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A FINITE ELEMENT MODEL FOR CONCENTRATION
POLARIZATION AND OSMOTIC EFFECTS IN A MEMBRANE

CHANNEL ∗

NICOLÁS CARRO† , DAVID MORA‡ , AND JESUS VELLOJIN§

Abstract. In this paper we study a mathematical model that represents the concentration
polarization and osmosis effects in a reverse osmosis cross-flow channel with porous membranes at
some of its boundaries. The fluid is modeled using the Navier-Stokes equations and Darcy’s law is
used to impose the momentum balance on the membrane. The scheme consist of a conforming finite
element method with the velocity–pressure formulation for the Navier-Stokes equations, together
with a primal scheme for the convection–diffusion equations. The Nitsche method is used to impose
the permeability condition across the membrane. Several numerical experiments are performed to
show the robustness of the method. The resulting model accurately replicates the analytical models
and predicts similar results to previous works. It is found that the submerged configuration has
the highest permeate production, but also has the greatest pressure loss of all three configurations
studied.
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1. Introduction. Membrane-based desalination methods have been widely used
for tackling the water scarcity world problem, due to its relatively low energy con-
sumption compared to thermal-based methods such as multi-stage flash [39], and its
capability to use renewable or low-grade energy resources [1, 45]. Currently, reverse
osmosis leads this trend, being used in 69% of industrial desalination plants around
the world [17], as it is the most energy-efficient desalination process and its mem-
brane technology is the most investigated, accounting for more than 60% of articles
concerning the most relevant membrane-based desalination techniques in 2019 [28].

Models associated with concentration polarization in reverse osmosis (RO) are
usually based on the Navier-Stokes and convection-diffusion equations, although the
Brinkman equations for porous media can also be considered. Variations in the ap-
proach of these equations for the formulation of concentration polarization equations
have been widely discussed due to the difficulty in obtaining a numerical solution.
Geometric parameters (such as the length and thickness of the channel or the exis-
tence of spacers) and physical parameters (low density and high diffusivity) are as-
sociated with unstable behavior of the numerical methods proposed. This is usually
improved by considering sufficiently fine meshes, at the cost of increasing the memory
space required to run the algorithm, or using the SUPG method, which is capable
of stabilize the scheme for convective dominated problems [10]. Although naturally
different, the equations modeling RO have a clear similarity with the Boussinesq equa-
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†GIMNAP-Departamento de Matemática, Universidad del B́ıo - B́ıo, Casilla 5-C, Concepción,
Chile. ncarro@ubiobio.cl.
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2 NICOLÁS CARRO, DAVID MORA AND JESUS VELLOJIN

tions, and that is the coupling between fluid and convection-diffusion models. Behind
the Boussinesq equations there is an extensive bibliography, analysis and modeling,
where different configurations and environmental conditions are assumed in order to
analyze their influence in the development of numerical methods for their solution (see
[3, 7, 14, 15] and the references therein). However, the consideration of a nonlinear
boundary condition to model the water flow in the membrane makes the difference
between both models.

A major difficulty in these systems is the boundary conditions, which can signif-
icantly complicate the study of a problem, especially if they are boundary conditions
on vector functions. In the models associated with RO we can observe that there
are boundary conditions, such as the permeability associated with the membrane in
terms of the osmotic pressure, which present a nonlinear behavior. The numerical
implementation always represents a challenge at the computational level because the
numerical scheme selected to solve the problem must be adjusted to consider this
condition. Now, several techniques have been proposed over the years to deal with
boundary conditions on vector fieds, such as the slip condition in the Navier-Stokes
equations, which has been implemented using penalty methods, Lagrange multipliers,
or the Nitsche technique [16, 21, 40, 41, 42].

The Nitsche technique was introduced in 1971 [35] as an idea to impose Dirich-
let conditions without the use of Lagrange multipliers. The scheme is similar to
a mesh-size-dependent penalty method, but consistency terms are added for optimal
convergence. Over the years, its use has been extended to interface problems, contact,
and boundary conditions in general.

At the discrete level, the majority of RO models is simulated with Finite Differ-
ence (FD) or Finite Volumes methods (FV), thus little has been researched in finite
elements (FE) numerical algorithms applied to this kind of problems outside the pre-
existing commercial software, e.g. COMSOL [38, 29, 23, 18, 37, 36] or ANSYS CFX
[30, 43, 26], where boundary implementation is done through a user interface or user
defined macros. The coupling between velocity and concentration in RO models are
treated in a iterative way by many CFD softwares using FE or FV. For example, we
have the works of Wiley and Fletcher [44, 2, 20], where they implemented a CFD
model for fluid and transport processes. Here, it is observed that CFD software are
versatile when complex geometries are considered. There is also the work of Salcedo-
Diaz et al. [44], where the use of Comsol Multiphysics were use to study the behavior
in a three dimensional model of the coupled system, and a fluid -dynamics and solute
transfer numerical simulation that was studied through the Ansys software [32].

Some of the ideas behind this CFD softwares uses the approach made in [33],
where we observe one of the first stabilized finite element approximations on a RO
channel. Here, the membrane dimensions are taken into account, together with a
SUPG stabilization for coercivity conservation in the convective dominated model of
the coupling between Navier-Stokes and convection-diffusion equations. An alterna-
tive approach was studied in [6] a numerical method is developed based on the Prandtl
equations that couples laminar fluid and mass transport for the study of concentration
polarization and osmotic effects in a membrane. The validation of the model is done
by comparison with classical analytical solutions.

In our study, the goal is to propose a finite element method using the Nitsche
technique on an RO model. The difference with respect to other studies in the lit-
erature is that the Nitsche trick allow to impose the Darcy-Starling law by means of
a consistent finite element method. This proposition is inspired by [25], along with
several studies on Nitsche’s method on interface and contact problems [11, 12, 13],
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where it is shown that Nitsche’s technique can be applied to problems with general
boundary conditions. The main contribution of this work is that the resulting discrete
model is easy to implement because linearizing the model depends only on linearizing
the flow. Furthermore, to the best of the authors’ knowledge, this is the first time
that the Nitsche technique is used to impose a nonlinear boundary condition on a
cross-flow model that depends on the unknowns. The model is implemented with
the open source software FEniCS [4], and the results are validated with analytical
solutions of simplified problems.

The structure of this article is as follows: in section 2 the assumptions for the
studied system are stated, and the transport equations with the respective boundary
conditions. The weak formulation for the continuous model is given in section 2.1.
The discretization of the model using the Nitsche method is given in section 2.3.
Then, the numerical results for various operating conditions and the discussion of the
obtained results are presented in section 3.

2. Model problem. Consider the domain Ω = [0, L]× [0, d], which consists of a
channel with semi-permeable walls at Γm and circular spacers at Γw, with flow input
in Γin and output in Γout (see Figure 1). The assumptions for this model are:

1. The system is in steady state.
2. The system is isothermal (therefore, the heat equation in the system is omit-

ted).
3. The fluid in the channel representing seawater is only composed of water

and salt (sodium chloride). Therefore, the fouling effects on the membrane’s
performance due to scaling of less soluble salts or biofouling caused by bacteria
proliferation, are ignored.

4. The fluid is considered to be Newtonian and incompressible with density ρ0.
5. The fluid has uniform viscosity µ0 and solute diffusivity through the solvent

D0.
6. The channel membranes are porous in nature, and its behavior is described

by Darcy-Starling Law.
7. The osmotic pressure effect of the dissolved solute is represented by Van’t

Hoff’s Law.
8. The effect of pressure drop inside the channel due to viscous effects on the

permeate flux (Darcy-Starling Law) is negligible. Therefore, ∆P in equation
2.10 can be considered constant. As an approximation, we will consider this
valid for a channel whose length L is such that the pressure loss due to viscous
effects is less than 1% the value of ∆P .

9. The membrane’s performance does not become affected by wearing, so I0 is
constant.

out

Fig. 1. Model of cross-flow membrane filtration and concentration polarization.
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For the described model, we will use a Navier-Stokes (based on assumptions 4 and
5) and a convection-diffussion model (based on assumptions 3 and 5), whose coupling
is well-known as the Boussinesq equations. To make matters precise, we have

The continuity condition:

(2.1) div u = 0, in Ω.

The Navier-Stokes equation

(2.2) ρ0u · ∇u = −∇p+ µ0∆u, in Ω.

The Convection-Diffusion equation:

(2.3) u · ∇θ = D0∆θ, in Ω.

With respect to the boundary conditions, we assume an inlet parabolic velocity profile
with a fixed concentration to simulate a fully developed flow of seawater entering the
channel, a normal momentum balance to set the pressure and a zero diffusive salt flux
boundary condition in the outlet. Additionally, a zero fluid velocity, together with no
salt penetration are assumed in the spacers or impermeable walls. This is summarized
in the following equations

u · n = 6u0
y

d
(1− y

d
), θ = θ0, on Γin,(2.4)

µ0
∂u

∂n
− pn = 0, on Γout,(2.5)

−D0(∇θ) · n = 0, on Γout,(2.6)

u = 0, on Γs,(2.7)

θ(u · n)−D0∇θ · n = 0, on Γm,Γs,(2.8)

u · t = 0, on Γm,(2.9)

u · n =
∆P − κθ

I0
, on Γm.(2.10)

In the above, u = (ux, uy), p, and θ represent the fluid velocity, pressure and molar
concentration profile, respectively. Its worth noting that the pressure p is the gauge
pressure and not the absolute pressure P , as the assumption 4 allows to write the
Navier-Stokes equations in terms of p. The constant D0 represents the solute diffusiv-
ity trough the solvent, I0 is the membrane resistance, whereas κ is a constant given
by the Darcy-Starling law. ∆P represents the transmembrane pressure between the
membrane and the “outside” (the permeate channel).

2.1. Formulation. Assuming free flow conditions in x = L, we define the fol-
lowing spaces.

H := {v ∈ H1(Ω)2 : v · n = u0 on Γin},
Y := {v ∈ H1(Ω)2 : v = 0 on Γin ∪ Γs, v · t = 0 on Γm}, Q = L2(Ω),

Z := {τ ∈ H1(Ω) : τ = θ0 on Γin}, X := {τ ∈ H1(Ω) : τ = 0 on Γin}.

Testing (2.2) with v ∈ Y , integrating by parts and using the boundary conditions
we obtain∫

Ω

ρ0 (u · ∇u) · v =

[∫
Ω

p div v −
∫
∂Ω

(pn) · v
]
+ µ0

[
−
∫
Ω

∇u : ∇v +

∫
∂Ω

∂u

∂n
· v

]
= −

∫
Ω

µ0∇u : ∇v +

∫
Ω

p div v +

∫
Γm

nt

(
µ0

∂u

∂n
− pn

)
(v · n)
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Testing (2.3) with τ ∈ X and integrating by parts we obtain∫
Ω

(u · ∇θ)τ = D0

[
−
∫
Ω

∇θ · ∇τ +

∫
∂Ω

∂θ

∂n
τ

]
= −

∫
Ω

D0∇θ · ∇τ +

∫
Γm∪Γs

θ(u · n)τ.

Lets introduce the following forms:

(2.11)

a(u,v) := µ0

∫
Ω

∇u : ∇v, ã(w, (u,v)) := ρ0

∫
Ω

(w · ∇u) · v,

d(θ, τ) := D0

∫
Ω

∇θ · ∇τ, b(v, q) := −
∫
Ω

q div v

c̃(w, (θ, τ)) :=

∫
Ω

(w · ∇θ)τ −
∫
Γm∪Γs

θ (w · n) τ.

Hence, we have the following formulation for the proposed cross-flow model: Find
(u, p, θ) ∈ H×Q× Z such that (2.10) holds, and
(2.12)

a(u,v) + b(v, p) + ã(u, (u,v))−
∫
Γm

nt

(
µ0

∂u

∂n
− pn

)
(v · n) = 0, ∀v ∈ Y,

b(u, q) = 0, ∀q ∈ Q,

d(θ, τ) + c̃(u, (θ, τ)) = 0, ∀τ ∈ X.

Note that if homogeneous boundary conditions for both u and θ are considered in Γm,
then we fall into a typical formulation of Boussinesq equations. For an analysis on
viscous flows around porous with non-homogeneous boundary data, we refer to [24].
On the other hand, note that the nonlinearity inherited by the boundary condition
(2.8) is present in the trilinear form c̃. For the bilinear form b(·, ·) there holds [22,
Theorem 3.7]

(2.13) sup
v∈Y,v ̸=0

b(v, q)

∥v∥1,Ω
≥ β∥q∥0,Ω, q ∈ W.

2.2. Nitsche method. Let us consider a shape-regular family of partitions of
Ω, denoted by {Th}h>0. Let hT be the diameter of a triangle T ∈ Th and let us define
h := max{hT : T ∈ Th}.

One of the main difficulties in the discrete solution of problems involving the
Navier-Stokes equations is the choice of elements satisfying the discrete version of
(2.13). Of all the possible existing options, we choose the Taylor-Hood elements
[8, 9], namely, given k ≥ 1, the finite element spaces to develop the numerical scheme
for the velocity and pressure are the following

Hh := {vh ∈ C(Ω)2 : vh|T ∈ Pk+1(T )
2 ∀T ∈ Th} ∩ Y,

Qh := {qh ∈ C(Ω) : qh|T ∈ Pk(T ) ∀T ∈ Th}.

Another widely used and computationally very economical option is the lowest order
mini-element pair (Hh, Qh), where Qh is as above with k = 1, and Hh is given by

Hh := {vh ∈ C(Ω)2 : vh|T ∈ P1,b(T )
2 ∀T ∈ Th} ∩ Y,
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where P1,b are the bubble-enriched piecewise continuous elements defined with the
barycentric coordinates of each element T (see, e.g. [19, 22]).

In turn, for ℓ ≥ 1, the finite element space for the discrete concentration is just

Mh := {τh ∈ C(Ω) : τh|T ∈ Pℓ(T ) ∀T ∈ Th} ∩X.

It is important to mention that condition (2.10) is not imposed in throughout the
integration by parts. Hence, we use the Nitsche’s method, whose goal is to relax and
penalize Dirichlet boundary conditions such that they are satisfied in the limit of small
mesh size. In this study, we will use this technique in order to impose the boundary
condition (2.10), which characterizes the pressure difference between the interior of
the channel (feed) and the outside (permeate). In order to propose our numerical
scheme using the Nitsche method, we introduce the following bilinear forms

(2.14) A((uh, ph), (vh, qh)) := a(uh,vh) + b(vh, ph) + b(uh, qh)

−
∫
Γm

nt

(
µ0

∂uh

∂n
− phn

)
(vh · n)−

∫
Γm

nt

(
µ0

∂vh

∂n
− qhn

)
(uh · n)

+ α

∫
Γm

h−1(uh · n)(vh · n),

F (vh, qh) := α

∫
Γm

h−1

(
∆P

I0

)
(vh · n)−

∫
Γm

nt

(
µ0

∂vh

∂n
− qhn

)(
∆P

I0

)
B(θh, (vh, qh)) := α

∫
Γm

h−1

(
κθh
I0

)
(vh · n)−

∫
Γm

nt

(
µ0

∂vh

∂n
− qhn

)(
κθh
I0

)
,

where h represents the local mesh size. The parameter α > 0 is a constant that has
to be chosen sufficiently large. With this forms at hand, we propose the following
Nitsche method: Find (uh, ph, θh) ∈ Hh + u0,I ×Qh ×Mh + θ0,I such that

(2.15)
A((uh, ph), (vh, qh)) + ã(uh, (uh,vh)) +B(θh, (vh, qh)) = F (vh, qh),

d(θh, τh) + c̃(τh, (uh, θh)) = 0,

for all (vh, qh) ∈ Hh × Qh and for all ∀τh ∈ Mh, where u0,I and θ0,I are suitable
interpolants of u0 and θ0.

Below we prove that (2.15) contains all the elements to be consistent.

Lemma 2.1. If (u, p, θ) is the solution of (2.1)-(2.3) together with boundary con-
ditions (2.6)-(2.10), then (u, p, θ) solves (2.15).

Proof. We start by multiplying (2.10) by vh · n, with vh ∈ Hh, integrate over
Γm, and multiply by αh−1 in order to have

(2.16) α

∫
Γm

h−1(u · n)(vh · n) = α

∫
Γm

h−1

(
∆P − κθ

I0

)
(vh · n).

Similarly, we now multiply (2.10) by nt
(
µ0

∂vh

∂n − qhn
)
, where qh ∈ Qh, to obtain

(2.17)

∫
Γm

nt

(
µ0

∂vh

∂n
− qhn

)
(u · n) =

∫
Γm

nt

(
µ0

∂vh

∂n
− qhn

)(
∆P − κθ

I0

)
.

Note that multiplying (2.1)-(2.3) with (vh, qh, τh) ∈ Hh × Qh × Mh, integrating by
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parts and using boundary conditions (2.6)-(2.9) we have that

(2.18)

a(u,vh) + b(vh, p) + ã(u, (u,vh))−
∫
Γm

nt

(
µ0

∂u

∂n
− pn

)
(vh · n) = 0,

b(u, qh) = 0,

d(θ, τh) + c̃(u, (θ, τh)) = 0.

Then, by adding (2.16), (2.17) and (2.18) we obtain that

A((u, p), (vh, qh)) + ã(u, (u,vh)) +B(θ, (vh, qh)) = F (vh, qh),

d(θ, τh) + c̃(τh, (u, θ)) = 0,

for all (vh, qh) ∈ Hh ×Qh and for all ∀τh ∈ Mh. The proof is complete.

The above lemma gives the modified variational formulation using the Nitsche method,
and its consistency. Note that the nonlinearity is present in the convective terms and
the boundary term

∫
Γm∪Γs

θ(u ·n)τ , where the nonlinearity in the equations is caused

only by the velocity. Hence, the system (2.15) can be rearranged such that a fixed
point iteration technique is straightforward.

3. Numerical experiments: validation and discussion. In this section we
will show some numerical results in different channel configurations. The implementa-
tion of the scheme is perfomed in FEniCS, and the meshes were created using Gmsh.
The numerical experiments have been developed with Taylor-Hood elements. How-
ever, similar results were obtained using the mini-element. For the concentration case,
it was sufficient to consider the lowest case with ℓ = 1. All the cases consider the
Nitsche constant α = 1.

We consider the geometrical parameters of a common membrane channel “unit”
whose length is defined by a subsection of the channel that allows a fully developed
flow [31]. The channel thickness and spacer diameter is that of a module with stan-
dard 28mil gap spacer mesh [27]. For the channel width W (perpendicular to the
simulation domain) we will consider W = L. More precisely, we have

L = 1.5 · 10−2 m, d = 7.4 · 10−4 m, W = 1.5 · 10−2 m, dS = 3.6 · 10−4 m,

while the physical parameters [6, 34] are taken as

κ = 4955.144Pa, I0 = 8.41 · 1010Pa · s/m, µ0 = 8.9 · 10−4kgm−1s−1,

ρ0 = 1027.2 kg/m3, D0 = 1.5 · 10−9m2/s.

With respect to the boundary data, we will consider combinations among the follow-
ing:

u0 = 1.29× k · 10−1m/s, k = 0.5, 1, 2.

C0 = 600 mol m3.

∆P = 4053000Pa or 5572875Pa.

As suggested by several studies, all the experiments use a highly refined mesh close
to the membrane Γm.

3.1. Validation test. This experiment aims to test the convergence of our
method. To this end, we consider a channel with no spacers, i.e., we set Γs = ∅. The
domain Ω = (0, L)× (0, d) is meshed with uniform elements such that nx = (L/d)ny,
where nx and ny denote the number of cells in the x and y directions, respectively.
We divide this test in two cases, that we detail below.
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3.1.1. Case 1. The first case consists in validating the method by comparing
the pressure drop with those of classical analytical models of momentum, namely,
Poiseuille and Berman flow models. These two models have the advantage that the
pressure drop, denoted by ∆p(x, d/2) := p(0, d/2) − p(x, d/2), can be obtained by
solving the equations of motion with boundary conditions

u · n =
∆P

I0
, u · n = 0,

on Γm, for Berman and Poiseuille flow, respectively. Note that, for the Poiseuille
flow, we have a no-slip and no-penetration boundary condition (Dirichlet boundary
condition) that can be imposed strongly on the space. Hence, we have the following
pressure drop equation for a constant permeable wall

∆p(x, d/2) :=

(
1

2
ρ0u

2
0

)(
24

Re
− 648

35

Ren
Re

)(
1− 2Ren

Re

x

d̃

)(
x

d̃

)
,

where a constant permeate velocity u · n is assumed. On the other hand, the case of
impermeable walls assumes that Ren = 0, so the pressure drop equation is reduced
to

∆p(x, d/2) :=

(
1

2
ρ0u

2
0

)(
24

Re

)(
x

d̃

)
.

In the above equations, Re := 4ρ0d̃u0

µ0
is the cross flow Reynolds number, whereas

Ren = ρ0d̃(u·n)
µ0

is the Reynolds number at the channel walls. The parameter d̃

denotes half of the channel height (d̃ = d/2).
In Figure 2 we observe the exact pressure drop compared with our computed

pressure drop, denoted by ∆ph(x, d/2). To compare with our approximate solution,
we have selected 10 equally spaced pressure drop values in the channel. We note
that the proposed method agrees perfectly with the analytical axial pressure drop
for both, the permeable and impermeable channel. Also, a similar pressure drop was
observed for ∆P = 4053000 Pa and ∆P = 5572875 Pa since they correspond to
u · n ≈ 4.819 · 10−5 m/s and u · n ≈ 6.626 · 10−5 m/s, respectively. Therefore, ∆P
has little impact on the pressure drop on the channel.

3.1.2. Case 2. We now aim to test the method when the non-linear boundary
condition (2.10) is considered. To this end, we compute the total flow (see equation
(3.1)) over the membrane channel in order to observe the stability of the result for
different number of elements:

(3.1) ṁtot = ρW

∫
Γm

|uy(s)|ds.

The importance of this test lies in the determination of the number of elements nec-
essary to obtain accurate results. Some studies suggest that refinement towards the
membrane are required for better results [29, 31]. A total of four refinement near
Γm have been used. We set N = 2j, j = 1, . . . , 19, for uniform refinement, whereas
N = 5j is used for the meshing towards Γm.

In Figure 3 we observe the average flux for several inlet velocities and osmotic
pressure when using uniform refinements. In both cases, it is observed that from 5·103
elements the total mass flow is stable. All the simulations in this work were tested
in a similar manner, preferring the meshing towards Γm with a variable amount of
elements, but always above 104 cells.
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Fig. 3. Test 1. Comparison of the stability in the total mass flow computation stability when
using uniform refinement and meshes refined towards Γm.

3.2. Test 2. Channel with different spacer configurations. In this section
we will depict the velocity fields, pressure distribution and concentration polarization
along a channel with different spacer configurations. Discussion of the simulations are
presented in Section 3.3 below.
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3.2.1. Spacers in cavity configuration. The numerical results for the spacers
in cavity configuration are presented in Figures 4-6.

u0 = 6.45 · 10−2m/s,∆P = 4053000Pa

u0 = 2.58 · 10−1m/s,∆P = 4053000Pa

u0 = 6.45 · 10−2m/s,∆P = 5572875Pa

u0 = 2.58 · 10−1m/s,∆P = 5572875Pa

Fig. 4. Test 2. Comparison of concentration levels using a cavity spacers configuration.

u0 = 6.45 · 10−2m/s,∆P = 4053000Pa

u0 = 2.58 · 10−1m/s,∆P = 4053000Pa

Fig. 5. Test 2. Comparison of velocity fields using a cavity spacers configuration.
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u0 = 6.45 · 10−2m/s,∆P = 4053000Pa

u0 = 2.58 · 10−1m/s,∆P = 4053000Pa

u0 = 6.45 · 10−2m/s,∆P = 5572875Pa

u0 = 2.58 · 10−1m/s,∆P = 5572875Pa

Fig. 6. Test 2. Comparison of relative pressure using a cavity spacers configuration.

3.2.2. Zig-zag spacers configuration. The numerical results for the spacers
in zig-zag configuration are presented in Figures 7-9.

u0 = 6.45 · 10−2m/s,∆P = 4053000Pa

u0 = 2.58 · 10−1m/s,∆P = 4053000Pa

u0 = 6.45 · 10−2m/s,∆P = 5572875Pa

u0 = 2.58 · 10−1m/s,∆P = 5572875Pa

Fig. 7. Test 2. Comparison of concentration levels using a zig-zag spacers configuration.

3.2.3. Submerged spacers configuration. The numerical results for the spac-
ers in submerged configuration are presented in Figures 10-12.
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u0 = 6.45 · 10−2m/s,∆P = 4053000Pa

u0 = 2.58 · 10−1m/s,∆P = 4053000Pa

Fig. 8. Test 2. Comparison of velocity fields using a zig-zag spacers configuration.

u0 = 6.45 · 10−2m/s,∆P = 4053000Pa

u0 = 2.58 · 10−1m/s,∆P = 4053000Pa

u0 = 6.45 · 10−2m/s,∆P = 5572875Pa

u0 = 2.58 · 10−1m/s,∆P = 5572875Pa

Fig. 9. Test 2. Comparison of relative pressure using a zig-zag spacers configuration.

3.3. Discussion. This study focuses on the effect of three main parameters on
the behavior of the membrane channel: the transmembrane pressure, the inlet velocity
(i.e., the inlet mass flow) and the spacer configuration.

Analysis in Figures 4, 5 and 6 show that the increase in mass flow at the inlet
(increase in inlet velocity) increases the length of the boundary layer and diminishes
its concentration. Also we can establish that ∆P does not have any appreciable effect
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u0 = 6.45 · 10−2m/s,∆P = 4053000Pa

u0 = 2.58 · 10−1m/s,∆P = 4053000Pa

u0 = 6.45 · 10−2m/s,∆P = 5572875Pa

u0 = 2.58 · 10−1m/s,∆P = 5572875Pa

Fig. 10. Test 2. Comparison of concentration levels using a submerged spacers configuration.

u0 = 6.45 · 10−2m/s,∆P = 4053000Pa

u0 = 2.58 · 10−1m/s,∆P = 4053000Pa

Fig. 11. Test 2. Comparison of velocity fields using a submerged spacers configuration.

on the hydrodynamics of the channel for equal inlet mass flows. Indeed, the permeate
flow difference between different ∆P , although significative in terms of the obtained
permeate flow, is two to three orders of magnitude smaller than the inlet velocity.
These behaviors are further confirmed by Figure 13.

In all of the performed cases, the main cause of pressure loss is the presence of
a bottleneck caused by the spacers. As seen in Figure 5, the spacers cause a sudden
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u0 = 6.45 · 10−2m/s,∆P = 4053000Pa

u0 = 2.58 · 10−1m/s,∆P = 4053000Pa

u0 = 6.45 · 10−2m/s,∆P = 5572875Pa

u0 = 2.58 · 10−1m/s,∆P = 5572875Pa

Fig. 12. Test 2. Comparison of relative pressure using a submerged spacers configuration.

augmentation of velocity and velocity gradients in those zones, which in turn derives
into major pressure losses. The increment in inlet flow gets bigger as this gradient
changes, and the pressure losses become greater. However, for increasing ∆P there is
a subtle decrease in pressure loss, because the increment in permeate flux at higher
∆P decreases the amount of mass flow that has to cross the bottleneck, effectively
reducing the pressure loss in each stage.

Both opposing behaviors leads to conclude that there is an optimum operating
condition for the system from the energy efficiency point of view, in which both the
increasing pressure loss due to increasing pressure flow and the reducing pressure loss
from the increment in transmembrane pressure leads to an overall minimum pressure
loss in the channel. This optimization has well established boundaries, as ∆P must
be lower than the liquid entry pressure (LEP) of the membrane which would cause
the membrane’s rupture, but must be higher than the osmotic pressure of the feed
solution, as otherwise the process would turn into Forward osmosis (FO). To determine
these optimum values, further numerical essays need to be performed, which will be
addressed in a subsequent article.

The previous analysis is the same for a zig-zag and submerged configurations upon
comparing Figures 7–9 and 10–12, respectively. However, for the case of a submerged
configuration, the boundary layer of salt is not developed as seen in Figure 10, mainly
due to the absence of recirculation zones close to the membrane walls, depicted in
Figure 11. The recirculating fluid is located in the middle of the channel behind the
spacers, away from the influence of the membrane wall concentration boundary layer
(see Figure 10). Therefore, the effects of accumulation of salt in the recirculation zone
will be greater along the channel, provided that the boundary layer is large enough.

In the case of pressure losses in submerged configurations, in contrast to the
cavity and zig-zag configurations, has two bottlenecks in each spacer that are smaller,
causing more pressure loss inside the channel. As the bottlenecks are reduced to half
the size, both the velocity gradients and the convective flux at the bottenecks increase,
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therefore increasing the pressure losses by viscous friction and convective losses.
The main variables studied in this paper for all conditions are shown in Figures 13

through 16. From inspection of the permeate velocity curves in Figures 13–14, we can
say that incrementing the inlet mass flow helps to diminish the concentration in the
whole membrane, therefore reducing the osmotic pressure effect in the permeate flux.
Also, the increase in pressure leads to an increase in concentration at the membrane,
as more water is being separated out, leaving behind more salt. Also, as expected,
the permeate flux increases when ∆P is increased.

Pressure profiles in Figures 13–14 show the pressure loss along the membrane
channel for the cavity configuration for all different systems. The two main conclusions
are that ∆P has a negligible effect on the pressure loss of the system, as stated earlier
in the discussion, and the increment in the inlet velocity has a positive contribution in
the pressure loss. Indeed, for twice the inlet velocity, the pressure losses are increased
by a factor greater than two. The negative pressure values in all Figures are valid due
to the incompressible formulation of the problem, which allows to write the variable
p in terms of the gauge pressure.

Additionally, the effect of spacer configuration on the membrane’s performance
needs to be analyzed. For this, we fix the inlet velocity and transmembrane pressure
at 2.58 · 10−1 m/s and ∆P = 5572875Pa, respectively. From Figure 16, it can be
concluded that spacers in both cavity and zig-zag configurations have a negative
impact on permeate velocity on their vicinity, as shown by the sharp decrease in the
permeate velocity at the positions where the spacers are located. The opposite effect
occurs for the submerged configuration, where a local maximum can be located at each
spacer position. This is due to the increase in flow in the channel bottlenecks, which
decrease the salt concentration and consequently the osmotic resistance to permeate
flux. However, the mixing effects are less effective than the other two configurations,
as the concentration at the end of the submerged configuration channel is higher
and the permeate flux is the lowest of all three configurations. We can also infer
that the high inlet velocity in the zig-zag configuration as seen in Figure 8 produces a
dominant fluid path, which diminishes the concentration between the first two spacers
and therefore increases the overall permeate flux. Lastly, the total volumetric flow
per unit width for all membrane channels in different configurations, for the same
conditions used in Figure 16, is given in Table 1. This quantity can be obtained from
direct integration of the definition of volumetric flow from the flux:

(3.2)
V̇

W
=

∫
Γm

|uy(s)|ds,

where V̇ is the total volumetric flow of the permeate from both membrane walls, W is
the width of the channel, and uy (s) is the permeate flux at a distance from the inlet
s. The absolute value is used because on the lower side of the membrane the velocity
vector is negative with respect to the coordinate origin.

From the values of Table 1 it follows that the submerged configuration has the
most production of permeate of all three configurations for all of the considered vari-
ations of u0 and ∆P . Also, zig-zag and cavity configurations show similar results,
with zig-zag being slightly more efficient than its alternate counterpart. However, for
longer channels this tendency may be inverted, as the submerged configuration con-
centration profile may rise well above the other configurations, therefore diminishing
its permeate flux. The results also show that quadrupling the value of u0 while man-
taining ∆P can generate an increase in V̇ /W of up to 24% for the lower pressure and
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Fig. 13. Test 1. Comparison between permeate velocity, concentration level and relative pres-
sure drop on the membrane walls along the line y = 0 and x ∈ [0, L] using the cavity spacers
configuration.

26% for the higher pressure. Additionally, increasing the pressure from 4053000Pa
to 5572875Pa drastically rises the value up to about 130% for the lower inlet velocity
and up to 134% for the higher value.

4. Conclusions. In this work we have presented the performance of the nu-
merical method for a RO model using the Nitsche technique. The method has been
successfully validated by testing the accuracy with respect to the pressure drop, as
well as the number of cells required to have independence with respect to the mesh
size. However, for the highest speed of operation, it was required to implement the
SUPG scheme to stabilize the algorithm.

Also, we can follow the same approach in this study to obtain the classical penalty
formulation, which also serves to impose the permeability condition. However, it is
well known that, for very large values of α, the system will be ill conditioned, and
consequently, the convergence of the method will be affected [5].

The obtained tendencies for permeate flux against transmembrane pressure and
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Fig. 14. Test 1. Comparison between permeate velocity, concentration level and relative pres-
sure drop on the membrane walls along the line y = 0 and x ∈ [0, L] using the submerged spacers
configuration.

inlet mass flow are in accordance with previous works. It was also determined that
the bottlenecks caused by the spacers were the main contributors to pressure loss
(and therefore, energy loss), being the biggest drop associated with the submerged
configuration. Considering all process parameters constant, the greatest permeate
flux was obtained for the submerged configuration, although the higher concentration
at the exit in comparison with its counterparts suggest that this advantage may not
hold for bigger channels, as the submerged configuration is less effective at disrupting
the boundary layer at the membrane walls.
For future development of the proposed model, further studies are needed to establish
the influence of the Nitsche technique on the stability of the method. Additionally,
other factors must be considered to accurately capture the complex behavior of a
membrane module in operational conditions, e.g., the inclusion of fouling agents and
the effects of three-dimensional spacer mixing.
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Fig. 15. Test 1. Comparison between permeate velocity, concentration level and relative pres-
sure drop on the membrane walls along the line y = 0 and x ∈ [0, L] using the zig-zag spacers
configuration.
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ematical Modelling and Numerical Analysis, 29 (1995), pp. 871–921.

[8] D. Boffi, Stability of higher order triangular Hood-Taylor methods for the stationary Stokes
equations, Mathematical Models and Methods in Applied Sciences, 4 (1994), pp. 223–235.

[9] , Three-dimensional Finite Element methods for the Stokes problem, SIAM journal on
numerical analysis, 34 (1997), pp. 664–670.

[10] A. N. Brooks and T. J. Hughes, Streamline upwind/petrov-galerkin formulations for convec-
tion dominated flows with particular emphasis on the incompressible Navier-Stokes equa-
tions, Computer methods in applied mechanics and engineering, 32 (1982), pp. 199–259.

[11] F. Chouly and P. Hild, On convergence of the penalty method for unilateral contact problems,
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