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Abstract

In this paper we employ a Banach spaces-based framework to introduce and analyze new mixed
finite element methods for the numerical solution of the coupled Stokes and Poisson–Nernst–Planck
equations, which is a nonlinear model describing the dynamics of electrically charged incompressible
fluids. The pressure of the fluid is eliminated from the system (though computed afterwards via
a postprocessing formula) thanks to the incompressibility condition and the incorporation of the
fluid pseudostress as an auxiliary unknown. In turn, besides the electrostatic potential and the
concentration of ionized particles, we use the electric field (rescaled gradient of the potential)
and total ionic fluxes as new unknowns. The resulting fully mixed variational formulation in
Banach spaces can be written as a coupled system consisting of two saddle-point problems, each
one with nonlinear source terms depending on the remaining unknowns, and a perturbed saddle-
point problem with linear source terms, which is in turn additionally perturbed by a bilinear
form. The well-posedness of the continuous formulation is a consequence of a fixed-point strategy
in combination with the Banach theorem, the Babuška–Brezzi theory, the solvability of abstract
perturbed saddle-point problems, and the Banach–Nečas–Babuška theorem. For this we also employ
smallness assumptions on the data. An analogous approach, but using now both the Brouwer and
Banach theorems, and invoking suitable stability conditions on arbitrary finite element subspaces,
is employed to conclude the existence and uniqueness of solution for the associated Galerkin scheme.
A priori error estimates are derived, and examples of discrete spaces that fit the theory, include, e.g.,
Raviart–Thomas elements of order k along with piecewise polynomials of degree ď k. Finally, rates
of convergence are specified and several numerical experiments confirm the theoretical error bounds.
These tests also illustrate the balance-preserving properties and applicability of the proposed family
of methods.
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1 Introduction

Fluid mixtures with electrically charged ions are critical for many industrial processes and natural
phenomena. Notable examples of current interest are efficient energy storage and electrodialysis cells,
design of nanopore sensors, electro-osmotic water purification techniques, and even drug delivery in
biological tissues [39]. One of the most well-known models for liquid electrolytes is the Poisson–
Nernst–Planck / Stokes system. It describes the isothermal dynamics of the molar concentration of a
number of charged species within a solvent. This classical model is valid for the regime of relatively
small Reynolds numbers and it is written in terms of the concentrations, the barycentric velocity
of the mixture, the pressure of the mixture, and the electrostatic potential. The system is strongly
coupled and the set of equations consist of the transport equations for each dilute component of
the electrolyte, a diffusion equation for the electrostatic equilibrium, the momentum balance for the
mixture (including a force exerted by the electric field), and mass conservation.

Solving these systems lends itself difficult due to coupling nonlinearities of different nature. Numerical
methods for incompressible flow equations coupled with Poisson–Nernst–Planck equations that are
based on finite element schemes in primal formulation (also including stabilized and goal-adaptive
methods) can be found in [3, 19, 31, 34, 36, 38], finite differences in e.g. [33], finite volume schemes in
[37], spectral elements in [35], and also for virtual element methods in [16]. Regarding formulations
using mixed methods, the first works addressing Stokes/PNP systems are relatively recent [26, 27].
Mixed variational formulations are particularly interesting when direct discrete approximations of
further variables of physical relevance are required. A recent approach to mixed methods consists in
defining the corresponding variational settings in terms of Banach spaces instead of the usual Hilbertian
framework, and without augmentation. As a consequence, the unknowns belong now to the natural
spaces that are originated after carrying out the respective testing and integration by parts procedures,
simpler and closer to the original physical model formulations arise, momentum conservative schemes
can be obtained, and even other unknowns can be computed by postprocessing formulae. As a non-
exhaustive list of contributions taking advantage of the use of Banach frameworks for solving the
aforementioned kind of problems, we refer to [4, 7, 9, 10, 11, 13, 14, 24, 25, 28], and among the different
models considered there, we find Poisson, Brinkman–Forchheimer, Darcy–Forchheimer, Navier–Stokes,
chemotaxis/Navier–Stokes, Boussinesq, coupled flow-transport, and fluidized beds. Nevertheless, and
up to our knowledge, no mixed methods with the described advantages seem to have been developed
so far for the coupled Stokes and Poisson–Nernst–Planck equations.

As motivated by the previous discussion, the goal of this paper is to develop a Banach spaces-based
formulation yielding new mixed finite element methods for, precisely, the coupled Stokes and Poisson–
Nernst–Planck equations. The rest of the manuscript is organized as follows. Required notations
and basic definitions are collected at the end of this introductory section. In Section 2 we describe
the model of interest and introduce the additional variables to be employed. The mixed variational
formulation is deduced in Section 3. After some preliminaries, the respective analysis is split according
to the three equations forming the whole system. In particular, the right spaces to which the trial
and test functions must belong are derived in each case by applying suitable integration by parts
formulae jointly with the Cauchy–Schwarz and Hölder inequalities. In Section 4 we utilize a fixed-
point approach to study the solvability of the continuous formulation. The Babuška–Brezzi theory and
recent results on perturbed saddle-point problems, both in Banach spaces, along with the Banach–
Nečas–Babuška theorem, are utilized to prove that the corresponding uncoupled problems are well-
posed. The classical Banach fixed-point theorem is then applied to conclude the existence of a unique
solution. In Section 5 we proceed analogously to Section 4 and, under suitable stability assumptions
on the discrete spaces employed, show existence and then uniqueness of solution for the Galerkin
scheme by applying the Brouwer and Banach theorems, respectively. A priori error estimates are also
derived here. Next, in Section 6 we define explicit finite element subspaces satisfying those conditions,
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and provide the associated rates of convergence. Finally, several numerical examples confirming the
latter and illustrating the good performance of the method, are reported in Section 7.

Preliminary notations

Throughout the paper, Ω is a bounded Lipschitz-continuous domain of Rn, n P
␣

2, 3
(

, which is star
shaped with respect to a ball, and whose outward normal at Γ :“ BΩ is denoted by ν. Standard
notation will be adopted for Lebesgue spaces LtpΩq and Sobolev spaces Wl,tpΩq and Wl,t

0 pΩq, with
l ě 0 and t P r1,`8q, whose corresponding norms, either for the scalar and vectorial case, are denoted
by } ¨ }0,t;Ω and } ¨ }l,t;Ω, respectively. Note that W0,tpΩq “ LtpΩq, and if t “ 2 we write HlpΩq instead
of Wl,2pΩq, with the corresponding norm and seminorm denoted by } ¨ }l,Ω and | ¨ |l,Ω, respectively. In
addition, letting t, t1 P p1,`8q conjugate to each other, that is such that 1{t` 1{t1 “ 1, we denote by
W1{t1,tpΓq the trace space of W1,tpΩq, and let W´1{t1,t1

pΓq be the dual of W1{t1,tpΓq endowed with the
norms } ¨ }´1{t1,t1;Γ and } ¨ }1{t1,t;Γ, respectively. On the other hand, given any generic scalar functional
space M, we let M and M be the corresponding vectorial and tensorial counterparts, whereas } ¨ } will
be employed for the norm of any element or operator whenever there is no confusion about the spaces
to which they belong. Furthermore, as usual, I stands for the identity tensor in R :“ Rnˆn, and | ¨ |

denotes the Euclidean norm in R :“ Rn. Also, for any vector field v “ pviqi“1,n we set the gradient
and divergence operators, respectively, as

∇v :“

ˆ

Bvi
Bxj

˙

i,j“1,n

and divpvq :“
n
ÿ

j“1

Bvj
Bxj

.

Additionally, for any tensor fields τ “ pτijqi,j“1,n and ζ “ pζijqi,j“1,n, we let divpτ q be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product
operators, and the deviatoric tensor, respectively, as

τ t “ pτjiqi,j“1,n, trpτ q “

n
ÿ

i“1

τii, τ : ζ :“
n
ÿ

i,j“1

τijζij , and τ d :“ τ ´
1

n
trpτ qI .

2 The model problem

We consider the nonlinear system given by the coupled Stokes and Poisson–Nernst–Planck equations,
which constitute an electrohydrodinamic model describing the stationary flow of a Newtonian and
incompressible fluid occupying the domain Ω Ď Rn, n P

␣

2, 3
(

, with polygonal (resp. polyhedral)
boundary Γ in R2 (resp. R3). Under the assumption of isothermal properties, equal molar volumes
and molar masses for each species, the behavior of the system is determined by the concentrations ξ1
and ξ2 of ionized particles, and by the electric current field φ. Mathematically speaking, and firstly
regarding the fluid, we look for the barycentric velocity u and the pressure p of the mixture, such that
pu, pq is solution to the Stokes equations

´µ∆u ` ∇p “ ´ pξ1 ´ ξ2q ε´1φ ` f in Ω ,

divpuq “ 0 in Ω , u “ g on Γ ,

ż

Ω
p “ 0 ,

(2.1)

where µ is the constant viscosity, ε is the dielectric coefficient, also known as the electric conductivity
coefficient, f is a source term, g is the Dirichlet datum for u on Γ, and the null mean value of p has
been incorporated as a uniqueness condition for this unknown. In addition, φ, ξ1 and ξ2 solve the
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Poisson–Nernst–Planck equations, which depend on the velocity u and are given by

φ “ ε∇χ in Ω , ´divpφq “ pξ1 ´ ξ2q ` f in Ω ,

χ “ g on Γ ,
(2.2)

where χ is the electrostatic potential, and for each i P
␣

1, 2
(

ξi ´ div
`

κip∇ξi ` qi ξi ε
´1φq ´ ξi u

˘

“ fi in Ω ,

ξi “ gi on Γ ,
(2.3)

where κ1 and κ2 are the diffusion coefficients, qi :“

"

1 if i “ 1
´1 if i “ 2

, f , f1, and f2 are external

source/sink terms, and g, g1 and g2 are Dirichlet data for χ, ξ1 and ξ2, respectively, on Γ. The
systems (2.2) and (2.3) correspond to the Poisson and Nernst–Planck equations, respectively. We end
the description of the model by remarking that ε, κ1, and κ2 are all assumed to be bounded above
and below, which means that there exist positive constants ε0, ε1, κ, and sκ, such that

ε0 ď εpxq ď ε1 and κ ď κipxq ď sκ for almost all x P Ω , @ i P
␣

1, 2
(

. (2.4)

We stress that in order to solve (2.3), u and φ are needed. In turn, (2.1) requires ξ1, ξ2 and φ,
whereas (2.2) makes use of ξ1 and ξ2. This multiple coupling is illustrated through the graph provided
in Figure 2.1, where the vertexes represent the aforementioned equations and the arrows, properly
labeled with the unknowns involved, show the respective dependence relationships.

Furthermore, since we are interested in employing a fully mixed variational formulation for the
coupled model (2.1) – (2.3), we introduce the auxiliary variables of pseudostress

σ :“ µ∇u ´ p I in Ω , (2.5)

and, for each i P
␣

1, 2
(

, the total (diffusive, cross-diffusive, and advective) ionic fluxes

σi :“ κi p∇ξi ` qi ξi ε
´1φq ´ ξi u in Ω . (2.6)

Thus, applying the matrix trace in (2.5) and using the incompressibility condition, we deduce that

p “ ´
1

n
trpσq , (2.7)

so that, incorporating the latter expression into (2.5), p is eliminated from the system (2.1) - (2.3),
which can then be rewritten in terms of the unknowns σ, u, φ, χ, σi and ξi, i P

␣

1, 2
(

, as

1

µ
σd “ ∇u in Ω , divpσq “ pξ1 ´ ξ2q ε´1φ´ f in Ω ,

u “ g on Γ ,

ż

Ω
trpσq “ 0 ,

1

ε
φ “ ∇χ in Ω , ´divpφq “ pξ1 ´ ξ2q ` f in Ω ,

χ “ g on Γ ,

1

κi
σi :“ ∇ξi ` qi ξi ε

´1φ ´ κ´1
i ξi u in Ω ,

ξi ´ divpσiq “ fi in Ω , ξi “ gi on Γ , i P
␣

1, 2
(

.

(2.8)

We notice here that the uniqueness condition for p has been rewritten equivalently as the null mean
value constraint for trpσq.
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φ
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φ

u

ξ1, ξ2

Figure 2.1: Illustrative graph of the coupling mechanisms connecting the three sub-problems (2.1),
(2.2) and (2.3).

3 The fully mixed formulation

In this section we derive a suitable Banach spaces-based variational formulation for (2.8) by splitting
the analysis in four sections. The first one collects some preliminary discussions and known results,
and the remaining three deal with each one of the pairs of equations forming the whole nonlinear
coupled system (2.8), namely Stokes, Poisson, and Nernst-Planck.

3.1 Preliminaries

We begin by noticing that there are three key expressions in (2.8) that need to be looked at carefully
before determining the right spaces where the unknowns must be sought, namely pξ1 ´ ξ2q ε´1φ,
qi ξi ε

´1φ and κ´1
i ξi u in the first and fifth rows of (2.8). More precisely, ignoring the bounded

above and below functions ε´1 and κ´1
i , as well as the constant qi, and given test functions v and

τi associated with u and σi, respectively, straightforward applications of the Cauchy–Schwarz and
Hölder inequalities yield

ˇ

ˇ

ˇ

ˇ

ż

Ω
pξ1 ´ ξ2qφ ¨ v

ˇ

ˇ

ˇ

ˇ

ď }ξ1 ´ ξ2}0,2ℓ;Ω }φ}0,2j;Ω }v}0,Ω , (3.1a)

ˇ

ˇ

ˇ

ˇ

ż

Ω
ξiφ ¨ τi

ˇ

ˇ

ˇ

ˇ

ď }ξi}0,2ℓ;Ω }φ}0,2j;Ω }τi}0,Ω , (3.1b)

and similarly
ˇ

ˇ

ˇ

ˇ

ż

Ω
ξi u ¨ τi

ˇ

ˇ

ˇ

ˇ

ď }ξi}0,2ℓ;Ω }u}0,2j;Ω }τi}0,Ω , (3.1c)
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where ℓ, j P p1,`8q are conjugate to each other. In this way, denoting

ρ :“ 2ℓ , ϱ :“
2ℓ

2ℓ ´ 1
(conjugate of ρ) , r :“ 2j , and s :“

2j

2j ´ 1
(conjugate of r) , (3.2)

it follows that the above expressions make sense for ξi P LρpΩq, φ, u P LrpΩq, and v, τi P L2pΩq. The
specific choice of ℓ, and hence of j, ρ, r and the respective conjugates ϱ and s, will be addressed later
on, so that meanwhile we consider generic values for the indexes defined in (3.2).

Having set the above preliminary choice for the space to which φ belongs, we deduce from the
first equation in the third row of (2.8) that χ should be initially sought in W1,rpΩq. In turn, using
that H1pΩq is embedded in LtpΩq for t P r1,`8q in R2 (resp. t P r1, 6s in R3), and for reasons that
will become clear below, the unknowns ξi, i P

␣

1, 2
(

, and u are initially sought in H1pΩq and H1pΩq,
respectively, certainly assuming that ρ and r verify the indicated ranges, namely ρ, r P p2,`8q in R2,
and ρ, r P p2, 6s in R3. Note that in terms of ℓ the latter constraint becomes ℓ P r32 , 3s, which yields
ρ P r3, 6s. Equivalently, j P r32 , 3s and r P r3, 6s, though going through the respective intervals in the
opposite direction to ℓ and ρ, respectively.

In turn, in order to derive the variational formulation of (2.8), we need to invoke a couple of
integration by parts formulae, for which, given t P p1,`8q, we first introduce the Banach spaces

Hpdivt; Ωq :“
!

τ P L2pΩq : divpτ q P LtpΩq

)

, (3.3a)

Hpdivt; Ωq :“
!

τ P L2pΩq : divpτ q P LtpΩq

)

, (3.3b)

Htpdivt; Ωq :“
!

τ P LtpΩq : divpτ q P LtpΩq

)

, (3.3c)

which are endowed with the natural norms defined, respectively, by

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq , (3.4a)

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq , (3.4b)

}τ }t,divt;Ω :“ }τ }0,t;Ω ` }divpτ q}0,t;Ω @ τ P Htpdivt; Ωq . (3.4c)

Then, proceeding as in [21, eq. (1.43), Section 1.3.4] (see also [8, Section 4.1] and [13, Section 3.1]), it
is easy to show that for each t ě 2n

n`2 there holds

xτ ¨ ν, vy “

ż

Ω

!

τ ¨ ∇v ` v divpτ q

)

@ pτ , vq P Hpdivt; Ωq ˆ H1pΩq , (3.5)

and analogously

xτ ν,vy “

ż

Ω

!

τ : ∇v ` v ¨ divpτ q

)

@ pτ ,vq P Hpdivt; Ωq ˆ H1pΩq , (3.6)

where x¨, ¨y stands for the duality pairing between H´1{2pΓq and H1{2pΓq, as well as between H´1{2pΓq

and H1{2pΓq. Furthermore, given t, t1 P p1,`8q conjugate to each other, there also holds (cf. [18,
Corollary B. 57])

xτ ¨ ν, vyΓ “

ż

Ω

!

τ ¨ ∇v ` v divpτ q

)

@ pτ , vq P Htpdivt; Ωq ˆ W1,t1

pΩq , (3.7)

where x¨, ¨yΓ stands for the duality pairing between W´1{t,tpΓq and W1{t,t1

pΓq.
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3.2 The Stokes equations

Let us first notice that, applying (3.6) with t “ s to τ P Hpdivs; Ωq and u P H1pΩq, and using the
Dirichlet boundary condition on u, for which we assume from now on that g P H1{2pΩq, we obtain

ż

Ω
τ : ∇u “ ´

ż

Ω
u ¨ divpτ q ` xτ ν,gy ,

and thus, the testing of the first equation in the first row of (2.8) against τ yields

1

µ

ż

Ω
σd : τ d `

ż

Ω
u ¨ divpτ q “ xτ ν,gy . (3.8)

Note from the second term on the left-hand side of (3.8) that, knowing that divpτ q P LspΩq, it actually
suffices to look for u in LrpΩq, which is coherent with a previous discussion on the space to which
this unknown should belong. In addition, testing the second equation in the first row of (2.8) against
v P LrpΩq, for which we require that f P LspΩq, we get

ż

Ω
v ¨ divpσq “

ż

Ω
pξ1 ´ ξ2q ε´1φ ¨ v ´

ż

Ω
f ¨ v , (3.9)

which makes sense for divpσq P LspΩq. Hence, due to the last equation in the second row of (2.8), it
follows that we should look for σ in H0pdivs; Ωq, where

H0pdivs; Ωq :“
!

τ P Hpdivs; Ωq :

ż

Ω
trpτ q “ 0

)

.

Moreover, it is easily seen that there holds the decomposition

Hpdivs; Ωq “ H0pdivs; Ωq ‘ RI , (3.10)

and that the incompressibility of the fluid forces the compatibility condition on g given by
ż

Γ
g ¨ ν “ 0 .

As a consequence of the above, we realize that imposing (3.8) for each τ P Hpdivs; Ωq is equivalent
to doing it for each τ P H0pdivs; Ωq. Furthermore, since r ą 2 it follows that LrpΩq is embedded in
L2pΩq, which, along with the estimate (3.1a), confirms that the first term on the right-hand side of
(3.9) is also well-defined. In this way, denoting from now on ξ :“ pξ1, ξ2q, and joining (3.8) and (3.9),
we arrive at the following mixed variational formulation for the Stokes equations (given by the first
two rows of (2.8)): Find pσ,uq P H ˆ Q such that

apσ, τ q ` bpτ ,uq “ Fpτ q @ τ P H ,

bpσ,vq “ Gξ,φpvq @v P Q ,
(3.11)

where
H :“ H0pdivs; Ωq , Q :“ LrpΩq , (3.12)

and the bilinear forms a : H ˆ H Ñ R and b : H ˆ Q Ñ R, and the functional F : H ÝÑ R, are
defined, respectively, as

apζ, τ q :“
1

µ

ż

Ω
ζd : τ d @ ζ, τ P H , (3.13a)

bpτ ,vq :“

ż

Ω
v ¨ divpτ q @ pτ ,vq P H ˆ Q , (3.13b)
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Fpτ q :“ xτ ν,gy @ τ P H , (3.13c)

whereas, given η :“ pη1, η2q P LρpΩq and ϕ P LrpΩq, the functional Gη,ϕ : Q ÝÑ R is set as

Gη,ϕpvq :“

ż

Ω
pη1 ´ η2q ε´1ϕ ¨ v ´

ż

Ω
f ¨ v @v P Q . (3.13d)

It is readily seen that, endowing H with the corresponding norm from (3.4b), that is

}τ }H :“ }τ }divs;Ω @ τ P H , (3.14)

and recalling that } ¨ }0,r;Ω is that of Q, the bilinear forms a and b, and the linear functionals F
and Gη,ϕ, are all bounded. Indeed, applying the Cauchy–Schwarz and Hölder inequalities, noting
that }τ d}0,Ω ď }τ }0,Ω for all τ P H, invoking the identity (3.6) along with the continuous injection
ir : H1pΩq Ñ LrpΩq, using (3.1a) together with the fact that } ¨ }0,Ω ď |Ω|pr´2q{2r } ¨ }0,r;Ω, and
bounding ε´1 according to (2.4), we deduce the existence of positive constants, denoted and given as

}a} :“
1

µ
, }b} :“ 1 , }F} :“

`

1 ` }ir}
˘

}g}1{2,Γ ,

and }G} :“ max
␣

ε´1
0 |Ω|pr´2q{2r, 1

(

,

(3.15)

such that
|apζ, τ q| ď }a} }ζ}H }τ }H @ ζ, τ P H ,

|bpτ ,vq| ď }b} }τ }H }v}Q @ pτ ,vq P H ˆ Q ,

|Fpτ q| ď }F} }τ }H @ τ P H , and

|Gη,ϕpvq| ď }G}

!

}η1 ´ η2}0,ρ;Ω }ϕ}0,r;Ω ` }f}0,s;Ω

)

}v}Q @v P Q .

(3.16)

3.3 The electrostatic potential equations

We begin the derivation of the mixed formulation for the Poisson equation by testing the first equation
in the third row of (2.8) against ψ P Hspdivs; Ωq. In this way, applying (3.7) with t “ s and t1 “ r
to the given ψ and χ P W1,rpΩq, and employing the Dirichlet boundary condition on χ, for which we
assume that g P W1{s,rpΓq, we get

ż

Ω

1

ε
φ ¨ψ `

ż

Ω
χdivpψq “ xψ ¨ ν, gyΓ . (3.17)

In turn, testing the second equation in the third row of (2.8) against λ P LspΩq, which requires to
assume that f P LrpΩq, we obtain

ż

Ω
λ divpφq “ ´

ż

Ω
λ pξ1 ´ ξ2q ´

ż

Ω
f λ , (3.18)

which certainly makes sense for divpφq P LrpΩq. Thus, recalling from (3.1a) and (3.1b) that φ must
belong to LrpΩq, it follows from the above that this unknown should be sought then in Hrpdivr; Ωq.
Furthermore, bearing in mind from (3.1a) - (3.1c) that ξ1 and ξ2 must belong to LρpΩq, we notice
that in order for the first term on the right-hand side of (3.18) to make sense, we require that ρ ě r,
which is assumed from now on. Therefore, placing together (3.17) and (3.18), we obtain the following
mixed variational formulation for the electrostatic potential equations (given by the third and fourth
rows of (2.8)): Find pφ, χq P X2 ˆ M1 such that

apφ,ψq ` b1pψ, χq “ Fpψq @ψ P X1 ,

b2pφ, λq “ Gξpλq @λ P M2 ,
(3.19)
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where
X2 :“ Hrpdivr; Ωq , M1 :“ LrpΩq , X1 :“ Hspdivs; Ωq , M2 :“ LspΩq , (3.20)

and the bilinear forms a : X2ˆX1 Ñ R and bi : XiˆMi Ñ R, i P
␣

1, 2
(

, and the functional F : X1 Ñ R,
are defined, respectively, as

apϕ,ψq :“

ż

Ω

1

ε
ϕ ¨ψ @ pϕ,ψq P X2 ˆ X1 , (3.21a)

bipψ, λq :“

ż

Ω
λdivpψq @ pψ, λq P Xi ˆ Mi , (3.21b)

Fpψq :“ xψ ¨ ν, gyΓ @ψ P X1 , (3.21c)

whereas, given η :“ pη1, η2q P LρpΩq, the functional Gη : M2 Ñ R is defined by

Gηpλq :“ ´

ż

Ω
λ pη1 ´ η2q ´

ż

Ω
f λ @λ P M2 . (3.21d)

We end this section by establishing the boundedness of a, bi, i P
␣

1, 2
(

, F, and Gη, for which
we recall that the norms of X1 and X2 are defined by (3.4c) with t “ s and t “ r, respectively,
whereas those of M1 and M2 are certainly given by } ¨ }0,r;Ω and } ¨ }0,s;Ω, respectively. Then, employing
again the Cauchy–Schwarz and Hölder inequalities, bounding ε´1 according to (2.4), and using that
} ¨ }0,r;Ω ď |Ω|pρ´rq{ρr } ¨ }0,ρ;Ω, which follows from the fact that ρ ě r, we find that there exist positive
constants

}a} :“
1

ε0
, }b1} “ }b2} :“ 1 , and }G} :“ max

␣

1, |Ω|pρ´rq{ρr
(

, (3.22)

such that

|apϕ,ψq| ď }a} }ϕ}X2 }ψ}X1 @ pϕ,ψq P X2 ˆ X1 ,

|bipψ, λq| ď }bi} }ψ}Xi }λ}Mi @ pψ, λq P Xi ˆ M1 , @ i P
␣

1, 2
(

, and

|Gηpλq| ď }G}

!

}η1 ´ η2}0,ρ;Ω ` }f}0,r;Ω

)

}λ}0,s;Ω @λ P M2 .

(3.23)

Regarding the boundedness of F, we need to apply [18, Lemma A.36], which, along with the surjectivity
of the trace operator mapping W1,rpΩq onto W1{s,rpΓq, yields the existence of a fixed positive constant
Cr, such that for the given g P W1{s,rpΓq, there exists vg P W1,rpΩq satisfying vg|Γ “ g and

}vg}1,r;Ω ď Cr }g}1{s,r;Γ .

Hence, employing (3.7) with pt, t1q “ ps, rq and pτ , vq “ pψ, vgq, and then using Hölder’s inequality,
we arrive at

|Fpψq| ď }F} }ψ}X1 @ψ P X1 , (3.24)

with
}F} :“ Cr }g}1{s,r;Γ . (3.25)

3.4 The ionized particles concentration equations

We now deal with the Nernst-Planck equations, that is the fifth and sixth rows of (2.8), for which we
proceed analogously as we did for the Stokes equations in Section 3.2. More precisely, applying (3.5)
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with t “ ϱ to τi P Hpdivϱ; Ωq and ξi P H1pΩq, and using the Dirichlet boundary condition on ξi, for
which we assume from now on that gi P H1{2pΓq, we obtain

ż

Ω
∇ξi ¨ τi “ ´

ż

Ω
ξi divpτiq ` xτi ¨ ν, giy ,

so that the testing of the equation in the fifth row of (2.8) against τi, yields

ż

Ω

1

κi
σi ¨ τi `

ż

Ω
ξi divpτiq ´

ż

Ω

!

qi ξi ε
´1φ ´ κ´1

i ξi u
)

¨ τi “ xτi ¨ ν, giy . (3.26)

Since divpτiq P LϱpΩq, we notice from the second term on the left-hand side of (3.26) that it suffices
to look for ξi in LρpΩq, which, similarly as for Stokes, is coherent with a previous discussion on
where to seek this unknown. In fact, as already commented, the corresponding estimates (3.1b) and
(3.1c) confirm that the third term on the left-hand side of (3.26) is well-defined as well. We end this
derivation by testing the first equation of the sixth row of (2.8) against a function in the same space
to which ξi belongs, that is ηi P LρpΩq, which gives

ż

Ω
ηi divpσiq ´

ż

Ω
ξi ηi “ ´

ż

Ω
fi ηi . (3.27)

We remark that the above requires to assume that both fi and divpσiq belong to LϱpΩq, which is
coherent with the fact that ξi is sought in LρpΩq since, being ρ ą 2, it follows that ρ ą ϱ, and hence
LρpΩq Ď LϱpΩq. Consequently, we arrive at the following mixed variational formulation for the ionized
particles concentration equations: Find pσi, ξiq P Hi ˆ Qi such that

aipσi, τiq ` cipτi, ξiq ´ cφ,upτi, ξiq “ Fipτiq @ τi P Hi ,

cipσi, ηiq ´ dipξi, ηiq “ Gipηiq @ ηi P Qi ,
(3.28)

where
Hi :“ Hpdivϱ; Ωq , Qi :“ LρpΩq , (3.29)

and the bilinear forms ai : Hi ˆ Hi Ñ R, ci : Hi ˆ Qi Ñ R, and di : Qi ˆ Qi Ñ R, and the functionals
Fi : Hi ÝÑ R and Gi : Qi ÝÑ R, are defined, respectively, as

aipζi, τiq :“

ż

Ω

1

κi
ζi ¨ τi @ pζi, τiq P Hi ˆ Hi , (3.30a)

cipτi, ηiq :“

ż

Ω
ηi divpτiq @ pτi, ηiq P Hi ˆ Qi , (3.30b)

dipϑi, ηiq :“

ż

Ω
ϑi ηi @ pϑi, ηiq P Qi ˆ Qi , (3.30c)

Fipτiq :“ xτi ¨ ν, giy @ τi P Hi , (3.30d)

Gipηiq :“ ´

ż

Ω
fi ηi @ ηi P Qi , (3.30e)

whereas, given pϕ,vq P X2 ˆ Q “ Hrpdivr; Ωq ˆ LrpΩq, the bilinear form cϕ,v : Hi ˆ Qi Ñ R is set as

cϕ,vpτi, ηiq :“

ż

Ω

!

qi ηi ε
´1ϕ ´ κ´1

i ηi v
)

¨ τi @ pτi, ηiq P Hi ˆ Qi . (3.30f)

Similarly to the analysis at the end of Section 3.2 (cf. (3.15) and (3.16)), we conclude here that ai, ci,
di, Fi, Gi, and cϕ,v are all bounded with the norm defined by (3.4a) with t “ ϱ for Hi, and certainly
the norm } ¨ }0,ρ;Ω for Qi. Indeed, applying the Cauchy–Schwarz and Hölder inequalities, bounding
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both ε´1 and κ´1
i according to (2.4), noting that } ¨ }0,Ω ď |Ω|pρ´2q{2ρ } ¨ }0,ρ;Ω, invoking the identity

(3.5) and the continuous injection iρ : H1pΩq Ñ LρpΩq, and utilizing (3.1b) and (3.1c), we find that
there exist positive constants

}ai} :“
1

κ
, }ci} :“ 1 , }di} :“ |Ω|pρ´2q{ρ , }Fi} :“

`

1 ` }iρ}
˘

}gi}1{2,Γ ,

}Gi} :“ }fi}0,ϱ;Ω , and }c} :“ max
␣

ε´1
0 , κ´1

(

,

(3.31)

such that

|aipζi, τiq| ď }ai} }ζi}Hi }τi}Hi @ pζi, τiq P Hi ˆ Hi ,

|cipτi, ηiq| ď }ci} }τi}Hi }ηi}Qi @ pτi, ηiq P Hi ˆ Qi ,

|dipϑi, ηiq| ď }di} }ϑi}Qi }ηi}Qi @ pϑi, ηiq P Qi ˆ Qi ,

|Fipτiq| ď }Fi} }τi}Hi @ τi P Hi ,

|Gipηiq| ď }Gi} }ηi}Qi @ ηi P Qi , and

|cϕ,vpτi, ηiq| ď }c}
!

}ϕ}0,r;Ω ` }v}0,r;Ω

)

}ηi}0,ρ;Ω }τi}0,Ω @ pτi, ηiq P Hi ˆ Qi .

(3.32)

Throughout the rest of the paper we will use indistinctly either }η}Q1ˆQ2 or }η}0,ρ;Ω, where

}η}0,ρ;Ω :“ }η1}0,ρ;Ω ` }η2}0,ρ;Ω @η :“ pη1, η2q P Q1 ˆ Q2 .

Summarizing, and putting together (3.11), (3.19), and (3.28), we find that, under the assumptions
that f P LspΩq, g P H1{2pΓq, f P LrpΩq, g P W1{s,rpΓq, fi P LϱpΩq, gi P H1{2pΓq, and ρ ě r, the
mixed variational formulation of (2.8) reduces to: Find pσ,uq P H ˆ Q, pφ, χq P X2 ˆ M1, and
pσi, ξiq P Hi ˆ Qi, i P

␣

1, 2
(

, such that

apσ, τ q ` bpτ ,uq “ Fpτ q @ τ P H ,

bpσ,vq “ Gξ,φpvq @v P Q ,

apφ,ψq ` b1pψ, χq “ Fpψq @ψ P X1 ,

b2pφ, λq “ Gξpλq @λ P M2 ,

aipσi, τiq ` cipτi, ξiq ´ cφ,upτi, ξiq “ Fipτiq @ τi P Hi ,

cipσi, ηiq ´ dipξi, ηiq “ Gipηiq @ ηi P Qi .

(3.33)

4 The continuous solvability analysis

In this section we proceed as in several related previous contributions (see, e.g. [9] and the references
therein), and employ a fixed-point strategy to address the solvability of (3.33).

4.1 The fixed-point strategy

In order to rewrite (3.33) as an equivalent fixed point equation, we introduce suitable operators
associated with each one of the three problems forming the whole nonlinear coupled system. Indeed,
we first let pT : pQ1 ˆ Q2q ˆ X2 Ñ Q be the operator defined by

pTpη,ϕq :“ pu @ pη,ϕq P pQ1 ˆ Q2q ˆ X2 ,
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where ppσ, puq P H ˆ Q is the unique solution (to be confirmed below) of problem (3.11) (equivalently,
the first two rows of (3.33)) with pη,ϕq instead of pξ,φq, that is

appσ, τ q ` bpτ , puq “ Fpτ q @ τ P H ,

bppσ,vq “ Gη,ϕpvq @v P Q .
(4.1)

In turn, we let sT : Q1 ˆ Q2 Ñ X2 be the operator given by

sTpηq :“ sφ @η P Q1 ˆ Q2 ,

where p sφ, sχq P X2 ˆM1 is the unique solution (to be confirmed below) of problem (3.19) (equivalently,
the third and fourth rows of (3.33)) with η instead of ξ, that is

ap sφ,ψq ` b1pψ, sχq “ Fpψq @ψ P X1 ,

b2p sφ, λq “ Gηpλq @λ P M2 .
(4.2)

Similarly, for each i P
␣

1, 2
(

, we let rTi : X2 ˆ Q Ñ Qi be the operator defined by

rTipϕ,vq :“ rξi @ pϕ,vq P X2 ˆ Q ,

where prσi, rξiq P Hi ˆQi is the unique solution (to be confirmed below) of problem (3.28) (equivalently,
the fifth and sixth rows of (3.33)) with pϕ,vq instead of pφ,uq, that is

aiprσi, τiq ` cipτi, rξiq ´ cϕ,vpτi, rξiq “ Fipτiq @ τi P Hi ,

ciprσi, ηiq ´ diprξi, ηiq “ Gipηiq @ ηi P Qi ,
(4.3)

so that we can define the operator rT : X2 ˆ Q Ñ pQ1 ˆ Q2q as:

rTpϕ,vq :“
`

rT1pϕ,vq, rT2pϕ,vq
˘

“ pξ1, ξ2q “: rξ @ pϕ,vq P X2 ˆ Q . (4.4)

Finally, defining the operator T : pQ1 ˆ Q2q Ñ pQ1 ˆ Q2q as

Tpηq :“ rT
`

sTpηq, pT
`

η, sTpηq
˘˘

@η P Q1 ˆ Q2 , (4.5)

we observe that solving (3.33) is equivalent to seeking a fixed point of T, that is: Find ξ P Q1 ˆ Q2

such that
Tpξq “ ξ . (4.6)

4.2 Well-posedness of the uncoupled problems

In this section we establish the well-posedness of the problems (4.1), (4.2), and (4.3), defining the
operators pT, sT, and rTi, respectively. To this end, we apply the Babuška–Brezzi theory in Banach
spaces for the general case (cf. [5, Theorem 2.1, Corollary 2.1, Section 2.1]), and for a particular one
[18, Theorem 2.34], as well as a recently established result for perturbed saddle point formulations in
Banach spaces (cf. [15, Theorem 3.4]) along with the Banach–Nečas–Babuška Theorem (also known
as the generalized Lax–Milgram Lemma) (cf. [18, Theorem 2.6]).
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4.2.1 Well-definedness of the operator pT

Here we apply [18, Theorem 2.34] to show that, given an arbitrary pη,ϕq P
`

Q1 ˆ Q2

˘

ˆ X2, (4.1) is

well-posed, equivalently that pT is well-defined. We remark that pη,ϕq only influences the functional
Gη,ϕ, and that the boundedness of all the bilinear forms and linear functionals defining (4.1), has
already been established in (3.15) and (3.16). Hence, the discussion below just refers to the remaining
hypotheses to be satisfied by a and b. We begin by letting V be the kernel of the operator induced
by b, that is

V :“
!

τ P H : bpτ ,vq “ 0 @v P Q
)

,

which, according to the definitions of H, Q, and b (cf. (3.12), (3.13b)), along with the fact that LspΩq

is isomorphic to the dual of LrpΩq, yields

V :“
!

τ P H0pdivs; Ωq : divpτ q “ 0
)

. (4.7)

Next, we recall that a slight modification of the proof of [21, Lemma 2.3] allows to prove that for each
t ě 2n

n`2 (see, e.g., [7, Lemma 3.1] for the case t “ 4{3, which is extensible almost verbatim for any t
in the indicated range) there exists a constant Ct, depending only on Ω, such that

Ct }τ }20,Ω ď }τ d}20,Ω ` }divpτ q}20,t;Ω @ τ P H0pdivt; Ωq . (4.8)

Then, assuming that s ě 2n
n`2 , and using (4.8), we deduce from the definition of a (cf. (3.13a)), and

similarly to [7, Lemma 3.2], that

apτ , τ q ě α }τ }2divs;Ω @ τ P V , (4.9)

with α :“ Cs{µ. Hence, thanks to (4.9), it is straightforward to see that a satisfies the hypotheses
specified in [18, Theorem 2.34, eq. (2.28)] with the foregoing constant α. In order to fulfill all
the hypotheses of the latter theorem, and knowing from (3.15) and (3.16) that the boundedness of
the corresponding bilinear forms and linear functionals has already been established, it only remains
to show the continuous inf-sup condition for b. Moreover, being this result already proved for the
particular case s “ 4{3 (cf. [7, Lemma 3.3] and [25, Lemma 3.5] for a closely related one), and arising
no significant differences for an arbitrary s ě 2n

n`2 , we provide below, and for sake of completeness,
only the main aspects of its proof.

Indeed, given v P Q :“ LrpΩq, we first recall from (3.2) that r ą 2, and set vs :“ |v|r´2 v, which
is easily seen to satisfy

vs P LspΩq and

ż

Ω
v ¨ vs “ }v}0,r;Ω }vs}0,s;Ω .

In what follows, we make use of both, the Poincaré inequality, which refers to the existence of a positive
constant cP, depending on Ω, such that cP }z}21,Ω ď |z|21,Ω @ z P H1

0pΩq, and the continuous injection

ir : H1pΩq Ñ LrpΩq for the indicated range of s. Then, we let w P H1
0pΩq be the unique solution of:

ş

Ω∇w ¨∇z “ ´
ş

Ω vs ¨z for all z P H1
0pΩq, which is guaranteed by the classical Lax–Milgram Lemma,

and notice, thanks to the corresponding continuous dependence estimate, that }w}1,Ω ď
}ir}

cP
}vs}0,s;Ω.

Hence, defining ζ :“ ∇w P L2pΩq, we deduce that divpζq “ vs in Ω, so that ζ P Hpdivs; Ωq, and

}ζ}divs;Ω ď
`

1 `
}ir}

cP

˘

}vs}0,s;Ω. Finally, letting ζ0 be the H0pdivs; Ωq-component of ζ, it is clear that
divpζ0q “ vs and that }ζ0}divs;Ω ď }ζ}divs;Ω, whence bounding by below with τ :“ ζ0 P H, and
using the definition of b (cf. (3.13b)) along with the above identities and estimates, we conclude that

sup
τPH
τ ­“0

bpτ ,vq

}τ }H
ě β }v}Q @v P Q , (4.10)

13



with β :“
`

1 `
}ir}

cP

˘´1
. The foregoing inequality (4.10) proves [18, Theorem 2.34, eq. (2.29)] and

completes the hypotheses of this theorem.

Consequently, the well-definedness of the operator pT is stated as follows.

Theorem 4.1. For each pη,ϕq P pQ1 ˆ Q2q ˆ X2 there exists a unique ppσ, puq P H ˆ Q solution to
(4.1), and hence one can define pTpη,ϕq :“ pu P Q. Moreover, there exists a positive constant C

pT
,

depending only on µ, }ir}, ε0, |Ω|, α, and β, and hence independent of pη,ϕq, such that

}pTpη,ϕq}Q “ }pu}Q ď C
pT

!

}g}1{2,Γ ` }f}0,s,Ω ` }η}0,ρ;Ω }ϕ}0,r;Ω

)

. (4.11)

Proof. Given pη,ϕq P pQ1 ˆ Q2q ˆ X2, a direct application of [18, Theorem 2.34] guarantees the
existence of a unique ppσ, puq P H ˆ Q solution to (4.1). Then, the corresponding a priori estimate in
[18, Theorem 2.34, eq. (2.30)] gives

}pu}Q ď
1

β

´

1 `
}a}

α

¯

}F}H1 `
}a}

β2

´

1 `
}a}

α

¯

}Gη,ϕ}Q1 , (4.12)

which, according to the identities and estimates given by (3.15) and (3.16), along with some algebraic
manipulations, yields (4.11) and finishes the proof.

Regarding the a priori bound for the component pσ of the unique solution to (4.1), it follows from
[18, Theorem 2.34, eq. (2.30)] that

}pσ}H ď
1

α
}F}H1 `

1

β

´

1 `
}a}

α

¯

}Gη,ϕ}Q1 ,

which yields the same inequality as (4.11), but with a different constant. Hence, choosing the largest
of the respective constants, and still denoting it by C

pT
, we can summarize the a priori estimates for

pu and pσ by saying that both are given by the right-hand side of (4.11).

4.2.2 Well-definedness of the operator sT

We now employ [5, Theorem 2.1, Section 2.1] to prove that, given an arbitrary η P Q1 ˆ Q2, (4.2) is
well-posed, equivalently that sT is well-defined. Similarly as for Section 4.2.1, we first stress that η
is utilized only to define the functional Gη, and that the boundedness of all the bilinear forms and
functionals defining (4.2), was already established by (3.22) and (3.23). In this way, it only remains
to show that a, b1, and b2 satisfy the corresponding hypotheses from [5, Theorem 2.1, Section 2.1].
To this end, and because of the evident similarities, we follow very closely the analysis in [9, Section
3.2.3], which, in turn, suitably adopts the approach from [24, Section 2.4.2]. Indeed, we begin by
letting Ki be the kernel of the operator induced by the bilinear form bi, for each i P

␣

1, 2
(

, that is

Ki :“
!

ψ P Xi : bipψ, λq “ 0 @λ P Mi

)

, (4.13)

which, according to the definitions of Xi and Mi (cf. (3.20)), and bi (cf. (3.21b)), along again with the
fact that LrpΩq and LspΩq can be isomorphically identified with

`

LspΩq
˘1

and
`

LrpΩq
˘1
, respectively,

gives

K1 :“
!

ψ P Hspdivs; Ωq : divpψq “ 0 in Ω
)

, (4.14)

and
K2 :“

!

ψ P Hrpdivr; Ωq : divpψq “ 0 in Ω
)

. (4.15)

Next, in order to establish the inf-sup conditions required for the bilinear form a (cf. [5, eqs. (2.8)
and (2.9)]), we resort to [9, Lemma 3.3], which is recalled below.
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Lemma 4.2. Let Ω be a bounded Lipschitz-continuous domain of Rn, n P t2, 3u, and let t, t1 P p1,`8q

conjugate to each other with t (and hence t1) lying in

#

r4{3, 4s if n “ 2

r3{2, 3s if n “ 3
. Then, there exists a linear

and bounded operator Dt : L
tpΩq Ñ LtpΩq such that

divpDtpwqq “ 0 in Ω @w P LtpΩq . (4.16)

In addition, for each z P Lt1

pΩq such that divpzq “ 0 in Ω, there holds

ż

Ω
z ¨ Dtpwq “

ż

Ω
z ¨ w @w P LtpΩq . (4.17)

Proof. It reduces to a minor modification of the proof of [24, Lemma 2.3], for which one needs to apply
the well-posedness in W1,tpΩq of a Poisson problem with homogeneous Dirichlet boundary conditions
(see [22, Theorem 3.2] or [29, Theorems 1.1 and 1.3] for the vector version of it). The specified ranges
for t and t1 are precisely forced by the latter result. We omit further details and refer to the proof of
[9, Lemma 3.3].

We are now in position to prove the required hypotheses on a.

Lemma 4.3. Assume that s (and hence r) satisfy the ranges specified in Lemma 4.2. Then, there
exists a positive constant sα such that

sup
ψPK1
ψ ­“0

apϕ,ψq

}ψ}X1

ě sα }ϕ}X2 @ϕ P K2 . (4.18)

In addition, there holds
sup
ϕPK2

apϕ,ψq ą 0 @ψ P K1, ψ ­“ 0 . (4.19)

Proof. Being almost verbatim to that of [9, Lemma 3.4], we just proceed to sketch it. Indeed, given
ϕ P K2, we recall from (3.2) that r ą 2 and set ϕs :“ |ϕ|r´2ϕ, which belongs to LspΩq and satisfies

ż

Ω
ϕ ¨ ϕs “ }ϕ}0,r,Ω }ϕs}0,s,Ω . (4.20)

In this way, bounding by below with ψ :“ Dspϕsq, which, according to Lemma 4.2, belongs to
K1, and then using (4.17), (4.20), the boundedness of Ds, and the upper bound of ε (cf. (2.4)), we

arrive at (4.18) with sα :“
`

}Ds} ε1
˘´1

. On the other hand, given now ψ P K1, ψ ­“ 0, we define

ψr :“

#

|ψ|s´2ψ if ψ ­“ 0

0 if ψ “ 0
, which lies in LrpΩq and satisfies

ż

Ω
ψ ¨ ψr “ }ψ}s0,s;Ω ą 0. Thus,

bounding by below with ϕ :“ Drpψrq P K2, and proceeding similarly as for (4.18), we deduce (4.19)
and conclude the proof.

Before continuing with the continuous inf-sup conditions for the bilinear forms bi, i P
␣

1, 2
(

, we
now check the feasibility of the indexes employed so far, according to the different constraints that
have arisen along the analysis. In fact, from the preliminary discussion provided in Section 3.1, we
have the following initial ranges

#

l, j P p1,`8q and ρ, r P p2,`8q if n “ 2 ,

l, j P r3{2, 3s and ρ, r P r3, 6s if n “ 3 ,
(4.21)
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which, being added the request ρ ě r, equivalently l ě j, becomes

#

l P r2,`8q , j P p1, 2s , ρ P r4,`8q , r P p2, 4s if n “ 2 ,

l P r2, 3s , j P r3{2, 2s , ρ P r4, 6s , r P r3, 4s if n “ 3 .
(4.22)

Finally, imposing to r (and hence to s) the ranges required by Lemma 4.2, and guaranteeing that
s ě 2n

n`2 , we arrive at the final feasible choices

#

l P r2,`8q , j P p1, 2s , ρ P r4,`8q , ϱ P p1, 4{3s , r P p2, 4s , s P r4{3, 2q if n “ 2 ,

l “ 3 , j “ 3{2 , ρ “ 6 , ϱ “ 6{5 , r “ 3 , s “ 3{2 if n “ 3 .
(4.23)

Note that in (4.23) we have included the consequent ranges for ϱ :“ ρ
ρ´1 and s :“ r

r´1 as well.
However, we remark that the above indexes are not chosen independently, but once l (or its conjugate
j) is chosen, then all the remaining ones are fixed.

We now go back to the well-definedness of sT by establishing the continuous inf-sup conditions for
the bilinear forms bi, i P

␣

1, 2
(

. While the corresponding proofs are similar to those of [24, Lemma
2.7] and [9, Lemma 3.6], and very close to that of [23, Lemma 3.5], for sake of completeness we provide
below the main details of them.

Lemma 4.4. For each i P t1, 2u there exists a positive constant sβi such that

sup
ψPXi
ψ ­“0

bipψ, λq

}ψ}Xi

ě sβi }λ}Mi @λ P Mi . (4.24)

Proof. We begin by noticing that the values of r and s specified in (4.23) are compatible with the range
r 2n
n`1 ,

2n
n´1 s required by [23, Theorem 3.2], an existence result to be applied below. According to it, and

since the pairs
`

X1,M1

˘

and
`

X2,M2

˘

result from each other exchanging r and s, it suffices to prove
(4.24) either for i “ 1 or for i “ 2. In what follows we consider i “ 1, so that, given λ P M1 :“ LrpΩq,
we set λs :“ |λ|r´2 λ, which belongs to LspΩq and satisfies

ş

Ω λλs “ }λ}0,r;Ω }λs}0,s;Ω. Thus, a
straightforward application of the scalar version of [23, Theorem 3.2] yields the existence of a unique
z P W1,s

0 pΩq such that ∆z “ λs in Ω, z “ 0 on Γ. Moreover, the corresponding continuous dependence
result reads }z}1,s;Ω ď sCs }λs}0,s;Ω, where sCs is a positive constant depending on s. Next, defining
ϕ :“ ∇z P LspΩq, it follows that divpϕq “ λs in Ω, whence ϕ P Hspdivs; Ωq “: X1, and there holds
}ϕ}X1 “ }ϕ}s,divs;Ω ď

`

1 ` sCs

˘

}λs}0,s;Ω. In this way, bounding by below with ψ :“ ϕ P X1, and
bearing in mind the definition of b1 (cf. (3.21b)) along with the foregoing identities and estimates, we

arrive at (4.24) for i “ 1 with β1 :“
`

1` sCs

˘´1
. The proof for i “ 2 proceeds analogously, except for

the fact that, given λ P M2 :“ LspΩq, and since s ă 2, one needs to define λr :“

#

|λ|s´2 λ if λ ­“ 0 ,

0 if λ “ 0 .
Further details are omitted.

As a consequence of Lemmas 4.3 and 4.4, and the boundedness properties given by (3.22), (3.23),
(3.24), and (3.25), we are able to conclude now that the operator sT is well-defined.

Theorem 4.5. For each η P Q1 ˆ Q2 there exists a unique p sφ, sχq P X2 ˆ M1 solution to (4.2), and
hence one can define sTpηq :“ sφ P X2. Moreover, there exists a positive constant C

sT, depending only
on ε0, Cr, |Ω|, sα, and sβ2, such that

}sTpηq}X2 “ } sφ}X2 ď C
sT

!

}g}1{s,r;Γ ` }f}0,r;Ω ` }η}0,ρ;Ω

)

. (4.25)
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Proof. Given η P Q1 ˆ Q2, a straightforward application of [5, Theorem 2.1, Section 2.1] implies the
existence of a unique p sφ, sχq P X2 ˆ M1 solution to (4.2). In turn, the a priori estimate provided in [5,
Corollary 2.1, Section 2.1, eq. (2.15)] establishes

} sφ}X2 ď
1

sα
}F}X1

1
`

1
sβ2

´

1 `
}a}

sα

¯

}Gη}M1
2
, (4.26)

which, along with the aforementioned boundedness properties, yields (4.25) and ends the proof.

Similarly as for pT, and employing now [5, Corollary 2.1, Section 2.1, eq. (2.16)], we observe that
the a priori bound for the sχ component of the unique solution to (4.2) reduces to

}sχ}M1 ď
1
sβ1

´

1 `
}a}

sα

¯

}F}X1
1

`
}a}

sβ1 sβ2

´

1 `
}a}

sα

¯

}Gη}M1
2
,

which yields the same inequality as (4.25), but with a different constant, in particular depending
additionally on sβ1. Therefore, as before, we still denote the largest of them by C

sT, and simply say
that the right hand-side of (4.25) constitutes the a priori estimate for both sφ and sχ.

4.2.3 Well-definedness of the operator rT

In this section we employ the solvability result for perturbed saddle point formulations in Banach
spaces provided by [15, Theorem 3.4], along with the Banach–Nečas–Babuška Theorem (cf. [18,
Theorem 2.6]), to show that, given an arbitrary pϕ,vq P X2 ˆQ, (4.3) is well-posed for each i P

␣

1, 2
(

,
equivalently that Ti is well-defined. Since this result was already derived in [15, Theorem 4.2] as an
application of the abstract theory developed there, and more specifically of [15, Theorem 3.4], we just
discuss in what follows the main aspects of its proof.

To begin with, we introduce the bilinear forms A, Aϕ,v : pHi ˆ Qiq ˆ pHi ˆ Qiq Ñ R given by

A
`

pζi, ϑiq, pτi, ηiq
˘

:“ aipζi, τiq ` cipτi, ϑiq ` cipζi, ηiq ´ dipϑi, ηiq , (4.27)

and
Aϕ,v

`

pζi, ϑiq, pτi, ηiq
˘

:“ A
`

pζi, ϑiq, pτi, ηiq
˘

´ cϕ,vpτi, ϑiq , (4.28)

for all pζi, ϑiq, pτi, ηiq P Hi ˆ Qi, and realize that (4.3) can be re-stated as: Find p rσi, rξiq P Hi ˆ Qi

such that
Aϕ,vpprσi, rξiq, pτi, ηiqq “ Fipτiq ` Gipηiq @ pτi, ηiq P Hi ˆ Qi . (4.29)

In this way, the proof reduces to show first that the bilinear forms forming part of A satisfy the
hypotheses of [15, Theorem 3.4], and then to combine the consequence of this result with the effect of
the extra term given by cϕ,vp¨, ¨q, to conclude that Aϕ,v satisfies a global inf-sup condition.

Indeed, it is clear from (3.30a), (3.30c), and the upper bound of κi (cf. (2.4)) that ai and di are
symmetric and positive semi-definite, which proves the assumption i) of [15, Theorem 3.4]. Next,
bearing in mind the definitions of ci (cf. (3.30b)) and the spaces Hi and Qi (cf. (3.29)), and using
again that LρpΩq is isomorphic to the dual of LϱpΩq, we readily find that the null space Vi of the
operator induced by ci becomes

Vi :“
!

τi P Hi : divpτiq “ 0
)

, (4.30)

and thus

aipτi, τiq ě
1

sκ
}τi}

2
0,Ω “

1

sκ
}τi}

2
divϱ;Ω @ τi P Vi , (4.31)
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from which the assumption ii) of [15, Theorem 3.4], namely the continuous inf-sup condition for ai, is
clearly satisfied with constant rα :“ sκ´1.

In turn, while the continuous inf-sup condition for rci was already established in [24, Lemma 2.9]
(see also [15, Lemma 4.1]), for sake of clearness we provide below the main steps of its proof, which
follows similarly to the one yielding the continuous inf-sup condition for b in the present Section
4.2.1. More precisely, given ηi P Qi :“ LρpΩq, we set ηi,ϱ :“ |ηi|

ρ´2 ηi, which uses from (4.23)
that ρ ě 2, and notice that there hold ηi,ϱ P LϱpΩq and

ş

Ω ηi ηi,ϱ “ }ηi}0,ρ;Ω }ηi,ϱ}0,ϱ;Ω. Then,
we let ζi :“ ∇z P L2pΩq, where z P H1

0pΩq is the unique solution of the variational formulation:
ş

Ω∇z ¨∇w “ ´
ş

Ω ηi,ϱw for all w P H1
0pΩq, and deduce from the latter that divpζiq “ ηi,ϱ in Ω, which

yields ζi P Hi :“ Hpdivϱ; Ωq. In turn, denoting by cP the positive constant guaranteeing the Poincaré
inequality: cP }w}21,Ω ď |w|21,Ω @w P H1

0pΩ, and letting again iρ : H1pΩq Ñ LρpΩq be the continuous

injection, we find that }z}1,Ω ď
}iρ}

cP
}ηi,ϱ}0,ϱ;Ω, and hence }ζi}Hi ď

`

1 `
}iρ}

cP

˘

}ηi,ϱ}0,ϱ;Ω. In this way,
bounding by below with τi :“ ζi P Hi, recalling the definition of ci (cf. (3.30b)), and employing the
foregoing identities and estimates, we arrive at

sup
τiPHi
τi ­“0

cipτi, ηiq

}τi}Hi

ě rβ }ηi}Qi @ ηi P Qi , (4.32)

with rβ :“
`

1 `
}iρ}

cP

˘´1
, thus confirming the verification of assumption iii) of [15, Theorem 3.4].

Consequently, having shown that ai, ci, and di verify all the hypotheses of [15, Theorem 3.4], we
conclude thatA satisfies the global inf-sup condition, which means that there exists a positive constant
rαA, depending only on }ai}, }ci}, rα, and rβ, such that

sup
pτi,ηiqPHiˆQi

pτi,ηiq­“0

A
`

pζi, ϑiq, pτi, ηiq
˘

}pτi, ηiq}HiˆQi

ě rαA }pζi, ϑiq}HiˆQi @ pζi, ϑiq P Hi ˆ Qi . (4.33)

Moreover, invoking the upper bound of cϕ,v (cf. (3.31), (3.32)), it follows from (4.28) and (4.33) that

sup
pτi,ηiqPHiˆQi

pτi,ηiq­“0

Aϕ,v

`

pζi, ϑiq, pτi, ηiq
˘

}pτi, ηiq}HiˆQi

ě

!

rαA ´ }c}
´

}ϕ}0,r,Ω ` }v}0,r,Ω

¯)

}pζi, ϑiq}HiˆQi (4.34)

for all pζi, ϑiq P Hi ˆ Qi, from which, under the assumption that, say

}ϕ}0,r,Ω ` }v}0,r,Ω ď
rαA

2 }c}
, (4.35)

we conclude that

sup
pτi,ηiqPHiˆQi

pτi,ηiq­“0

Aϕ,v

`

pζi, ϑiq, pτi, ηiq
˘

}pτi, ηiq}HiˆQi

ě
rαA

2
}pζi, ϑiq}HiˆQi @ pζi, ϑiq P Hi ˆ Qi . (4.36)

Similarly, using the symmetry of A and (4.33), and assuming again (4.35), we find that

sup
pζi,ϑiqPHiˆQi

pζi,ϑiq­“0

Aϕ,v

`

pζi, ϑiq, pτi, ηiq
˘

}pζi, ϑiq}HiˆQi

ě
rαA

2
}pτi, ηiq}HiˆQi @ pτi, ηiq P Hi ˆ Qi . (4.37)

In this way, we are now in position of establishing that, for each i P
␣

1, 2
(

, (4.3) is well-posed,

which means, equivalently, that rTi is well-defined.
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Theorem 4.6. For each i P
␣

1, 2
(

, and for each pϕ,vq P X2 ˆ Q such that (4.35) holds, there exists

a unique prσi, rξiq P Hi ˆQi solution to (4.3), and hence one can define rTipϕ,vq :“ rξi P Qi. Moreover,
there exists a positive constant C

rT
, depending only on }iρ} and rαA, such that

}rTipϕ,vq}Qi “ }rξi}Qi ď }prσi, rξiq}HiˆQi ď C
rT

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

. (4.38)

Proof. Thanks to (4.36), (4.37), and the boundedness of Fi and Gi (cf. (3.31), (3.32)), the unique
solvability of (4.3) follows from a straightforward application of [18, Theorem 2.6]. In turn, the a
priori estimate given by [18, Theorem 2.6, eq. (2.5)] reads

}prσi, rξiq}HiˆQi ď
2

rαA

!

}Fi}H1
i

` }Gi}Q1
i

)

,

which, along with the upper bounds for }Fi}H1
i
and }Gi}Q1

i
derived from (3.31) and (3.32), yields (4.38)

with C
rT
:“

2

rαA

`

1 ` }iρ}
˘

.

We end this section by observing from the definition of rT (cf. (4.4)) and the priori estimates given
by (4.38) for each i P

␣

1, 2
(

, that

}rTpϕ,vq}Q1ˆQ2 :“
2
ÿ

i“1

}rTipϕ,vq}Qi ď C
rT

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

(4.39)

for each pϕ,vq P X2 ˆ Q satisfying (4.35).

4.3 Solvability analysis of the fixed-point scheme

Knowing that the operators pT, sT, rT, and hence T as well, are well defined, we now address the
solvability of the fixed-point equation (4.5). For this purpose, and in order to finally apply the Banach
Theorem, we first derive sufficient conditions under which T maps a closed ball of Q1 ˆQ2 into itself.
Thus, letting δ be an arbitrary radius to be properly chosen later on, we define

Wpδq :“
!

η :“ pη1, η2q P Q1 ˆ Q2 : }η}Q1ˆQ2 ď δ
)

. (4.40)

Then, given η P Wpδq, we have from the definition of T (cf. (4.5)) and the a priori estimate for rT (cf.
(4.39)) that, under the assumption (cf. (4.35))

Spηq :“ }sTpηq}0,r,Ω ` }pT
`

η, sTpηq
˘

}0,r,Ω ď
rαA

2 }c}
, (4.41)

there holds

}Tpηq}Q1ˆQ2 “ }rT
`

sTpηq, pT
`

η, sTpηq
˘˘

}Q1ˆQ2 ď C
rT

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

. (4.42)

In turn, applying the a priori estimates for pT (cf. (4.11)) and sT (cf. (4.25)), we find that

Spηq ď
`

1 ` C
pT

}η}
˘

}sTpηq} ` C
pT

!

}g}1{2,Γ ` }f}0,s,Ω

)

ď C0

`

1 ` }η}
˘

}η} ` C0

`

1 ` }η}
˘

!

}g}1{s,r;Γ ` }f}0,r;Ω

)

` C
pT

!

}g}1{2,Γ ` }f}0,s,Ω

)

,
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with C0 :“ max
␣

1, C
pT

(

C
sT, so that, bounding }η} by δ, we deduce that a sufficient condition for

(4.41) reduces to

C0

`

1 ` δ
˘

δ ` C0

`

1 ` δ
˘

!

}g}1{s,r;Γ ` }f}0,r;Ω

)

` C
pT

!

}g}1{2,Γ ` }f}0,s,Ω

)

ď
rαA

2 }c}
. (4.43)

For instance, defining

δ :“ min
!

1,
rαA

8C0}c}

)

, (4.44)

letting C1 :“ 2C0, and imposing

C1

!

}g}1{s,r;Γ ` }f}0,r;Ω

)

` C
pT

!

}g}1{2,Γ ` }f}0,s,Ω

)

ď
rαA

4 }c}
, (4.45)

it is easily seen that (4.43) holds. We have therefore proved the following result.

Lemma 4.7. Assume that δ and the data are sufficiently small so that there hold (4.43) and

C
rT

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

ď δ . (4.46)

Then, T
`

Wpδq
˘

Ď Wpδq. In particular, with the definition (4.44) of δ, and under the assumptions
(4.45) and (4.46), the same conclusion is attained.

We now address the continuity properties of pT, sT, rT, and hence of T. We begin with that of pT.

Lemma 4.8. There exists a positive constant L
pT
, depending only on ε0, |Ω|, α, β, and }a}, such that

}pTpη,ϕq ´ pTpϑ,ψq}Q ď L
pT

!

}η}0,ρ,Ω }ϕ´ψ}0,r,Ω ` }η ´ ϑ}0,ρ,Ω }ψ}0,r,Ω

)

(4.47)

for all pη,ϕq, pϑ,ψq P
`

Q1 ˆ Q2

˘

ˆ X2.

Proof. Given pη,ϕq, pϑ,ψq P
`

Q1 ˆ Q2

˘

ˆ X2, we let pTpη,ϕq :“ pu and pTpϑ,ψq :“ pw, where

ppσ, puq P HˆQ and ppζ, pwq P HˆQ are the corresponding unique solutions of (4.1). Then, subtracting
both systems, we obtain

appσ ´ pζ, τ q ` bpτ , pu ´ pwq “ 0 @ τ P H ,

bppσ ´ pζ,vq “
`

Gη,ϕ ´ Gϑ,ψ

˘

pvq @v P Q ,
(4.48)

which says that ppσ´ pζ, pu´ pwq P HˆQ is the unique solution of a system like (4.1), but with F “ 0 and
Gη,ϕ ´ Gϑ,ψ instead of just Gη,ϕ. Hence, similarly as for the derivation of (4.11), that is employing
[18, Theorem 2.34, eq. (2.30)] (see also (4.12)), we deduce that

}pTpη,ϕq ´ pTpϑ,ψq}Q “ }pu ´ pw}Q ď
}a}

β2

´

1 `
}a}

α

¯

}Gη,ϕ ´ Gϑ,ψ}Q1 . (4.49)

In turn, it is clear from (3.13d), and then subtracting and adding ψ to the factor ϕ in the first term,
that for each v P Q there holds

`

Gη,ϕ ´ Gϑ,ψ

˘

pvq “

ż

Ω
ε´1

!

`

η1 ´ η2
˘

ϕ´
`

ϑ1 ´ ϑ2

˘

ψ
)

¨ v

“

ż

Ω
ε´1

!

`

η1 ´ η2
˘ `

ϕ´ψ
˘

`
`

pη1 ´ ϑ1q ´ pη2 ´ ϑ2q
˘

ψ
)

¨ v ,
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from which, proceeding as for the boundedness of Gη,ϕ (cf. (3.15), (3.16)), that is employing the lower
bound of ε (cf. (2.4)), (3.1a), and the fact that } ¨ }0,Ω ď |Ω|pr´2q{2r} ¨ }0,r;Ω, we conclude that

}Gη,ϕ ´ Gϑ,ψ}Q1 ď ε´1
0 |Ω|pr´2q{2r

!

}η}0,ρ,Ω }ϕ´ψ}0,r,Ω ` }η ´ ϑ}0,ρ,Ω }ψ}0,r,Ω

)

. (4.50)

In this way, replacing (4.50) back into (4.49), we arrive at (4.47) and finish the proof.

The next result establishes the continuity of sT, whose proof follows similarly to that of Lemma 4.8.

Lemma 4.9. There exists a positive constant L
sT, depending only on |Ω|, sα, sβ2, and }a}, such that

}sTpηq ´ sTpϑq}X2 ď L
sT }η ´ ϑ}0,ρ;Ω @η, ϑ P Q1 ˆ Q2 . (4.51)

Proof. Given η, ϑ P Q1 ˆ Q2, we let sTpηq :“ sφ and sTpϑq :“ sϕ, where p sφ, sχq P X2 ˆ M1 and
p sϕ, sωq P X2 ˆM1 are the corresponding unique solutions of (4.2). Then, subtracting both systems, we
get

ap sφ´ sϕ,ψq ` b1pψ, sχ ´ sωq “ 0 @ψ P X1 ,

b2p sφ´ sϕ, λq “
`

Gη ´ Gϑ
˘

pλq @λ P M2 ,
(4.52)

which states that p sφ´ sϕ, sχ ´ sωq P X2 ˆ M1 is the unique solution of a problem like (4.2) with G “ 0
and Gη ´ Gϑ instead of Gη. In this way, proceeding as for the derivation of (4.25), which means
applying the a priori estimate given by [5, Corollary 2.1, Section 2.1, eq. (2.15)] (see also (4.26)), we
find that

}sTpηq ´ sTpϑq}X2 “ } sφ´ sϕ}X2 ď
1
sβ2

´

1 `
}a}

sα

¯

}Gη ´ Gϑ}M1
2
. (4.53)

Now, it is clear from (3.21d) that for each λ P M2 there holds

`

Gη ´ Gϑ
˘

pλq “ Gη´ϑpλq “ ´

ż

Ω
λ
␣

pη1 ´ ϑ1q ´ pη2 ´ ϑ2q
(

,

from which, applying Hölder’s inequality, as we did for the boundedness of Gη (cf. (3.22), (3.23)),
and using that } ¨ }0,r;Ω ď |Ω|pρ´rq{ρr } ¨ }0,ρ;Ω, we deduce that

}Gη ´ Gϑ}M1
2

ď |Ω|pρ´rq{ρr }η ´ ϑ}0,ρ;Ω . (4.54)

Finally, employing (4.54) in (4.53), we obtain (4.51) and conclude the proof.

It remains to prove the continuity of rT, which is provided by the following lemma.

Lemma 4.10. There exists a positive constant L
rT
, depending only on ε0, κ, rαA, and C

rT
, such that

}rTpϕ,vq ´ rTpψ,wq}Q1ˆQ2 ď L
rT

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ,Ω

)

}pϕ,vq ´ pψ,wq}X2ˆQ (4.55)

for all pϕ,vq, pψ,wq P X2 ˆ Q satisfying (4.35).

Proof. Given pϕ,vq and pψ,wq as indicated, we let, for each i P
␣

1, 2
(

, rTipϕ,vq :“ rξi P Qi and
rTipψ,wq :“ rϑi P Qi, where prσi, rξiq P Hi ˆ Qi and prζi, rϑiq P Hi ˆ Qi are the corresponding unique
solutions of (4.3), equivalently (cf. (4.29))

Aϕ,v

`

prσi, rξiq, pτi, ηiq
˘

“ Fipτiq ` Gipηiq @ pτi, ηiq P Hi ˆ Qi , (4.56)
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and
Aψ,w

`

prζi, rϑiq, pτi, ηiq
˘

“ Fipτiq ` Gipηiq @ pτi, ηiq P Hi ˆ Qi . (4.57)

It follows from (4.56) and (4.57), along with the definitions of the bilinear forms Aϕ,v (cf. (4.28)) and
cϕ,v (cf. (3.30f)), that

Aϕ,v

`

prσi, rξiq ´ prζi, rϑiq, pτi, ηiq
˘

“ Aϕ,v

`

prσi, rξiq, pτi, ηiq
˘

´ Aϕ,v

`

prζi, rϑiq, pτi, ηiq
˘

“ Aψ,w

`

prζi, rϑiq, pτi, ηiq
˘

´ Aϕ,v

`

prζi, rϑiq, pτi, ηiq
˘

“ cϕ´ψ,v´wpτi, rϑiq ,
(4.58)

so that applying the global inf-sup condition (4.36) to prσi, rξiq ´ prζi, rϑiq, and then using (4.58) and the
boundedness of cϕ,v (cf. (3.31), (3.32)), we conclude that

}rξi ´ rϑi}Qi ď }prσi, rξiq ´ prζi, rϑiq}HiˆQi ď
2 }c}

rαA

!

}ϕ´ψ}0,r;Ω ` }v ´ w}0,r;Ω

)

}rϑi}Qi .

Next, invoking the a priori bound (4.38) for }rϑi}Qi , the foregoing inequality yields

}rTipϕ,vq ´ rTipψ,wq}Qi ď
2 }c}C

rT

rαA

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

}pϕ,vq ´ pψ,wq}X2ˆQ ,

from which, summing over i P
␣

1, 2
(

, we arrive at (4.55) and end the proof.

Having proved Lemmas 4.8, 4.9, and 4.10, we now aim to derive the continuity property of the
fixed point operator T. To this end, given η, ϑ P Wpδq (cf. (4.40)), we first recall from the definition
of T (cf. (4.5)) and Theorem 4.6 that, in order to define Tpηq and Tpϑq, we need that the pairs
`

sTpηq, pTpη, sTpηqq
˘

and
`

sTpϑq, pTpϑ, sTpϑqq
˘

satisfy (4.35). Then, according to the discussion at the
beginning of the present section, we know that a sufficient condition for the latter is given by (4.43),
which we assume in what follows. Alternatively, and as indicated there as well, (4.44) and (4.45) are
in turn sufficient for (4.43).

Thus, under the aforementioned assumption on δ and the data, a direct application of (4.55) (cf.
Lemma 4.10) yields

}Tpηq ´ Tpϑq}Q1ˆQ2 “ }rT
`

sTpηq, pTpη, sTpηqq
˘

´ rT
`

sTpϑq, pTpϑ, sTpϑqq
˘

}Q1ˆQ2

ď L
rT

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ,Ω

)!

}sTpηq ´ sTpϑq}X2 ` }pTpη, sTpηqq ´ pTpϑ, sTpϑqq}Q

)

.
(4.59)

In addition, employing now (4.51) (cf. Lemma 4.9) and (4.47) (cf. Lemma 4.8), we obtain

}sTpηq ´ sTpϑq}X2 ď L
sT }η ´ ϑ}Q1ˆQ2 , (4.60)

and
}pTpη, sTpηqq ´ pTpϑ, sTpϑqq}Q

ď L
pT

!

}η}Q1ˆQ2 }sTpηq ´ sTpϑq}X2 ` }η ´ ϑ}Q1ˆQ2 }sTpϑq}X2

)

,
(4.61)

respectively, whereas the a priori estimate for sTpϑq (cf. (4.25), Theorem 4.5) states

}sTpϑq}X2 ď C
sT

!

}g}1{s,r;Γ ` }f}0,r;Ω ` }ϑ}Q1ˆQ2

)

. (4.62)
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In this way, using (4.60) in both (4.59) and (4.61), and then replacing the resulting (4.61) along with
(4.62) in (4.59), as well as recalling that }η}Q1ˆQ2 and }ϑ}Q1ˆQ2 are bounded by δ, we deduce the
existence of a positive constant LT, depending only on L

rT
, L

sT, LpT
, and C

sT, such that

}Tpηq ´ Tpϑq}Q1ˆQ2

ď LT

´

1 ` δ ` }g}1{s,r;Γ ` }f}0,r;Ω

¯

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ,Ω

)

}η ´ ϑ}Q1ˆQ2 ,
(4.63)

for all η, ϑ P Wpδq. We are thus in position to establish the main result of this section.

Theorem 4.11. In addition to the hypotheses of Lemma 4.7, that is (4.43) and (4.46), or alternatively
(4.44), (4.45), and (4.46), assume that

LT

´

1 ` δ ` }g}1{s,r;Γ ` }f}0,r;Ω

¯

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ,Ω

)

ă 1 . (4.64)

Then, the operator T has a unique fixed point ξ P Wpδq. Equivalently, the coupled problem (3.33)
has a unique solution pσ,uq P H ˆ Q, pφ, χq P X2 ˆ M1, and pσi, ξiq P Hi ˆ Qi, i P

␣

1, 2
(

, with
ξ :“ pξ1, ξ2q P Wpδq. Moreover, there hold the following a priori estimates

}pσ,uq}HˆQ ď C
pT

!

}g}1{2,Γ ` }f}0,s,Ω ` }ξ}0,ρ;Ω }φ}0,r;Ω

)

,

}pφ, χq}X2ˆM1 ď C
sT

!

}g}1{s,r;Γ ` }f}0,r;Ω ` }ξ}0,ρ;Ω

)

, and

}pσi, ξiq}HiˆQi ď C
rT

!

}gi}1{2,Γ ` }fi}0,ϱ,Ω

)

i P t1, 2u .

(4.65)

Proof. We first recall that the assumptions of Lemma 4.7 guarantee that T maps Wpδq into itself.
Then, bearing in mind the Lipschitz-continuity of T : Wpδq Ñ Wpδq (cf. (4.63)) and the assumption
(4.64), a straightforward application of the classical Banach theorem yields the existence of a unique
fixed point ξ P Wpδq of this operator, and hence a unique solution of (3.33). Finally, it is easy to see
that the a priori estimates provided by (4.11) (cf. Theorems 4.1), (4.25) (cf. Theorem 4.5), and (4.38)
(cf. Theorem 4.6) yield (4.65) and finish the proof.

5 The Galerkin scheme

We now introduce the Galerkin scheme of the fully mixed variational formulation (3.33), analyze its
solvability by applying a discrete version of the fixed point approach adopted in Section 4.1, and derive
the corresponding a priori error estimate.

5.1 Preliminaries

We first let Hh, Qh, Xi,h, Mi,h, Hi,h ,and Qi,h, i P t1, 2u, be arbitrary finite element subspaces of the
spaces H, Q, Xi, Mi, Hi, and Qi, i P t1, 2u, respectively. Hereafter, h denotes both the sub-index of
each subspace and the size of a regular triangulation Th of sΩ made up of triangles K (when n “ 2)
or tetrahedra K (when n “ 3) of diameter hK , so that h :“ max

␣

hK : K P Th
(

. Explicit finite
element subspaces satisfying the stability hypotheses to be introduced throughout the forthcoming
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analysis, will be defined later on in Section 6. Then, the Galerkin scheme associated with (3.33) reads:
Find pσh,uhq P Hh ˆ Qh, pφh, χhq P X2,h ˆ M1,h, and pσi,h, ξi,hq P Hi,h ˆ Qi,h, i P

␣

1, 2
(

, such that

apσh, τhq ` bpτh,uhq “ Fpτhq @ τ P Hh ,

bpσh,vhq “ Gξh,φh
pvhq @vh P Qh ,

apφh,ψhq ` b1pψh, χhq “ Fpψhq @ψh P X1,h ,

b2pφh, λhq “ Gξhpλhq @λh P M2,h ,

aipσi,h, τi,hq ` cipτi,h, ξi,hq ´ cφh,uh
pτi,h, ξi,hq “ Fipτi,hq @ τi,h P Hi,h ,

cipσi,h, ηi,hq ´ dipξi,h, ηi,hq “ Gipηi,hq @ ηi,h P Qi,h .

(5.1)

In what follows, we adopt the discrete version of the strategy employed in Section 4.1 to analyse
the solvability of (5.1). We now let pTh : pQ1,h ˆ Q2,hq ˆ X2,h Ñ Qh be the operator defined by

pThpηh,ϕhq :“ puh @ pηh,ϕhq P pQ1,h ˆ Q2,hq ˆ X2,h ,

where ppσh, puhq P Hh ˆQh is the unique solution (to be confirmed below) of the first two rows of (5.1)
with pηh,ϕhq instead of pξh,φhq, that is

appσh, τhq ` bpτh, puhq “ Fpτhq @ τh P Hh ,

bppσh,vhq “ Gηh,ϕh
pvhq @vh P Qh .

(5.2)

In turn, we let sTh : Q1,h ˆ Q2,h Ñ X2,h be the operator given by

sThpηhq :“ sφh @ηh P Q1,h ˆ Q2,h ,

where p sφh, sχhq P X2,h ˆ M1,h is the unique solution (to be confirmed below) of the third and fourth
rows of (5.1) with ηh instead of ξh, that is

ap sφh,ψhq ` b1pψh, sχhq “ Fpψhq @ψh P X1,h ,

b2p sφh, λhq “ Gηhpλhq @λh P M2,h .
(5.3)

Similarly, for each i P
␣

1, 2
(

, we let rTi,h : X2,h ˆ Qh Ñ Qi,h be the operator defined by

rTi,hpϕh,vhq :“ rξi,h @ pϕh,vhq P X2,h ˆ Qh ,

where prσi,h, rξi,hq P Hi,h ˆ Qi,h is the unique solution (to be confirmed below) of the fifth and sixth
rows of (5.1) with pϕh,vhq instead of pφh,uhq, that is

aiprσi,h, τi,hq ` cipτi,h, rξi,hq ´ cϕh,vh
pτi,h, rξi,hq “ Fipτi,hq @ τi,h P Hi,h ,

ciprσi,h, ηi,hq ´ diprξi,h, ηi,hq “ Gipηi,hq @ ηi,h P Qi,h ,
(5.4)

so that we can define the operator rTh : X2,h ˆ Qh Ñ pQ1,h ˆ Q2,hq as:

rThpϕh,vhq :“
`

rT1,hpϕh,vhq, rT2,hpϕh,vhq
˘

“ pξ1,h, ξ2,hq “: rξh @ pϕh,vhq P X2,h ˆ Qh . (5.5)

Finally, defining the operator Th : pQ1,h ˆ Q2,hq Ñ pQ1,h ˆ Q2,hq as

Tpηhq :“ rTh

`

sThpηhq, pTh

`

ηh, sThpηhq
˘˘

@ηh P Q1,h ˆ Q2,h , (5.6)

we observe that solving (5.1) is equivalent to seeking a fixed point of Th, that is: Find ξh P Q1,h ˆQ2,h

such that
Thpξhq “ ξh . (5.7)

24



5.2 Discrete solvability analysis

In this section we proceed analogously to Sections 4.2 and 4.3 and establish the well-posedness of the
discrete system (5.1) by means of the solvability study of the equivalent fixed point equation (5.7). In
this regard, we emphasize in advance that, being the respective analysis very similar to that developed
in the aforementioned sections, here we simply collect the main results and provide selected details of
the corresponding proofs.

According to the above, we first aim to prove that the discrete operators pTh, sTh, and rTi,h, i P
␣

1, 2
(

,

and hence rTh and Th, are all well-defined, which reduces, equivalently, to show that the problems
(5.2), (5.3), and (5.4) are well-posed. To this end, we now apply the discrete versions of [18, Theorem
2.34], [5, Theorem 2.1, Section 2.1], and [15, Theorem 3.4], which are given by [18, Proposition 2.42],
[5, Corollary 2.2, Section 2.2], and [15, Theorem 3.5], respectively. More precisely, following similar
approaches from related works (see, e.g. [9, Section 4.2]), our analysis throughout the rest of this
section is based on suitable hypotheses that need to be satisfied by the finite element subspaces
utilized in (5.1), which are split according to the requirements of the associated decoupled problems.
Explicit examples of discrete spaces verifying these assumptions will be specified later on in Section 6.

We begin by addressing the well-definedness of pTh, for which we let Vh be the discrete kernel of b,
that is

Vh :“
!

τh P Hh : bpτh,vhq “ 0 @vh P Qh

)

, (5.8)

and assume that

(H.1) there holds div
`

Hh

˘

Ď Qh, and

(H.2) there exists a positive constant βd, independent of h, such that

sup
τhPHh
τh ­“0

bpτh,vhq

}τh}H
ě βd }vh}Q @vh P Qh . (5.9)

Then, according to the definition of b (cf. (3.13b)), it follows from (5.8) and (H.1) that

Vh :“
!

τh P Hh : divpτhq “ 0
)

, (5.10)

which says that Vh is contained in the continuous kernel V (cf. (4.7)), and hence the discrete version
of (4.9) is automatically satisfied, that is

apτh, τhq ě αd }τ }2divs;Ω @ τh P Vh , (5.11)

with αd “ α :“ Cs{µ. Recall here that Cs is the constant provided by inequality (4.8) with t “ s.
In this way, it is clear from (5.11) that a satisfies the hypotheses given by [18, Proposition 2.42, eq.
(2.35)] with the constant αd, whereas (H.2) states that b fulfills [18, Proposition 2.42, eq. (2.36)]
with the constant βd. We are thus in position to establish next the following result.

Theorem 5.1. For each pηh,ϕhq P pQ1,h ˆ Q2,hq ˆ X2,h there exists a unique ppσh, puhq P Hh ˆ Qh

solution to (5.2), and hence one can define pThpηh,ϕhq :“ puh P Qh. Moreover, there exists a positive
constant C

pT,d
, depending only on µ, }ir}, ε0, |Ω|, αd, and βd, and hence independent of pηh,ϕhq, such

that
}pThpηh,ϕhq}Q “ }puh}Q ď C

pT,d

!

}g}1{2,Γ ` }f}0,s,Ω ` }ηh}0,ρ;Ω }ϕh}0,r;Ω

)

. (5.12)

Proof. Given pηh,ϕhq P pQ1,h ˆQ2,hq ˆX2,h, the existence of a unique solution to (5.2) follows from a
straightforward application of [18, Proposition 2.42]. In turn, the corresponding a priori bound from
[18, Theorem 2.34, eq. (2.30)] and the boundedness properties of F and Gηh,ϕh

imply (5.12).
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Similarly as observed for the continuous operator pT, we remark here that the right-hand side of
(5.12) can also be assumed as the respective a priori estimate for pσh.

Furthermore, for the well-definedness of sTh, we need to introduce the discrete kernels of b1 and b2,
namely

K1,h :“
!

ψh P X1,h : b1pψh, λhq “ 0 @λh P M1,h

)

, (5.13)

and
K2,h :“

!

ψh P X2,h : b2pψh, λhq “ 0 @λh P M2,h

)

, (5.14)

respectively, and consider the following assumptions

(H.3) there exists a positive constant sαd, independent of h, such that

sup
ψhPK1,h

ψh ­“0

apϕh,ψhq

}ψh}X1

ě sαd }ϕh}X2 @ϕh P K2,h , and (5.15a)

sup
ϕhPK2,h

apϕh,ψhq ą 0 @ψh P K1,h, ψh ­“ 0 . (5.15b)

(H.4) for each i P
␣

1, 2
(

there exists a positive constant sβi,d, independent of h, such that

sup
ψhPXi,h

ψh ­“0

bipψh, λhq

}ψh}Xi

ě sβi,d }λh}Mi @λh P Mi,h . (5.16)

As a consequence of (H.3) and (H.4) we provide next the discrete version of Theorem 4.5.

Theorem 5.2. For each ηh P Q1,h ˆ Q2,h there exists a unique p sφh, sχhq P X2,h ˆ M1,h solution to
(5.3), and hence one can define sThpηhq :“ sφh P X2,h. Moreover, there exists a positive constant C

sT,d,

depending only on ε0, Cr, |Ω|, sαd, and sβ2,d, such that

}sThpηhq}X2 “ } sφh}X2 ď C
sT,d

!

}g}1{s,r;Γ ` }f}0,r;Ω ` }ηh}0,ρ;Ω

)

. (5.17)

Proof. Given ηh P Q1,h ˆ Q2,h, a direct application of [5, Corollary 2.2, Section 2.2] implies the
existence of a unique solution to (5.3), whereas the a priori estimate provided in [5, Corollary 2.2, eq.
(2.24)] and the boundedness properties of F and Gηh yield (5.17).

Analogously as explained for the continuous operator sT, here we can also assume that, except for
a constant C

sT,d depending additionally on sβ1,d, the a priori estimate for sχh, which follows now from
[5, Corollary 2.2, eq. (2.25)], is also given by the right-hand side of (5.17).

It remains to prove the well-definedness of rTh :“ prT1,h, rT2,hq, for which we first observe that, being
ai and ci symmetric and positive semi-definite in the whole spaces Hi and Qi, they certainly keep
these properties in Hi,h and Qi,h, respectively, so that the assumption i) of [15, Theorem 3.5] is clearly
satisfied. Next, given i P

␣

1, 2
(

, we let Vi,h be the discrete kernel of ci, that is

Vi,h :“
!

τi,h P Hi,h : cipτi,h, ηi,hq “ 0 @ ηi,h P Qi,h

)

, (5.18)

and consider the hypotheses

(H.5) for each i P
␣

1, 2
(

there holds div
`

Hi,h

˘

Ď Qi,h, and
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(H.6) there exists a positive constant rβd ą 0, independent of h, such that

sup
τi,hPHi,h

τi,h ­“0

cipτi,h, ηi,hq

}τi,h}Hi

ě rβd }ηi,h}Qi @ ηi,h P Qi,h . (5.19)

It follows from (5.18), the definition of ci (cf. (3.30b)), and (H.5) that

Vi,h :“
!

τi,h P Hi,h : divpτi,hq “ 0
)

, (5.20)

whence, similarly to the case of pTh, Vi,h is contained in the continuous kernel Vi (cf. (4.30)) of ci,
thus yielding the discrete analogue of (4.31), that is

aipτi,h, τi,hq ě
1

sκ
}τi,h}2divϱ;Ω @ τi,h P Vi,h . (5.21)

In this way, it is clear from (5.21) that ai satisfies the hypothesis ii) of [15, Theorem 3.5] with the
constant rαd :“ sκ´1, whereas (H.6) constitutes itself the corresponding assumption iii). Consequently,
a straightforward application of [15, Theorem 3.5] implies the discrete global inf-sup condition for A
(cf. (4.27)) with a positive constant rαA,d depending only on }ai}, }ci}, rαd, and rβd, and thus the same
property is shared by Aϕh,vh

for each pϕh,vhq P X2,h ˆ Qh satisfying the discrete version of (4.35),
that is

}ϕh}0,r,Ω ` }vh}0,r,Ω ď
rαA,d

2 }c}
. (5.22)

We are now in position of establishing the well-definedness of rTi,h for each i P
␣

1, 2
(

.

Theorem 5.3. Given i P
␣

1, 2
(

and pϕh,vhq P X2,h ˆ Qh such that (5.22) holds, there exists a

unique prσi,h, rξi,hq P Hi,h ˆQi,h solution to (5.4), and hence one can define rTi,hpϕh,vhq :“ rξi,h P Qi,h.
Moreover, there exists a positive constant C

rT,d
, depending only on }iρ} and rαA,d, such that

}rTi,hpϕh,vhq}Qi “ }rξi,h}Qi ď }prσi,h, rξi,hq}HiˆQi ď C
rT,d

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

. (5.23)

Proof. It reduces to a direct application of [18, Theorem 2.22], whose corresponding a priori estimate,
yielding (5.23), makes use of the boundedness of Fi and Gi (cf. (3.31) and (3.32)).

Analogously to the continuous case, it follows from the definition of rTh (cf. (5.5)) and the a priori
estimates given by (5.23) for each i P

␣

1, 2
(

, that

}rThpϕh,vhq}Q1ˆQ2 :“
2
ÿ

i“1

}rTi,hpϕh,vhq}Qi ď C
rT,d

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

(5.24)

for each pϕh,vhq P X2,h ˆ Qh satisfying (5.22).

Having established that the discrete operators pTh, sTh, rTh, and hence Th (under the constraint
imposed by (5.22)), are all well defined, we now proceed as in Section 4.3 to address the solvability of
the corresponding fixed-point equation (5.7). Then, letting δd be an arbitrary radius, we set

Wpδdq :“
!

ηh :“ pη1,h, η2,hq P Q1,h ˆ Q2,h : }ηh}Q1ˆQ2 ď δd

)

, (5.25)
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and, reasoning analogously to the derivation of Lemma 4.7 (cf. beginning of Section 4.3), we deduce
that Th maps Wpδdq into itself under the discrete versions of (4.43) and (4.46), which, denoting
C0,d :“ max

␣

1, C
pT,d

(

C
sT,d, are given, respectively, by

C0,d

`

1 ` δd
˘

δd ` C0,d

`

1 ` δd
˘

!

}g}1{s,r;Γ ` }f}0,r;Ω

)

` C
pT,d

!

}g}1{2,Γ ` }f}0,s,Ω

)

ď
rαA,d

2 }c}
(5.26)

and

C
rT,d

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

ď δd . (5.27)

Alternatively, the same conclusion is attained if, instead of (5.26), we define

δd :“ min
!

1,
rαA,d

8C0,d}c}

)

, (5.28)

and, letting C1,d :“ 2C0,d, impose

C1,d

!

}g}1{s,r;Γ ` }f}0,r;Ω

)

` C
pT,d

!

}g}1{2,Γ ` }f}0,s,Ω

)

ď
rαA,d

4 }c}
. (5.29)

Note, however, that only (5.26) is required for Th to be well-defined. Furthermore, employing analogue
arguments to those utilized in the proofs of Lemmas 4.8, 4.9, and 4.10, we are able to show the
continuity properties of pTh, sTh, and rTh, that is the discrete versions of (4.47), (4.51), and (4.55), which
are exactly as the latter, but with corresponding constants denoted L

pT,d
, L

sT,d, and L
rT,d

. Therefore,

following an analogue procedure to the one that yielded (4.63), we deduce that, under the assumption
(5.26), there exists a positive constant LT,d, depending only on L

rT,d
, L

sT,d, LpT,d
, and C

sT,d, such that

}Thpηhq ´ Thpϑhq}Q1ˆQ2

ď LT,d

´

1 ` δd ` }g}1{s,r;Γ ` }f}0,r;Ω

¯

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ,Ω

)

}ηh ´ ϑh}Q1ˆQ2 ,
(5.30)

for all ηh, ϑh P Wpδdq.

Consequently, we can establish next the main result of this section.

Theorem 5.4. Assume that δd and the data are sufficiently small so that (5.26) and (5.27) are
satisfied, or alternatively that there holds (5.28), (5.29), and (5.27). Then, the operator Th has a
fixed point ξh P Wpδdq. Equivalently, the coupled problem (5.1) has a solution pσh,uhq P Hh ˆ Qh,
pφh, χhq P X2,h ˆ M1,h, and pσi,h, ξi,hq P Hi,h ˆ Qi,h, i P

␣

1, 2
(

, with ξh :“ pξ1,h, ξ2,hq P Wpδdq.
Moreover, there hold the following a priori estimates

}pσh,uhq}HˆQ ď C
pT,d

!

}g}1{2,Γ ` }f}0,s,Ω ` }ξh}0,ρ;Ω }φh}0,r;Ω

)

,

}pφh, χhq}X2ˆM1 ď C
sT,d

!

}g}1{s,r;Γ ` }f}0,r;Ω ` }ξh}0,ρ;Ω

)

, and

}pσi,h, ξi,hq} ď C
rT,d

!

}gi}1{2,Γ ` }fi}0,ϱ,Ω

)

i P t1, 2u .

(5.31)

In addition, under the extra assumption

LT,d

´

1 ` δd ` }g}1{s,r;Γ ` }f}0,r;Ω

¯

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ,Ω

)

ă 1 , (5.32)

the aforementioned solutions of (5.7) and (5.1) are unique.
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Proof. As previously observed, the fact that Th maps Wpδdq into itself is consequence of (5.26) and
(5.27), or alternatively of (5.28), (5.29), and (5.27). Then, the continuity of Th (cf. (5.30)) and
Brouwer’s theorem (cf. [12, Theorem 9.9-2]) imply the existence of solution of (5.7), and hence of
(5.1). In turn, under the additional hypothesis (5.32), the Banach fixed point theorem guarantees the
uniqueness of solution. In either case, (4.11), (4.25), and (4.38) yield the a priori estimates (5.31) and
conclude the proof.

5.3 A priori error analysis

In this section we consider arbitrary finite element subspaces satisfying the assumptions specified in
Section 5.2, and establish the Céa estimate for the Galerkin error

}pσ,uq ´ pσh,uhq}HˆQ ` }pφ, χq ´ pφh, χhq}X2ˆM1 `

2
ÿ

i“1

}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi , (5.33)

where
`

pσ,uq, pφ, χq, pσi, ξiq
˘

P
`

H ˆ Q
˘

ˆ
`

X2 ˆ M1

˘

ˆ
`

Hi ˆ Qi

˘

, i P
␣

1, 2
(

, is the unique solution
of (3.33), and

`

pσh,uhq, pφh, χhq, pσi,h, ξi,hq
˘

P
`

Hh ˆ Qh

˘

ˆ
`

X2,h ˆ M1,h

˘

ˆ
`

Hi,h ˆ Qi,h

˘

, i P
␣

1, 2
(

,
is a solution of (5.1). We proceed as in previous related works (see, e.g. [9]) by applying suitable
Strang-type estimates to the pairs of associated continuous and discrete schemes arising from (3.33)
and (5.1) after splitting them according to the three decoupled equations. Throughout the rest of this
section, given a subspace Zh of an arbitrary Banach space

`

Z, } ¨ }Z
˘

, we set

dist
`

z, Zh

˘

:“ inf
zhPZh

}z ´ zh}Z @ z P Z .

We begin the analysis by considering the first two rows of (3.33) and (5.1), so that, employing the
estimates provided by [5, Proposition 2.1, Corollary 2.3, Theorem 2.3], we deduce the existence of a
positive constant pc, independent of h, such that

}pσ,uq ´ pσh,uhq}HˆQ ď pc
!

distpσ,Hhq ` distpu,Qhq ` }Gξ,φ ´ Gξh,φh
}Q1

h

)

. (5.34)

Thus, proceeding analogously to the derivation of (4.50), we readily obtain

}Gξ,φ ´ Gξh,φh
}Q1

h
ď ε´1

0 |Ω|pr´2q{2r
!

}ξ}0,ρ,Ω }φ´φh}0,r,Ω ` }φh}0,r,Ω }ξ ´ ξh}0,ρ,Ω

)

, (5.35)

which, substituted back in (5.34), yields

}pσ,uq ´ pσh,uhq}HˆQ ď c
pT

!

distpσ,Hhq ` distpu,Qhq

` }ξ}0,ρ,Ω }φ´φh}0,r,Ω ` }φh}0,r,Ω }ξ ´ ξh}0,ρ,Ω

)

,
(5.36)

with c
pT
:“ pc max

␣

1, ε´1
0 |Ω|pr´2q{2r

(

.

Next, employing the same estimates from [5, Proposition 2.1, Corollary 2.3, Theorem 2.3] to the
context given by the third and fourth rows of (3.33) and (5.1), we find that there exists a positive
constant sc, independent of h, such that

}pφ, χq ´ pφh, χhq}X2ˆM1 ď sc
!

distpφ,X2,hq ` distpχ,M1,hq ` }Gξ ´ Gξh}M1
2,h

)

. (5.37)

In turn, proceeding as for the deduction of (4.54), we obtain

}Gξ ´ Gξh}M1
2,h

ď |Ω|pρ´rq{ρr }ξ ´ ξh}0,ρ;Ω , (5.38)
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which, along with (5.37), gives

}pφ, χq ´ pφh, χhq}X2ˆM1 ď c
sT

!

distpφ,X2,hq ` distpχ,M1,hq ` }ξ ´ ξh}0,ρ;Ω

)

, (5.39)

with c
sT :“ sc max

␣

1, |Ω|pρ´rq{ρr
(

.

Furthermore, we now focus on the last two rows of (3.33) and (5.1), with the terms cφ,upτi, ξiq and
cφh,uh

pτi,h, ξi,hq being considered as part of the respective functionals on the right-hand side. In this
way, applying the estimate from [18, Lemma 2.27], we conclude that there exists a positive constant
rc, independent of h, such that

}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi

ď rc
!

distpσi,Hi,hq ` distpξi,Qi,hq ` }cφ,up¨, ξiq ´ cφh,uh
p¨, ξi,hq}H1

i,h

)

.
(5.40)

Then, subtracting and adding ξi,h to the second component of cφ,up¨, ξiq, making use of the triangle
inequality, bearing in mind the definition of cϕ,v (cf. (3.30f)), and employing its boundedness property
(cf. (3.31), (3.32)), we get

}cφ,up¨, ξiq ´ cφh,uh
p¨, ξi,hq}H1

i,h
ď }cφ,up¨, ξi ´ ξi,hq}H1

i,h
` }cφ´φh,u´uh

p¨, ξi,hq}H1
i,h

ď }c}
!

`

}φ}0,r;Ω ` }u}0,r;Ω
˘

}ξi ´ ξi,h}0,ρ;Ω ` }ξi,h}0,ρ;Ω
`

}φ´φh}0,r;Ω ` }u ´ uh}0,r;Ω
˘

)

,

which, jointly with (5.40), and summing over i P
␣

1, 2
(

, imply

2
ÿ

i“1

}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi ď c
rT

!

2
ÿ

i“1

`

distpσi,Hi,hq ` distpξi,Qi,hq
˘

`
`

}φ}0,r;Ω ` }u}0,r;Ω
˘

}ξ ´ ξh}0,ρ;Ω

` }ξh}0,ρ;Ω
`

}φ´φh}0,r;Ω ` }u ´ uh}0,r;Ω
˘

)

,

(5.41)

with c
rT
:“ rc max

␣

1, }c}
(

.

For the rest of the analysis we introduce the partial error

E :“ }pσ,uq ´ pσh,uhq}HˆQ `

2
ÿ

i“1

}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi ,

and suitably combine the estimates (5.36), (5.39), and (5.41). More precisely, employing the right-hand
side of (5.39) to bound }φ´φh}0,r;Ω in (5.36) and (5.41), adding the resulting inequalities, performing
some algebraic manipulations, and then utilizing the a priori bounds for }φ}0,r;Ω, }φh}0,r;Ω, }ξ}0,ρ;Ω,
}ξh}0,ρ;Ω, and }u}0,r;Ω provided by Theorems 4.11 and 5.4, we find that there exists a positive constant
Ce, depending on c

pT
, c

sT, crT, δ, δd, CpT
, C

sT, CrT
, C

sT,d, and C
rT,d

, and hence independent of h, such
that

E ď Ce

!

dist
`

pσ,uq,Hh ˆ Qh

˘

` dist
`

pφ, χq,X2,h ˆ M1,h

˘

`

2
ÿ

i“1

dist
`

pσi, ξiq,Hi,h ˆ Qi,h

˘

)

` Ce

!

}g}1{2,Γ ` }f}0,s,Ω ` }g}1{s,r;Γ ` }f}0,r;Ω `

2
ÿ

i“1

`

}gi}1{2,Γ ` }fi}0,ϱ,Ω
˘

)

E .

(5.42)

Consequently, we are in position to establish the announced Céa estimate.
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Theorem 5.5. In addition to the hypotheses of Theorems 4.11 and 5.4, assume that

Ce

!

}g}1{2,Γ ` }f}0,s,Ω ` }g}1{s,r;Γ ` }f}0,r;Ω `

2
ÿ

i“1

`

}gi}1{2,Γ ` }fi}0,ϱ,Ω
˘

)

ď
1

2
. (5.43)

Then, there exists a positive constant C, independent of h, such that

}pσ,uq ´ pσh,uhq}HˆQ ` }pφ, χq ´ pφh, χhq}X2ˆM1 `

2
ÿ

i“1

}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi

ď C
!

dist
`

pσ,uq,Hh ˆ Qh

˘

` dist
`

pφ, χq,X2,h ˆ M1,h

˘

`

2
ÿ

i“1

dist
`

pσi, ξiq,Hi,h ˆ Qi,h

˘

)

.

(5.44)

Proof. Under the assumption (5.43), the a priori estimate for E follows from (5.42), which, along with
(5.39), yield (5.44) and ends the proof.

We end this section by remarking that (2.7) suggests the following postprocessed approximation
for the pressure p

ph “ ´
1

n
trpσhq , (5.45)

for which it is easy to show that

}p ´ ph}0,Ω ď
1

?
n

}σ ´ σh}0,Ω . (5.46)

6 Specific finite element subspaces

In this section we define explicit finite element subspaces satisfying the hypotheses (H.1) - (H.6) that
were introduced in Section 5.2 for the well posedness of the Galerkin scheme (5.1), and provide the
corresponding rates of convergence.

6.1 Preliminaries

In what follows we make use of the notations introduced at the beginning of Section 5.1. Thus, given
an integer k ě 0, for each K P Th we let PkpKq and PkpKq be the spaces of polynomials of degree
ď k defined on K and its vector version, respectively. Similarly, letting x be a generic vector in Rn,
RTkpKq :“ PkpKq ` PkpKqx and RTkpKq stand for the local Raviart-Thomas space of order k
defined on K and its associated tensor counterpart. In addition, we let PkpThq, PkpThq, RTkpThq and
RTkpThq be the corresponding global versions of PkpKq, PkpKq, RTkpKq and RTkpKq, respectively,
that is

PkpThq :“
!

vh P L2pΩq : vh|K P PkpKq @K P Th
)

,

PkpThq :“
!

vh P L2pΩq : vh|K P PkpKq @K P Th
)

,

RTkpThq :“
!

τh P Hpdiv; Ωq : τh|K P RTkpKq @K P Th
)

,

and
RTkpThq :“

!

τh P Hpdiv; Ωq : τh|K P RTkpKq @K P Th
)

.
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We notice here that for each t P p1,`8q there hold the inclusions PkpThq Ď LtpΩq, PkpThq Ď LtpΩq,
RTkpThq Ď Hpdivt; Ωq, RTkpThq Ď Htpdivt; Ωq, and RTkpThq Ď Hpdivt; Ωq, which are employed
below to introduce our specific finite element subspaces. Indeed, we now set

Hh :“ RTkpThq X H0pdivs; Ωq , Qh :“ PkpThq , Hi,h :“ RTkpThq , Qi,h :“ PkpThq ,

X2,h :“ RTkpThq , M1,h :“ PkpThq , X1,h :“ RTkpThq , and M2,h :“ PkpThq .
(6.1)

6.2 Verification of the hypotheses (H.1) - (H.6)

We begin by observing from (6.1) that (H.1) is trivially satisfied, whereas (H.2) was proved in [13,
Lemma 5.5] (see, also, [7, Lemma 4.3]) for the particular case given by r “ 4 and s “ 4{3. In turn,
a vector version of (H.2) was established in [24, Lemma 4.5] for s P p1, 2q in 2D (with local notation
there given by ϱ instead of s). In both cases, the preliminary result provided by [13, Lemma 5.4]
plays a key role in the respective proofs. While we could simply say, at least in 2D, that (H.2) follows
basically from a direct extension of [24, Lemma 4.5], we provide its explicit proof below for sake of
completeness. To this end, following [24, Section 4.1], we now introduce for each t P p1,`8q the space

Ht :“
!

τ P Htpdivt; Ωq Y Hpdivt; Ωq : τ |K P W1,tpKq @K P Th
)

,

and let Πk
h : Ht Ñ RTkpThq be the global Raviart-Thomas interpolator (cf. [6, Section 2.5]). Then,

we recall from [6, Proposition 2.5.2 and eq. (2.5.27)] the commuting diagram property

div
`

Πk
hpτ q

˘

“ Pk
h

`

divpτ
˘˘

@ τ P Ht , (6.2)

where Pk
h : L1pΩq Ñ PkpThq is the projector defined, for each v P L1pΩq, as the unique element

Pk
hpvq P PkpThq such that

ż

Ω
Pk
hpvq qh “

ż

Ω
v qh @ qh P PkpThq . (6.3)

In turn, it follows from [18, Proposition 1.135] (see, also, [9, eq. (A.5)]) that there exists a positive
constant CP , independent of h, such that for each t P p1,`8q there holds

}Pk
hpvq}0,t;Ω ď CP }v}0,t;Ω @ v P LtpΩq . (6.4)

On the other hand, while here we could use again [13, Lemma 5.4], we prefer to resort to the slightly
more general result provided by [9, Lemma A.2], thus giving a greater visibility to it, which establishes
that, given an integer l such that 1 ď l ď k ` 1, and given t, p P p1,`8q, such that p ď t ď

np
n´p if

p ă n, or p ď t ă `8 if p “ n, there exists a positive constant C, independent of h, such that

}τ ´ Πk
hpτ q}0,t;Ω ď C h

l`n
t

´n
p |τ |l,p;Ω @ τ P Wl,ppΩq . (6.5)

Note that for the first set of constraints on t and p, there holds n
t ´ n

p ě ´1, which yields l` n
t ´ n

p ě 0,
whereas for the second one, there holds l ` n

t ´ n
p “ l ´ 1 ` n

t ě n
t , thus proving that in any case the

power of h in (6.5) is non-negative. In this way, it follows from (6.5) that, for l “ 1, and under the
specified ranges of t and p, there exists a positive constant CΠ, independent of h, such that (cf. [9,
Lemma A.3])

}Πk
hpτ q}0,t;Ω ď CΠ }τ }1,p;Ω @ τ P W1,ppΩq . (6.6)

In particular, for p ă n and t “ 2, the inequality t ď
np
n´p becomes p ě 2n

n`2 , so that for the resulting

range of p, that is p P
“

2n
n`2 , 2

˘

in 2D, and p P
“

2n
n`2 , 2

‰

in 3D, we obtain

}Πk
hpτ q}0,Ω ď CΠ }τ }1,p;Ω @ τ P W1,ppΩq . (6.7)
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Analogue identities and inequalities to those stated above are valid with the tensor and vector versions
of Πk

h and Pk
h , which are denoted by Πk

h and Pk
h, respectively.

We are now in position to prove that (H.2) holds.

Lemma 6.1. Under the ranges for r and s specified by (4.23), there exists a positive constant βd,
independent of h, such that

sup
τhPHh
τh ­“0

ż

Ω
vh ¨ divpτhq

}τh}divs;Ω
ě βd }vh}0,r;Ω @vh P Qh , (6.8)

Proof. Given vh P Qh, vh ­“ 0, we set vh,s :“ |vh|r´2 vh, which belongs to LspΩq, and notice that

ż

Ω
vh ¨ vh,s “ }vh}0,r;Ω }vh,s}0,s;Ω . (6.9)

Next, we let O be a bounded convex polygonal domain that contains sΩ, and define

g :“

#

vh,s in Ω ,

0 in OzsΩ ,
.

It is readily seen that g P LspOq and }g}0,s;O “ }vh,s}0,s;Ω. Then, applying the elliptic regularity

result provided by [20, Corollary 1], we deduce that there exists a unique z P W2,spOq X W1,s
0 pOq

such that: ∆z “ g in O, z “ 0 on BO. Moreover, there exists a positive constant Creg, depending
only on O, such that

}z}2,s;O ď Creg }g}0,s;O “ Creg }vh,s}0,s;Ω . (6.10)

Hence, defining ζ :“ ∇z|Ω P W1,spΩq, it follows that divpζq “ vh,s in Ω, and, according to (6.10),

}ζ}1,s;Ω ď }z}2,s;O ď Creg }vh,s}0,s;Ω . (6.11)

Now, since the identity tensor I clearly belongs to RTkpThq, we can let ζh be theH0pdivs; Ωq-component
(cf. (3.10)) of Πk

hpζq, so that ζh P Hh. In this way, employing the analogue of (6.2), we find that

divpζhq “ div
`

Πk
hpζq

˘

“ Pk
h

`

divpζq
˘

“ Pk
h

`

vh,sq , (6.12)

which, along with the analogue of (6.4) for t “ s, give

}divpζhq}0,s;Ω ď CP }vh,s}0,s;Ω . (6.13)

In turn, noting that the range for s (cf. (4.23)) fits into the one for p in (6.7), we can apply this
inequality (with p “ s) and the regularity estimate (6.11), to arrive at

}ζh}0,Ω ď }Πk
hpζq}0,Ω ď CΠ }ζ}1,s;Ω ď CΠCreg }vh,s}0,s;Ω , (6.14)

which, combined with (6.13), implies

}ζh}divs;Ω ď
`

CP ` CΠCreg

˘

}vh,s}0,s;Ω . (6.15)

Consequently, bounding below the supremum in (6.8) with ζh, and making use of (6.12), the analogue
of (6.3), (6.9), and (6.15), we conclude the required discrete inf-sup condition with the constant

βd :“
`

CP ` CΠCreg

˘´1
.
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Furthermore, for the hypotheses (H.3) and (H.4), we first stress that (H.3) corresponds exactly
to [9, (H.5)], and hence we omit most details and refer to [9, Section 5.2, Lemma 5.2]. We just make
a few remarks here. First of all, we observe that the discrete kernels of the bilinear forms b1 and b2
coincide algebraically, which reduces to

Kk
h :“

!

ψh P RTkpThq : divpψhq “ 0 in Ω
)

.

Then, we let Θk
h : L1pΩq Ñ Kk

h be the projector defined similarly to (6.3), that is, given ϕ P L1pΩq,
Θk

hpϕq is the unique element in Kk
h such that

ż

Ω
Θk

hpϕq ¨ψh “

ż

Ω
ϕ ¨ψh @ψh P Kk

h .

In this way, a quasi-uniform boundedness property of Θk
h in 2D (cf. [9, eq.(5.8)]), along with the

properties of the operators Dt (cf. Lemma 4.2), play a key role in the proof of (H.3). Whether the
aforementioned boundedness is satisfied or not in 3D is still an open problem, and hence, similarly to
[9], the assumption (H.3) is the only aspect of the analysis in this section that does not hold in 3D.
All the other conditions are valid in both 2D and 3D. Regarding (H.4), we remark that the discrete
inf-sup conditions for b1 and b2, which adapt the continuous analysis from Lemma 4.4 to the present
discrete setting, follow from slight modifications of the proofs of [24, Lemma 4.5] and [9, Lemma 5.3].
Further details are omitted here.

Finally, it is clear from (6.1) that (H.5) is trivially satisfied, whereas (H.6) was proved precisely
by [24, Lemma 4.5]. Alternatively, for the discrete inf-sup condition for ci we can proceed analogously
to the proof of Lemma 6.1 by observing that the range of ϱ (cf. (4.23), recall that Hi :“ Hpdivϱ; Ωq)
also fits into the one for p in (6.7), whence this inequality can be applied to p “ ϱ as well.

6.3 The rates of convergence

Here we provide the rates of convergence of the Galerkin scheme (5.1) with the specific finite element
subspaces introduced in Section 6.1, for which we previously collect the respective approximation
properties. In fact, thanks to [18, Proposition 1.135] and its corresponding vector version, along with
interpolation estimates of Sobolev spaces, those of Qh, Qi,h, and M1,h, are given as follows

pAPu
hq there exists a positive constant C, independent of h, such that for each l P r0, k ` 1s, and for

each v P Wl,rpΩq, there holds

dist
`

v,Qh

˘

:“ inf
vhPQh

}v ´ vh}0,r;Ω ď C hl }v}l,r;Ω ,

´

APξi
h

¯

there exists a positive constant C, independent of h, such that for each l P r0, k ` 1s, and for

each ηi P Wl,ρpΩq, there holds

dist
`

ηi,Qi,h

˘

:“ inf
ηi,hPQi,h

}ηi ´ ηi,h}0,ρ;Ω ď C hl }ηi}l,ρ;Ω ,

`

APχ
h

˘

there exists a positive constant C, independent of h, such that for each l P r0, k ` 1s, and for
each λ P Wl,rpΩq, there holds

dist
`

λ,M1,h

˘

:“ inf
λhPM1,h

}λ ´ λh}0,r;Ω ď C hl }λ}l,r;Ω .
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Furthermore, from [24, eq. (4.6), Section 4.1] and its tensor version, which, as the foregoing ones, are
derived in the classical way by using the Deny–Lions Lemma and the corresponding scaling estimates
(cf. [18, Lemmas B.67 and 1.101]), we state next the approximation properties of Hh and Hi,h

pAPσh q there exists a positive constant C, independent of h, such that for each l P r1, k ` 1s, and for
each τ P HlpΩq X H0pdivs; Ωq with divpτ q P Wl,spΩq, there holds

dist
`

τ ,Hh

˘

:“ inf
τhPHh

}τ ´ τh}divs;Ω ď C hl
!

}τ }l,Ω ` }divpτ q}l,s;Ω

)

,

`

APσi
h

˘

there exists a positive constant C, independent of h, such that for each l P r1, k ` 1s, and for
each τi P HlpΩq with divpτiq P Wl,ϱpΩq, there holds

dist
`

τi,Hi,h

˘

:“ inf
τi,hPHi,h

}τi ´ τi,h}divϱ;Ω ď C hl
!

}τi}l,Ω ` }divpτiq}l,ϱ;Ω

)

.

Finally, that of X2,h, which we recall from [24, Section 4.5, (APu
h)], becomes

pAPφh q there exists a positive constant C, independent of h, such that for each l P r1, k ` 1s, and for
each ϕ P Wl,rpΩq with divpϕq P Wl,rpΩq, there holds

dist
`

ϕ, X2,h

˘

:“ inf
ϕhPX2,h

}ϕ´ ϕh}r,divr;Ω ď C hl
!

}ϕ}l,r;Ω ` }divpϕq}l,r;Ω

)

.

The rates of convergence of (5.1) are now provided by the following theorem.

Theorem 6.2. Let
`

pσ,uq, pφ, χq, pσi, ξiq
˘

P
`

H ˆ Q
˘

ˆ
`

X2 ˆ M1

˘

ˆ
`

Hi ˆ Qi

˘

, i P
␣

1, 2
(

be the
unique solution of (3.33) with ξ :“ pξ1, ξ2q P Wpδq, and let

`

pσh,uhq, pφh, χhq, pσi,h, ξi,hq
˘

P
`

Hh ˆ

Qh

˘

ˆ
`

X2,h ˆ M1,h

˘

ˆ
`

Hi,h ˆ Qi,h

˘

, i P
␣

1, 2
(

be a solution of (5.1) with ξh :“ pξ1,h, ξ2,hq P Wpδdq,
which is guaranteed by Theorems 4.11 and 5.4, respectively. In turn, let p and ph given by (2.7) and
(5.45), respectively. Assume the hypotheses of Theorem 5.5, and that there exists l P r1, k ` 1s such
that σ P HlpΩq X H0pdivs; Ωq, divpσq P Wl,spΩq, u P Wl,rpΩq, φ P Wl,rpΩq, divpφq P Wl,rpΩq,
χ P Wl,rpΩq, σi P HlpΩq, divpσiq P Wl,ϱpΩq, and ξi P Wl,ρpΩq, i P

␣

1, 2
(

. Then, there exists a positive
constant C, independent of h, such that

}pσ,uq ´ pσh,uhq}HˆQ ` }p ´ ph}0,Ω ` }pφ, χq ´ pφh, χhq}X2ˆM1 `

2
ÿ

i“1

}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi

ď C hl
!

}σ}l,Ω ` }divpσq}l,s;Ω ` }u}l,r;Ω ` }φ}l,r;Ω ` }divpφq}l,r;Ω ` }χ}l,r;Ω

`

2
ÿ

i“1

`

}σi}l,Ω ` }divpσiq}l,ϱ;Ω ` }ξi}l,ρ;Ω
˘

)

.

Proof. It follows straightforwardly from Theorem 5.5, (5.46), and the above approximation properties.

7 Computational results

We turn now to the numerical verification of the rates of convergence anticipated by Theorem 6.2. The
following examples in 2D and 3D have been realized with the finite element library FEniCS [1]. The
linearization of the nonlinear algebraic equations that arise after discretization is done using either
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Figure 7.1: Example 1. Error history associated with the finite element family (6.1) with k “ 0 in
3D for primal variables (top left) and mixed variables (top right), and samples of approximate primal
variables (velocity streamlines uh, iso-surfaces of postprocessed pressure ph, electrostatic potential χh,
and positive ion concentration ξ1,h; bottom plots). In all mesh refinements the number of Newton–
Raphson iterations was 4.

a fixed-point Picard algorithm or an exact Newton–Raphson method (with the zero vector as initial
guess and iterations are stopped once the absolute or relative residual drops below 10´8) and the
linear systems are solved with the multifrontal massively parallel sparse direct method MUMPS [2].

Example 1. Considering first the spatial domain Ω “ p0, 1q3 along with the arbitrarily chosen
parameters

µ “ 10´3, ε “ 0.1, κ1 “ 0.25, κ2 “ 0.5,

we define the following manufactured exact solutions to (2.8)

u “

¨

˝

sin2pπxq sinpπyq sinp2πzq

sinpπxq sin2pπyq sinp2πzq

´rsinp2πxq sinpπyq ` sinpπxq sinp2πyqs sin2pπzq

˛

‚,

p “ x4 ´
1

2
py4 ` z4q, ξ1 “ expp´xy ` zq,

ξ2 “ cos2pxyzq, χ “ sinpxq cospyq sinpzq, σ “ µ∇u ´ pI,
σi “ κip∇ξi ` qiξiε

´1φq ´ ξiu, φ “ ε∇χ,

and construct forcing/source terms and non-homogeneous Dirichlet boundary conditions f ,g, fi, gi
from these closed-form solutions. Using the lowest-order version of the finite element spaces defined in
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DoF h e r momentumh potentialh transport1,h transport2,h
145 1.732 1.40e+1 ‹ 2.37e-07 7.29e-17 1.83e-15 8.64e-16

1009 0.866 7.44e+0 0.91 8.61e-08 2.45e-16 4.14e-15 1.81e-15
7489 0.433 3.43e+0 1.12 6.07e-10 4.53e-16 5.10e-15 4.85e-15
57601 0.217 1.40e+0 1.29 1.27e-11 6.76e-16 1.45e-14 8.77e-15

451585 0.108 6.00e-01 1.22 1.04e-11 6.29e-15 1.47e-14 2.48e-11
3575809 0.051 2.97e-01 1.13 5.88e-11 4.20e-15 2.38e-15 2.95e-15

Table 7.1: Example 1. Total error, experimental rates of convergence, and ℓ8-norm of the projected
residual of the momentum, potential, and ionic transport equations.

(6.1) (with polynomial degree k “ 0), we solve problem (5.1) on a sequence of six succesively refined
regular meshes. The zero-mean pressure condition is enforced using a real Lagrange multiplier ap-
proach. At each refinement level we compute errors between approximate and smooth exact solutions
using the norms in (5.33) and Theorem 6.2 (but we split their contribution coming from the error
on each individual field variable). For this 3D accuracy test we consider the Banach spaces indexes
specified in (4.23)

r “ 3, s “ 3{2, ρ “ 6, ϱ “ 6{5.

The results of this convergence study are collected in Figure 7.1 (top panels), where we plot in log-
log scale the error decay as the number of degrees of freedom increases. Apart from the electric
field φ which converges with rate of approximately 1.5, all other variables exhibit an optimal rate of
convergence. In the bottom panel of the figure we show approximate solutions for some of the field
variables, which indicate well resolved profiles.

In addition, the balance-preserving property of the proposed mixed formulation is assessed by
computing the quantities

momentumh :“ }Pk
hpdivpσhq ´ pξ1,h ´ ξ2,hq ε´1φh ` fq}ℓ8 ,

potentialh :“ }Pk
hpdivpφhq ` pξ1,h ´ ξ2,hq ` fq}ℓ8 ,

transporti,h :“ }Pk
hpξi,h ´ divpσi,hq ´ fiq}ℓ8 .

These values, for each refinement level, are collected in Table 7.1. We tabulate the total error

e :“ }pσ,uq ´ pσh,uhq}HˆQ ` }p ´ ph}0,Ω ` }pφ, χq ´ pφh, χhq}X2ˆM1

`

2
ÿ

i“1

}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi ,

(as indicated by Theorem 6.2) as well as the rates of convergence computed as

r “ logpe{peqrlogph{phqs´1 ,

where e and pe denote errors produced on two consecutive meshes associated with mesh sizes h and
ph, respectively. From the last columns we see that the potential and transport balance equations
are satisfied to machine precision while the error for the momentum balance is higher. This may be
explained by the presence of the term φh on the right-hand side (which has a H(div)-component).

Example 2. In addition, and in order to illustrate the implementation of fixed-point solvers, we have
realized numerically Picard versions of the linearization of (5.1). In case A we follow the fixed-point
structure used in the analysis of Section 5.1, that is, solving sequentially problems

(5.2) Ñ (5.3) Ñ (5.4),
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and iterating until the ℓ2-norm of the vector containing the residual of the Picard iterates reaches
10´8. Next, in case B we choose a different fixed-point splitting where we apply two modifications
with respect to case A. First, in (5.4) instead of the linear functional for the second discrete electrostatic
potential equation (discrete version of (3.21d)) we consider Gpλhq :“ ´

ş

Ω fλh and the coupling term
appears as a bilinear form contribution (and no longer as part of the linear functional), say

pgpλh, pξ1,h, ξ2,hqq :“

ż

Ω
λhpξ1,h ´ ξ2,hq.

Secondly, with regards to the constitutive equation in the ionized particle equations, we swap the
bilinearity in the flux definition (discrete version of (3.30f)) from ξi,h to the pair pϕh,uhq, that is, we
consider

pcξ̂i,hpτi,h, pϕh,uhqq :“

ż

Ω

!

qi ξ̂i ε
´1ϕh ´ κ´1

i ξ̂i uh

)

¨ τi.

For both fixed-point cases we have taken as initial guess solution the zero vector. Moreover, we
consider a 2D problem with manufactured solutions defined on Ω “ p0, 1q2

u “

ˆ

cospπxq sinpπyq

´ sinpπxq cospπyq

˙

, p “ x4 ´ y4, χ “ sinpxq cospyq, ξ1 “ expp´xyq, ξ2 “ cos2pxyq,

and take the same model constants as before. In 2D, and according to (4.23) we now choose

r “ 4, s “ 4{3, ρ “ 4, ϱ “ 4{3.

We focus on the number of Picard iterations required in each case, displaying the obtained results in
Table 7.2. While we confirm that all methods give exactly the same errors (and consequently also
the same convergence rates, which are optimal in view of the theoretical bounds), from the number
of fixed-point iterations we readily note that case B performs much better than case A, for the two
polynomial degrees we tested k “ 0, k “ 1. This behaviour could be explained by the stability of
different linearizations of advective nonlinearities and by the strength of the coupling for this particular
choice of model parameters. We stress that the analysis of case B is, however, not at all straightforward
since the decoupled linear electrostatic potential problem resulting from the first modification is no
longer symmetric. For sake of reference we also tabulate total errors and number of nonlinear iterates
obtained with the method we use also in Examples 1 and 3: an exact Newton–Raphson linearization
(labelled here as case C). Needless to say, the latter is actually the one that one would employ in
practical computations. Samples of the approximate solutions (only the mixed variables) computed
with the method in case A are portrayed in Figure 7.2.

Example 3. We conclude this section with an application problem where we demonstrate the use of
the mixed finite element scheme in simulating the transport process in an electrokinetic system with
an ion-selective interface, where the development of an electroosmotic instability is expected. The
problem configuration is adopted from [16, 17]. This system corresponds to a transient counterpart of
(2.8) in the absence of external forces and sources (f “ 0, f “ fi “ 0), where the following additional
terms appear in the momentum and concentration equations (note also the different scaling of ε on
the right-hand side of the momentum balance, required to match the adimensionalization in [17])

´
1

Sc
Btu ´ divpσq “ pξ1 ´ ξ2q

1

2ε2
φ, ´Btξi ` divpσiq “ 0.

The time derivatives are discretized using backward Euler’s method. In the problem setup a boundary
layer is present in the vicinity of the solid boundary (the bottom edge of the rectangular domain), and
therefore we employ a graded mesh with a higher refinement close to the layer. For this problem we
select the second-order family of finite element subspaces (setting k “ 1 in Section 6.1), which gives
for the chosen mesh 865201 degrees of freedom.
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case A case B case C

DoF h e r iter e r iter e r iter

k “ 0

221 0.500 6.64e+0 ‹ 80 6.64e+0 ‹ 9 6.64e+0 ‹ 5
841 0.250 2.36e+0 1.49 83 2.36e+0 1.49 8 2.36e+0 1.49 4
3281 0.125 8.34e-01 1.50 72 8.34e-01 1.50 8 8.34e-01 1.50 4

12961 0.062 3.32e-01 1.33 70 3.32e-01 1.33 9 3.32e-01 1.33 4
51521 0.031 1.51e-01 1.14 68 1.51e-01 1.14 9 1.51e-01 1.14 4

k “ 1

681 0.500 6.87e-01 ‹ 68 6.87e-01 ‹ 9 6.87e-01 ‹ 4
2641 0.250 1.20e-01 2.51 68 1.20e-01 2.51 9 1.20e-01 2.51 3

10401 0.125 2.57e-02 2.23 68 2.57e-02 2.23 9 2.57e-02 2.23 4
41281 0.062 6.11e-03 2.08 68 6.11e-03 2.08 9 6.11e-03 2.08 4
164481 0.031 1.51e-03 2.01 77 1.50e-03 2.02 9 1.50e-03 2.02 4

Table 7.2: Example 2. Total error, experimental rates of convergence, and number of iterations
required for two types of fixed-point methods as well as for Newton–Raphson linearization.

Figure 7.2: Example 2. Samples of approximate mixed variables (stress magnitude, electric field
magnitude and arrows, and ionic fluxes) obtained with the fixed-point algorithm labelled case A, and
for k “ 1.

The physical properties of the system are as follows. The cation species is Na` having diffusivity
κ1 “ 1 and the anion species is Cl´ with the same diffusivity κ2 “ 1. The dynamic viscosity of the
mixture is µ “ 1. Initial conditions are given by u “ 0, and a 2% random perturbation on a linearly
varying initial ionic concentrations ξ1 “ ζp2 ´ yq, ξ2 “ ζx, where ζ is a uniform random variable
between 0.98 and 1. On the top boundary we set ξ1 “ ξ2 “ 1, u “ 0, and an applied voltage of
χ “ 120. On the bottom boundary we impose χ “ 0, ξ1 “ 2, σ2 ¨ ν “ 0, and u “ 0. On the
vertical walls we prescribe periodic boundary conditions. The other model parameters take the values
ε “ 8 ¨10´6, Sc =103, and we use a timestep ∆t “ 10´6. We plot snapshots of the anion concentration
ξ2,h in Figure 7.3 at times t “ 10´4, 10´3. We observe similar ionic patterns to those produced also in
[30, 32].
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