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Abstract

With the aim to continue developing a hybridizable discontinuous Galerkin (HDG) method for
problems arisen from photovoltaic cells modeling, in this manuscript we consider the time har-
monic Maxwell’s equations in an inhomogeneous bounded bi-periodic domain with quasi-periodic
conditions on part of the boundary. We propose an HDG scheme where quasi-periodic boundary
conditions are imposed on the numerical trace space. Under regularity assumptions and a proper
choice of the stabilization parameter, we prove that the approximations of the electric and magnetic
fields converge, in the L2-norm, to the exact solution with order hk+1 and hk+1/2, resp., where h
is the meshsize and k the polynomial degree of the discrete spaces. Although, numerical evidence
suggests optimal order of convergence for both variables. An a posteriori error estimator for an
energy norm is also proposed. We show that it is reliable and locally efficient under certain con-
ditions. Numerical examples are provided to illustrate the performance of the quasi-periodic HDG
method and the adaptive scheme based on the proposed error indicator.

1 Introduction

Photovoltaic cells have been intensively studied in nanoscience and nanotechnology researchs, due to
the possibility of obtaining electrical energy from the sunlight, which is consider as a green energy
choice. This renewable resource of energy can be used in place of fossil fuels, in order to achieve lower
harmful emissions into the atmosphere, a reduced carbon footprint and fewer air pollutants.

For some decades, the search of new sustainable sources of electrical energy has encouraged projects
whose main goals consist on improving the capability to collect sunlight of the photovoltaic cells with
periodic surface-relief gratings and increasing the electrical energy generation. In fact, one of the
strategies to increase the efficiency of light harvesting by solar cells, is the use of plasmonic structures
that enhance the intensity of the electromagnetic field [32]. The key idea is to texture the surface of
the metallic back-reflector of a thin-film solar cell by periodic corrugations of size proportional to the
wavelength. Under some conditions [32], this configuration produces an excitement of the electrons
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placed on the surface of the metal, generating a wave that propagates through the surface called
surface plasmon polariton (SPP) wave. For instance, this occurs when the propagation constant βSPP
of a SPP wave and the propagation constant βinc of the incident wave satisfy βSPP = βinc + 2nπ, for
some n ∈ Z in the transverse magnetic (TM) polarization, see Sections 2.1 and 2.2 of [32]. In the same
direction, multiple SPP waves can be generated by placing a periodic multi-layered isotropic dielectric
material on top of the metallic back-reflector [19]. Furthermore, structures involving different type of
materials have been considered in order to optimize the performance of the cells, see for example [46]
and references therein. In those cases, it is possible to maximize the spectrally averaged electron hole
pair density and the solar-spectrum-integrated power-flux density [4, 19, 37, 45]. This optimization
process is expensive from the computational point of view since the functionals to maximize depend
on the solution to Maxwell’s equations and also on geometric and optical parameters. This fact
motivates the development and analysis of new methods able to lower the computational costs. In this
regards, some authors have used numerical techniques in order to state and approximate the solution
of boundary value problems, in which the effect of unpolarized or polarized incident plane waves on
the surface of the cell and a wide range of geometrical and optical parameters in the frequency-domain
Maxwell’s equations, have been considered. Among them, we highlight the exact modal method [23],
the moment method (MoM) [33], the rigorous coupled-wave approach (RCWA) [37, 46], the finite-
difference time-domain (FDTD) method [27], the finite element method (FEM) [5, 26, 35, 36, 42, 46],
and hybridizable discontinuous Galerkin (HDG) methods [10, 11, 13, 14, 20, 39, 47]. We focus our
study in the latter.

Perhaps, from the numerical analysis point of view, three main challenges arise from the model:
the complex-valued electric permittivity, the quasi-periodic boundary condition and the outgoing
radiation condition above and below the solar cell structure. Most of the known studies assume a
positive electric permittivity and consider prescribed boundary data. Under that assumption, in [20]
an HDG method to study the three-dimensional time harmonic Maxwell’s equations coupled with the
impedance boundary condition was proposed, in the case of high wave numbers. The stability and
error estimates for the method were deduced by employing the constraint κh ≤ 1. Based on the
reliable results showed in the above work and in [14, 39], some authors considered complex-valued
permittivities [10, 35, 47] and not perfect conducting boundary conditions. More precisely, in [47] a
high-order HDG scheme for Maxwell’s equations augmented with the hydrodynamic model, for the
conduction-band electrons in noble metals, is stated. The radiation conditions can be handled by
boundary element methods [24], absorbing boundary conditions (ABCs) [38], Dirichlet-to-Neumann
(DtN) tecniques, based on Fourier expansions [1] and by the perfectly matched layer (PML) technique,
[8, 15, 41].

Inspired in the application described above, in this work we consider a problem in which the time
harmonic Maxwell’s equations are defined in a bounded domain Ω ⊂ R3 occupied by one period of a
bi-periodic structure, illuminated by an incident electromagnetic wave. Our heterogeneous domain Ω
corresponds to the disjoint union between the region Ωd, occupied by an isotropic dielectric material
with positive real relative permittivity and a metallic region denoted Ωm, whose relative permittivity
is a complex-valued number with negative real part, see [10]. On the top and bottom boundaries
of the unit cell, we consider Dirichlet type conditions and impose quasi-periodic conditions on the
vertical walls of Ω. Quasi-periodic conditions can be added to the system of equations defined in
symmetric or asymmetric domains with periodic characteristics, see Sections 3.1 and 3.3 of [26] and
Section 2 of [48]. These kind of boundary conditions differ by a complex exponential factor or Bloch
phase, on the parallel walls of the domain. In order to carry out an a priori error analysis of our
3D problem subjected to Dirichlet and quasi-periodic conditions, we based on the analysis developed
in [10]. Even though we are not considering exactly the original model since we impose boundary
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condition at the top and bottom walls instead of dealing with the outgoing radiation condition, this
“simplified” problem posses several challenges that must be addressed first. Therefore, we consider
the analysis that we will present in this manuscript constitutes as a key stepping stone towards the
goal of studying the full model.

On the other hand, the change of material across the non-smooth metallic interface, might produce
singularities near the corners. Moreover, as previously discussed, the magnitude of electromagnetic
field is high near the metal surface due to the plasmonic effect. Therefore, in that region, the finite
element mesh must be fine enough to capture this phenomena accurately. This can be efficiently
achieved by an adaptive scheme able detect where to localize the mesh refinement based on an error
indicator.

In the case of an a posteriori error indicator for Maxwell’s equations, one the of the main challenges
are the non-coercivity of the bilinear form and the low regularity of the exact solution. Residual
based a posteriori error estimates for Maxwell’s equations in electromagnetic scattering problems
were introduced in [7, 34]. The author in [34] showed how an a posteriori error indicator can be
derived using an adjoint equation approach and also the fact that there is a limit on the maximum
diameter of the elements in a grid, imposed by the non-coercivity of the bilinear form. Later, [43]
proved the reliability of the residual error estimators on Lipschitz domains, which had been proposed
and analyzed in [7]. In [28], the authors derived an hp-type a posteriori error estimate for the time-
harmonic Maxwell’s equations and, in [31], carried out an a posteriori error analysis for the time-
dependent Maxwell’s equations. For the steady state coercive Maxwell’s equations, the authors in
[13] provided a computable residual-based a posteriori error estimator, which is independent of the
regularity parameter of the solution and it is based on the error measured in terms of a mesh-dependent
energy norm. On the other hand, by using hierarchical basis, [6] proposed a hierarchical error estimator
for quasi-magnetostatic eddy current problem discretized by means of lowest order curl-conforming
finite elements on tetrahedral meshes. They provided a saturation assumption in order to guarantee
the reliability and efficiency of the estimator.

In this manuscript, we extend the residual-based a posteriori error estimator for the coercive
Maxwell’s equations, developed in [13]. We will establish reliability and local efficiency of the error
estimator proposed for our HDG scheme, by using approximation properties of continuous functions,
Helmholtz decompositions, the Scott-Zhang interpolation operator and a standard localization tech-
nique, based on element and face bubble functions [2]. Moreover, in the context of discontinuous
Galerkin methods, it is crucial the use of a continuous approximation of a discontinuous piece- wise
polynomial function [29, 30], sometimes called Oswald interpolant inspired in the work by [40] for
piecewise linear approximations. This interpolant has been employed in the deduction of a posteriori
error estimator for HDG methods [3, 12, 16, 17]. In our case, we modify this operator in such a way
that it preserves quasi-periodic boundary conditions (see Appendix A.2).

The rest of this paper is organized as follows. In Section 2 we define the truncated domain and
introduce the boundary value problem. In Section 3, we propose an HDG method and prove it is
well posed. Then, we briefly describe the stability analysis and the error analysis for the method.
The residual-based a posteriori error estimator for our HDG method is developed and analyzed in the
fourth section. Finally, in Section 5 we show some numerical results by using uniform refined meshes
and adaptive refined meshes.
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2 Problem statement

Through the manuscript we will use standard simplified terminology for Sobolev spaces and norms,
where vector-valued functions are bold-faced. In particular, if O is a domain in R3, Σ is an open
or closed Lipschitz curve, and s ∈ R, we set Hs(O) := [Hs(O)]3, Hs(Σ) := [Hs(Σ)]3 and their
corresponding norms ‖·‖s,O for Hs(O) and Hs(O); and ‖·‖s,Σ for Hs(Σ) and Hs(Σ). In the case s = 0,
we write L2(O), L2(O), L2(Σ) and L2(Σ) instead of H0(O), H0(O), H0(Σ) and H0(Σ), respectively;
and in the notation for their norms, the first subindex will not be included. For s > 0, we write | · |s,O
for the Hs- and Hs-seminorms. From ahead, Pk(O) denotes the space of complex-valued polynomials
of degree less or equal than k ≥ 0, Pk(O) := [Pk(O)]3 and by (·, ·)O and 〈·, ·〉∂O, we denote the L2(O)
and L2(∂O) inner products, respectively.

In addition, we introduce the following spaces

H(divε;O) := {w ∈ L2(O) : ∇ · (εw) ∈ L2(O)},
H(div0

ε ;O) := {w ∈ L2(O) : ∇ · (εw) = 0},
H0(div;O) := {w ∈ H(div;O) : w · n|∂O = 0},
Hϑ(div;O) := {w ∈ H(div;O) : w · n|ϑ = 0},
H(curl;O) := {w ∈ L2(O) : ∇×w ∈ L2(O)},

H0(curl;O) := {w ∈ H(curl;O) : w× n|∂O = 0},
Hϑ(curl;O) := {w ∈ H(curl;O) : w× n|ϑ = 0},

where ϑ ⊂ ∂O and n denotes the outward unit normal vector to ∂O. For a vector-valued function w
defined on a face F , we denote by wt := (n ×w) × n and wn := (w · n)n its tangential and normal
components, respectively. It follows that w := wt + wn and wt × n = w× n.

Furthermore, to avoid proliferation of unimportant constants, the expression A ≤ CB, for some
C > 0 independent of the meshsize, will be replaced by A . B.

Now, let us characterize our simply connected domain Ω := (0, L)× (0, L)× (0,M), with L,M > 0
with polyhedral connected boundary Γ := Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ ΓB ∪ ΓT. Here,

Γ1 : = {(0, y, z) : y ∈ (0, L), z ∈ (0,M)}, Γ2 : = {(L, y, z) : y ∈ (0, L), z ∈ (0,M)},
Γ3 : = {(x, 0, z) : x ∈ (0, L), z ∈ (0,M)}, Γ4 : = {(x, L, z) : x ∈ (0, L), z ∈ (0,M)},
ΓB : = {(x, y, 0) : x ∈ (0, L), y ∈ (0, L)}, ΓT : = {(x, y,M) : x ∈ (0, L), y ∈ (0, L)}.

In applications arising from solar cell modeling, Ω corresponds to one period of a bi-periodic array,
where the unit cells are joined through quasi-periodic boundary conditions, which are imposed on
the vertical walls of Ω, Γ1-Γ2 and Γ3-Γ4. In this phenomenon, after the sunlight illuminates the top
boundary ΓT, outgoing and evanescent waves are generated, below the bottom boundary ΓB and
above ΓT, as well. In this work we assume that the data on ΓB and ΓT are prescribed, but we consider
quasi-periodic boundary conditions on Γ1-Γ2 and Γ3-Γ4.

The domain Ω is divided in two subdomains. A dielectric region Ωd with permittivity εd ∈ R+ and
a metallic region Ωm with electric permittivity εm ∈ C, satisfying Re(εm) < 0 and Im(εm) > 0, as it
was shown in Figure 1.

Given J ∈ H(div0; Ω) and ĝ ∈ γt
(
H(curl; Ω) ∩H(div0

ε ; Ω)
)
, where γt denotes the tangential trace
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Figure 1: Example of a domain Ω: a dielectric region Ωd placed on top of a metallic backreflector
Ωm.

operator, we look for E and H such that

∇×E = i ω µ0 H, in Ω, (1a)
∇×H = J− i ω ε0 εE, in Ω, (1b)
E× n = ĝ, on ΓB ∪ ΓT, (1c)

E(L, y, z) = eiαLE(0, y, z), y ∈ (0, L), z ∈ (0,M), (1d)
E(x, L, z) = eiβLE(x, 0, z), x ∈ (0, L), z ∈ (0,M), (1e)

where E denotes the electric field, H the magnetic field and J the current density, which satisfy an
implicit e−iωt dependence of time at frequency ω > 0. The other parameters are the permeability
of free space µ0, the electric permittivity of free space ε0, the electric permittivity ε, the relative
permittivity ε0ε, the free-space wavenumber κ := ω

√
ε0µ0, the free-space wavelength λ0 := 2π/κ

and the intrinsic impedance of the free space η0 :=
√
µ0/ε0. Furthermore, µ0 = 4π × 10−7 Hm−1,

ε0 = 8.854× 10−12 Fm−1, n denotes the outward unit normal to Γ and the permittivity is defined as
ε = εm in Ωm and ε = εd in Ωd. According to the theory that appears in Section 1.3 of [35], the solutions
of (1) exist and have the form of a plane wave. A plane wave is defined as an electromagnetic wave
whose polarization, A, satisfies the property A · (α, β, γ) = 0, for α := κ sin θ cosφ, β := κ sin θ sinφ
and γ := κ cos θ, with θ ∈ [0, π] and φ ∈ [0, 2π]. Based on the form of the solutions it is possible to
characterize the quasi-periodic boundary conditions, which in this problem were added by the equations
(1d) and (1e).

Let us introduce in (1) the change of variable u := ε
1/2
0 E, v := iκµ

1/2
0 H. By a Lagrange multiplier

p, we impose the incompressibility condition ∇ · (εE) = 0, which can be deduced from the second
equation. For a more detailed description of (1), we refer to [35]. Then, we obtain the following
problem: Find u, v and p such that

v−∇× u = 0, in Ω, (2a)
∇× v− κ2εu + ε∇p = f , in Ω, (2b)

∇ · (εu) = 0, in Ω, (2c)
u× n = g, on ΓB ∪ ΓT, (2d)

u (L, y, z) = eiαLu (0, y, z) , y ∈ (0, L), z ∈ (0,M), (2e)
u (x, L, z) = eiβLu (x, 0, z) , y ∈ (0, L), z ∈ (0,M), (2f)

p = 0, on Γ, (2g)
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where f := iκµ
1/2
0 J, g := ε

1/2
0 ĝ and ε is the complex conjugate of ε. In order to simplify notation, we

define Γ0 := ΓB ∪ ΓT and ΓQP := Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4.
Now, let us introduce the spaces

HQP(curl; Ω) :=
{

w ∈ H(curl; Ω) : w |Γ2= eiαLw |Γ1 ,w |Γ4= eiβLw |Γ3

}
,

HQP
Γ0

(curl; Ω) :=
{

w ∈ HQP(curl; Ω) : w× n|Γ0
= 0

}
,

XQP := HQP
Γ0

(curl; Ω) ∩H(div0
ε ; Ω),

Xg
QP :=

{
w ∈ HQP(curl; Ω) ∩H(div0

ε ; Ω) : w× n|Γ0
= g

}
,

endowed with the H(curl; Ω)-norm, ‖w‖H(curl;Ω) := (‖w‖2Ω + ‖∇ × w‖2Ω)1/2. With respect to the
existence and uniqueness of the solutions of (2), we have the following Lemma.

Lemma 2.1. If κ2εd is not an eigenvalue of ∇×∇× in Ωd, then (2) has a unique solution (v,u, p) ∈
H(curl; Ω)×Xg

QP ×H1
0(Ω).

Proof. By tailoring the proofs showed in Section 5 of [9], we can guarantee the existence of a unique
solution, when g = 0, for the following variational formulation: Find (u, p) ∈ XQP ×H1

0(Ω) such that

(∇× u,∇×w)Ω − κ2(εu,w)Ω = (f ,w)Ω,

(ε∇p,∇q)Ω = (f ,∇q)Ω,
(3)

for all (w, q) ∈ XQP ×H1
0(Ω).

In the case g 6= 0, we have that if g ∈ γt(H(curl; Ω) ∩ H(div0
ε ; Ω)) then, there exists a unique

ϕ ∈ H(curl; Ω) ∩ H(div0
ε ; Ω), such that γt (ϕ) = g. Moreover, by noting that u − ϕ ∈ XQP is a

solution of (3), we can conclude the uniqueness of u; from which the existence and uniquenes of the
solution of (2) is deduced.

3 The HDG method

Let us begin by setting a shape-regular simplicial tetrahedrization Th of Ω, such that each
◦
K ∈ Th

is completely contained in Ωm or Ωd. Then, T mh and T dh will denote the sets of tetrahedra lying in
Ωm and Ωd, respectively. Furthermore, we define ∂Th := {∂K : K ∈ Th} and Eh := EI ∪ EΓ, where EI
and EΓ denote the interior and boundary faces induced by Th, respectively. Due to the definition of
Γ, we will denote by E0 and EQP the set of faces lying on Γ0 and ΓQP, respectively. We assume Th
does not have hanging nodes. Moreover, let us also suppose conformity between the discretization of
the periodic boundaries Γ1-Γ2 and Γ3-Γ4. More precisely, if F1 = {(0, y, z)} is a face of Γ1, we assume
that F2 := {(L, y, z)} is a face of Γ2. Similarly for Γ3 and Γ4. In addition, we set ‖ · ‖Th

:= (·, ·)1/2
Th

and ‖ · ‖∂Th
:= 〈·, ·〉1/2∂Th

, with

(·, ·)Th
:=

∑
K∈Th

(·, ·)K , 〈·, ·〉∂Th
:=

∑
K∈Th

〈·, ·〉∂K ,

where (·, ·)D and 〈·, ·〉G denote standard L2-complex inner products over regions D ⊂ R3 and G ⊂ R2,
respectively.

For a vector-valued function w, we define the tangential jump across F ∈ EI by JwKF := w+ ×
n+ + w− × n−. If F ∈ E0, we set JwKF := w × n. We will drop the subscript F , when there is no
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confusion. Let us now explain the jump operator acting on a face of a quasi-periodic boundary. If
F ⊂ Γ1, we define JwKQP := (eiαLw × n) |Γ1 +(w × n) |Γ2 . In other words, if w is quasi-periodic on
Γ1, then JwKQP = 0. Similarly, if F ⊂ Γ3, we define JwKQP := (eiβLw × n) |Γ3 +(w × n) |Γ4 . For a
scalar-valued function p, the jump across a face F ∈ EI is denoted by JqK := q+ − q−, whereas for a
boundary face F ∈ EΓ, we write JqK := q.

Considering the above tetrahedrization of Ω, we define the following approximation spaces

Qh :=
{
q ∈ L2(Ω) : q |K ∈ Pk(K), ∀ K ∈ Th

}
,

Mh :=
{
% ∈ L2(Eh) : % |F ∈ Pk(F ), ∀ F ∈ Eh

}
,

Vh :=
{
w ∈ L2(Ω) : w |K ∈ Pk(K), ∀ K ∈ Th

}
,

Mt
h :=

{
ρ ∈ L2 (Eh) : ρ |F ∈ Pk(F ), (ρ · n) |F = 0, ∀ F ∈ Eh

}
,

Mg
QP :=

{
ρ ∈Mt

h : ρ|Γ2
= eiαLρ|Γ1

, ρ|Γ4
= eiβLρ|Γ3

, ρ|Γ0
× n = PMt

h
g
}

where PMt
h
is L2-projections over Mt

h.
The HDG scheme associated to (2) seeks the approximation (vh,uh, ph, ûth, p̂h) ∈ Vh ×Vh ×Qh ×

Mg
QP ×Mh of the exact solution (v,u, p,ut|Eh

, p|Eh
), satisfying

(vh,w)Th
− (uh,∇×w)Th

−
〈
ûth,w× n

〉
∂Th

= 0, (4a)

(vh,∇× z)Th
+
〈
v̂th, z× n

〉
∂Th

− κ2 (εuh, z)Th
− (ph,∇ · (εz))Th

+ 〈εz · n, p̂h〉∂Th
= (f , z)Th

, (4b)

− (εuh,∇q)Th
+ 〈ε̂unh · n, q〉∂Th

= 0, (4c)〈
n× v̂th,ρ

〉
∂Th

= 0, (4d)

〈ε̂unh · n, %〉∂Th\Γ = 0, (4e)
〈p̂h, %〉Γ = 0, (4f)

for all (w, z, q,ρ, %) ∈ Vh ×Vh ×Qh ×M0
QP ×Mh, where the numerical fluxes v̂th and ε̂unh defined

on ∂Th are given by

n× v̂th := n× vth + τ(uth − ûth), (4g)
ε̂unh · n := εunh · n + τn(ph − p̂h). (4h)

The stabilization parameters τ and τn are complex-valued that satisfy Re(τ) ≥ 0, Im(τ) ≤ 0,
Re(τn) ≥ 0 and Im(τn) ≥ 0. These conditions ensure well-posedness of the scheme in agreement with
Section 3 of [10].

We notice that, since the test function ρ belongs to M0
QP, (4d) implies the quasi-periodicity of the

numerical flux v̂th. In fact, taking ρ 6= 0 on Γ1 ∪ Γ2 and ρ = 0 otherwise, we have that〈
n× v̂th,ρ

〉
Γ1

+
〈
n× v̂th,ρ

〉
Γ2

= 0,

for all ρ ∈ Pk(Γ1), due to the fact that ρ|Γ2
= eiαLρ|Γ1

. Now, if we denote by ϕ the bijective mapping
that transforms a face in Γ2 into its corresponding face in Γ1, it holds

0 =
〈
n× v̂th,ρ

〉
Γ1

+
〈

(n× v̂th) ◦ ϕ, eiαLρ
〉

Γ1
=
〈
n× v̂th + (n× v̂th) ◦ ϕe−iαL,ρ

〉
Γ1
,

for all ρ ∈ Pk(Γ1), from which,

0 = (n× v̂th + (n× v̂th) ◦ ϕe−iαL)|Γ1 = n× v̂th|Γ1 + n× v̂the−iαL|Γ2 .
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Remark 3.1. We emphasize that ûth and v̂th are “single-valued” on any face F ∈ Eh \EQP. Moreover,
for faces in EQP, the numerical fluxes are also single-valued, but in a “quasi-periodic sense”, namely,
JûthKQP = 0 and Jv̂thKQP = 0.

The authors in [10] analyzed the well-posedness and provided the error estimates for an HDG
scheme similar to (4), but considered a prescribed boundary data g in the entire boundary Γ. In our
case, quasi-periodic boundary conditions are imposed on the vertical walls. This quasi-periodicity is
imposed strongly on the space Mg

QP for the numerical trace ûth and implies the quasi-periodicity of
the flux v̂th, as it was explained before. These facts make possible to cancel out the contribution of
the terms on Γ1 and Γ2 (Γ3 and Γ4), during the deduction of the stability estimates of the scheme.
Therefore, the same error analysis performed in [10] holds for (4). Even more, the analysis in it implies
the following result for s ∈ (0, 1) and s ≤ t chosen as in section 3.2 of the same reference.

Corollary 3.1. Let (v,u, p) ∈ Hlu+1(Th) ×Hlv+1(Th) × Hlp+1(Th) and
(
vh,uh, ph, ûth, p̂h

)
∈ Vh ×

Vh × Qh ×Mg
QP ×Mh be the solutions of (2) and (4), respectively, for lv, lu, lp ∈ [0, k]. If τ and τn

are purely imaginary, s ∈ (0, 1) and s ≤ t, there hold

‖v− vh‖Th
.hmin{s,1/2}

(
hlv |v|lv+1,Th

+ hlu |u|lu+1,Th
+ hlp |p|lp+1,Th

)
‖ε(u− uh)‖Th

.hs
(
hlv |v|lv+1,Th

+ hlu |u|lu+1,Th
+ hlp |p|lp+1,Th

)
,

when |τ | and |τn| are of order one. If |τ | is of order h−1 and |τn| is of order h, then

‖v− vh‖Th
. hlv+min{1,t}|v|lv+1,Th

+ hlu+min{0,t−1}|u|lu+1,Th
+ hlp+min{s+1,t} |p|lp+1, Th

‖ε(u− uh)‖Th
. hlv+min{1,t}|v|lv+1,Th

+ hlu+min{s,t−1}|u|lu+1,Th
+ hlp+1+min{s,t−1} |p|lp+1,Th

.

In addition, if τ and τn are not purely imaginary, then there exists h0 > 0 such that for all h < h0,
the same result holds.

Remark 3.2. The numerical experiments reported in [10] show an experimental order of convergence
better than the one predicted by the theory. More precisely, for smooth solutions and stabilization
parameters with modulus proportional to one, the experimental rate of convergence is hk+1 for the
L2-error of the approximations of u, v and p.

4 A posteriori error analysis

In this section assuming that |τ | and |τn| with modulus proportional to one, we propose ‘under some
circumstances’ a reliable and locally efficient error estimator for the energy-type error

Eh := ‖v− vh‖Th
+ ‖∇ × (u− uh)‖Th

+ h−1/2‖τ1/2(uth − ûth)‖∂Th

+ h−1/2‖τ1/2
n (ph − p̂h)‖∂Th

+ ‖∇(p− ph)‖Th
+ ‖u− uh‖Th

+ ‖p− ph‖Th
. (5)

According to Remark 3.2, the order of convergence of Eh is hk when the solution is sufficiently smooth.
We base our analysis on the techniques presented in [13], but keeping in mind that, in our context Ω

is occupied by a heterogeneous material because the relative permittivity is a complex-valued function.
Let us begin by defining the global error indicator:

η :=
∑
K∈Th

η2
K +

∑
F⊂∂K

η2
F,1 + η2

F,2 + η2
F,3

+
∑
F∈EI

η2
F,4,
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where ηK , ηF,1, ηF,2, ηF,3 and ηF,4 correspond to the local a posteriori error indicators, specified as
follows.

For each K ∈ Th,

ηK,1 := hK‖f − ε∇ph + κ2εuh −∇× (∇× uh)‖K , (6a)
ηK,2 := hK‖∇ · f + κ2ε∇ · uh −∇ · (ε∇ph)‖K , (6b)

and for F ⊂ ∂K,

ηF,1 := h
−1/2
F ‖τ1/2(uh − ûth)× n‖F , (6c)

ηF,2 := h
−1/2
F ‖τ1/2

n (ph − p̂h)‖F , (6d)

ηF,3 := h
1/2
F ‖(vh −∇× uh)× n‖F . (6e)

Moreover, for each F ∈ EI ,

ηF,4 := h
1/2
F

∥∥∥∥
s
ε
∂ph
∂n

{∥∥∥∥
F

. (6f)

In order to state the main result, we denote by ΠV and ΠQ the L2-projections over Vh and Qh, see
[18].

Theorem 4.1. Let (v,u, p) ∈ H(curl; Ω)×Xg
QP ×H1

0(Ω) and (vh,uh, ph, ûth, p̂h) ∈ Vh ×Vh ×Qh ×
Mg

QP ×Mh be the solutions of (2) and (4), respectively. Then, there exist C1, C2 > 0 such that

Eh ≤ C1η ∧ C2η ≤ Eh + oscf + osc∇·f ,

where oscf :=
∑
K∈Th

osc(f ,K), osc(f ,K) := hK‖f − ΠVf‖K , osc∇·f :=
∑
K∈Th

osc(∇ · f ,K) and osc(∇ ·

f ,K) := hK‖∇ · f −ΠQ(∇ · f)‖K .

In the forthcoming sections we will derive a sequence of results that will lead to the proof of Theorem
4.1. We will employ approximation properties for discontinuous functions and bubble functions.

4.1 Reliability

One of the main tools, usually employed in the context of DG methods is the conforming approximation
of a piecewise polynomial function. In this direction, we obtained the following lemmas by using
Proposition 4.5 of [25] and Theorem 2.2 of [29].

Lemma 4.1. Let w ∈ Vh and g̃ be the tangential trace of a function in Vc
h := Vh ∩ H(curl; Ω).

Then, there exists wc ∈ Vc
h with wc × n|Γ0 = g̃, such that

‖w−wc‖Th
. ‖h1/2JwK‖Eh\E0 + ‖h1/2(w× n− g̃)‖E0 , (7a)

‖∇ × (w−wc)‖Th
. ‖h−1/2JwK‖Eh\E0 + ‖h−1/2(w× n− g̃)‖E0 . (7b)

Moreover, there exists wQP ∈ Vc
h with tangential trace g̃ on Γ0 and quasi-periodic conditions on ΓQP,

such that

‖w−wQP‖Th
. ‖h1/2JwK‖EI

+ ‖h1/2JwKQP‖EQP + ‖h1/2(w× n− g̃)‖E0 , (7c)
‖∇ × (w−wQP)‖Th

. ‖h−1/2JwK‖EI
+ ‖h−1/2JwKQP‖EQP + ‖h−1/2(w× n− g̃)‖E0 . (7d)
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In addition, let q ∈ Qh. There exists qc ∈ Qc
h := Qh ∩H1

0(Ω), such that

‖∇(q − qc)‖Th
. ‖h−1/2JqK‖EI

. ‖h−1/2(q − %)‖∂Th
, (7e)

for any singled-valued function % defined over Eh, such that %|Γ = 0.

The estimates (7a) and (7b) were proven in Proposition 4.5 of [25], whereas the proof of (7e) can
be found in Theorem 2.2 of [29]. The results in (7c)–(7d) are consequence of (7a) and its proof will
be postponed to the appendix (Appendix (A.2)).

In addition, we will employ the Scott-Zhang interpolant ΠSZ : H1
ϑ(Ω)→ Qh∩H1

ϑ(Ω), where H1
ϑ(Ω) :=

{φ ∈ H1(Ω) : φ|ϑ = 0} with ϑ ⊆ Γ. Note that if φ ∈ H1
0(Ω) then ΠSZφ ∈ Qc

h. In the literature, it is
known that it satisfies the following approximation properties (cf. [44]).

Lemma 4.2. Let K ∈ Th and F ∈ Eh. For any φ ∈ H1
ϑ(Ω), there hold

‖φ−ΠSZφ‖K . hK |φ|1,ωK ,

‖φ−ΠSZφ‖F . h
1/2
F |φ|1,ωF ,

where ωK := ∪{K ′ ∈ Th : K ′ ∩K 6= ∅} and ωF := ∪{K ′ ∈ Th : K ′ ∩ F 6= ∅}.

Now, we are in position to prove an upper bound for the L2 and broken H1- error on the pressure.
As we will see, this bound depends on some of the terms of the error estimator and also on the L2-error
of the electric field. For the sake of simplicity in the exposition, from now on we assume that g is the
tangential trace of a function in Vc

h. Otherwise, oscillatory terms related to g would appear.

Lemma 4.3. For (v,u, p) ∈ H(curl; Ω) ×Xg
QP × H1

0(Ω) and (vh,uh, ph, ûth, p̂h) ∈ Vh ×Vh × Qh ×
Mg

QP ×Mh the solutions of (2) and (4), respectively, there hold

‖p− ph‖Th
. ‖∇(p− ph)‖Th

+ ‖h−1/2 (ph − p̂h)‖∂Th
, (8a)

‖∇(p− ph)‖Th
.
∑
K∈Th

ηK,2 +
∑
F∈EI

ηF,4 + κ2‖ε(u− uh)‖Th
+ ‖h−1/2(ph − p̂h)‖∂Th

. (8b)

Proof. By the discrete Poincaré inequality ([18], Corollary 5.4) and the fact that p̂h is single-valued
and vanishes at the boundary, we have that

‖p− ph‖Th
. ‖∇(p− ph)‖Th

+ ‖h−1/2 JphK‖EI
+ ‖h−1/2ph‖EΓ

. ‖∇(p− ph)‖Th
+ ‖h−1/2 Jph − p̂hK‖EI

+ ‖h−1/2(ph − p̂h)‖EΓ
. ‖∇(p− ph)‖Th

+ ‖h−1/2 (ph − p̂h)‖∂Th
,

from which (8a) follows. Now, in order to bound ‖∇(p− ph)‖Th
, we employ the result in Lemma 4.1.

More precisely, for ph ∈ Qh there exists pch ∈ Qc
h such that

‖∇(ph − pch)‖Th
. ‖h−1/2(ph − p̂h)‖∂Th

. (9)

On the other hand, by substituting f (cf. (2b)) in (4b) we obtain the next error equation

(v− vh,∇× z)Th
+ 〈vt − v̂th, z× n〉∂Th

− κ2(ε(u− uh), z)Th

+ (ε∇(p− ph), z)Th
+ 〈εz · n, ph − p̂h〉∂Th

= 0 ∀z ∈ Vh. (10)
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Let φ := p− pch ∈ H1
0(Ω), by taking z := ∇ΠSZφ in (10), it follows that

−κ2(ε(u− uh),∇ΠSZφ)Th
+(ε∇(p− ph),∇ΠSZφ)Th

+ 〈ε∇ΠSZφ · n, ph − p̂h〉∂Th
= 0,

since ∇×∇ΠSZφ = 0 and 〈vt − v̂th,∇ΠSZφ × n〉∂Th
= 0. Then, if we rewrite (∇(p − ph), ε∇φ)Th

by
using the above expression and the Green’s identity of H(divε; Th), we obtain that

(∇(p− ph), ε∇φ)Th
=(∇(p− ph), ε∇(φ−ΠSZφ))Th

+ (∇(p− ph), ε∇ΠSZφ)Th

=(∇(p− ph), ε∇(φ−ΠSZφ))Th
+ κ2(ε(u− uh),∇ΠSZφ)Th

− 〈ε∇ΠSZφ · n, ph − p̂h〉∂Th

=− (∇ · (ε∇(p− ph)), φ−ΠSZφ)Th
+ 〈ε∇(p− ph) · n, φ−ΠSZφ〉∂Th

− κ2(∇ · (ε(u− uh)),ΠSZφ)Th
+ κ2〈ε(u− uh) · n,ΠSZφ〉∂Th

− 〈∇ΠSZφ · n, ε(ph − p̂h)〉∂Th
.

Moreover, by equation (2b), we deduce that

(∇(p− ph), ε∇φ)Th
=(∇ · f + κ2∇ · (εuh)−∇ · (ε∇ph),ΠSZφ− φ)Th

+ 〈ε∇(p− ph) · n, φ−ΠSZφ〉∂Th
− κ2(∇ · ε(u− uh), φ)Th

+ κ2〈ε(u− uh) · n,ΠSZφ− φ〉∂Th
+ κ2〈ε(u− uh) · n, φ〉∂Th

− 〈∇ΠSZφ · n, ε(ph − p̂h)〉∂Th

=(∇ · f + κ2∇ · (εuh)−∇ · (ε∇ph),ΠSZφ− φ)Th

+ 〈ε∇(p− ph) · n, φ−ΠSZφ〉∂Th
+ κ2(ε(u− uh),∇φ)Th

+ κ2〈ε(u− uh) · n,ΠSZφ− φ〉∂Th
− 〈∇ΠSZφ · n−∇Π0

Qφ · n, ε(ph − p̂h)〉∂Th
,

(11)

where Π0
Q is the L2-projection over P0(Th).

Now, let us bound each terms of the right hand side of (11). We apply the Cauchy-Schwarz
inequality, the approximation properties in Lemma 4.2, inverse inequality and the continuity of ε∇p·n,
which is derived from the second equation of (2) and the fact that f ∈ H(div0; Ω). More precisely, for
the first term, it holds

(∇ · f + κ2∇ · (εuh)−∇ · (ε∇ph),ΠSZφ− φ)Th
. h ‖∇ · f + κ2∇ · (εuh)−∇ · (ε∇ph)‖Th

‖φ‖1,Th

and for the second term,

〈ε∇(p− ph) · n, φ−ΠSZφ〉∂Th
. h1/2‖ε∇(p− ph) · n‖∂Th

‖φ‖1,Th
. ‖h1/2Jε∇ph · nK‖EI

‖φ‖1,Th
.

Similarly, we derive the following bounds for the third, fourth and fifth terms

κ2(ε(u− uh),∇φ)Th
. κ2‖ε(u− uh)‖Th

‖φ‖1,Th
,

κ2〈ε(u− uh) · n,ΠSZφ− φ〉∂Th
. κ2‖ε(u− uh)‖Th

‖φ‖1,Th
,

〈(∇ΠSZφ−∇Π0
Qφ) · n, ε(ph − p̂h)〉∂Th

.
∑
K∈Th

‖ε(ph − p̂h)‖∂K‖(∇ΠSZφ−∇Π0
Qφ) · n‖∂K

.
∑
K∈Th

‖ε(ph − p̂h)‖∂Kh−1/2
K ‖∇ΠSZφ−∇Π0

Qφ‖K

.
∑
K∈Th

h
−3/2
K ‖ε(ph − p̂h)‖∂K‖ΠSZφ−Π0

Qφ‖K

. ‖h−1/2ε(ph − p̂h)‖∂Th
‖φ‖1,Th

.

By replacing all the above bounds in (11), noticing that

‖∇(p− pch)‖2Th
. (∇(p− ph), ε∇φ)Th

+ (∇(ph − pch),∇φ)Th
,
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and using Poincaré inequality, we deduce that

‖∇(p− pch)‖Th
. h ‖∇ · f + κ2∇ · (εuh)−∇ · (ε∇ph)‖Th

+ ‖h1/2Jε∇ph · nK‖EI

+ κ2‖ε(u− uh)‖Th
+ ‖h−1/2(ph − p̂h)‖∂Th

+ ‖∇(ph − pch)‖Th
.

Finally, writing ∇(p − ph) = ∇(p − pch) + ∇(pch − ph), using triangle inequality, (9) and the last
expression, we obtain (8b).

In the next result, it is presented an upper bound for the L2-error of the electric field that depends
on the L2-error of an approximation of its curl and the penalty terms. The former will be bounded
later, by a computable quantity.

Lemma 4.4. Let (v,u, p) ∈ H(curl; Ω) ×Xg
QP × H1

0(Ω) and (vh,uh, ph, ûth, p̂h) ∈ Vh ×Vh × Qh ×
Mg

QP ×Mh be the solutions of (2) and (4), respectively. There holds

‖ε(u− uh)‖Th
. ‖∇ × (u− uQP

h )‖Th
+ h1/2‖τn(ph − p̂h)‖∂Th

+ ‖h1/2(uh − ûth)× n‖∂Th
(12)

where uQP
h is given by Lemma 4.1 for uh ∈ Vh.

Proof. First of all, thanks to Lemma 4.1, for uh ∈ Vh there exists uQP
h ∈ Vc

h with uQP
h × n |Γ0= g

such that

‖uh − uQP
h ‖Th

. ‖h1/2JuhK‖EI
+ ‖h1/2JuhKQP‖EQP + ‖h1/2(uh × n− g)‖E0 ,

Even more, the facts that JûthK = 0 on EI , JûthKQP = 0 on ΓQP (cf. Remark 3.1) and ûth × n |Γ0= g,
imply that

‖uh − uQP
h ‖Th

. ‖h1/2Juh − ûthK‖EI
+ ‖h1/2Juh − ûthKQP‖EQP + ‖h1/2(uh − ûth)× n‖E0 ,

therefore, since ε is a bounded function, we have that

‖ε(uh − uQP
h )‖Th

. ‖h1/2(uh − ûth)× n‖∂Th
. (13)

and, by the triangle inequality

‖ε(u− uh)‖Th
. ‖ε(u− uQP

h )‖Th
+ ‖h1/2(uh − ûth)× n‖∂Th

. (14)

Now, let us see the deduction of a bound for the term ‖ε(u−uQP
h )‖Th

. For this purpose, we will use
a Helmholtz decomposition, which will be demonstrated in the Appendix A.1. For u − uQP

h ∈ L2(Ω)
there exist ψ ∈ H1,QP

Γ0
(Ω) and us ∈ HΓQP(div0; Ω), such that

u− uQP
h = ∇ψ + us (15)

and ‖u − uQP
h ‖2Ω = ‖∇ψ‖2Ω + ‖us‖2Ω (see Proposition A.1). Moreover, according with [21, Theo-

rem 8.4], since Ω is simply connected and us ∈ HΓQP(div0; Ω) there exists a unique z̃ ∈ HΓ0(div0; Ω)∩
HΓQP(curl; Ω) such that ∇× z̃ = us and it satisfies

‖z̃‖H(curl;Ω) . ‖us‖Ω. (16)
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In the next part of the proof, we bound ‖us‖Ω and ‖∇ψ‖Ω. First, we note that (u−uQP
h )×n |Γ0= 0,

since u ∈ Xg
QP and g is the tangential trace of uQP

h . By considering the orthogonal decomposition
(15) and integrating by parts, we note that
‖us‖2Ω = (us,u− uQP

h −∇ψ)Ω = (∇× z̃,u− uQP
h )Ω − (us,∇ψ)Ω

= (z̃,∇× (u− uQP
h ))Ω + 〈(u− uQP

h )× n, z̃t〉Γ + (∇ · us, ψ)Ω − 〈us · n, ψ〉Γ = (z̃,∇× (u− uQP
h ))Ω

where the first boundary term vanishes due to the fact that u−uQP
h ∈ HΓ0(curl; Ω), z̃ ∈ HΓQP(curl; Ω)

and the other terms because us ∈ HΓQP(div0; Ω) and ψ|Γ0 = 0. Therefore, by the Cauchy-Schwarz
inequality and (16), it holds

‖us‖2Ω . ‖us‖Ω‖∇ × (u− uQP
h )‖Ω,

thus
‖us‖Ω . ‖∇ × (u− uQP

h )‖Th
. (17)

Now, in order to bound ‖∇ψ‖Ω, we also employ the aforementioned orthogonal decomposition and
the addition and subtraction of uh, as follows

‖∇ψ‖2Ω = (u− uQP
h − us,∇ψ)Ω = (u− uQP

h ,∇ψ)Ω = (ε−1ε(u− uh + uh − uQP
h ),∇ψ)Th

,

in order to conclude that,
‖∇ψ‖2Ω . |(ε(u− uh),∇ψ)Th

|+ |(ε(uh − uQP
h ),∇ψ)Th

|. (18)

Then, taking into account (2c) and (4c), we deduce the following error equation
−(ε(u− uh),∇q)Th

+ 〈(εu− ε̂unh) · n, q〉∂Th
= 0

from which, after applying the Green’s identity of H(div; Th), it is obtained that
(∇ · ε(u− uh), q)Th

+ 〈(εuh − ε̂unh) · n, q〉∂Th
= 0 ∀q ∈ Qh (19)

Now, if we integrate by parts in the first term of (18), add and subtract (∇ · ε(u − uh),ΠSZψ)Th
,

integrate by parts (∇·ε(u−uh),ΠSZψ)Th
, use the fact that u ∈ H(div0

ε ; Ω) and choose q = ΠSZψ ∈ Qh

in (19), we can get that
(ε(u− uh),∇ψ)Th

= −(∇ · ε(u− uh), ψ)Th
+ 〈ε(u− uh) · n, ψ〉∂Th

=(∇ · ε(u− uh),ΠSZψ − ψ)Th
− (∇ · ε(u− uh),ΠSZψ)Th

+ 〈ε(u− uh) · n, ψ〉∂Th

=(∇ · (εuh), ψ −ΠSZψ)Th
+ 〈ε(u− uh) · n, ψ −ΠSZψ〉∂Th\(EQP∪E0) + 〈(εu− ε̂unh) · n,ΠSZψ〉EQP ,

where in the last step we have made use of the fact that 〈(εu − ε̂unh) · n,ΠSZψ〉∂Th\EQP = 0, due to
ΠSZψ ∈ H1

Γ0
(Ω), the continuity of the normal trace of εu and the fact that ε̂unh is a single-valued

function. We also used the fact that ΠSZψ − ψ = 0 on EQP ∪ E0. By the Cauchy-Schwarz inequality,
the the definition of J·KQP and the approximation properties of the Scott-Zhang projector in Lemma
4.2, it follows that
|(ε(u− uh),∇ψ)Th

| ≤|(∇ · (εuh), ψ −ΠSZψ)Th
|+ |〈ε(u− uh) · n, ψ −ΠSZψ〉∂Th\(EQP∪E0)|

+ |〈(εu− ε̂unh) · n,ΠSZψ − ψ〉EQP |+ |〈(εu− ε̂unh) · n, ψ〉EQP |
≤‖∇ · (εuh)‖Th

‖ψ −ΠSZψ‖Th
+ ‖ε(u− uh) · n‖∂Th\(EQP∪E0)‖ψ −ΠSZψ‖∂Th

+
∥∥∥J(εu− ε̂unh) · nKQP

∥∥∥
EQP
‖JψKQP‖EQP

.
(
h‖∇ · (εuh)‖Th

+ h1/2‖ε(u− uh) · n‖∂Th\(EQP∪E0)
)
|ψ|1,Ω

.
(
h‖∇ · (εuh)‖Th

+ h1/2 ‖Jε(u− uh) · nK‖EI

)
|ψ|1,Ω,

(20)
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where we have made use of the fact that JψKQP = 0 because ψ ∈ H1,QP
Γ0

(Ω). Taking into account that
εu ∈ H(div; Ω), ε̂unh is single-valued and (4h), we have

‖Jε(u− uh) · nK‖EI
= ‖J(εuh − ε̂unh) · nK‖EI

=
∑
F∈EI

∥∥∥J(εuh − ε̂unh) · nK
∥∥∥
F

=
∑
F∈EI

‖Jτn(ph − p̂h)K‖F ≤ ‖τn(ph − p̂h)‖∂Th
.

(21)

Recalling that ∇ · (εu) = 0, taking q := ∇ · (εuh) in (19), by using the Cauchy-Schwarz inequality, the
discrete trace inequality and (4h), there holds

‖∇ · (εuh)‖2Th
= 〈(εuh − ε̂unh) · n,∇ · (εuh)〉∂Th

≤ ‖(εuh − ε̂unh) · n‖∂Th
‖∇ · (εuh)‖∂Th

≤ ‖(εuh − ε̂unh) · n‖∂Th
h−1/2‖∇ · (εuh)‖Th

≤ h−1/2‖τn(ph − p̂h)‖∂Th
‖∇ · (εuh)‖Th

thus
‖∇ · (εuh)‖Th

. h−1/2‖τn(ph − p̂h)‖∂Th
. (22)

Therefore, by using the Cauchy-Schwarz inequality in (18), from (20), (21), (22) and (13), it follows
that

‖∇ψ‖Ω . h1/2‖τn(ph − p̂h)‖∂Th
+ ‖h1/2(uh − ûth)× n‖∂Th

. (23)

Finally, (12) follows by combining (14), (15), (23) and (17).

In the following lemma, let us proceed to obtain a computable upper bound for the L2-error of the
curl of the electric field and its quasi-periodic approximation.

Lemma 4.5. Let (v,u, p) ∈ H(curl; Ω) ×Xg
QP × H1

0(Ω) and (vh,uh, ph, ûth, p̂h) ∈ Vh ×Vh × Qh ×
Mg

QP ×Mh be the solutions of (2) and (4), respectively. Then,

‖∇ × (u− uQP
h )‖Th

. ‖h−1/2(uh − ûth)× n‖∂Th
+ h`−1 ∑

K∈Th

ηK,1 + h`−1‖τ(ûth − uth)‖∂Th

+ h`−1 ∑
K∈Th

∑
F∈∂K

ηF,3 + h1/2‖τn(ph − p̂h)‖∂Th
+ h`−1/2‖ph − p̂h‖∂Th

(24)

where uQP
h is given by Lemma 4.1 for uh ∈ Vh and ` ∈ (0, 1) such that the continuous embedding

HΓQP(div0
ε ; Ω) ∩HΓ0(curl; Ω) ↪→ H`(Ω) (25)

holds.

Proof. Let uQP
h ∈ Vc

h be the quasi-periodic approximation of uh with uQP
h × n |Γ0= g provided in

Lemma 4.1. Let us consider the Helmholtz decomposition of u− uQP
h ∈ L2(Ω) (Appendix A.1):

u− uQP
h = ∇ϕ+ vs, (26)

with ‖u−uQP
h ‖2Ω = ‖∇ϕ‖2+‖vs‖2, where ϕ ∈ H1,QP

Γ0
(Ω) and vs ∈ HΓQP(div0

ε ; Ω). In addition, since (u−
uQP
h )×n = 0 on Γ0 and ∇ϕ×n|Γ0 = curl|Γ0ϕ = 0, we conclude that vs ∈ HΓ0(curl; Ω). Thus, for vs ∈

HΓQP(div0
ε ; Ω)∩HΓ0(curl; Ω) there exists ` ∈ (0, 1) such that vs ∈ H`(Ω) and ‖vs‖`,Ω . ‖vs‖H(curl;Ω),

thanks the continuous embedding HΓQP(div0
ε ; Ω) ∩HΓ0(curl; Ω) ↪→ H`(Ω) (see Remark 8.7 in [21]).
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Then, adding and subtracting uh, it follows that

‖∇ × (u− uQP
h )‖2Th

= (∇× (u− uQP
h ),∇× (∇ϕ+ vs))Th

= (∇× (u− uh),∇× vs)Th
+ (∇× (uh − uQP

h ),∇× vs)Th
.

For the second term, according to (7d), we have that

(∇× (uh−uQP
h ),∇× vs)Th

≤ ‖∇× (uh − uQP
h )‖Th

‖∇ × vs‖Th

.
(
‖h−1/2JuhK‖EI

+
∥∥∥h−1/2JuhKQP

∥∥∥
EQP

+ ‖h−1/2(uh × n− g)‖E0
)
‖∇ × vs‖Th

.‖h−1/2(uh − ûth)× n‖∂Th
‖∇ × vs‖Th

,

(27)

where in the last step, we have used the facts that JûthK = 0 on EI , JûthKQP = 0 on EQP (Remark 3.1)
and ûth×n = g on Γ0. Thus, since ∇×vs = ∇× (u−uQP

h ) and apply the Young inequality, as follows

‖∇ × (u− uQP
h )‖2Th

. (∇× (u− uh),∇× vs)Th
+ ‖h−1/2(uh − ûth)× n‖2∂Th

. (28)

Now, if we use the L2-projector over P0(Th), Π0
V (see [35]), in the first term of (28), apply the Green’s

identity of H(curl; Th), use (2a) and (2b), it follows that

(∇× (u−uh),∇× vs)Th
= (∇× (u− uh),∇× (vs −Π0

Vvs))Th

= (∇×∇× (u− uh),vs −Π0
Vvs)Th

− 〈(∇× (u− uh))t, (vs −Π0
Vvs)× n〉∂Th

= (f − ε∇p+ κ2εu−∇×∇× uh,vs −Π0
Vvs)Th

− 〈(v−∇× uh)t, (vs −Π0
Vvs)× n〉∂Th

.

(29)

Now, by taking z := Π0
Vvs in (10) and applying the Green’s identity of H(div; Th) to the fourth term

of the obtained equation, we have

0 = (v− vh,∇×Π0
Vvs)Th

+ 〈vt − v̂th,Π0
Vvs × n〉∂Th

− κ2(ε(u− uh),Π0
Vvs)Th

− (p− ph,∇ · (εΠ0
Vvs))Th

+ 〈εΠ0
Vvs · n, p− p̂h〉∂Th

,

from which,

0 = 〈vt − v̂th,Π0
Vvs × n〉∂Th

− κ2(ε(u− uh),Π0
Vvs)Th

+ 〈εΠ0
Vvs · n, p− p̂h〉∂Th

, (30)

thanks to the fact that ε is a piecewise constant. Then, by using (30), let us rewrite the second term
on the right hand side of (29), thus

〈(v−∇× uh)t, (vs −Π0
Vvs)× n〉∂Th

=〈vt,vs × n〉∂Th
− 〈vt,Π0

Vvs × n〉∂Th
− 〈(∇× uh)t, (vs −Π0

Vvs)× n〉∂Th

=〈vt,vs × n〉∂Th
− 〈v̂th,Π0

Vvs × n〉∂Th
− κ2(ε(u− uh),Π0

Vvs)Th

+ 〈εΠ0
Vvs · n, p− p̂h〉∂Th

− 〈(∇× uh)t, (vs −Π0
Vvs)× n〉∂Th

.

Let us note that the first term on the right hand side vanishes, since vs ∈ HΓ0(curl; Ω), u, uQP
h and

ϕ satisfies quasi-periodic conditions. In fact, by using the definitions of v (cf. (2a)) and vs (cf. (26)),

15



we have that

〈vt,vs × n〉∂Th
=〈vt,vs × n〉∂Th\Γ + 〈vt,vs × n〉Γ0 + 〈vt,vs × n〉ΓQP

=〈vt,vs × n〉ΓQP = 〈(∇× u)t,vs × n〉ΓQP

=〈(∇× u)t, (u− uQP
h )× n〉ΓQP − 〈(∇× u)t,∇ϕ× n〉ΓQP

=〈(∇× u)t, (u− uQP
h )× n〉Γ1∪Γ2 + 〈(∇× u)t, (u− uQP

h )× n〉Γ3∪Γ4

=〈(∇× u)t, (u− uQP
h )× n〉Γ1 − |eiαL|〈(∇× u)t, (u− uQP

h )× n〉Γ1

+ 〈(∇× u)t, (u− uQP
h )× n〉Γ3 − |eiβL|〈(∇× u)t, (u− uQP

h )× n〉Γ3 = 0.

In addition, if we add 0 = 〈v̂th,vs × n〉∂Th
in the second term, it is obtained that

〈(v−∇× uh)t, (vs −Π0
Vvs)× n〉∂Th

= −〈v̂th, (Π0
Vvs − vs)× n〉∂Th

− κ2(ε(u− uh),Π0
Vvs)Th

+ 〈εΠ0
Vvs · n, p− p̂h〉∂Th

− 〈(∇× uh)t, (vs −Π0
Vvs)× n〉∂Th

.

Then, after replacing the above expression in (29), add 0 = 〈εvs · n, p − p̂h〉∂Th
and by adding and

subtracting κ2εuh and ε∇ph in the first term, we can form the residual associated to (2b), as follows

(∇× (u− uh),∇× vs)Th
= (f − ε∇ph + κ2εuh −∇×∇× uh,vs −Π0

Vvs)Th
− κ2(ε(u− uh),vs)Th

−〈v̂th− (∇×uh)t, (vs−Π0
Vvs)×n〉∂Th

+ 〈ε(vs−Π0
Vvs) ·n, p− p̂h〉∂Th

− (∇(p−ph), ε(vs−Π0
Vvs))Th

,

using Green’s identity and recalling that ε(vs−Π0
Vvs) is divergence free on each element, it is obtained

that

(∇× (u− uh),∇× vs)Th
= (f − ε∇ph + κ2εuh +∇×∇× uh,vs −Π0

Vvs)Th
− κ2(ε(u− uh),vs)Th

− 〈v̂th − (∇× uh)t, (vs −Π0
Vvs)× n〉∂Th

+ 〈ε(vs −Π0
Vvs) · n, ph − p̂h〉∂Th

Now, if we use (26) to rewrite vs in the second term, adding and subtracting vth in the third term and
taking account the numerical flux (4h), it holds

(∇× (u− uh),∇× vs)Th
=(f − ε∇ph + κ2εuh −∇×∇× uh,vs −Π0

Vvs)Th
− κ2(ε(u− uh),u− uQP

h )Th

+ κ2(ε(u− uh),∇ϕ)Th
+ 〈ε(vs −Π0

Vvs) · n, ph − p̂h〉∂Th

+ 〈τ(ûth − uth),vs −Π0
Vvs〉∂Th

+ 〈vth − (∇× uh)t, (vs −Π0
Vvs)× n〉∂Th

.

Since −κ2(ε(u−uh),u−uQP
h )Th

= −κ2‖ε1/2(u−uh)‖2Th
− κ2(ε(u−uh),uh−uQP

h )Th
, from the above

equality we obtain that

κ2‖ε1/2(u− uh)‖2Th
+ (∇× (u− uh),∇× vs)Th

= (f − ε∇ph + κ2εuh −∇×∇× uh,vs −Π0
Vvs)Th

− κ2(ε(u− uh),uh − uQP
h )Th

+ κ2(ε(u− uh),∇ϕ)Th
+ 〈ε(vs −Π0

Vvs) · n, ph − p̂h〉∂Th

+ 〈τ(ûth − uth),vs −Π0
Vvs〉∂Th

+ 〈vth − (∇× uh)t, (vs −Π0
Vvs)× n〉∂Th

.

(31)

In what follows, we bound each term on the right hand side of (31), by applying the Cauchy-Schwarz
inequality, the definitions of the error indicators (6a), (6e), the relation (4g), the approximation
properties of Π0

V and the inverse inequality, we have
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? (f − ε∇ph + κ2εuh −∇×∇× uh,vs −Π0
Vvs)Th

≤
∑
K∈Th

h−1
K ηK,1‖vs −Π0

Vvs‖K

.
∑
K∈Th

h−1
K ηK,1 h

`
K‖vs‖`,K

≤ h`−1‖vs‖`,Ω
∑
K∈Th

ηK,1,

? 〈τ(ûth − uth),vs −Π0
Vvs〉∂Th

. h`−1‖vs‖`,Ω ‖τ(ûth − uth)‖∂Th

? 〈vth − (∇× uh)t, (vs −Π0
Vvs)× n〉∂Th

= 〈n× (vh −∇× uh),vs −Π0
Vvs〉∂Th

≤
∑
K∈Th

‖n× (vh −∇× uh)‖∂K‖vs −Π0
Vvs‖∂K

≤
∑
K∈Th

‖n× (vh −∇× uh)‖∂K h
−1/2
K ‖vs −Π0

Vvs‖K

.
∑
K∈Th

 h
`−1/2
K ‖vs‖`,K

∑
F∈∂K

‖n× (vh −∇× uh)‖F


≤
∑
K∈Th

 h
`−1/2
K ‖vs‖`,K

∑
F∈∂K

h
−1/2
F ηF,3


. h`−1‖vs‖`,Ω

∑
K∈Th

∑
F∈∂K

ηF,3

? (ε(u− uh),uh − uQP
h )Th

≤ ‖ε(u− uh)‖Th
‖uh − uQP

h ‖Th

. h1/2‖ε(u− uh)‖Th
‖(uh − ûth)× n‖∂Th

,

? 〈ε(Π0
Vvs · n− vs · n), ph − p̂h〉∂Th

. h`−1/2‖vs‖`,Ω ‖ph − p̂h‖∂Th
.

? (ε(u− uh),∇ϕ)Th
≤ ‖ε(u− uh)‖Th

‖∇ϕ‖Th

. ‖ε(u− uh)‖Th

(
h1/2‖τn(ph − p̂h)‖∂Th

+ ‖h1/2(uh − ûth)× n‖∂Th

)
,

Where in the last inequality, we have used (23) for ψ in place of ϕ. Using Young’s inequality in the
above equations and replacing in (31), we get

κ2‖ε(u− uh)‖2Th
+ (∇× (u− uh),∇× vs)Th

. δ2‖ε(u− uh)‖2Th
+

h`−1 ∑
K∈Th

ηK,1

2

+
(
h`−1‖τ(ûth − uth)‖∂Th

)2
+

h`−1 ∑
K∈Th

∑
F∈∂K

ηF,3

2

+
(
h1/2‖τn(ph − p̂h)‖∂Th

)2

+
(
‖h1/2(uh − ûth)× n‖∂Th

)2
+
(
h`−1/2‖ph − p̂h‖∂Th

)2
+ ‖vs‖2`,Ω.
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According with the continuous embedding, we rewrite vs by using (26) and (23), we have

‖vs‖2`,Ω . ‖vs‖2Ω + ‖∇ × vs‖2Ω = ‖u− uQP
h −∇ϕ‖2Th

+ ‖∇ × (u− uQP
h )‖2Th

. ‖∇ϕ‖2Ω + ‖u− uQP
h ‖

2
Th

+ ‖∇ × (u− uQP
h )‖2Th

.
(
h1/2‖τn(ph − p̂h)‖∂Th

)2
+
(
‖h1/2(uh − ûth)× n‖∂Th

)2

+ ‖ε(u− uh)‖2Th
+ ‖ε(uh − uQP

h )‖2Th
+ ‖∇ × (u− uQP

h )‖2Th

.
(
h1/2‖τn(ph − p̂h)‖∂Th

)2
+
(
‖h1/2(uh − ûth)× n‖∂Th

)2
+ ‖ε(u− uh)‖2Th

+ ‖∇ × (u− uQP
h )‖2Th

thus

‖ε(u− uh)‖2Th
+ (∇× (u− uh),∇× vs)Th

. δ̂2‖ε(u− uh)‖2Th
+

h`−1 ∑
K∈Th

ηK,1

2

+
(
h`−1‖τ(ûth − uth)‖∂Th

)2
+

h`−1 ∑
K∈Th

∑
F∈∂K

ηF,3

2

+
(
h1/2‖τn(ph − p̂h)‖∂Th

)2

+
(
‖h1/2(uh − ûth)× n‖∂Th

)2
+
(
h`−1/2‖ph − p̂h‖∂Th

)2
+ ‖∇ × (u− uQP

h )‖2Th
.

Finally, replacing in (28), we conclude

‖∇ × (u− uQP
h )‖2Th

. ‖h−1/2(uh − ûth)× n‖2∂Th
+

h`−1 ∑
K∈Th

ηK,1

2

+
(
h`−1‖τ(ûth − uth)‖∂Th

)2

+

h`−1 ∑
K∈Th

∑
F∈∂K

ηF,3

2

+
(
h1/2‖τn(ph − p̂h)‖∂Th

)2

+
(
‖h1/2(uh − ûth)× n‖∂Th

)2
+
(
h`−1/2‖ph − p̂h‖∂Th

)2
+ δ̂2‖ε(u− uh)‖2Th

.

Then, choosing δ̂ small enough and using the fact that 0 < h < 1, (24) is deduced from the last
inequality.

Lemma 4.6. Let (v,u, p) ∈ H(curl; Ω) ×Xg
QP × H1

0(Ω) and (vh,uh, ph, ûth, p̂h) ∈ Vh ×Vh × Qh ×
Mg

QP ×Mh be the solutions of (2) and (4), respectively. There holds

‖∇ × uh − vh‖Th
. h−1/2‖(uth − ûth)× n‖∂Th

. (32)

Proof. By testing (2a) with w, apply the Green’s identity and subtracting (4a), we obtain the next
error equation

(v− vh,w)− (u− uh,∇×w)Th
− 〈ut − ûth,w× n〉∂Th

= 0 ∀w ∈ Vh

apply the Green’s identity to the second term and using again (2a), it follows

(v− vh,w)Th
− (∇× (u− uh),w)Th

+ 〈(u− uh)t,w× n〉∂Th
− 〈ut − ûth,w× n〉∂Th

= 0
(∇× uh − vh,w)Th

− 〈(uth − ûth)× n,w〉∂Th
= 0.

Afterwards, by defining w := ∇× uh − vh, applying the Cauchy-Schwarz inequality and the inverse
inequality ([18], Lemma 1.46), we obtain (32).
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Finally, gathering together all the previous results, we deduce the following upper bound for the
error in terms of the error estimator and the index ` appearing in the continuous embedding (25).

Corollary 4.1. Let (v,u, p) ∈ H(curl; Ω)×Xg
QP ×H1

0(Ω) and (vh,uh, ph, ûth, p̂h) ∈ Vh ×Vh ×Qh ×
Mg

QP×Mh be the solutions of (2) and (4), respectively. If the stabilization parameters satisfy |τ | and
|τn| to be proportional to one, then

Eh . h`−1η1 + η2 + h`−1/2η∂1 + η∂2 + h`−1η∂3 + η∂4 ,

where the terms on the right hand side have the following form η1 := ∑
K∈Th

ηK,1, η2 := ∑
K∈Th

ηK,2,
η∂1 := ∑

K∈Th

∑
F∈∂K ηF,1, η∂2 := ∑

K∈Th

∑
F∈∂K ηF,2, η∂3 := ∑

K∈Th

∑
F∈∂K ηF,3 and η∂4 := ∑

F∈EI\Γ ηF,4.

The above estimates imply that error estimator is reliable, i.e., Eh . η when ` = 1. This happens,
for instance, when Γ = Γ0 (see for instance Section 3.4 [22]). In our setting Γ is the union of tow
disjoint sets ΓQP and Γ0, therefore it is not possible to guarantee ` = 1 in (25). However, the numerical
experiments in Section 5 suggest that the estimator is still reliable even in this case.

4.2 Local efficiency

In this section we want to study whether or not our a posteriori error estimator shows local efficiency,
based on the techniques devised by Verfürth, applying some properties of the bubble functions. Given
an element K, a bubble function is defined as BK := (d + 1)d+1∏d+1

i=1 λi, where λi is a linear nodal
function in the i vertex of K. Hence, supp(BK) ⊂ K, BK = 0 on ∂K and BK ∈ [0, 1]. If the function
is builded on a face F , then BF := dd

∏d
i=1 λi, for i vertex of F . In this case, supp(BF ) ⊂ {K ∈ Th :

F ⊂ ∂K}, BF = 0 on ∂K \ F and BF ∈ [0, 1]. Now, let us introduce the properties of the bubble
functions, which were proved in [2], Theorems 2.2 and 2.4.

Lemma 4.7. For given K ∈ Th, F ⊂ ∂K, φ ∈ P(K) and ψ ∈ P(F ), it holds

C−1‖φ‖2K ≤ ‖B
1/2
K φ‖2K ≤ C‖φ‖2K ,

C−1‖ψ‖2F ≤ ‖B
1/2
F ψ‖2F ≤ C‖ψ‖2F ,

C‖ψ‖2F ≤ ‖B
1/2
F L(ψ)‖2K ≤ C‖ψ‖2F ,

where L : C(F )→ C(K), L(ϕ) ∈ P(K) and L(ϕ)|F = ϕ, for all ϕ ∈ P(F ).

In the following Lemma we will employ the properties stated in Lemma 4.7, in order to study the
efficiency of our estimator.

Lemma 4.8. For all K ∈ Th, it holds

ηK,1 . osc(f ,K) + ‖p− ph‖K + κ2hK‖ε(u− uh)‖K + ‖∇ × (u− uh)‖K , (33a)
ηK,2 . osc(∇ · f ,K) + ‖∇(p− ph)‖K + κ2‖ε(u− uh)‖K . (33b)

Proof. If we define Rh := f − ε∇ph + κ2εuh − ∇ × ∇ × uh, the proof follows the same steps as the
proof of Lemma 6.4 in [13].

Lemma 4.9. For all K ∈ Th and F ∈ ∂K, there holds

ηF,3 . ‖vh −∇× uh‖K .
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Proof. The bound is deduced by the definition of ηF,3 and the discrete trace inequality.

Lemma 4.10. For all F ∈ EI , there holds

ηF,4 . osc(∇ · f , ωF ) + osc(f , ωF ) + κ2‖ε(u− uh)‖ωF + κ2hωF ‖τn(ph − p̂h)‖∂ωF
+ ‖∇(p− ph)‖ωF

where ωF := ∪{K ∈ Th : K ∩ F 6= ∅}.

Proof. Let F ∈ EI , for a given w ∈ H1
0(ωF ), we consider the product between

s
ε∂ph
∂n

{
and w. Then,

after applying integration by parts and using the divergence of (2b), we obtain that〈s
ε
∂ph
∂n

{
, w

〉
F

= (∇ · f −ΠQ∇ · f , w)ωF + (ΠQ(∇ · f + κ2∇ · (εuh)−∇ · (ε∇ph)), w)ωF

− κ2(∇ · (εuh), w)ωF + (ε∇(p− ph),∇w)ωF ,

from which, using the Lemma 4.7, the properties of the extension operator L, choosing w := BFL
(q
ε∂ph
∂n

y)
,

applying Cauchy-Schwarz inequality and inverse inequality it follows that

∥∥∥∥
s
ε
∂ph
∂n

{∥∥∥∥2

F

.
(
‖∇ · f −ΠQ∇ · f‖ωF + ‖ΠQ(∇ · f + κ2∇ · (εuh)−∇ · (ε∇ph))‖ωF

+κ2‖∇ · (ε∇ph)‖ωF + h−1
ωF
‖ε∇(p− ph)‖ωF

) ∥∥∥∥BFL(
s
ε
∂ph
∂n

{)∥∥∥∥
ωF

where, by using the Lemma 4.7 again, we get∥∥∥∥BFL(
s
ε
∂ph
∂n

{)∥∥∥∥
ωF

. h
1/2
F

∥∥∥∥
s
ε
∂ph
∂n

{∥∥∥∥
F

.

Thus, from (22)

h
1/2
F

∥∥∥∥
s
ε
∂ph
∂n

{∥∥∥∥
F

. hF ‖∇ · f −ΠQ∇ · f‖ωF + hF ‖∇ · f + κ2∇ · (εuh)−∇ · (ε∇ph)‖ωF

+ κ2h
1/2
F h1/2

ωF
‖τn(ph − p̂h)‖∂ωF

+ h
1/2
F h−1/2

ωF
‖ε∇(p− ph)‖ωF .

Hence, we conclude the proof from definitions of ηF,4, ηK,2 and from (33b).

Proof of Theorem 4.1. It follows from Corollary 4.1, Lemma 4.8 and Lemma 4.10.

5 Numerical results

The numerical experiments were carry out by adapting the routines that we used for the implemen-
tation of the proposed HDG method in [10]. In our examples, we consider a unit cube Ω := [0, 1]3
divided in two regions Ωd and Ωm, which are discretized by a sequence of quasi-uniform tetrahe-
dral meshes. Each element of the meshes satisfies that its interior belongs to either Ωd or Ωm.
Based on [19], we choose the wavelength λ0 := 4.5 (450 nm) and recall that κ := 2π/λ0, that is,
κ = 1.3963. Moreover, we use the following values for the relative electric permittivities, εd := 2.7124
and εm := −5.8828 + i 0.6650, which corresponds to the silicon oxynitride and evaporated silver,
respectively.
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The stabilization parameters are set to be τ = −i, τn = i in all the experiments and therefore, a
rate of convergence of order hk+1 in the L2 norm is expected for smooth solutions.

For an unknown w ∈ {v,u, p} the experimental order of convergence is defined as

r(w) = −3‖w − wh1‖Ω/‖w − wh2‖Ω
N1/N2

, (34)

where N1 and N2 are the number of elements of two consecutive meshes of sizes h1 and h2 (h1 > h2),
respectively. In the same way we define the experimental order of convergence r(Eh) for the global
error Eh (cf. (5)). In addition, we recall the global contribution of each of the local error indicators
specified in (6), as follows

η1 :=

 ∑
K∈Th

η2
K,1

1/2

, η2 :=

 ∑
K∈Th

η2
K,2

1/2

, η∂1 :=

 ∑
K∈Th

∑
F∈∂K

η2
F,1

1/2

,

η∂2 :=

 ∑
K∈Th

∑
F∈∂K

η2
F,2

1/2

, η∂3 :=

 ∑
K∈Th

∑
F∈∂K

η2
F,3

1/2

, η∂4 :=

∑
F∈EI

η2
F,4

1/2

.

Their respective experimental order of convergence are defined as in (34), where now the error estimator
takes the place of the error.

5.1 Uniform refinement

Example 5.1. The domain Ω is divided in Ωd := [0, 1]×[0, 1]×[0, 1/2] and Ωm := [0, 1]×[0, 1]×[1/2, 1].
We consider the exact solution u(x, y, z) := (0, u2(x, y, z), 0)T , where

u2(x, y, z) :=
{

exp
(
−iκ√εd (z − 0.5)

)
+ exp

(
iκ
√
εd (z − 0.5)

)
, if z ≥ 0.5,

exp
(
−iκ√εm (z − 0.5)

)
+ exp

(
iκ
√
εm (z − 0.5)

)
, if z < 0.5,

assume that p(x, y, z) := 0 and calculate the values of f and g, taking into account the exact solution.
We impose quasi-periodic boundary conditions on the vertical walls.

k Nelts ‖v− vh‖Th
‖u− uh‖Th

‖p− ph‖Th
r(v) r(u) r(p) Eh r(Eh)

1 48 8.99e-01 3.72e-01 2.23e-02 - - - 7.53e+00 -
384 2.88e-01 1.08e-01 6.42e-03 1.64 1.79 1.79 4.66e+00 0.69
3072 7.84e-02 2.83e-02 1.71e-03 1.88 1.93 1.91 2.51e+00 0.89
24576 2.02e-02 7.15e-03 4.46e-04 1.96 1.98 1.94 1.29e+00 0.96

2 48 1.77e-01 6.50e-02 5.12e-03 - - - 1.55e+00 -
384 2.49e-02 9.04e-03 5.51e-04 2.83 2.84 3.22 4.31e-01 1.85
3072 3.21e-03 1.14e-03 6.97e-05 2.96 2.99 2.98 1.11e-01 1.95

3 48 1.28e-02 6.15e-03 4.96e-04 - - - 1.42e-01 -
384 1.01e-03 4.56e-04 3.06e-05 3.67 3.75 4.02 2.15e-02 2.72
3072 6.74e-05 3.03e-05 2.02e-06 3.90 3.91 3.92 2.87e-03 2.90

Table 1: Rate of convergence and errors of Example 5.1 with τ = −i and τn = i. Error estimator and
its rate of convergence.

21



k Nelts η∂1 η∂2 η∂3 η∂4 r(η∂1 ) r(η∂2 ) r(η∂3 ) r(η∂4 )
1 48 2.43e+00 2.62e-01 1.41e+01 1.23e+00 - - - -

384 1.43e+00 1.61e-01 7.78e+00 6.55e-01 0.76 0.70 0.86 0.91
3072 7.58e-01 8.70e-02 4.00e+00 3.15e-01 0.92 0.89 0.96 1.06
24576 3.86e-01 4.50e-02 2.01e+00 1.52e-01 0.97 0.95 0.99 1.05

2 48 4.72e-01 5.21e-02 3.76e+00 6.65e-01 - - - -
384 1.33e-01 1.39e-02 1.02e+00 1.89e-01 1.83 1.90 1.88 1.81
3072 3.43e-02 3.70e-03 2.54e-01 5.23e-02 1.96 1.91 2.01 1.85

3 48 4.49e-02 6.04e-03 6.49e-01 1.65e-01 – - -
384 6.89e-03 8.83e-04 9.60e-02 2.70e-02 2.70 2.77 2.76 2.61
3072 9.13e-04 1.19e-04 1.26e-02 3.75e-03 2.91 2.89 2.93 2.85

Table 2: Rate of convergence and errors of the boundary terms of the error estimator of Example 5.1
with τ = −i and τn = i.

k Nelts η1 η2 r(η1) r(η2) η r(η) eff.
1 48 7.37e+00 9.87e-02 - - 1.62e+01 - 2.14

384 3.76e+00 2.53e-02 0.97 1.96 8.79e+00 0.88 1.89
3072 1.89e+00 6.68e-03 1.00 1.92 4.50e+00 0.97 1.79
24576 9.43e-01 1.70e-03 1.00 1.97 2.26e+00 0.99 1.76

2 48 3.08e+00 8.23e-01 - - 4.99e+00 - 3.22
384 8.55e-01 2.63e-01 1.85 1.64 1.38e+00 1.86 3.20
3072 2.17e-01 7.26e-02 1.98 1.86 3.48e-01 1.99 3.12

3 48 8.24e-01 3.07e-01 - - 1.11e+00 - 7.81
384 1.19e-01 5.55e-02 2.79 2.47 1.65e-01 2.74 7.68
3072 1.56e-02 7.72e-03 2.94 2.85 2.18e-02 2.92 7.58

Table 3: Rate of convergence and errors of the volumetric terms of the error estimator of Example 5.1
with τ = −i and τn = i. Effectivity index associated to the error estimator.

Example 5.2. We continue with the same setting as in Example 5.1, but considering the quasi-periodic
solution

u2(x, y, z) := exp (−i [κxx+ κyy − κz(z − 1)]) ,

with κx := κ sin θ cosφ, κy := κ sin θ sinφ, κz := (κ2−κ2
x−κ2

y)1/2, θ := π/3 and φ := π. The boundary
conditions on the vertical walls are of quasi-periodic type.

In the history of convergence displayed in Tables 1 and 4, it is observed a rate of convergence of
k + 1 for the both unknowns, u and v, which is better than the predicted results in the Corollary
3.1. Moreover, we include the error of the a posteriori error estimator and its associated rate of
convergence, which tends to the expected order k.

The error indicators and their rates of convergence appear in Tables 2, 3, 5 and 6. As we pointed
out before, in this case the continuous embedding (25) holds true for ` ∈ (0, 1), therefore Corollary
4.1 cannot guarantee reliability of the estimator. However, the effectivity index, eff := η/Eh reported
included in Tables 3 and 6 remains bounded for each polynomial degree.
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k Nelts ‖v− vh‖Th
‖u− uh‖Th

‖p− ph‖Th
r(v) r(u) r(p) Eh r(Eh)

1 48 1.37e-01 2.37e-01 7.38e-02 - - - 8.09e+00 -
384 4.06e-02 1.02e-01 3.49e-02 1.76 1.22 1.08 6.00e+00 0.43
3072 8.00e-03 2.98e-02 7.42e-03 2.34 1.77 2.23 3.32e+00 0.85
24576 1.46e-03 8.26e-03 1.31e-03 2.46 1.85 2.50 1.69e+00 0.97

2 48 3.28e-02 8.69e-02 9.18e-02 - - - 5.08e+00 -
384 8.52e-03 3.19e-02 1.76e-02 1.95 1.45 2.38 2.34e+00 1.12
3072 1.05e-03 4.13e-03 2.35e-03 3.02 2.95 2.91 6.38e-01 1.87

3 48 2.89e-02 7.58e-02 4.86e-02 - - - 3.57e+00 -
384 2.18e-03 6.73e-03 3.88e-03 3.73 3.49 3.65 6.52e-01 2.45
3072 1.42e-04 4.84e-04 2.66e-04 3.94 3.80 3.87 9.02e-02 2.85

Table 4: Rate of convergence and errors of Example 5.2 with τ = −i and τn = i. Error estimator and
its rate of convergence.

k Nelts η∂1 η∂2 η∂3 η∂4 r(η∂1 ) r(η∂2 ) r(η∂3 ) r(η∂4 )
1 48 6.39e-01 8.73e-01 1.90e+00 5.17e+00 - - - -

384 3.23e-01 8.58e-01 1.01e+00 7.76e+00 0.98 0.03 0.92 -0.59
3072 1.44e-01 5.23e-01 3.95e-01 4.97e+00 1.17 0.71 1.35 0.64
24576 5.61e-02 2.84e-01 1.74e-01 2.74e+00 1.36 0.88 1.18 0.86

2 48 1.94e-01 5.55e-01 1.35e+00 8.83e+00 - - - -
384 8.99e-02 2.88e-01 7.08e-01 4.59e+00 1.11 0.95 0.93 0.94
3072 2.52e-02 8.00e-02 2.22e-01 1.22e+00 1.83 1.85 1.68 1.91

3 48 1.73e-01 3.51e-01 2.13e+00 7.16e+00 - - - -
384 2.60e-02 6.73e-02 3.39e-01 1.73e+00 2.73 2.38 2.65 2.05
3072 3.64e-03 9.56e-03 4.86e-02 2.50e-01 2.84 2.81 2.80 2.79

Table 5: Rate of convergence and errors of the boundary terms, that appear in the error estimator of
Example 5.2, with τ = −i and τn = i.

5.2 Adaptive refinement

The adaptive refinement can be carried out following the next steps:

• Solve the variational problem in a coarse mesh.

• Estimate ηK , for each K ∈ Th.

• Mark each K̃ ∈ Th such that η
K̃
> θmaxK∈Th

ηK , for θ ∈ [0, 1].

• Refine the coarse mesh and repeat the algorithm until the established stopping criterion allows
it. In this step, we use the free library TetGen integrated with MATLAB, see https://wias-
berlin.de/software/tetgen/.

In the adaptive procedure, the a posteriori error indicators help to identify the elements of a mesh
where the errors are bigger than others. Once those parts are found, the algorithm refine them to
generate a new refined mesh, as we will illustrate in the following example.
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k Nelts η1 η2 r(η1) r(η2) η r(η) eff.
1 48 9.57e-01 8.48e+00 - - 1.02e+01 - 1.26

384 4.09e-01 5.76e+00 1.23 0.56 9.77e+00 0.07 1.63
3072 1.58e-01 2.88e+00 1.37 1.00 5.78e+00 0.76 1.74
24576 7.05e-02 1.44e+00 1.17 1.00 3.11e+00 0.89 1.84

2 48 1.21e+00 8.81e+00 - - 1.26e+01 - 2.48
384 6.19e-01 3.10e+00 0.97 1.51 5.63e+00 1.16 2.41
3072 2.63e-01 8.29e-01 1.24 1.90 1.52e+00 1.89 2.38

3 48 2.79e+00 7.57e+00 - - 1.10e+01 - 3.08
384 5.19e-01 1.38e+00 2.43 2.46 2.30e+00 2.26 3.53
3072 7.38e-02 1.99e-01 2.81 2.79 3.32e-01 2.79 3.68

Table 6: Rate of convergence and errors of the volumetric terms of the error estimator of Example 5.2
with τ = −i and τn = i. Effectivity index of the error estimator.
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Figure 2: Total error Eh versus number of elements N (logarithmic scale) of the approximation of
Example 5.3. Uniform and adaptive refinements.

Example 5.3. (L-shaped domain) With the aim to illustrate the adaptive performance of our HDG
scheme, we include an experiment in a L-shaped domain Ω := [−1, 1]× [−1, 1]× [0, 1]\([0, 1]× [−1, 0]×
[0, 1]) occupied by a material with relative permittivity ε := 1. As in Section 5 of [14], let us consider

the exact solution p(x, y, z) := 0 and u(x, y, z) :=
(
∂S

∂x
,
∂S

∂y
, 0
)T

, where S(r, θ) := r
2n
3 sin

(2nθ
3

)
is

given in terms of cylindrical coordinates (r, θ) and n is a given number. Moreover, as in the above
examples, the source term and boundary data were derived from the exact solution. The stabilization
parameters satisfies |τ | = |τn| = 1 and we choose n such that 2n

3 = t.

The adaptive refinement of our domain was carried out for k = 1 and we began with a coarse
mesh of 18 elements, in which were marked the tetrahedra K̃ that satisfy the adaptive criterion
η
K̃
> θmaxK∈Th

ηK , for θ = 0.1, in order to refine them.
Figure 2 depicts the obtained errors versus the number of the elements, when the meshes are

uniformly refined and by using adaptive criterion.
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Figure 3: Approximation of the electric field intensity |uh| and corresponding adaptive refined mesh
of Example 5.3 with k = 1 and N = 41226.

6 Concluding Remarks

In this contribution, we extend our a priori error analysis of the HDG method for Maxwell’s equations
in heterogeneous media with Dirichlet boundary condition, to a problem with quasi-periodic boundary
conditions on the vertical boundaries of the physical domain. Although, for the real problem it is still
necessary to considered transmission conditions on the top and bottom of the cell, the obtained
theoretical and numerical results allow us to classify our method as suitable for carrying out the
numerical approximation of the solution for this type of boundary value problems.

With the aim to strengthen our stability estimates, we develop an a posteriori error analysis for
the HDG scheme. Based on the confiability and efficiency proofs of the proposed a posteriori error
estimator, we decide to corroborate the theoretical results by means of some numerical experiments.
In them, we use uniformly refined meshes and depict the history of convergence in some tables.

The performance of the adaptive case was showed for the HDG method proposed for the problem
with Dirichlet boundary condition [10]. The behavior of the error can be observed in a graph (Figure
2), in which it is compared with the obtained error in the case of uniform refinement.

We expect to carry out the adaptive case, for an HDG method proposed for the problem with
quasi-periodic and transmission conditions, by employing periodic meshes.

A Appendix

A.1 Helmholtz decomposition

In this appendix we will extend the Helmholtz decomposition given in [21, section 6], for spaces with
quasi-periodic conditions. Let us remark that the boundary Γ = ∂Ω is split in two subsets Γ0 and
ΓQP where Γ̄0 and Γ̄QP are compact Lipschitz submanifold of Γ and Ω is simply connected. Let 3× 3
matrix value function ω satisfying the following symmetry, boundedness and ellipticity conditions

ωij = ωji ∈ L∞(Ω) i, j = 1, 2, 3,
3∑

i,j=1
ωijξiξj ≥ ω∗‖ξ‖2 a.e. in Ω ∀ξ ∈ R3.

25



Proposition A.1. It holds

L2(Ω) = ∇H1,QP
Γ0

(Ω)⊕HΓQP(div0
ω; Ω)

and the subspaces of the right-hand are closed and ω-orthogonal in L2(Ω), where

H1,QP
Γ0

(Ω) :=
{
ψ ∈ H1

Γ0(Ω) : ψ |Γ2= eiαLψ |Γ1 , ψ |Γ4= eiβLψ |Γ3

}
.

Proof. The proof follows similar lines to those in [21, Proposition 6.1] taking into account that
H1,QP

Γ0
(Ω) is a closed subspace of H1(Ω).

A.2 Proof of Lemma 4.1

In this part we present a sketch of the proof of (7c)–(7d), which is included in Lemma 4.1, by tailoring
the arguments employed in the deduction of the properties stated in Proposition 4.5 of [25].

To begin, we recall the definitions of the moments for Nédélec’s elements ([35], Definition 5.30), in
a tetrahedron K:

Me(w) :=
{∫

e
(w · te)q ds : for all q ∈ Pk−1(e)

}
, for any edge e of K

MF (w) :=
{ 1
area(F )

∫
F

(w · q) dA : for all q ∈ Pk−2(F ) ∧ q · n = 0
}
, for any face F of K,

MK(w) :=
{∫

K
(w · q)dV : for all q ∈ Pk−3(K)

}
,

where te denotes the unit vector in the direction of the edge e. For a given K ∈ Th, let {ϕjK,e}, {ϕ
j
K,F },

{ϕjK,b} the Lagrange basis functions of Pk(K) with respect to the moments for Nédélec’s elements.
Then, there exists wc ∈ Vc

h that satisfies (7c) and can be decomposed as

wc|K =
∑

e∈Lh(K)

Ne∑
j=1

αjK,eϕ
j
K,e +

∑
F∈Eh(K)

NF∑
j=1

αjK,Fϕ
j
K,F +

Nb∑
j=1

αjK,bϕ
j
K,b,

where Lh(K) and Eh(K) denote the set of edges and faces of K, respectively. Here, Ne, NF and Nb

are the number of basis functions associated to the edges, faces and interior of K, respectively; and
αjK,e, α

j
K,F and αjK,b are the coefficients that are uniquely determined.

Based on wc, we build a function in Vc
h that also satisfies quasi-periodic conditions. To that end,

we just modify the degrees of freedom associated to the edges and faces that belong to Γ2 and Γ4.
More precisely, let LΓj (K) and EΓj (K) denote the set of edges and faces of K, lying on Γj , j = 1, 2, 3
and 4, respectively. We also write LQP(K) := ∪4

j=1LΓj (K) and EQP(K) := ∪4
j=1EΓj (K). Let us now

recall that we are assuming conformity between the discretizations of the periodic boundaries Γ1-Γ2
and Γ3-Γ4. Therefore, for an edge e2 (face F2) belonging to Γ2, there is an edge e1 (face F1) belonging
to Γ1 “aligned” to e2 (face F2). Similarly for the periodic boundary Γ3 − Γ4. On each K such that
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K ∩ ΓQP = ∅, we set wQP = wc and, for K such that K ∩ ΓQP 6= ∅, we set

wQP|K :=
Nb∑
j=1

αjK,bϕ
j
K,b +

∑
e∈Lh(K)\(LΓ2 (K)∪LΓ4 (K))

Ne∑
j=1

αjK,eϕ
j
K,e +

∑
F∈Eh(K)\(EΓ2 (K)∪EΓ4 (K))

NF∑
j=1

αK,Fϕ
j
K,F

+
∑

F2∈EΓ2 (K)

NF2∑
j=1

βjK,F2
ϕjK,F2

+
∑

F4∈EΓ4 (K)

NF4∑
j=1

βjK,F4
ϕjK,F4

+
∑

e2∈LΓ2 (K)

Ne2∑
j=1

βjK,e2ϕ
j
K,e2

+
∑

e4∈LΓ4 (K)

Ne4∑
j=1

βjK,e4ϕ
j
K,e4

,

where,

βjK,F2
:= eiαLαjK′,F1

, βjK,e2 := eiαLαjK′,e1
, βjK,F4

:= eiβLαjK′,F3
βjK,e4 := eiβLαjK′,e3

(35)

and K ′ is the “neighbor” of K across ΓQP.
We notice that wQP ∈ Vc

h since all the degrees of freedom associated to interior edges and faces
have remained unchanged. Moreover, the continuity of the Lagrange basis function and the relation
(35), between the coefficients, imply that wQP is quasi-periodic. Hence,

(wc −wQP)|K =
∑

F2∈EΓ2 (K)

NF2∑
j=1

(αjK,F2
− βjK,F2

)ϕjK,F2
+

∑
F4∈EΓ4 (K)

NF4∑
j=1

(αjK,F4
− βjK,F4

)ϕjK,F4

+
∑

e2∈LΓ2 (K)

Ne2∑
j=1

(αjK,e2 − β
j
K,e2

)ϕjK,e2 +
∑

e4∈LΓ4 (K)

Ne4∑
j=1

(αjK,e4 − β
j
K,e4

)ϕjK,e4

and by using (35), we obtain

∫
K
|wc −wQP|2 .hK

( ∑
F2∈EΓ2 (K)

NF2∑
j=1

(αjK,F2
− eiαLαjK′,F1

)2 +
∑

F4∈EΓ4 (K)

NF4∑
j=1

(αjK,F4
− eiβLαjK′,F3

)2

+
∑

e2∈LΓ2 (K)

Ne2∑
j=1

(αjK,e2 − e
iαLαjK′,e1

)2 +
∑

e4∈LΓ4 (K)

Ne4∑
j=1

(αjK,e4 − e
iβLβjK′,e3

)2
)
.

Then, taking into account the above estimate and the fact that for a function w, the tangential trace
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on a face F is uniquely determined by the degrees of freedom MF (w) and Me(w), we have that

∫
K
|wc −wQP|2 .hK

( ∑
F2∈EΓ2 (K)

∫
F2
|n+ × (wc −wQP)|2 +

∑
F4∈EΓ4 (K)

∫
F4
|n+ × (wc −wQP)|2

+
∑

e2∈LΓ2 (K)

∫
LΓ2 (K)

|n+ × (wc −wQP)|2 +
∑

e4∈LΓ4 (K)

∫
LΓ4 (K)

|n+ × (wc −wQP)|2
)

.hK

( ∑
F2∈EΓ2 (K)

∫
F2
|n+ ×wc + (n− × eiαLwc)|K′,F1 |2

+
∑

F4∈EΓ4 (K)

∫
F4
|n+ ×wc + (n− × eiβLwc)|K′,F3 |2

+
∑

e2∈LΓ2 (K)

∫
e2
|n+ ×wc + (n− × eiαLwc)|K′,e1 |2

+
∑

e4∈LΓ4 (K)

∫
e4
|n+ ×wc + (n− × eiβLwc)|K′,e3 |2

)

=hK

( ∑
F2∈EΓ2 (K)

∫
F2

JwcKQP +
∑

F4∈EΓ4 (K)

∫
F4

JwcKQP

+
∑

e2∈LΓ2 (K)

∫
e2

JwcKe2 +
∑

e4∈LΓ4 (K)

∫
e4

JwcKe4

)
.

Therefore, we deduce that

‖wc −wQP‖Th
. ‖h1/2JwcKQP‖ΓQP = ‖h1/2JwKQP‖ΓQP .

The last equality since γt(w) = γt(wc) on ΓQP.
Finally, (7c) follows by adding and subtracting w ∈ Vh in ‖wc − wQP‖Th

, applying the triangle
inequality together with the above expression and (7a). The estimate (7d) is obtained using the inverse
inequality ‖∇ × (w−wQP)‖Th

. h−1‖w−wQP‖Th
and (7c).
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