solved automatically on the same finite element space as the primal
problem, before being extrapolated to a higher-order finite element space using a
patch-wise extrapolation operator. In practice the automatically derived estimators
seem to be able to effectively drive adaptive mesh refinement for a range of different
PDEs.

Explicit residual estimators are also commonly employed by users of high-level
finite element software packages as they can usually be expressed straightforwardly in
a high-level form language, e.g. [5, 69]. In addition, as the name suggests, they can be
explicitly computed as they involve only functions of the known finite element solution
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and the problem data. For example, [48] used the FEniCS Project to implement an
explicit residual error estimator for the Reissner-Mindlin plate problem from [24]. The
authors of [37] used the FEniCS Project to implement an explicit residual estimator
for elasticity problems within a dual-weighted residual framework. The dual problem
is solved on a higher-order finite element space in order to ensure that the weighting by
the dual residual solution does not vanish [73]. In [53] the authors use an explicit dual-
weighted residual strategy for adaptive mesh refinement of discontinuous Galerkin
finite element methods. The DUNE finite element software also includes excellent
support for adaptive mesh refinement [21]. Due to the recent of the addition of the
FEniCS Unified Form Language [5] to DUNE, it is now possible to easily implement
residual-type error estimators, as shown in [21].

In the present work, aside of the Bank–Weiser estimator we will consider an ex-
plicit residual estimator [14] named residual estimator in the following, a flux recon-
struction based on averaging technique estimator [81], referred to as Zienkiewicz–Zhu
estimator, and a variant of the Bank–Weiser estimator introduced in [78] and referred
to as the bubble Bank–Weiser estimator. The residual estimator was proved to be
both reliable and (locally) efficient in [78] for any finite element order and in any di-
mension. The proof of reliability and (local) efficiency of Zienkiewicz–Zhu estimator
has been derived in [72], for linear finite elements in dimension two and generalised to
any averaging technique in any dimension in [32] and any finite element order in [19].
The bubble Bank–Weiser estimator was proved to be reliable and locally efficient in
[78] for any dimension and any finite element order.

A proof of the equivalence between the Bank–Weiser estimator and the exact
error was derived in the original paper [17]. However, this proof requires a saturation
assumption [17, 39, 64] asking for the best approximation with higher order finite
elements to be strictly smaller than that of lower order elements and which is known
to be tricky to assert in practice. Some progress has been made in [64] removing the
saturation assumption from the analysis. However, this progress was made at the
price of restricting the framework to linear polynomial finite elements and dimension
two only. The equivalence proof between Bank–Weiser and residual estimators have
been improved by the authors in [27] where it was extended to dimension three.

1.2. Contribution. We show how robust and cheap hierarchical error estima-
tion strategies can be implemented in a high-level finite element framework, e.g. the
FEniCS Project [5], Firedrake [43, 70], freefem++ [50], Feel++ [69], GetFEM [71] or
Concha [36]. Specifically, the contribution of our paper to the existing literature is:

• A generic and efficient implementation of the Bank–Weiser estimator in the
open source FEniCS Project finite element software that works for Lagrange
finite elements of arbitrary polynomial order and in two and three spatial di-
mensions. We provide implementations for the popular but legacy DOLFIN
finite element solver [5], and the new DOLFINx solver [47]. The two versions
are functionally identical, although in terms of overall speed and parallel
scaling the DOLFINx version is superior due to underlying architectural im-
provements. Hence we only show parallel scaling results with this new version.
The code is released under an open source (LGPLv3) license [28]. Because
the code utilises the existing automatic code generation capabilities of FEn-
iCS along with a custom finite element assembly routine, the packages are
very compact (a few hundred lines of code, plus documentation and demos).
Additionally, the estimators are implemented in near mathematical notation
using the Unified Form Language, see the Appendices for code snippets.
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• A numerical comparison of the Bank–Weiser estimator with various estima-
tors mentioned earlier. We examine the relative efficiency, and their perfor-
mance within an adaptive mesh refinement loop on various test problems.
Unlike [35], we do not aim at running a competition of error estimators but
at stressing the potential of the Bank–Weiser estimator since, as the authors
of [35] point out, a single error estimation strategy is not sufficient to cover
the particulars of all possible problems.

• Relying on results in [22], we show a goal-oriented adaptive mesh refinement
algorithm can be driven by weighted sum of estimators, computed separately
on primal and dual problems discretized on the same finite element space.
This avoids the extrapolation operation of [73] or the need to compute the
dual solution in a higher-order finite element space [23].

• Using the same basic methodology as for the Poisson problem, we extend our
approach to estimating errors in mixed approximation of nearly incompress-
ible elasticity problems. This idea was originally introduced in [3] and is still
an active research topic, see e.g. [55] for a parameter-robust implicit residual
estimator for nearly-incompressible elasticity.

1.3. Outline. An outline of this paper is as follows; in subsection 1.4 we outline
the main notation and definitions used in this paper. In sections 2 and 3 we show
the derivation of the primal problem and the Bank–Weiser error estimator. In sec-
tion 4 we derive a new method for computing the Bank–Weiser estimator and discuss
its implementation in FEniCS. In section 5 we discuss the use of the approach for
various applications such as goal-oriented adaptive mesh refinement and for mixed
approximations of PDEs. Then, in section 6 we show some results on two and three
dimensional Poisson test problems as well as on linear elasticity problems, before
concluding in section 8.

1.4. Notation. In this section we outline the main notations used in the rest
of the paper. Let Ω be an bounded open domain of Rd (d = 1, 2 or 3), with polygo-
nal/polyhedral boundary denoted by Γ := ∂Ω. We consider Γ = ΓD ∪ ΓN a partition
of the boundary. We assume ΓD is of positive measure. We denote by n : Γ→ Rd the
outward unit normal vector along Γ. Let ω be a subset of Ω. For l ∈ R we denote by
H l(ω) the Sobolev space of order l. The spaceH0(ω) = L2(ω) is the Lebesgue space of
square integrable functions over ω. The space H l(ω) is endowed with the usual inner
product (·, ·)l,ω and norm ‖·‖l,ω. We omit the subscript l when l = 0 and subscript ω
when ω = Ω. We denote H1

D(Ω) the subspace of H1(Ω) of functions with zero trace on
ΓD. We make use of the notation ∂nv := ∇v ·n for the normal derivative of a smooth
enough function v. For l ∈ R and for a d-dimensional subset ω of Ω, we also define
the following vector fields spaces L2(ω) :=

(
L2(ω)

)d and H l(ω) :=
(
H l(ω)

)d
, with

respective inner products defined as their scalar counterparts, replacing the scalar
product by the Euclidean inner product or the Frobenius double dot product. The
spaceH1

D(Ω) is the subspace ofH1(Ω) of functions with zero trace on ΓD. From now
on, the bold font notation will be reserved to vector fields. With these notations at
hand we can proceed with the rest of the paper.

2. Primal problem statement and finite element discretization. We con-
sider the Poisson problem with mixed Dirichlet and Neumann boundary conditions.
Let Γ = ΓD ∪ ΓN be a partition of the boundary. We apply a Dirichlet bound-
ary condition on ΓD and a Neumann boundary condition on ΓN . Let f ∈ L2(Ω),
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uD ∈ H1/2(ΓD) and g ∈ L2(ΓN ) be known data. We seek a function u:

(2.1) −∆u = f in Ω, u = uD on ΓD, ∂nu = g on ΓN .

Problem (2.1) can be written in an equivalent weak form: Find u ∈ H1(Ω) of trace
uD on ΓD such that

(2.2) (∇u,∇v) = (f, v) + (g, v)ΓN
, ∀v ∈ H1

D(Ω).

The weak problem (2.2) can be discretized using the Lagrange finite element method.
We take a mesh T of the domain Ω, consisting of cells T = {T}, facets E = {E} (we
call facets the edges in dimension two and the faces in dimension three), and vertices
N = {χ}. The mesh T is supposed to be regular in Ciarlet’s sense: hT /ρT 6 γ, ∀T ∈
T , where hT is the diameter of a cell T , ρT the diameter of its inscribed ball, and
γ is a positive constant fixed once and for all. The subset of facets in the interior
of the mesh (i.e. those that are not coincident with the boundary Γ) is denoted EI .
The subset of facets lying on ΓD is denoted ED. The subset of facets lying on ΓN is
denoted EN . The subset of facets lying on the boundary of the domain Γ is denoted
EB = ED ∪ EN . Until the end of this work we assume that the mesh resolves the
boundary conditions, in other words for any edge E ∈ Γ then E ∈ ΓD or E ∈ ΓN .
Let n+ ∈ Rd and n− ∈ Rd be the outward unit normals to a given edge as seen by
two cells T+ and T− incident to a common edge E. If we denote Pk(T ) the space of
polynomials of order k on a cell T , the continuous Lagrange finite element space of
order k on the mesh T is defined by

(2.3) V k :=
{
vk ∈ H1(Ω), vk|T ∈ Pk(T ) ∀T ∈ T

}
.

We denote V kD the finite element space composed of functions of V k vanishing on
the boundary ΓD. We consider the finite element problem: Find uk ∈ V k such that
uk = uD,k on ΓD and:

(2.4) (∇uk,∇vk) = (f, vk) + (g, vk)ΓN
, ∀vk ∈ V kD,

and where uD,k is a discretization of uD on V k (for example the Laplace interpolation
or a L2 orthogonal projection).

3. The Bank–Weiser estimator. In this section we derive the general defini-
tion of the Bank–Weiser estimator from the equation of the error as it was given in
the original paper [17]. We also give a concrete example of the Bank–Weiser estimator
for linear finite elements.

3.1. The global error equation. We are interested in estimating the error we
commit by approximating the solution u by uk ∈ V kD. We define this error by the
function e := u − uk and we want to estimate its norm ‖e‖1. The first step towards
this will be to derive a new variational problem for which the exact error e is the
solution. For a cell T of the mesh, we introduce the interior residual as

(3.1) rT := (f + ∆uk)|T ,

and for an edge E, the edge residual

(3.2) JE =

 0 if E ∈ ED,
[[∂nuk]]E if E ∈ EI ,
(g − ∂nuk)|E if E ∈ EN .
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where the notation [[v]]E := v+ − v− denotes the jump in the value of the function
across an interior facet E ∈ EI . Here, v+ and v− denote the values of v on the facet
E as seen by the two incident cells T+ and T−, respectively. The error function e
satisfies what we call the global error equation

(3.3) (∇e,∇v) =
∑
T∈T

(rT , v)T +
∑
E∈EI

(JE , v)E +
∑
E∈EN

(JE , v)E , ∀v ∈ H1
D(Ω),

and e = uD − uk on the Dirichlet boundary ΓD.

3.2. The local Bank–Weiser space and the Bank–Weiser estimator. We
introduce now local finite element spaces in order to derive the finite element approx-
imation of the error. For a cell T of the mesh we define

(3.4) V kT,D :=
{
vk,T ∈ Pk(T ), vk,T = 0 in (Ω \ T ) ∪ (T ∩ ΓD)

}
,

as well as

(3.5) V kT := {vk,T ∈ Pk(T )} .

A key idea in the Bank–Weiser estimator derivation is to introduce an appropriate
finite element space for the discretization of error. This non-standard space has two
roles. Firstly, for the local problems involving the cells with facets only in the interior
of the domain or on the Neumann boundary, it should remove the constant functions,
giving a unique solution. Secondly, and as we will notice in section 6, solving the
local error equation on the finite element space V kT,D/R does not necessary lead to an
accurate estimation of the error. However, in some cases, the estimation of the error
can be surprisingly accurate when the space is judiciously chosen. We refer the reader
to [1] for a full discussion.

Before introducing this non-standard space, we need some more notations. Let k+

and k− be two non-negative integers such that k+ > k− > 0. Let T̃ be the reference
cell fixed once for all (independent from the mesh T ). We denote

(3.6) LT̃ : V
k+

T̃
−→ V

k+

T̃
, Im(LT̃ ) = V

k−

T̃
,

the Lagrange interpolation operator between the local spaces V k+
T̃

and V k−
T̃
⊂ V

k+

T̃
.

Moreover, for any cell T of the mesh, there exists an affine bijection

(3.7) S : T̃ −→ T
x̃ 7−→ S(x̃) =: x

mapping T̃ onto T . From the mapping S we deduce another mapping given by

(3.8) S : V
k+
T −→ V

k+

T̃
v(x) 7−→ S(v)(x̃) := v(S(x̃)).

If we denote d+ the dimension of V k+
T̃

and d− the dimension of V k−
T̃

, given B+

T̃
:=

{ϕ̃1, · · · , ϕ̃d+} the basis of shape functions of V
k+

T̃
and B+

T := {ϕ1, · · · , ϕd+} the basis
of V k+T , we can always find a mapping S (and a mapping S) such that

(3.9) S(ϕT,i) = ϕ̃T,i, ∀i ∈ {1, · · · , d+},
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We choose S and S so. For a given cell T of the mesh, we define the Lagrange
interpolation operator on T as follows

(3.10) LT := S−1 ◦ LT̃ ◦ S.

Note, due to (3.9), the matrix of S in the couple of basis (B+
T ,B

+

T̃
) is the identity

matrix of size d+ × d+. Consequently, if we denote G the matrix of LT in the basis
B+
T and G̃ the matrix of LT̃ in the basis B−

T̃
, we have

(3.11) G = Id−1 G̃ Id = G̃.

For a cell T of the mesh, the local Bank–Weiser space V bw
T is defined as the null space

of LT , in other words

(3.12) V bw
T := ker(LT ) =

{
vbw
T ∈ V

k+
T , LT vbw

T = 0
}
.

Similarly, we define

(3.13) V bw
T,D :=

{
vbw
T ∈ V bw

T , vbw
T = 0 on T ∩ ΓD

}
.

With these new spaces in hands, we can derive a local discrete counterpart of equation
(3.3) on any cell T : Find eT ∈ V bw

T such that:

(3.14)
(
∇ebw

T ,∇vbw
T

)
=
(
rT , v

bw
T

)
+

1

2

∑
E∈∂T

(
JE , v

bw
T

)
E
, ∀vbw

T ∈ V bw
T,D,

and eT = πbw
T (uD − uk) on ΓD, where πbw

T : L2(T ) → V bw
T is a proper projection

operator (the way this projection is implemented is detailed in subsection 4.1).
Note, the definition of the edge residual J takes into account the error on the

Neumann boundary data approximation. The Dirichlet boundary data approximation
has to be incorporated to the linear system during the solve of (3.14), as well will
see later. For a detailed discussion on a priori and a posteriori error estimation with
inhomogeneous Dirichlet boundary conditions see [12, 20].

Finally, on the cell T the local Bank–Weiser estimator ηbw,T is defined by

(3.15) ηbw,T := ‖∇ebw
T ‖T ,

where eT is defined in (3.14) and the global Bank–Weiser estimator by the sum of
local estimates

(3.16) η2
bw :=

∑
T∈T

η2
bw,T .

Note, althought it is not shown in this study, it is straightforward to generalize
the Bank–Weiser estimator for other kind of elliptic operators by changing the energy
norm in (3.15) accordingly.

3.3. A particular example. If we assume k = 1 (i.e. we solve (2.4) using linear
finite elements) one can define the space V bw

T from the choice of k+ = 2, k− = k = 1.
This example was the case considered in the numerical tests of the original paper
[17]. The space V bw

T consists of quadratic polynomial functions (in V 2
T ) vanishing at

the degrees of freedom of the standard linear finite element functions (in V 1
T ) i.e. the

degrees of freedom associated with the vertices of T .
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4. Algorithms and implementation details. The linear system correspond-
ing to (3.14) is not accessible in FEniCS. This prevent us from directly solving the
Bank–Weiser equation. We propose to bypass the problem by constructing the linear
system corresponding to (3.14) from another linear system derived from finite element
spaces that are accessible directly in FEniCS.

4.1. Method outline.
1. We consider the following singular value decomposition (SVD) of G

(4.1) G = UΣV T,

where Σ is a diagonal matrix composed of the singular values of G. The
columns of the matrix V are singular vectors of G, associated with singular
values. The columns associated with singular values zero span the null space
of G. We take the submatrix N made of the columns of V spanning the null
space of G. Note that, since G does not depend on any cell T , the same
property holds for N .

2. We build the matrix A+
T and vector b+T of the local linear system corresponding

to the following variational formulation in the space V k+T , available in FEniCS:

(4.2)
(
∇e+

T ,∇v
+
T

)
=
(
rT , v

+
T

)
+

1

2

∑
E∈∂T

(
JE , v

+
T

)
E
, ∀v+

T ∈ V
k+
T .

We integrate the Dirichlet boundary condition directly into A+
T and b+T , by

considering the vector associated to π+
T (uD−uk), where π+

T is the L2 projec-
tion onto V k+T . More precisely, the rows and columns of A+

T corresponding to
degrees of freedom on the Dirichlet boundary are zeroed and the correspond-
ing diagonal entries are replaced by ones. The entries of b+T corresponding
to these degrees of freedom are replaced by the corresponding entries in the
vector of π+

T (uD − uk).
3. We construct the matrix Abw

T and vector bbw
T as follow

(4.3) Abw
T = NTA+

TN and bbw
T = NTb+T ,

where Abw
T and bbw

T are the matrix and vector which allow to recover the
bilinear and linear forms of (3.14) in a basis of V bw

T .
4. We solve the linear system

(4.4) Abw
T xbw

T = bbw
T ,

5. We bring the solution back to V k+T , consideringNxbw
T , in order to post-process

it and compute the local contribution of the Bank–Weiser estimator (3.15).

4.2. Computational details. We now give more details specific to our imple-
mentation in FEniCS of each one of the above steps.
1. Computation of N . This is the key point of our implementation. The operator LT

can be written as follows:

(4.5) LT : V
k+
T −→ V

k−
T −→ V

k+
T

v+ 7−→ G1(v+) 7−→ G2

(
G1(v+)

)
.

Then, the matrix G is obtained via the following product

(4.6) G = G2G1,
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Figure 4.1. Overall process of the Bank–Weiser estimator algorithm.

where G1 and G2 are respectively the matrix in the couple of basis (B+
T ,B

−
T ) of

the Lagrange interpolation operator from V
k+
T to V k−T , denoted G1 and the matrix

in the same couple of basis of the canonical injection of V k−T into V k+T , denoted
G2. The matrices G1 and G2 can be calculated either using the Finite Element
Automatic Tabulator (FIAT) [56] or, as we choose to do, using the interpolator
construction functions of the DOLFIN/x finite element library [60]. The next
step consists in computing the unitary matrix V of right singular vectors of G.
This computation is done using the singular value decomposition (SVD) algorithm
available in the SciPy library [79]. We can write the matrix V as follows,

(4.7) V =
(
ξ0
1 | · · · | ξ0

dbw
| ξ1 | · · · |ξd−

)
,

where Bbw
T := {ξ0

1 , · · · , ξ0
dbw
} is the set of singular vectors of G corresponding to a

zero singular value, spanning V bw
T and {ξ1, · · · , ξd−} is spanning the supplementary

space. The matrix N is then chosen as the submatrix of V , keeping only the
columns from Bbw

T :

(4.8) N :=
(
ξ0
1 | · · · | ξ0

dbw

)
.

The linear algebra operations needed to form the submatrix N from V are per-
formed using the NumPy library [76].

2. Computation of A+
T and b+T . The equation (4.2) is expressed directly in the Unified

Form Language (UFL) [6] and efficient C++ code for calculating the cell local
tensors A+

T and b+T for a given cell T is then generated using the FEniCS Form
Compiler (FFC) [57, 83]. If the cell T has an edge on a Dirichlet boundary ED,
the matrix A+

T and vector b+T must be modified in order to enforce the boundary
condition.

3. Computation of Abw
T and bbw

T . The matrix Abw
T and vector bbw

T are constructed
using (4.3).

4. Solution of the linear system (4.4). The linear system (4.4) is solved using a partial-
pivot LU decomposition algorithm from the Eigen dense linear algebra library [46]
in DOLFIN and xtensor-blas, which calls LAPACK’s dgesv in DOLFINx.

5. Computation of the Bank–Weiser estimator. Finally, the solution xbw
T is sent back

to V
k+
T using N and the norm of the corresponding function, giving the local

estimator (3.15) is computed using standard high-level functions already available
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within FEniCS. The global estimator (3.16) is computed using the information of
all the local contributions.

4.3. Additional remarks.
• The custom assembler composed of steps 2.-5. is performed by looping over

every cell of the mesh and, by virtue of using the abstractions provided by
DOLFINx, works in parallel on distributed memory computers using the Mes-
sage Passing Interface (MPI) standard. For performance reasons these steps
have been written in C++ and wrapped in Python using the pybind11 library
so that they are available from the Python interface to DOLFIN/x. In con-
trast, the first step must only be performed once since the matrix N is the
same for every cell of the mesh.

• A posteriori error estimation methods such as the one we are considering
here assume that the linear system associted with the primal problem (2.2) is
solved exactly. However for performance reasons, here we use PETSc conju-
gate gradient iterative method. Using inexact solutions can have an influence
on the total error but also on the a posteriori error estimator itself. It is
a known issue [10] and several authors have proposed ways to estimate the
algebraic error, see e.g. [9, 66]. Since algebraic error estimation is beyond
the scope of this work, in all our numerical results we set PETSc residual
tolerance small enough to neglect this part of the error.

• Because we use the automatic code generation capabilities of FEniCS, our
approach can be readily applied to other definitions for the spaces V k+T and
V
k−
T , and to vectorial problems like linear elasticity, as we will see in the next

section.
• For large problems the storage of the global higher order space V k+ can be an

issue since it requires a lot of memory space. However we avoid this problem
by considering the local higher order spaces V k+T (and local lower order spaces
V
k−
T ) only.

• In the numerical results secton we compare several versions of Bank–Weier
estimator and especially the one we call bubble Bank–Weiser estimator and
denote ηbT which can be obtained with our method by taking V +

T as the space
V 2
T + Span{ψT } (the local space of quadratic functions enriched with the

space spanned by the interior bubble function) and V k−T as V 1
T . The resulting

space V bw
T is spanned by the interior bubble function and the edges bubbles

functions of the cell T .

4.4. Formal justifications. Key points concerning the matrix N in our imple-
mentation have to be justified: the fact that it satisfies (4.3), its independence with
respect to the current cell T and finally, the fact that it gives the correct estimator.
The following theorem answers these questions.

Theorem 4.1. Let e+
T be the solution to (4.2) and N be the matrix obtained in

(4.8). Then:
1. The matrix N satisfies (4.3).
2. The matrix N is the same for each cell of the mesh.
3. The local contribution of the Bank–Weiser estimator on the cell T is given by

ηbw,T = ‖∇e+
T ‖T .

Proof. Let us show the three points of Theorem 4.1 successively.
1. The columns of N are vectors (expressed in the basis B+

T ) spanning V
bw
T seen as a



HIERARCHICAL ERROR ESTIMATION OF BANK-WEISER TYPE 11

subspace of V k+T . Consequently, given a function v in V bw
T of vector x in the basis

given by the columns of N (denoted Bbw
T ), Nx is its vector in the basis B+

T . Now,
if we consider two functions vbw and wbw in V bw

T ⊂ V
k+
T , of vectors xbw

v and xbw
w

in the basis Bbw
T we have by definition of Abw

T :

(4.9) xbw
v

T
Abw
T xbw

w =

∫
T

∇vbw · ∇wbw.

Thus their vectors in the basis B+
T are xv := Nxbw

v and xw := Nxbw
w . Then, by

definition of A+
T ,

(4.10) xT
vA

+
T xw = xbw

v

T
NTA+

TNx
bw
w =

∫
T

∇vbw · ∇wbw = xbw
v

T
Abw
T xbw

w .

since this is true for any couple of functions v and w in V bw
T we have NTA+

TN =
Abw
T . A similar argument gives NTb+T = bbw

T .
2. We have shown in (3.11) that the matrix G of the local Lagrange interpolation

operator LT does not depend on the cell T . The same is true for the matrix N
since it is directly derived from G.

3. This last point is a direct consequence of 1., if we denote xbw
T the vector solution to

(4.4), corresponding to the function ebw
T , solution to (3.14) in the basis Bbw

T . Then,
the vector Nxbw

T is the vector of ebw
T , expressed in the basis B+

T . In other words,

(4.11) ebw
T =

dk+∑
i=1

(Nxbw
T )iϕ

k+κ
i = e+

T .

So,

(4.12) ηbw,T = ‖∇ebw
T ‖T = ‖∇e+

T ‖T .

5. Applications. In this section we show a number of applications, including
adaptive mesh refinement, goal-oriented estimation and extensions to more complex
mixed finite element formulations for the nearly-incompressible elasticity problems.

5.1. Adaptive mesh refinement. As well as simply providing an estimate
of the global and local error, the estimator can be used to drive an adaptive mesh
refinement strategies. In the following we compare different refinement strategy all
based on the following loop:

... → SOLVE → ESTIMATE → MARK → REFINE → ...
The loop can be terminated once a given criterion e.g. maximum number of iterations,
or global error less than a given tolerance, has been reached. A detailed discussion
on adaptive refinement methods can be found in [65]. In the following we expand on
the specific algorithms used in our case.

5.1.1. Solve. The weak form (2.2) is discretized using a standard finite element
method implemented within FEniCS. The resulting linear systems are solved using the
appropriate algorithms available within PETSc [15], e.g. conjugate gradient method
preconditioned with Hypre BoomerAMG [41], or direct methods, e.g. MUMPS [7, 8].

5.1.2. Estimate. The Bank–Weiser estimator ηbw is formulated and imple-
mented as described in section 4. The local contributions of the estimator provide
an estimate of the local error for each cell in the mesh and are subsequently used to
mark the mesh. In addition the global estimator can be used to determine when to
stop iterating.
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5.1.3. Mark. We have used two distinct marking strategies throughout the re-
sults section: the maximum strategy on the three-dimensional test cases and Dörfler
strategy on the two-dimensional ones. We follow the presentation in [67]. In the
maximum marking strategy [13], a cell is marked if its indicator is greater than a
fixed fraction of the maximum indicator. More precisely, given a marking fraction
θ ∈ (0, 1], the marked setM⊂ T is the subset such that:

(5.1) ηbw,T ≥ θmax
T∈T

ηbw,T , ∀T ∈ T .

In the Dörfler marking strategy [38] (sometimes referred to as the equilibrated
marking strategy) enough elements must be marked such that the sum of their es-
timators is larger than a fixed fraction of the total error. Given a marking fraction
θ ∈ (0, 1], the marked setM is the subset with minimal cardinality #M such that

(5.2)
∑
T∈M

η2
bw,T ≥ θ

∑
T∈T

η2
bw,T .

We implement an O(N logN) with N := #T complexity algorithm for finding the
minimum cardinality set by sorting the indicators in decreasing order and finding the
cutoff point such that (5.2) is satisfied. Because of the ordering operation this set is
guaranteed to have minimal cardinality. We note that recent work [51, 67] proposes
a O(N) complexity algorithm for finding the set with minimum cardinality.

5.1.4. Refine. We use two-dimensional and three-dimensional variants of the
algorithm proposed in [68], sometimes referred to as the Plaza algorithm. This al-
gorithm works by subdividing the facets of each marked triangle or tetrahedron cell
and then subdividing each triangle or tetrahedral cell so that it is compatible with
the refinement on the facets. The algorithm has O(M) complexity in the number of
added mesh vertices M . This algorithm already exists in DOLFIN [60] and was used
for the numerical results in [73].

5.2. Goal-oriented adaptive mesh refinement. In many practical applica-
tions it is desirable to control the error in a specific quantity of interest, rather than
the (global, i.e. across the entire domain Ω) energy norm [23]. In this section we
show how the basic Bank–Weiser estimator can be used to control error in a goal
functional, rather than in the natural norm. To do this, we use a weighted marking
strategy proposed in [22].

Let J : L2(Ω) → R be a given linear functional. Associated with J (u) and the
primal problem (2.2) is the dual or adjoint problem: Find the dual solution z ∈ H1

D(Ω)
such that

(5.3) (∇v,∇z) = J (v), ∀v ∈ H1
D(Ω).

The dual problem, like the primal problem, can also be approximated using the finite
element method. Find zk ∈ V k such that

(5.4) (∇vk,∇zk) = J (vk) = (c, vk) + (h, vk)Γ, ∀vk ∈ V k.

Using Galerkin orthogonality and Cauchy-Schwarz, it follows that

|J (u)− J (uk)| = |(∇(u− uk),∇z)|(5.5)
= |(∇(u− uk),∇(z − zk))|(5.6)
≤ ‖∇(u− uk)‖‖∇(z − zk)‖,(5.7)
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where the inequality holds due to Galerkin orthogonality.
Approximating the primal and dual errors ‖∇(u − uk)‖ and ‖∇(z − zk)‖ with

any estimators ηu and ηz respectively, gives us an estimator for the error in the goal
functional |J(u)− J(uk)| as the product of ηu and ηz, thanks to (5.7):

(5.8) ηw := ηuηz

In addition, if ηu and ηz are reliable estimators i.e. if there exist two constants Cu
and Cz only depending on the mesh regularity such that

(5.9) ‖∇(u− uk)‖ ≤ Cuηu, and ‖∇(z − zk)‖ ≤ Czηz,

then, ηw is reliable as well

(5.10) |J(u)− J(uk)| 6 CuCzηw.

Note that because the error in the goal functional is bounded by the product of
two estimates, the element marking strategy must incorporate information from local
indicators for both approximations to reduce the error on refinement. There are
multiple strategies for doing this in the literature, see e.g. [63]. We have chosen to
implement the weighted goal-oriented (WGO) marking strategy from [22]. The local
WGO estimator is then defined as

(5.11) η2
w,T :=

η2
z

η2
u + η2

z

η2
u,T +

η2
u

η2
u + η2

z

η2
z,T , ∀T ∈ T .

The marking and refinement using η2
w,T then follows in exactly the same manner as

in the standard adaptive refinement strategy.

5.3. Extension to linear elasticity problems. Our implementation of the
Bank–Weiser estimator can be directly applied to mixed formulations of (nearly-
incompressible) linear elasticity problems using the results in [55]. In [2] a new a
posteriori error estimator is introduced for mixed formulations of Stokes problems
consisting in solving a local Poisson problem based on the local residuals on each
cell. This estimator has been proved to be reliable and efficient in [2] under a satu-
ration assumption. This assumption has been later removed in [59]. The reliability
and efficiency of the estimator for mixed formulations of linear elasticity is proved in
[55] without the need of a saturation assumption. In addition, they show that the
estimator is robust in the incompressible limit.

5.3.1. Nearly-incompressible elasticity. We consider the problem of linear
deformation of an isotropic elastic solid Ω using the Herrmann mixed formulation.
We consider the stress tensor σ : Ω → Rd×d, the strain tensor ε : Ω → Rd×d, the
load f : Ω → Rd which belongs to

(
L2(Ω)

)d, the Dirichlet boundary data uD in(
H1/2(ΓD)

)d
, the Neumann boundary condition (traction) data g ∈

(
L2(ΓN )

)d and
displacement field u : Ω→ Rd. The stress and strain tensors are defined by

σ := 2µε(u)− p Id,(5.12a) ε(u) :=
1

2

(
∇u+ (∇u)T

)
.(5.12b)

where Id is the d×d identity matrix and µ and λ are the Lamé coefficients. The weak
form of this linear elasticity problem reads: find u in H1(Ω) of trace uD on ΓD and
p ∈ L2(Ω) such that

2µ (ε(u), ε(v))− (p,div(v)) = (f ,v) + (g,v)ΓN
, ∀v ∈H1

D(Ω),(5.13a)

(q,div(u)) +
1

λ
(p, q) = 0, ∀q ∈ L2(Ω).(5.13b)
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The problem given by (5.13a) and (5.13b) admits a unique solution (see e.g. [55]). We
introduce the finite element spaces XD ⊂H1

D(Ω) and M ⊂ L2(Ω) such that

(5.14) XD :=
(
V 2
D

)d
,

and M := V 1. Let w be a discretization of uD ∈ X. Considering the stable Taylor–
Hood method of discretization, the mixed finite element approximation of (5.13a) and
(5.13b) reads: find u2 ∈ XD with u2 = w on ΓD and p1 ∈M such that

2µ (ε(u2), ε(v2))− (p1,div(v2)) = (f ,v2) + (g,v2) , ∀v2 ∈ XD,(5.15a)

(q1,div(u2)) +
1

λ
(p1, q1) = 0, ∀q1 ∈M.(5.15b)

Similarly to (5.13a) and (5.13b) transposed to the discrete context, (5.15a) and (5.15b)
have a unique solution. If we denote e := u − u2 and ε := p − p1 the discretization
error is measured by 2µ‖∇eT ‖+ ‖rT ‖.

For a cell T and an edge E the residuals are defined by

(5.16a) RT := (f + div (2µε(u2))−∇p1)|T , (5.16b) rT :=
(

div(u2) +
1

λ
p1

)
|T ,

(5.16c) RE =


1
2 [[(p1 Id−2µε(u2))n]] if E ∈ EI ,
0 if E ∈ ED,
g − (p1 Id−2µε(u2))n if E ∈ EN ,

Here, once again we derive the a posteriori error estimator from these residuals and
a local Poisson problem, following [55]. Let T be a cell of the mesh, the local Poisson
problem read: find eT ∈ V bw

T such that

(5.17) 2µ (∇eT ,∇vT )T = (RT ,vT )T −
∑
E∈∂T

(RE ,vT )E , ∀vT ∈ V bw
T .

The Poisson estimator is then defined by

(5.18a) η2
p :=

∑
T∈T

η2
p,T , (5.18b) η2

p,T := 2µ‖∇eT ‖2T + ‖rT ‖2T .

This estimator has been proved to be reliable and locally efficient in [55] as well
as robust in the incompressible limit.

6. Results. We illustrate our implementation first on several two dimensional
problems as Poisson problems with solutions of different regularities and with different
boundary conditions. Then, we also look at examples of linear elasticity, and goal-
oriented problems. We now treat a three dimensional example: a linear elasticity
problem on a mesh inspired by a human femur bone. One can find another example
of three dimensional application in [27].

All the numerical results were produced within DOLFIN except the strong scaling
tests in subsection 7.7 which were performed using the DOLFINx version of our code.

We apply different adaptive refinement methods as presented in subsection 5.1.
For each method we perform the estimation step with a different estimator among
the following: ηres the residual estimator, defined in section A, ηzz the Zienkiewicz–
Zhu estimator, defined in section B. Note that we use the most basic version of the
Zienkiewicz–Zhu estimator which is not defined for quadratic or cubic finite elements
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nor for linear elasticity problems, and consequently will be absent from the comparison
in these cases (It is possible to extend the idea of the Zienkiewicz–Zhu estimator
to higher-order polynomials via the definition of the Scott-Zhang interpolator, see
[33, 75]). In addition we compare several versions of the Bank–Weiser estimator: the
bubble Bank–Weiser estimator ηb

bw defined from the enriched bubble functions space
and ηk+,k−bw for multiple choices of the fine and coarse spaces orders k+ and k−.

For each one of the following test cases we will first give a comparison of all the
refinement strategies by giving the efficiency of the a posteriori error estimator on the
last mesh of the hierarchy, where the efficiency of an estimator η is defined as follows:

(6.1) eff :=
η

εerr
,

where εerr is a higher order approximation of the exact error computed either from
the knowledge of the analytical solution or from a higher-order finite element method
on a fine mesh.

7. Poisson problems.

7.1. L-shaped domain. We consider a 2D L-shaped domain Ω = (−1, 1)2 \
[−1, 0]2. We solve (2.1) with f = 0, ΓD = Γ, uD given by the analytical solution
defined below and ΓN = ∅. In polar coordinates, the exact solution is given by
uexact(r, θ) = r2/3 sin

(
2/3(θ + π/2)

)
. The exact solution belongs to H5/3−ε(Ω) for

any ε > 0 and its gradient admits a singularity at the vertex of the reentrant corner
[45, Chapter 5]. L-shaped domains are widely used to test adaptive mesh refinement
procedures [62]. In both linear and quadratic finite elements all the estimators reach
an expected convergence rate (≈ −0.5 in the number of degrees of freedom for linear
elements and ≈ −1 for quadratic elements). The choice of a posteriori error estimator
is not critical for mesh refinement purposes, every estimator leading to a hierarchy of
meshes on which the corresponding errors εerr are similar. For brevity we have not
included the convergence plots of these results.

Linear elements. On Figure 7.1 we can see the initial mesh (top left) used to
start the adaptive refinement strategies. Then, we can see the different refined meshes
we obtain after seven refinement iterations
As we can see on Figure 7.2 the Zienkiewicz–Zhu estimator ηzz seems to perform the

best in terms of efficiency while the second best estimator is η2,1
bw . The bubble Bank–

Weiser estimator ηb
bw is outperformed by almost all the other Bank–Weiser estimators.

The residual estimator ηres largely overestimates the error while the estimators ηk+,k−bw

for k− > 1 largely underestimates it, leading to poor error approximations. Among
the poor estimators, η3,2

bw is surprisingly off for linear elements on this test case. This
behavior seems to be specific to the L-shaped test cases with linear finite elements as
we will see below.

Quadratic elements. As shown on Figure 7.3, the best estimator in terms of
efficiency is η2,0

bw which nearly perfectly matches the error εerr. We can also notice the
very good efficiencies of η4,2

bw and η3,2
bw . Once again the Bank–Weiser estimators with

k− > 2 drastically underestimate the error. We can notice that the residual estimator
is less efficient as the finite element degree increases.

7.2. Mixed boundary conditions L-shaped domain. We solve (2.1) on the
same two-dimensional L-shaped boundary domain as in subsection 7.1 but with dif-
ferent boundary conditions. We consider f = 0, ΓN = {(x, y) ∈ R2, x < 0, y = 0}
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Figure 7.1. L-shaped Poisson problem with linear elements: On top left the initial mesh used
to start all the adaptive strategies. From top middle to bottom right, the adaptive meshes obtained
after seven iterations of refinement strategies steered respectively by ηres, ηbbw, ηzz, η

2,1
bw and η4,2bw

k−
k+

3

2

1

0

1 2 3 4

1.34 1.53 1.53 1.59

∅ 1.22 1.53 1.72

∅ ∅ 0.0 0.7

∅ ∅ ∅ 0.29

ηres

ηb
bw

ηzz

3.56

1.78

0.99

Figure 7.2. L-shaped Poisson problem with linear elements: efficiencies of ηk+,k−
bw and other

estimators on the last mesh of an adaptively refined hierarchy.

and ΓD = Γ \ ΓN . The boundary data are given by g = 0 and uD = uexact =
r1/3 sin

(
1/3(θ + π/2)

)
. The exact solution belongs to H4/3−ε(Ω) for any ε > 0 and

its gradient has a singularity located at the reentrant corner of Γ (see [45, Chapter
5]). As before, each estimator is leading to a convergence rate close to the expected
one (≈ −0.5 for linear elements, ≈ −1 for quadratic elements) and the choice of the
estimator does not impact the quality of the mesh hierarchy.

Linear elements. First thing we can notice from Figure 7.4 is that the estima-
tors efficiencies are quite different from those in Figure 7.2. Most of the Bank–Weiser
estimator efficiencies have improved, except when k− > 1. The Zienkiewicz–Zhu esti-
mator ηzz is no longer the most efficient and has been outperformed by η2,0

bw , η2,1
bw and

η3,0
bw . The Bank–Weiser estimator η3,2

bw still performs poorly as in Figure 7.2, while the
residual estimator ηres once again largely overestimates the error.
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k−
k+

3

2

1

0

1 2 3 4

0.66 1.0 1.12 1.27

∅ 1.61 2.1 2.28

∅ ∅ 0.92 1.07

∅ ∅ ∅ 0.31

ηres

ηb
bw

ηzz

8.67

1.84

∅

Figure 7.3. L-shaped Poisson problem with quadratic elements: efficiencies of ηk+,k−
bw and

other estimators on the last mesh of an adaptively refined hierarchy.

k−
k+

3

2

1

0

1 2 3 4

0.83 1.06 1.08 1.14

∅ 0.94 1.21 1.34

∅ ∅ 0.0 0.55

∅ ∅ ∅ 0.23

ηres

ηb
bw

ηzz

2.84

1.24

0.91

Figure 7.4. Mixed boundary conditions L-shaped Poisson problem with linear elements: effi-
ciencies of ηk+,k−

bw and other estimators on the last mesh of an adaptively refined hierarchy.

Quadratic elements. As for linear elements, the efficiencies in Figure 7.5 are
very different from Figure 7.3, many Bank–Weiser estimators are now underestimating
the error. The most efficient estimator is η2,1

bw closely followed by the bubble Bank–
Weiser estimator ηb

bw. As for the previous test cases, the Bank–Weiser estimators
with k− > 2 are largely underestimating the error.

7.3. Boundary singularity. We solve (2.1) on a two-dimensional unit square
domain Ω = (0, 1)2 with u = uexact on ΓD = Γ, (ΓN = ∅) and f chosen in order to
have u(x, y) = uexact(x, y) = xα, with α > 0.5. In the following results we chose α =
0.7. The gradient of the exact solution u admits a singularity along the left boundary
of Ω (for x = 0). The solution u belongs toH6/5−ε for all ε > 0 [52, 61]. Consequently,
the value of α determines the strength of the singularity and the regularity of u.

Due to the presence of the edge singularity, all the estimators are achieving a
convergence rate close to −0.2 for linear elements. Moreover, this rate does not im-
prove for higher-order elements (for brevity, the results for higher-order elements are
not shown here). The low convergence rate shows how computationally challenging
such a problem can be. Once again the choice of estimator is not critical for mesh
refinement purposes.

Linear elements. The best estimator in terms of efficiency is η2,1
bw which slightly

overestimates the error, closely followed by η4,2
bw underestimating the error as we can

see on Figure 7.6. Unlike the previous test case, here the Zienkiewicz–Zhu estimator
ηzz grandly underestimates the error. The worst estimator is the residual estimator
ηres which gives no precise information about the error. We can notice that the poor
performance of the estimator η3,2

bw on the L-shaped test case does not reproduce here.

Quadratic elements. Again, Figure 7.7 shows that the best estimator is η2,1
bw
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k−
k+

3

2

1

0

1 2 3 4

0.57 0.86 0.83 0.97

∅ 1.05 1.37 1.43

∅ ∅ 0.62 0.78

∅ ∅ ∅ 0.3

ηres

ηb
bw

ηzz

5.91

1.17

∅

Figure 7.5. Mixed boundary conditions L-shaped Poisson problem with quadratic elements:
efficiencies of ηk+,k−

bw and other estimators on the last mesh of an adaptively refined hierarchy.

k−
k+

3

2

1

0

1 2 3 4

0.74 1.15 0.94 1.1

∅ 1.06 1.27 1.41

∅ ∅ 0.72 0.95

∅ ∅ ∅ 0.62

ηres

ηb
bw

ηzz

17.02

1.23

0.6

Figure 7.6. Boundary singularity Poisson problem with linear elements: efficiencies of ηk+,k−
bw

and other estimators on the last mesh of an adaptively refined hierarchy.

closely followed by η2,0
bw and the bubble estimator ηb

bw. The residual estimator is
getting worse as the finite element degree increases.

7.4. Goal-oriented adaptive refinement using linear elements. We solve
the L-shaped domain problem as described in subsection 7.1 but instead of controlling
the error in the natural norm, we aim to control the error in the goal functional
J(u) = (c, u) with c a smooth bump function

(7.1) c(r̄) := e−r̄
2/σ,

where r̄2 = (x− x̄)
2

+ (y − ȳ)
2, where σ ∈ R is a parameter that controls the size

of the region of interest, and x̄ ∈ R and ȳ ∈ R the position of the bumps function’s
center. We set σ = 0.01 and x̄ = ȳ = 1.75. With these parameters the goal functional
is isolated to a region far from the re-entrant corner.

We use the goal-oriented adaptive mesh refinement methodology outlined in sub-
section 5.2. We use a first-order polynomial finite element method for the primal and
dual problem, and the Bank–Weiser error estimation procedure to calculate both ηu
and ηz.

The ‘exact’ value of the functional J(u) was calculated on a very fine mesh using
a fourth-order polynomial finite element space and was used to compute higher-order
approximate errors for each refinement strategy.

The weighted goal-oriented strategy refines both the re-entrant corner and the
broader region of interest defined by the goal functional. Relatively less refinement
occurs in the regions far away from either of these important areas.

Figure 7.8 shows refined meshes after seven iterations of the weighted goal oriented
method. We can see that the meshes are mainly refined in the re-entrant corner as
well as in the region on the right top of it where the goal functional focuses. In
Figure 7.9 we show the convergence curves of some of these adaptive strategies. For
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Figure 7.7. Boundary singularity Poisson problem with quadratic elements: efficiencies of
η
k+,k−
bw and other estimators on the last mesh of an adaptively refined hierarchy.

each strategy, ηu = ηz is the estimator specified in the legend and ηw = ηuηz. All
the strategies we have tried led to very similar higher-order approximate errors. So
for the sake of clarity we have replaced the approximate errors by an indicative line
computed using a regression from the least squares method (lstsq error), leading to
the line that fits the best the values of the different approximate errors. As we can
see, these adaptive strategies are reaching an optimal convergence rate. Although it
is also the case for all the other strategies we have tried, we do not show the other
results for the sake of concision. In the left table of Figure 7.10 we show the efficiencies
of the estimators ηw where ηu = ηz = η

k+,k−
bw . On the right table of Figure 7.10 we

take ηu = ηz to be the estimators in the left column. As we can see on the efficiencies
are not as good as in subsection 7.1. The two best estimators are those derived from
η2,1

bw and η4,2
bw . Most of the Bank–Weiser estimators are performing better than the

goal–oriented estimator derived from the Zienkiewicz–Zhu estimator. The estimator
ηw derived from the residual estimator is poorly overestimating the error.

7.5. Nearly-incompressible elasticity. We consider the linear elasticity prob-
lem from [34] on the centered unit square domain Ω with homogeneous Dirichlet
boundary conditions on ΓD = Γ (uD = 0). The first Lamé coefficient is set to
µ = 100 and the Poisson ratio to ν = 0.3 and ν = 0.499. The problem data f is given
by f = (f1, f2) with

(7.2) f1(x, y) = −2µπ3 cos(πy) sin(πy)
(
2 cos(2πx)− 1

)
,

f2(x, y) = 2µπ3 cos(πx) sin(πx)
(
2 cos(2πy)− 1

)
.

The corresponding exact solution of the linear elasticity problem reads u = (u1, u2)
with

(7.3) u1(x, y) = π cos(πy) sin2(πx) sin(πy), u2(x, y) = −π cos(πx) sin(πx) sin2(πy),

the Herrmann pressure is zero everywhere on Ω. In each case we discretize this
problem using the Taylor–Hood element and an initial cartesian mesh and we apply
our adaptive procedure driven by the Poisson estimator described in subsection 5.3.1.
We compare the Poisson estimators derived from different Bank–Weiser estimators
and the residual estimator.

As before, all the refinement strategies are achieving an optimal convergence rate
no matter the value of ν. Figure 7.11 shows the results for ν = 0.3. We notice that
almost all the Poisson estimators derived from Bank–Weiser estimators have a very
good efficiency. The best estimator in this case is η2,0

bw closely followed by η3,0
bw , ηb

bw

and η4,0
bw . Although the residual estimator still performs the worst, it is sharper than
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Figure 7.8. L-shaped goal-oriented Poisson problem with linear elements: On top left the
initial mesh used to start all the adaptive strategies. The remaining meshes are obtained after
nineteen iterations of refinement strategies steered by weighted estimators derived respectively from
η4,2bw (top right), ηres (bottom left) and ηzz (bottom right) for both primal and dual problems.

in all the previous test cases. As we can notice on Figure 7.12, all the estimators
are robust with respect to the incompressibility constraint. All the efficiencies have
slightly increased and some estimators (η2,0

bw and η3,0
bw ) that where a lower bound of

the error previously are now an upper bound.

7.6. Human femur modelled using linear elasticity. In this test case we
consider a linear elasticity problem on a domain inspired by a human femur bone 1.

The goal of this test case is not to provide an accurate description of the behavior
of the femur bone but to demonstrate the applicability of our implementation to 3D
dimensional goal-oriented problem with large number of degrees of freedom: the linear
elasticity problem to solve on the initial mesh, using Taylor-Hood element has 247,233
degrees of freedom while our last refinement step reaches 3,103,594 degrees of freedom.

The 3D mesh for analysis is build from the surface model using the C++ library
CGAL [4] via the Python front-end pygalmesh. The material parameters, namely

1The STL model of the femur bone can be found at https://3dprint.nih.gov/discover/
3dpx-000168 under a Public Domain license.

https://3dprint.nih.gov/discover/3dpx-000168
https://3dprint.nih.gov/discover/3dpx-000168
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Figure 7.9. L-shaped goal-oriented Poisson problem with linear elements: plot comparing
convergence of some goal-oriented adaptive strategies driven by four different estimators. Expected
rates for primal and dual problems (−0.5) and goal functional (−1) shown by triangle markers.
Comparison with an indicative line representing the higher order approximation of the errors of
each strategy and obtained using least squares method.
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refined hierarchy.

the Young’s modulus is set to 20 GPa and the Poisson’s ratio to 0.42 (see e.g. [74]).
In addition, the load is given by f = (0, 0, 0), the Dirichlet data by uD = 0 on
ΓD ( Γ represented as the left dark gray region of the boundary in Figure 7.13
and g the traction data is defined as g = (0, 0, 0) on the center light gray region of
the boundary and is constant on the right dark gray region of the boundary g =
(−10−7,−10−7, 10−6). The femur-shaped domain Ω as well as the initial and last
meshes are shown in Figure 7.13. As we can see, the refinement occurs mainly in the
central region of the femur, where the goal functional J focus. Some artefacts can
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Figure 7.12. Nearly-incompressible elasticity (ν = 0.499) problem with Taylor–Hood elements:
efficiencies of the Poisson estimators derived from η
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bw and other estimators on the last mesh of

an adaptively refined hierarchy.

be seen as stains of refinement in the central region due to the fact that we use the
initial mesh as our geometry and on the left due to the discontinuity in the boundary
conditions.

In Figure 7.14 the primal solution is given by the couple (u2, p1) and the dual
solution by (z2, κ1). As we can notice and as expected, the weighted estimator ηw
converges twice as fast as the primal and dual estimators.

7.7. Strong scaling study. Finally, we provide results showing that our im-
plementation scales strongly in parallel and that for a large-scale three-dimensional
problem this error estimation takes significantly less time than the solution of the pri-
mal problem. In this section we use the new DOLFINx solver [47] with the matching
implementation of our algorithm.

We briefly discuss some aspects that are important for interpretation of the re-
sults. For a given cell the computation of the Bank–Weiser estimator requires geome-
try and solution data on the current cell and on all cells attached across its facets. So
in a parallel computing context, cells located on the boundary of a partition require
data from cells owned by another process. Both DOLFIN and DOLFINx support
facet–mode ghosting where all data owned by cells on a partition boundary that
share a facet are duplicated by the other process (ghost data). After the solution of
the primal linear system the ghost data is updated between processes, which requires
parallel communication. After this update, each process has a local copy of all of the
data from the other rank needed to compute the Bank–Weiser estimator, and so the
computation of the estimator is entirely local to a rank, i.e. without further parallel
communication.

Because of this locality a proper implementation of this algorithm should demon-
strate strong scaling performance. Furthermore, it would be desirable that the error
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Figure 7.13. Femur bone linear elasticity problem with Taylor–Hood elements: on the top, the
three different regions of the boundary corresponding to different boundary conditions: the left dark
grey region is the non-zero Neumann boundary, the middle light grey region is the zero Neumann
boundary and the right dark grey region is the Dirichlet boundary. In the middle, the initial mesh.
On the bottom, the last mesh after several steps of adaptive refinement.

estimation takes significantly less time than the solution of the primal problem even
when using state-of-the art linear solution strategies. The results in this section
demonstrate that this is indeed the case.

We solve (2.1) where Ω is the unit cube [0, 1]3, ΓD = ∂Ω and ΓN = ∅. The
data of this problem are given by f(x, y, z) = 12π2 sin(2πx) sin(2πy) sin(2πz) and
uD(x, y, z) = 0. Given these data the solution u of (2.1) is given by u(x, y, z) =
sin(2πx) sin(2πy) sin(2πz). We use continuous quadratic Lagrange finite elements and
the Bank–Weiser error estimation is performed using the pair V 3

T /V
2
T . The primal lin-

ear system matrix and right-hand side vector are assembled using standard routines in
DOLFINx. The resulting linear system is solved with PETSc [15] using the conjugate
gradient method preconditioned with Hypre BoomerAMG algebraic multigrid [41].

The strong scaling study was carried out on the Aion cluster within the HPC facil-
ities of the University of Luxembourg [77]. The Aion cluster is a Atos/Bull/AMD su-
percomputer composed of 318 compute nodes each containing two AMD Epyc ROME
7H12 processors with 64 cores per processor (128 cores per node). The nodes are
connected through a Fast InfiniBand (IB) HDR 100Gbps interconnect in a ‘fat-tree’
topology. We invoke jobs using SLURM and ask for a contiguous allocation of nodes
and exclusivity (no competing jobs) on each node. DOLFINx and PETSc are built
using GCC 10.2.0 with Intel MPI and OpenBLAS. We use DOLFINx through its
Python interface. The problem size is kept fixed at around 135 million degrees of
freedom and the number of MPI ranks is increased from 128 (1 node, no interconnect



24 R. BULLE, J. S. HALE, A. LOZINSKI, S. P. A. BORDAS, F. CHOULY

106

Number of dof

10 4

10 3

10 2

Sc
al

ed
 e

st
im

at
or

s

3
-2

3-1

u/(2 || u2|| + ||p1||) (primal)
z/(2 || z2|| + || 1||) (dual)

w/|J(u2, p1)| (wgo)

Figure 7.14. Femur bone linear elasticity problem with Taylor–Hood elements: convergence
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solution, dual solution and magnitude of the goal functional evaluated in the primal solution.

communication) through to 2048 (16 nodes, interconnect communication) by doubling
the number of nodes and ranks used in the previous computation.

In Figure 7.15 we show the results of the strong scaling study. We show wall time
against MPI ranks and dof per rank for the primal linear system assembly, primal
linear system solve, and the error estimation. For error estimation we are measuring
steps 2 through 5 of subsection 4.1. Both the solve and estimation scale almost
perfectly down to around 65 thousand dofs per rank. The primal system assembly
does not scale as well as the estimation. This is because the primal system assembly
is constrained by communication overheads and memory bandwidth, whereas the
Bank–Weiser estimator computation is fully local and has much higher arithmetic
intensity, so has not yet hit bandwidth limits of our system on the largest run. A
further study (results not shown) using 96 MPI ranks per node yielded lower wall
times and better strong scaling for primal linear system assembly, but the overall
time for estimation and linear system solve increased and dominated any gains made
in assembly. Comparing linear system assembly and solve with estimation time we
can see that estimation is approximately one order of magnitude faster than solve
time.

8. Conclusions. In this paper we have shown how the error estimator of Bank–
Weiser, involving the solution of a local problem on a special finite element space, can
be mathematically reformulated and implemented straightforwardly in a modern fi-
nite element software with the aid of automatic code generation techniques. Through
a series of numerical results we have shown that the estimator is highly competitive
in accurately predicting the total global error and in driving an adaptive mesh re-
finement strategy. Furthermore, the basic methodology and implementation for the
Poisson problem can be extended to tackle more complex mixed discretizations of
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PDEs including nearly-incompressible elasticity or Stokes problems. We have also
shown the (strong) scalability of our method when implemented in parallel and that
the error estimation time is significantly lower than the primal solution time on a
large problem.
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Supplementary material. The DOLFINx version of the code can be found at
https://github.com/jhale/fenicsx-error-estimation and the DOLFIN version at https:
//github.com/rbulle/fenics-error-estimation.

The appendices section C and section D contain two snippets showing the im-
plementation of the Poisson estimator and the Poisson estimator for the nearly-
incompressible elasticity problem using the DOLFIN version of the code. A simplified
version of the code (LGPLv3) used to produce the results in this paper is archived
at https://doi.org/10.6084/m9.figshare.10732421. A Docker image [49] is provided in
which this code can be executed.

Appendices.

A. The residual estimator.

https://github.com/jhale/fenicsx-error-estimation
https://github.com/rbulle/fenics-error-estimation
https://github.com/rbulle/fenics-error-estimation
https://doi.org/10.6084/m9.figshare.10732421
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A.1. Poisson equation. The class of residual estimators, the explicit residual
estimator is part of, have been introduced for the first time in [14]. Let hT be the
diameter (see e.g. [75]) of the cell T and hE be the diameter of the facet E. The
explicit residual estimator [3] on a cell T for the Poisson problems (2.2) and (2.4) is
defined as
(A.1)

η2
res,T := h2

T ‖fT + ∆uk‖2T +
∑

E∈EI∩∂T

1

2
hE‖[[∂nuk]]E‖2E +

∑
E∈EN∩∂T

hE‖gE − ∂nuk‖2E ,

where fh and gh are the L2 projections of f and g on V k respectively. In order to take
into account inhomogeneous Dirichlet boundary conditions, we define in addition the
Dirichlet oscillations. If E := ΓD ∩ T 6= ∅, then

(A.2) osc2
D,E := hE‖∇Γ (gE − uk)‖2L2(E),

where ∇Γ is the surface gradient and gE := π+
T (g) is the L2 projection of g onto V k+1

T

[12]. The global residual estimator reads

(A.3) η2
res :=

∑
T∈T

η2
res,T + osc2

D,T∩ΓD
.

A.2. Linear elasticity equations. The residual estimator for the linear elas-
ticity problem (5.13a), (5.13b), (5.15a), and (5.15b) is given by

(A.4) η2
res,T := ρT ‖RT ‖2T + ρd‖rT ‖2T +

∑
E∈∂T

ρE‖RE‖2E ,

where the residuals RT , rT and RE are respectively defined in (5.16a)–(5.16c) and
the constants ρT , ρd and ρE are given by

(A.5) ρT :=
hT (2µ)−1/2

2
, ρd :=

(
λ−1 + (2µ)−1

)−1
, ρE :=

hE(2µ)−1

2
,

with hT the diameter of the cell T and hE the length of the edge E. The global
estimator reads

(A.6) η2
res :=

∑
T∈T

η2
res,T .

B. The Zienkiewicz–Zhu estimator. The Zienkiewicz–Zhu estimator is a gra-
dient recovery estimator based on an averaging technique introduced in [81]. This
estimator belongs to a general class of recovery estimators, see [30, 31, 80] for recent
surveys and a reformulation of the recovery procedure in an H(div)-conforming space
that has superior performance for problems with sharp interfaces. Despite the fact
that some recovery estimators, especially when based on least squares fitting, are
available for higher order finite elements (see for example [82]) we only consider the
original estimator, defined for a piecewise linear finite element framework.

Given the finite element solution u1 ∈ V 1 the numerical flux ρ1 := ∇u1 is a
piecewise constant vector field. For each vertex χ ∈ N in the mesh we denote ωχ the
domain covered by the union of cells T having common vertex χ. The recovered flux
G(ρ1) ∈ [V 1]2 has values at the degrees of freedom associated with the vertices N
given by

(B.1) G(ρ1)(χ) :=
1

|ωχ|

∫
ωχ

ρ1 dx, ∀χ ∈ N .
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The local Zienkiewicz–Zhu estimator is then defined as the discrepancy between the
recovered flux and the numerical flux

(B.2) ηzz,T := ‖G(ρ1)− ρ1‖T , ∀T ∈ T .

As for the residual estimator, we add Dirichlet oscillations (see (A.2)) to take into
account the Dirichlet boundary error. The global Zienkiewicz–Zhu estimator is given
by

(B.3) η2
zz :=

∑
T∈T

η2
zz,T + osc2

D,T∩ΓD
.

The code in the supplementary material contains a prototype implementation of the
Zienkiewicz–Zhu estimator in FEniCS. We have implemented the local recovered flux
calculation in Python rather than C++, so the runtime performance is far from optimal.

C. Indicative snippet of error estimation for Poisson equation using
Bank–Weiser estimator. We present here a snippet of DOLFIN Python code
showing function to compute the error of a Poisson problem using the Bank–Weiser
estimator.

from dolfin import *
import fenics_error_estimation

def estimate(u_h):
"""Bank-Weiser error estimation procedure for the Poisson problem.

Parameters
-----------
u_h: dolfin.Function
Solution of Poisson problem.

Returns
-------
The error estimate on each cell of the mesh.
"""
mesh = u_h.function_space().mesh()

# Higher order space
element_f = FiniteElement("DG", triangle, 2)
# Low order space
element_g = FiniteElement("DG", triangle, 1)

# Construct the Bank-Weiser interpolation operator according to the
# definition of the high and low order spaces.
N = fenics_error_estimation.create_interpolation(element_f, element_g)

V_f = FunctionSpace(mesh, element_f)
e = TrialFunction(V_f)
v = TestFunction(V_f)
f = Constant(0.0)

# Homogeneous zero Dirichlet boundary conditions
bcs = DirichletBC(V_f, Constant(0.0), "on_boundary", "geometric")
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# Define the local Bank-Weiser problem on the full higher order space
n = FacetNormal(mesh)
a_e = inner(grad(e), grad(v))*dx
# Residual
L_e = inner(f + div(grad(u_h)), v)*dx + \

inner(jump(grad(u_h), -n), avg(v))*dS

# Local solves on the implied Bank-Weiser space. The solution is returned
# on the full space.
e_h = fenics_error_estimation.estimate(a_e, L_e, N, bcs)

# Estimate of global error
error = norm(e_h, "H10")

# Computation of local error indicator.
V_e = FunctionSpace(mesh, "DG", 0)
v = TestFunction(V_e)

eta_h = Function(V_e, name="eta_h")
# By testing against v in DG_0 this effectively computes
# the estimator on each cell.
eta = assemble(inner(inner(grad(e_h), grad(e_h)), v)*dx)
eta_h.vector()[:] = eta

return eta_h

D. Indicative snippet of error estimation for linear elasticity equations
using Poisson estimator. We give here a snippet of DOLFIN Python code show-
ing function to compute the error of a two-dimensional linear elasticity problem (dis-
cretized with Taylor–Hood element) using the Poisson estimator, based on our imple-
mentation of the Bank–Weiser estimator.

import scipy.linalg as sp.linalg
from dolfin import *
import fenics_error_estimation

def estimate(w_h, mu, lmbda):
"""
Parameters
-----------
w_h: dolfin.Function
Solution of the linear elasticity problem.
mu: float
First Lamé coefficient.
lmbda: float
Second Lamé coefficient.

Returns
-------
The error estimate on each cell of the mesh.
"""

mesh = w_h.function_space().mesh()
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u_h = w_h.sub(0)
p_h = w_h.sub(1)

# Vectorial high order space.
X_element_f = VectorElement('DG', triangle, 3)

# Scalar high order and low order spaces.
S_element_f = FiniteElement('DG', triangle, 3)
S_element_g = FiniteElement('DG', triangle, 2)

# Construct the scalar projection matrix according to the definition
# of the high and low order spaces.
N_S = create_interpolation(S_element_f, S_element_g)

# Construct the vectorial projection matrix as a block diagonal, each
# block corresponding to a scalar problem.
N_X = sp.linalg.block_diag(N_S, N_S)

f = Constant((0., 0.))

X_f = FunctionSpace(mesh, X_element_f)
e_X = TrialFunction(X_f)
v_X = TestFunction(X_f)

# Homogeneous zero Dirichlet boundary conditions.
bcs = DirichletBC(X_f, Constant((0., 0.)), 'on_boundary', 'geometric')

# Cell residual.
R_T = f + div(2.*mu*sym(grad(u_h))) - grad(p_h)

# Facet residual.
n = FacetNormal(mesh)
R_E = (1./2.)*jump(p_h*Identity(2) - 2.*mu*sym(grad(u_h)), -n)

# Local Poisson problem.
a_X_e = 2.*mu*inner(grad(e_X), grad(v_X))*dx
L_X_e = inner(R_K, v_X)*dx - inner(R_E, avg(v_X))*dS

# Solve Poisson equation locally on implicit Bank--Weiser space.
e_h = fenics_error_estimation.estimate(a_X_e, L_X_e, N_X, bcs)

# Cell residual.
rho_d = 1./(lmbda**(-1)+(2.*mu)**(-1))
r_T = rho_d*(div(u_h) + lmbda**(-1)*p_h)

# Computation of local error indicator.
V_e = FunctionSpace(mesh, 'DG', 0)
v = TestFunction(V_e)

eta_h = Function(V_e)
# By testing against v in DG_0 this effectively computes the estimator
# on each cell.
eta = assemble(2.*mu*inner(inner(grad(e_h), grad(e_h)), v)*dx + \

rho_d**(-1)*inner(inner(eps_h, eps_h), v)*dx)



30 R. BULLE, J. S. HALE, A. LOZINSKI, S. P. A. BORDAS, F. CHOULY

eta_h.vector()[:] = eta

return eta_h
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