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REVISITING THE ROBUSTNESS OF THE MULTISCALE
HYBRID-MIXED METHOD: THE FACE-BASED STRATEGY

DIEGO PAREDES*, FREDERIC VALENTIN', HENRIQUE M. VERSIEUX?

ABSTRACT. This work proposes a new finite element for the mixed multiscale hybrid
method (MHM) applied to the Poisson equation with highly oscillatory coefficients. Un-
like the original MHM method, multiscale bases are the solution to local Neumann prob-
lems driven by piecewise continuous polynomial interpolation on the skeleton faces of the
macroscale mesh. As a result, we prove the optimal convergence of MHM by refining
the face partition and leaving the mesh of macroelements fixed. This strategy allows the
MHM method to be resonance free under the usual assumptions of local regularity. The
numerical analysis of the method also revisits and complements the original approach
proposed by D. Paredes, F. Valentin and H. Versieux (2017). A numerical experiment

evaluates the new theoretical results.

1. INTRODUCTION

Multiscale finite element methods approximate the solution of differential equations with
heterogeneous coefficients on coarse partitions, becoming an attractive alternative to clas-
sical finite element methods requiring very fine meshes. Since the seminal work [4], there
has been a vast literature on the subject, such as the variational multiscale method (VMS)
[17], the multiscale finite element method (MsFEM) and its generalization (GMsFEM)
[10], the (Petrov-)Galerkin enriched method (GEM and PGEM) [1], [12], the heterogeneous
multiscale method (HMM) [25], multiscale mortar method [3], the local orthogonal decom-
position (LOD) method [20], the hybrid localized spectral decomposition (LSD) method
[19], and the hybrid higher order multiscale (MsHHO) method [§], to cite a few. The main
idea of multiscale methods is replacing polynomial approximation spaces with space spam
by basis function computed from independent partial differential problems at the element
level. As a result, the multiscale methods become precise on coarse meshes while parallel
facilities handle the overhead computation due to basis functions computations.
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The MHM method is an example of a multiscale finite element method that was originally
proposed in [I5] 2] (see [I6] for an abstract framework). It is a by-product of a hybrid
formulation that starts at the continuous level placed in a partition, which characterizes
the exact solution in local and global contributions. When discretized, decouples the local
and the global problems. The global formulation is responsible for the degrees of freedom
over the skeleton of the coarse partition, and the local problems provide the multiscale
basis functions. The original MHM method relates to other multiscale methods like the
MsHHO method (c.f. [6]), for example, and has variants that extend it to handle polygonal
meshes [5] and preserve conservation properties locally [9].

The a priori error analysis provided in the seminal work [2] showed that the MHM
method is optimally convergent with respect to the discretization parameter H. These
error estimates are useful in the H < ¢ regime, where ¢ is the oscillatory frequency. Then,
the numerical analysis of the MHM method was extended to the asymptotic regime of
H > ¢ in [2I]. For that, [21I] considered discontinuous polynomial interpolation for the
Lagrange multiplier on the faces of 7, a partition of 2. This led to the following estimate

in the simplest interpolation case (constant on faces)

o\ 1/2
) o = i, =0 ((5)" 4 1),

where |[- ||, 7. is the H Lbroken norm, and the exact and approximate solutions are u° and
ug;. Note that the estimate (1)) differs from that claimed in [2I] as it includes the resonance
error O((%)l/ 2). So, the first objective of the present work is to revisit the analysis in [21]
and demonstrate that the main error is, in fact, given by . This is done by correcting
the proposed asymptotic expansion estimate in [2I, Theorem 1]. In the process, we fill
in the gap in [2I, Theorem 1] by providing the details of the proof in the case of local
Neumann-type problems.

Motivated by , the present work proposes a new multiscale finite element for the Pois-
son equation with oscillatory coefficients within the class of MHM methods. It extends the
numerical analysis given in [21I] to prove that the solution of the MHM method converges
when we adopt piecewise continuous polynomial interpolation on faces to approximate the
Lagrange multiplier. Notably, we prove that the MHM method, with continuous polyno-

mial interpolation on faces, yields an error estimate of the form

- - £ 1/2
2) o =iz, =0 ((57)"" 1),

where h is the diameter of the face partitions. Interestingly, the estimate indicates
that the MHM method is indeed without resonance as claimed in [21] if the space-based
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refinement strategy is adopted (e.g. h — 0 for a fixed H). A numerical test confirms the
theoretical findings.

The outline of this work is the following: Section [2] presents the model and notations and
revisits the asymptotic results first presented in [21]. Section [3| defines the MHM method,
and Section 4| provides the error analysis. The numerics are in Section |5l and conclusions in

Section 6] The proof of the asymptotic result correcting [21][Theorem 1] is in the appendix.

2. THE MODEL AND ASYMPTOTICS

2.1. The model. Let Q C R% d € {2,3}, be an open and bounded domain, with Lipschitz
boundary 0€2 := 0§2, U 0€2,. The elliptic problem consists of finding u_ the solution of

0 0
3) V- (A Vu,) o, (a”(m/s)axjue) f inQ,
ue =g ondQly and AVu-n =0 ondQy,

where A_(z) = A(x/c) = (a;;(x /<)) is a symmetric positive definite matrix. Here e € (0,1)
is the (small) parameter controlling the fine scale oscillations of the physical coefficient,
g € HY?(0Qp), n represents the unit outward normal vector on 99, b € H'/2(0Qy),
and f € L*(Q) (these spaces having their usual meaning), and x := (z;) is a typical point
in €2. Above, and throughout the paper, the indices ¢, run from 1, ..,d, even when not
explicitly mentioned, and we employ the Einstein summation convention, i.e., repeated
indices indicate summation.

We also assume that a;; € L, (Y), i.e., a;; € L®(R?) and it is Y-periodic, Y := (0,1)%,

per
and there exist positive constants v, and -, such that
(4) % € < a ()6 < 3 1€ forall:={&} eRYandy €Y,

where |.| represents the Euclidean norm. In the case 092, = ), we also assume that the

following compatibility condition holds

(5) /Qfdac:/mbds.

2.2. Broken spaces and norms. We note by dj, the side of the maximum square (or
cube in 3D) contained in €, and L, is the length of O in the 2D case (or area in 3D). Let
B C R% be an open set. We define

|0]|m,00,5 := max{ess. sup [0%v(x)|} and |v|m,c0,p := max{ess.sup|0%v(x)|},
jal<m B jal=m

al S xeB
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and for 1 < g < o0
1/q 1/q
10l s = / S [Dwfida | and [olgs = / S [Dewfida
laj<m laj=m
We define the broken (semi-)norms related to a partition 7, of B in elements K, with

diameter H > 0, by
1/2 1/2

mq, Ty m,q, K mq, Ty " m )
Wlhgr, = D vz, and (0], 7 = [ Y [l .k

KeT, KeT,

and the norm in the H(div;B) space, i.e., the space of functions belonging to (L?(B))?
with divergence also in L?(B), by

1/2
HﬂMﬁ:(/Wﬁmf/W«ﬁm) |
B B

Also, we simplify the notation with respect to the norms of a vector function x with

components x’ by setting

Xy = max [,

Hereafter, we do not make reference to the domain B, or to the coefficient ¢ when B = ),
or q = 2, respectively. In what follows, ¢ denotes a generic constant independent of ¢ and

H, although it may change in each occurrence.

2.3. Asymptotics of u_.. The convergence analysis of the method is based on an asymp-

totic expansion of u.. For that, we assume throughout this work that
(6) dg, > ce,

where the constant ¢ > 1 is of order one. Here, we focus on the first order asymptotic

expansion approximation, and then, we recall that u,_ is approximated by
n
(7) ul(@) = ug(@) +2 Y} (®/2) 0, uo (),
j=1

where x? are the solutions of cell problems. More precisely, x’/ € Hll)er(Y), ie., €
H} (RY) and Y-periodic, is the weak solution with zero mean value on Y of

: 0
where y := x /e with coordinates (yj Denote A, the symmetric positive definite matrix

(9) ‘AO = (a?] aij . ’Y’ / Y; XZ)W«%' - Xj)dy i
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Then, the function u, € H'() is the weak solution of the following homegenized problem
(see [21, (18] for more details)

—V - (A V) = f inQ,

(10)

uy =g ondQy, A\Vu,-n=>b ondQy.
The next theorem addresses the error estimate between u_ and u! and the fundamental
question of the dependence of the constants in terms of the domain €. Its proof is postponed

to the appendix.

Theorem 1 (Asymptotic convergence). Let u_ be the solution of problem , and u, and
ul be defined by equations and , respectively. Assume @ holds and

(11) uy € H*(Q) and X' € Wpl(Y) withq>d.
Then,
1 Loe 1/2-1/p'
/
(12) Y P (W) (1 + Lo)lxlhy vl

where 2 < p' < K4 with

13) {Kd:oo, if d=2,

K,=2d/(d—2) if d>2.

Also, the constant c(p') depends on p', and c¢(p') — oo when p' — Ky, and they may depend
on the cone property of 2, but they do not depend on the size of 2 when € is a convex

domain.

Remark 2 (Revising Theorem 1 in [21]). The Theorem [1] above corrects [21][Theorem 1],
in the sense that contains a dependency of Q2. Notably, we get

n [ Loe R her th NI 1/2-1/p'
c(p) o rather than  c(p') (L €) :

Furthermore, the proof of the Theorem (see appendiz) details the estimation for Neumann
problems that complements the results in [21]. O

3. THE MHM METHOD

The MHM method introduced in [2] is revisited in this section in the context of contin-

uous polynomial interpolation on faces.
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3.1. Partitions and broken finite spaces. Let 7, be a regular triangulation of €2 char-
acterised by H := maxygcy hy, where given element K € Ty, hy = diam(K). Without
loss of generality, we shall use hereafter the terminology employed for three-dimensional
domains. The collection of all faces E in the triangulations, with diameter h, is denoted
by €. To each E € £, a normal n is associated, taking care to ensure this is directed
outward on 9. For each K € T;;, n® indicates the outward normal on 9K, and we adopt
the notation nf := n® | for each F C K. We also introduce {&, },-, a family of regular
partition of £ wherein each £ C £ is decomposed into sub-faces F' of length hj, and we
collect the faces of F' C 9K in . We set h := maxpeg, hp. We emphasise that each face
E C &€ has its own family of partitions independent of one another.

Consider the decomposition
Vi=H\(Ty) =V, & Vi,
where V| is defined by
Vy = {v € L*(Q) : vy is constant on K € T},

where vp := v|p and D is any measurable set, and V" is the orthogonal complement of

V, with respect to the L? product, i.e., functions v in V such that v, € L3(K). Also, set
(14) Ai={ox - n"|px : 0 € Hdiv;Q), VK €Ty} .

With the notation

(w7v>7’H = Z (Wes Vi) »

KeTy

for all w, v € L*(D), where (-, ), stands for the L? inner product over D, we equip L?(D)
with the induced norm || - ||, p. Also, we define the broken gradient operator Vi : V' —
L?(Q) as such, for all v € V,

(Vo) g := Vg forall K € Ty.
With such a notation, V' space is equipped with the norm induced by the inner product
(15) (’LU, U)V = d;ZQ(wa v)TH + (vaa vHU)TH )
where d, is the diameter of 2. We define the following norm in the broken space V'

(16) [l = > do®lloxllise + [ Vorels forallve V.
KeTy
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We equip the spaces H(div;Q2) and A with the norms,

(17) loldve = > (loxlix+da IV owlix),
KeTy

18 = inf v

(18) [ o ol

O n=pon 0K, KeTy
The duality pairing between HV/2(0K)? and HY/2(OK)? is (1, vy )gx, and we define

(N7U)8TH = Z (Hgcs Vi o -
KeTy

Observe that the following equality holds (c.f. [14])

i, v
(19) s = supﬂ for all p € A.

veV ||UHV
Above and hereafter we lighten notation and understand the supremum to be taken over
sets excluding the zero function, even though this is not specifically indicated. We define

two local mappings Tg : H-Y2(0K) — Vi (K) and Tg : L2(K) — Vg-(K)
(20) (AT 1, Vo) = (1,v) 5, for allv e HY(K),

20 ~
(A VTeq, V)i = (q,v), forallv e H(K).

The corresponding global mappings T, € L(A, Vit) and T. € £(L*(R2), Vi+) are such that

(21) Topt|y = Txpox  and T |k = ffg(‘bm
for all 4 € A and ¢ € L?(Q), then they are well-defined and bounded (c.f. [2]). We also

define the homogenized counterpart of the local mappings 7% and T}E{, denoted by T% and

T i wherein tensor A, is replaced by A, and their global counterpart by Tj and T\o-

3.2. The method. We set the finite element space A C A as the space of continuous

piecewise polynomials on each face E of elements K € T, i.e.,
(22) Ay = {p €A : pyis continuous and py. € P,(F), forall F €&},

where P,(F') is the space of polynomials up degree £ > 1 on F.
The MHM method corresponds to find (u®# \*) € Vj x Af such that
<)‘27 UO)@TH = (f7 UO)’TH for all v° S ‘/0 )
(23) B
(Mha US’H + TgAg)BTH = _(Mh7 Tef)BTH + (/“Lha g)BQD for all :uh € Ai, )

and construct the approximation u” of u_ as follows

(24) u ol = ! A TN T f ¢ HY(Q),

3 (3
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where T, and i are given in and , and o, := —A_Vu_ is approximated as follows

(25) o.~ o= —-A Ve H(div;Q).

£

4. NUMERICAL ANALYSIS

The weak exact solution u® of is equivalent to the solution of the hybrid formulation
(c.f. [22]): Find (u,, A,) € V x A such that

(26) (AVu, Vo) + (A, 0)er, = (fiv)g, forallveV,
(M? UE)BTH - (M?g>6QD for all JUBS A

In addition, we have that u® can be caracterized as follows (c.f. [2])
(27) uszug—kTE/\E—i—if,
where u! and \° satisfy replacing AY by A.

4.1. Existence and uniqueness, and best approximation. The proof of well-posedness
of follows closely [2]. For completeness, we revisit it here assuming A% is given in ,
and we present a best approximation result on A% which drives convergence of u5 to uf.

The proof differs from the one originally proposed in [2].

Lemma 3 (Well-posedness and best approximation). There exist positive constants o, and

By, independent of mesh parameters, such that

h
(28) Sup (l’l’ 7U0>8TH

a2 Bollwolly for allvy € Vs,
P 70N

(29) (1" T o, = 0o "3 for all p" € Ny,
where N is
(30) Ni={u" e Ay (W v)gr, =0 for allvy € Vy}.

Hence, 1s well-posed, and there exists ¢ such that

(31) ||U€ - u?HV <c }ilnfz ||/\s - Mh||A7
uheAy

where u. and u" are given in and , respectively.
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Proof. Let us consider the space
(32) Xy ={r e H(div;Q) : 7o € RT{(K) forall K € Ty},

where RT},(K) stands for the lowest order Raviart-Thomas space in K. Then, given v, € Vj,
there exists T € Xy such that V-1 = v, in Q and By||7||5,.0 < llvolloq = llvolly, where
B, does not depend on T, H, or h. Using the definition of the norm in Af, we pick

ph =1 -nk € Al onevery E €&

BoHNhHAHUoHV < 50“7'Hdiv,QHUOHV < /QV TV da = (MhWo)aTH )
which proves (28). Next, given p* € A, it holds

by hogl (A 5T,V goy)
vev vl wevi oy vt eV log Il
1/2
< %/ ||Asl/2vHTs/v‘hHo,TH
1/2 1/2
= (", T,
and follows. Well-posedness follows from standard saddle-point theory. As for the
best approximation result , first observe from the second equations in and
that

(W' u, —ul)yr, =0 forall p" € Ay

Then, using that (A — A\ v,) o1, = 0 for all v, € V{ from the first equations in (26)) and
([23), it holds

|u€ - u?ﬁ,TH = |T5()‘ - /\?)E,TH <c ||A51/2vH<Te(>\ - A?))”%,TH
=c(A— )\?, T.(A = )‘?))87}1

c <)\ - )‘?7 (T u;)BTH
=c(A— #ha u® — UZ)@TH
<A =Ml llu, —ullly .

It remains to prove ||u, — u?||077H < clu, —ul|, y. To see this, first notice that from the

definition of u, and u" we have
|u, — u?HO,TH < ||ug + T\ — US’H - Ts)‘?“o,TH
(33) <l = w2l g, + cHI|ToA = TN, 7,

where we used the triangle inequality, the Poincaré inequality, and the assumption on the

regularity of the mesh. To estimate [|u? — u% lo,7, we follow [21], which we revisit here
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for completeness. Take o* be the vector-valued function belonging to the lowest order

Raviart-Thomas space such that V-o* = u? —u2#. We recall that o* - n® |, is piecewise

constant for all K in Tz. Now, from the hybrid formulation of (2€]), the fact that T\,
and TEN! belong to L3(K) for all K € Ty, and Cauchy-Schwarz inequality

2 = w257, = (V- 0% ud — ud ™)

H
o * K 0 0,H
= E (Op -m™u) —ul g
KeTy
* K e e \h
== § (oo -n" T, — T Aok
KeTy

- _<U*7 VH<T5)\5 - Ta)‘?))TH + (V ' 0-*7 Ta)\a - TEA?)TH
_<0-*7 Vi (Ts/\z-: - TEA?))TH
O,THHVH(TE)‘E - Tzs)‘?)HO,TH

< cllud — o7, IV u(TA = TAD o 7,

5_

< Jlo*

where we used the regularity of the mesh. Collecting the previous results, we obtain from

the existence of ¢ such that
h h
||ue — U ||0,7'H <c |ue — U LTy
and the result follows. O

Remark 4 (Error optimality in the L?*(Q) norm). Optimality in the L*(Q) norm can
be achieved using the classical duality argument (see [2] for details). As the additional
reqularity of the dual solution is mandatory, this is not an option when it comes to uniform
error estimates with respect to the small parameter €. Another option is to assume the
existence of o* € H(div; Q) with V - 0* = u? — ul? and 6* - nk |ox € Po(OK) such that
lo*|lo.x < cH|V -o*|lox for all K in Ty. As a result, and following the same steps, we
get Hue—uQHO’TH < ¢ H |u.—ul|, i without assuming extra regularity (c.f. [21]). Numerics
in Section @ verify the optimality of the error in the L*(Q)) morm in terms of H, but the

existence of o* remains an open question and deserves further investigation.

4.2. Interpolation results. Assume that, for each K € 7T, there exists {ﬁlK}bO a
shape-regular family of conforming simplicial partitions of K associated to {S,If }h>0 in the
sense that, for each F € & there exists an element 7 € T,X with 7, NdK = F. We
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denote the global partition

(34) o= J 7.
KeTy
Also, we denote Fi* the set of faces on 7,7, and F{ the set of internal faces. To each face
v € FE we associate a normal vector n’, taking care to ensure this is facing outward on
or.
We need some standard interpolations and projections:
e Given F € &, let mj, : L*(E) — P, (E) N C°(E) be the local orthogonal projection
L? into P, (E) the space of of piecewise linear functions on each F' € £ N E. Also,

we define the global L? projection 7!(-) such that 7'(u) |g := 75(u), and then it
holds

(35) 17 ()llo o7y < Nitlloor, for all € L*(0Tx) .

e Given K € Ty, let [T}, : L*(K) — P,(T,X)NCy(K) be the L? orthogonal projection
on P, (T,X) the space of piecewise linear functions with respect to the partition 7,%.
Also, we define the global L? projection IT'(-) such that IT'(v) | := Ik (v), and
then for all v € H*(Ty) and 0 < m < s and s € {0, 1}, it holds

v — Hl(v)Hmmq <ch” ™|l form=0,1,
lo =T @)oo, < k' [0]y 7,

with h = maxy ;. max_ 7K h., where h, is the diameter of element 7 € T,

o Let P, : H*(Ty) — P(Th) NCy(§2) be the Scott-Zhang projection Pj, where Py (7)
is the space of piecewise polynomial functions of degree up to & > 1 on 7, (c.f.
[23], [11][Lemma 1.130]). Notably, given K € T,; we have that P,v |k € Cy(K) and

P,v |, € P, (1) for every 7 € T,X, and the following approximation property holds
(37) [0, = Pp(0) lrllnr < O™ |vr, axc for all v e H*(K),

with 0 < m < s < k+ 1, where AF == {7 e€TF :7n7#0}, and h, is the

diameter of element 7 € T,

The next result is fundamental to establish rates of convergence of the MHM method
using space AL. Tt is an extension of [22] and [5] to deal with the case of continuous

polynomial interpolation spaces on faces of elements K € T,,.

Lemma 5 (Interpolation). Suppose w € H*™*(T,;) N H (), A.Vygw € H(Ty), with
0 <s<landl > 1, and AVyw € H(div;Q). Let u € A be defined by py =
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(A.Vywy - n®) | for each E € E. Then, there exist i € A} and ¢ such that

(38) =1ty <ch AVl 7 and p—pt e N,
where N is
(39) N ={peA:(uvy)or, =0 forallvyeVy}.

Proof. The first part of the proof follows [5], which strategy was originally proposed in
[22] for faces with one-element mesh. Let w € H*™(T,) and E € £. We define x5 =
A Vyw-ng € H(T,) where ng is the trivial extension of the normal vector n|, from
E to a constant function in the whole K, with |n;| = 1. Let u € L?(€) be such that
Up = Xg|g oneach E € &.

Define p* € Af such that pl == P, (xg) |r, for all ' € &, where P, (-) is the Scott-Zhang
interpolation operator on the space of piecewise continuous polynomials of degree ¢ with
respect to the partition 7,. We recall that the Scott-Zhang operator is a projection (c.f.
[11][Lemma 1.130]), i.e P,,(v) = v for all v € P,(T) NC,(£2), and then we can follow closely

[5] to arrrive at
(40) =ty < Cht AV w7, forall0 <s<{.

Given any K € T;; and F' C 9K, let 7 be the unique element of T,% such that 07, NOK =
F. Using a trace inequality, the definition of y and p*, and from , we obtain

e — ,uhHaaTH = Z Z IXe |r = Pulxe) |FH3F

KeTy Fegls

<CZZ<

KeTy FegK

IXE |r, = Pu(xe) 7, 5.7,

,7_

eI b = PaXi) I I, )

(41) < ch?etD |XE|s+1 Ty
Hence, it holds
(42> ||/’L - MhHO,a’TH S Oh8+1/2 |Aeva’s+1,TH )

where we used |X |y ¢ = A VEWw -ngl 0 <AV w0k, forall K€ Ty
Unfortunately u — p" ¢ N. Then, we propose a Fortin—type interpolator for u relying
on " which keeps its approximation properties. Notably, let i" € A, be defined by

ph o=l (g — ply) forall E€&.
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Observe that
/ (tox — fifye) dx = Y [ (e — ply — w(pp — py)) do =0
oK Ecok Y E

and then p — ji" € N. It remains to prove that the function i inherits the approximation
properties of u. Next, using , , Cauchy-Schwartz inequality, , and , and
, we get

= 7"y = Il — o = wh (e — ") s

(1= p" = mh(p = 1), v)or,
= sup
veV ||v||V
(b — " — 7 — "), 0 = T1(V)) o,
= sup
veV ||U||V
— h,U—Hlv ml — h,v—Hlv
< sup (1 —p ( ))8TH —|—sup( Bl — ") ( ))BTH
veEV “UHV veV “UHV

_,h o 1 ) . Hl
o L= sl = Th @y b= 1) oom e = T @) o
veV HUHV veV ||U||V

< C (Il = ulls + B2k = 1) looms )

< C (Il = #"lln + B2 = 1l o,
< Ch*! |Aava’s+1,TH )
and the result follows . O

4.3. Error estimates. Now, we address the main convergence result. For that, we first
set up the asymptotic regime in which the future convergence results will be proved. Let
d;; be the side of the largest square (or cube in 3D) contained in K € 7,. Hereafter, we

shall assume that

4 inf
(43) I%IelTth>C€’

where ¢ > 1 is of order one. Also, we recall that from the regularity theory for elliptic

equations and the convexity of K € T, the following conditions hold

(44) Tifx € H(K) and ||TRfx

0.k < ¢l fxllox -

We are ready to present the main result of this section.

Theorem 6 (Convergence H > ¢). Let u, be the solution of [3) (or [26)), o, := —A.Vu,,
and ul given in and ol in [25), and assume uy € H*(Q), xI € Wy (Y), f € L*(),
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and holds. Then,

(45) s — ]y

IN

e\ 1/2-1/p
) (5)" " et I ol + 1710,

(46) lo. = o2lai

IN

e\ 1/2-1/p
26 (7)o ] Il (ol + 15160,

where p' satisfies (13).

Proof. The proof follows the strategy proposed in [21, Theorem 8], using Lemma , Lemma
Bl and Theorem [1l O

We present a result of convergence assuming less regularity of the functions x?. However,
unlike the Theorem [I], the Sobolev embedding here uses fractional Sobolev spaces. To get
the result, we make an additional assumption about the triangulation family 7, and use a

scaling argument to get the correct dependence of the Sobolev embedding constant on the
size of K.

Theorem 7 (Convergence ¢ << H under low regularity). Let u. be the solution of @ and
let u® be its numerical approzimation defined by . Assume ug € H2(Q), x/ € WLi(Q),

per

q>d, feL*Q), and holds. Also, assume that every element K € Ty is of the form

HEK, where K belongs to a finite collection of elements of size one. Then,

eNl/2-1/p  pl=d/q
o=l < e6) ((57)" " + ) Il ol + 1510,

eN\1/2-1/p  pl=d/q
lo. = ot < <0 ( ()" + S ) Il Qlla + 151,

where p' satisfies (13).

Proof. The proof follows the same strategy from [2I][Theorem 9]. Next, we present the
main estimates needed to obtain our result considering the precise dependence of the

constants on 7. We start recalling the definition of a fractional Sobolev norm

o 2
171205 = IFI2 0+ / / W dudy

It is well known that the following Sobolev embedding

d
= p and hence s = —

1oy < cllfllp e with  ——- q

holds. Using this result on a mesh element K, applying a scaling argument and the

hypothesis that every element K € T, is of the form H K, where K belongs to a finite
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collection of elements of size one, we obtain that

1fllozx < cH™ || flly2x -

Now, let % + % = %, then it holds

Ox D(Tyo — Typ)
€
Oz, ox.

J

< xllgy 1 Toro = Tor" l1pr,
0

< cHYPH~? HXHl,q,Y”TO)‘o - Toﬂh||1+s,TH
hl—d/q L
< CWHXHL%YHTOAO — Top" ||z, -

The other terms are bounded following the proof of Theorem [1| with similar changes. [J

Remark 8 (Convergence under low regularity). From the Theorem @ we conclude that,
under the assumption of mild reqularity at the local level, the MHM method converges in
the space-based approach (h — 0 and H fized). O

Remark 9 (Convergence H < ¢). The (optimal) error estimates in the asymptotic regime
H < ¢ turn out to be a direct consequence of and the Lemma @ In fact, assuming
that u. satisfies the regularity conditions of the Lemmal3, then

||ue - u?HV < Chs+1|us|s+2,7—H :

with 0 < s <l and ¢ > 1. If u_ is more regular, it follows from and [7][Theorem 3.3]

that the error above super-converges to zero as O(h*+3/2). O

5. NUMERICAL RESULTS

The domain is a unit square with prescribed homogeneous Dirichlet boundary conditions,

f(x) = sin(xy) sin(zy), and coefficient given by
A(xz) = [1 + 100 0082(%) sinQ(%) T,

where € = %5 is the small parameter defining the periodicity, and Z is the identity matrix.
The reference solution is constructed using a mesh of 16,777,216 quadrilateral bilinear
elements. The MHM method is validated using quadrilateral elements with continuous
linear interpolation on faces to approximate the Lagrange multipliers. The multiscale basis
functions and 7. . f are approximated at the local level by the standard Galerkin method
over the bilinear continuous polynomial space defined on structured sub-meshes. The sub-
meshes are selected such that the multiscale base and i f are accurately approximated so

that the underlying errors do not impact the MHM method.
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Specifically, we define a structured quadrilateral mesh with H = % and progressively
increase the number of degrees of freedom on each edge. We calculate the relative error in
the broken H'-norm and in the L? norm using this strategy (space-based) and compare it
with that obtained from successive mesh refinements (mesh-based). The results are shown
in Figure 1. In Figure 1, we analyze the result from the perspective of the diameter h that
corresponds to the diameter of the edge partition. Remember that in the space-based case
the mesh is fixed (with diameter %), and we define h = H in the mesh-based strategy. In
Figure 2, we perform the same analysis, but now for the number of degrees of freedom
Npor.

We observe that in the space-based enhancement approach the underlying error is dras-
tically reduced with the result that the error divergence region (of order h~!) is no longer
displayed. Also, considerably fewer degrees of freedom are needed to reach a given error
threshold. It worth of mentioning that such behavior is predicted by current theory and it

is achieved without any oversampling technique.

2x10® —o—MESH-BASED |} 1a0? —o—MESH-BASED |}
——SPACE-BASED 5910 1 ——SPACE-BASED|]
— — 135 —— K2
h h
3.7x10 — 375 3 1.9x10 |- —p25
48x10%  20x10%  7.8x10°  31x10%  13x10"  50x10” 48x10%  20x10%  7.8x10°  31x102  13x10"  50x107
h h

FIGURE 1. Convergence history with respect to & in the relative L?(2) (left)
and H'(Ty) (right) norms. Comparison between the one piecewise linear
interpolation per edge case with mesh refinement (mesh-based) and the mul-

tiple piecewise linear interpolation per edge case on a fixed mesh (space-
based).
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23x107" [
1.5x1071 [
12x107 |
9.0x10% |

6.1x102

65x102 F
33x102 F
18x103 1
123102

38x10° F
22x102 F

—76x10° F

I |S53x10°F

ul |1
1

[
\

22x10°

—e—MESH-BASED | |
—*—SPACE-BASED| |

—e—MESH-BASED
—— SPACE-BASED}{

11x10° |
42x10° F

o 59x107 i
Ny g
o —NgE 1 1ox10% b N2
1.1x107 1.7!10’5 9.7><:l110'5 7.4><‘10'4 1 0x‘m'2 11 ><‘10'7 |,7><‘|0'6 9.7;10'5 7.4><‘10'4 1.0x‘1o'2
Npor Npor

FIGURE 2. Convergence history with respect to Npor in the relative L%()
(left) and H'(T;) (right) norms. Comparison between the one piecewise
linear interpolation per edge case with mesh refinement (mesh-based) and
the multiple piecewise linear interpolation per edge case on a fixed mesh
(space-based). The latter induces a tremendous improvement in the quality

of the numerical results with fewer degrees of freedom.

6. CONCLUSIONS

In previous works (c.f. [5,[7]), the MHM method proved to be convergent with respect to
h when the space-based strategy is used (i.e. h — 0 with fixed H) assuming the asymptotic
regime H < . The present work proved that convergence also occurs in the asymptotic
regime H > ¢, without resonance, when we adopt piecewise continuous polynomial in-
terpolation on faces. However, numerical pollution is still present and represented by the
factor (%)1/ 2. Possibilities to reduce such error exist by using nonlocal strategies to select
the multiscale basis or by involving physics in the construction of the basis functions for
the Lagrange multipliers. Despite the pollution error, the numerical results point to a
drastic decrease in the number of degrees of freedom to reach a given error threshold com-
pared to the standard convergence way of refining the one-level mesh (H — 0) which do
have the presence of resonance error. Discontinuous interpolation on faces seems to avoid
resonance errors in the same way and produce results qualitatively similar to the case of
continuous interpolation (c.f. [2I] for numerics). However, the lack of regularity of local
problems with discontinuous Newmann boundary conditions prevents us from applying the

technique proposed in this work and, therefore, such an option remains an open question.
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7. APPENDIX

Proof of Theorem[1. This section fills in the gap in [21][Theorem 1], where only the Dirich-
let boundary condition case was detailed. Here, we consider with the prescribed Neu-
mann boundary condition and follow [I8, Section 1.4]. This case was not dealt with in the
proof presented in [21].

First, we establish the existence of a function z! € H'(Q) such that
(47) / z! -V dr = / AVu_-Vodx foral ¢ € H(Q),
Q Q

which is “close” to A, Vu!l in the sense that it satisfies

1/2—1/p'
18 LAVl < ) (L)
( ) ”Zs € uaHO = C€+C(p) |Q| HXHLq,YHUOH2'

Observe that, owing to and we get

/ AV (u, —ul) V(u, —ul) de = /(z; — A Vul) - V(u, —ul) de
Q Q

Lge Y=Ly 1
/
< leetet) (W) Il o ol oty — s

and, then, the ellipticity of A_ yields

(49) Jue — gy <

Lo\ V21
L) ool

ce+c(p) ( Q)

The proof of z! fulfilling and is constructive. Let y := @ /e be the slow variable,

and observe that

Ou! I (y)\ Ou 0*u
N o OJugy B k 0
(A.Vu,), = aij(@/)axj = (aij(y) + a;,(y) ay, ) oz, +ea;(y)x (y)axjaxk
ou N 0%u
_ 0% .\ YU y k 0

where g7(y) = a;(y) + aik(y)%y(y) — a;. We have from ‘E' that the vector fields g’ are
k

solenoidal, i.e. V, - g’ = 0, as their i—th component is g/. Hence, by Theorem 3.4 and
Remark 3.11 from [I3] there exists o/ € WL4(Y)? V-af = 0 such that

per

(51) g~ = curlyak with HakHLq’Y <ec HXkHL%Y with ¢ > d.
Equation yields

8“0 82160
(52) A Vu! — A Vuy = curlyak(y)a—xj + ¢ (aij(y)Xk(y>axjaxk ,
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where the last term on the right-hand side of is the vector whose i-th component is

d2ug

i (y)xk(y)m. Next, we observe that

curl <ak(y)g—zl(:) = af(y) x Vg_zi + curl ak(y)a—zz .
Since curlyak(y)gim;’_ = scurlak(m/e)g—z(; it follows from |D
A NVu, — AVuy =€ curl | &"(x/e)—
aZL’k
du 0?u
—eaF Z0 g k 0
(53) ea”(x/e) x Vawk +ea;j(x/e) X" (xz/e) D00

Next, from (51)) and Sobolev inequalities we obtain

Ouo Oty

8xk al‘]al‘k
(54) < cellxlligylluollz,

ea’ (xz/e) x V < e (lle*ocey + Ixllosey) luoll2

0

+eay (z/e) X" (x/e)

where the constant ¢ depends only on Y. Thereby, induced by and the estimate ,

we define the ansatz

(55) z! == A,Vu, + ¢ curl <ak(af;/5) Oty > ,

where 7. € Cg°(€2) is a cut-off function satisfying ||V7_||, < £ and 7_(x) = 1 if dist(x, 0Q2) >
. Set

Q. :={xeQ: dist(x,00) < e},

and observe that, from and (54), the leading error between z! and A _Vu! can be

)

bounded as follows

(56) ||ecurl ak(m/s)%(l - T.) < |le (1 = 1) (x/e) x V% +
Oz; 0 0z; |0
ou, ou
e (1 —7.)="Lcurla®(x/e) + llea®(x/e) x =2V,
du; 0,0, dz; 0,9,

The first term on the right-hand side of is bounded using Sobolev embedding The-

orem as follows

ou
_ k =0
e(l-—1)a (m/s)Vaxj

< £ lIxlloso. luollagn, < €lixlligylluolls -
0,0,
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Let Ozf denotes the j-th element of a*. To estimate the remaining terms in , we use

the Y-periodicity of the function o} to obtain

(/Q(ﬁ%wﬂaqdw)lﬂzg (gégyl;cé(wﬂjqdw>lﬂzs (5Lnjia?@nqdy)lm,

€

The second term on the right-hand side of is estimated as follows

dak ou ook ou,
R T LTI G I
Ox) Oz o || Ox, 00, Ox; 000
1 1 I
< e(p) |15 (Lo ) 117721 xly gy o 0.0
< e(p)) (Lo &) P12 gy Nl a0
where
1 1 1 1
57 Tl i
(57) s+ﬂ+q 2

The constant ¢(p") depends on p" and its dependence on €2, relies only on the cone property
of 9Q_, and the term |Q|'/?'~/? appears from the Sobolev embedding constant; [24]. As

g

for the third term on the right-hand side of , we observe that

. 8T€ak8u0 HE ore o] I
1 . = 0,0, 11%0ll1,p7.0
Ox; = Ox; 0., 9z |lo 5.0, B35 Pt
ore 1 1 ou,
> ||€ ox |Qs S(LQ€>QHX 0,q,Y a_l,o
l O,OO,QE J 0’p’7Q
— / /_
(58) < c(p) (Lo e) I X v [l

where we used , and that p’ and s satisfy . We now estimate the last term on the
right-hand side of as follows

2

. U .

eTe Xgm o <e ||X§||07m,ﬂg||uo||2,ﬂg <e ||X||1,q,Y||U0||2 .
I €

Finally, gathering previous contributions, we conclude that

(59)
8U0

cu (t(a/2) 520~ 7))

» < [CE +c(p)(Lg 5)1/2_1/p,|9|1/p,_1/2 [Ixl1,4,v 1o l2 5
k

0

3

where p’ satisfy , and we used estimate (51]). Hence, from the definition of z! in ,
identity and inequality (54)), we prove holds. Now, since 7. € C§°(2), we get

/5 curl (ak(m/e)%Ta) Vo dr =0 forall ¢ € H(Q),
Q Ok
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and as a result, from the definition of z! in and the weak formulations satisfied by ug

and u,, it follows
/(zi —AVu,) Vo dx = /(AOVUO —AVu,) -Védxr =0 forall ¢p € H(Q),
Q Q

and then holds. It remains to proof that the estimate also holds on the L?(£2)
norm. Nevertheless, in the pure Neumann case, u! does not have mean value zero in Q
and neither vanishes at part of the boundary 02. Consequently, we cannot directly apply

Poincaré inequality to obtain the desired result. Thereby, we define

1 )
M, =— T0uqy d
" |9|/QX s

and, using u_,u, € L3(Q) we have that u, — ul — eM, € L%(©), and applying Poincaré
inequality, it holds

(6()) ||U€—U; _gMul”O < Cd9|ue_u;|1

< C(p/) dg

Lo e 1/2—-1/p
L) ol o ol

v et (T

To estimate Mul’ we use Sobolev inequality which yields
M, | <127 I lolluolly < 1R oy ol < €102 g o]l
and, as a result, we arrive at

1M, llo < el ll1q.x luolly -

From triangle inequality, we conclude

(1+ dQ)HXHLq,YHUOHQ )

Lo\ Y2
e, — o < e(v) L)

ce+c(p) ( Q)

and the result follows. O
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