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Abstract

In this paper we extend the Banach spaces-based fully mixed approach recently developed for the
coupled Stokes and Poisson—Nernst—Planck equations, to cover the coupled Navier—Stokes and Poisson—
Nernst—Planck equations. In addition to the velocity and pressure of the fluid, the velocity gradient and
the Bernoulli-type stress tensor are added as further unknowns. Similarly, fully mixed formulations for
the Poisson and Nernst—Planck sub-problems are achieved by considering, alongside the electrostatic
potential and the concentration of ionized particles, the electric current field and total ionic fluxes
as new mixed variables. As a consequence, two saddle-point problems, one of them non-linear, and
both involving nonlinear source terms depending on the other unknowns, along with a perturbed
saddle-point problem that is in turn further perturbed by a bilinear form depending on the remaining
unknowns, constitute the resulting variational formulation of the whole coupled system. Fixed-point
strategies are then employed to prove, under smallness assumptions on the data, the well-posedness
of the continuous and associated Galerkin schemes, the latter for arbitrary finite element subspaces
under suitable stability assumptions. The main theoretical tools utilized include the Babuska—Brezzi
and Banach—Necas—Babuska theories in Banach spaces, an abstract result for perturbed saddle-point
problems (also in Banach spaces), and the classical Banach and Brouwer fixed-point theorems. Strang-
type lemmas are then applied to establish a priori error estimates. Next, specific finite element subspaces
(defined by Raviart-Thomas elements of order & > 0 and piecewise polynomials of degree < k) are
shown to satisfy the required hypotheses, and this yields specific convergence rates. Finally, several
numerical results are reported, confirming the theoretical findings and illustrating the good performance
of the method.
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1 Introduction

Scope. In this paper we develop a Banach spaces-based formulation yielding a new mixed finite element
method for the coupled Navier—Stokes and Poisson—Nernst—Planck equations. This coupled PDE system
is a remarkable example of multiphysics models where electrically charged ions interact in a complex
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manner, and at different spatial scales, with the flow behaviour of incompressible viscous fluid. Fluid
mixtures of this type are essential in modeling fuel cells, ion channel behavior in cell membranes of
biological tissues, electrodialysis and similar mechanisms used in the process of water desalination, and
many other instances.

These models for single-phase electrohydrodynamic flows are composed by the coupled system of fluid
flow (for example, the Navier—Stokes equations), ion transport (the Nernst—Planck equations with advec-
tion) and electrostatics (here a generalized Poisson equation). Obtaining accurate and stable numerical
solutions for these complex systems is key to produce reliable simulations. While the computation with
high-order methods and other schemes has been studied thoroughly in the literature going back several
decades, the rigorous theoretical analysis of finite element and similar methods for the system under
consideration here, initiated in the classical work [25], where the authors establish convergence of a finite
element method using a projection method & la Chorin—Temam. Subsequently, a number of discretization
methods have been proposed and their numerical analysis (discrete solvability, stability, convergence) has
been conducted, including primal [22, 23, 24], primal-mixed (meaning in our context that the equations
of Poisson—Nernst—Planck are written in mixed form but the incompressible flow problem is in classical
velocity - pressure formulation) [19, 20], discontinuous Galerkin, and virtual elements [14].

One of our goals is to include conservativity of mass, momentum, energy, and charge in the formulation.
A way of doing this is to use fully mixed formulations, that is, solving also for other unknowns of interest
such as pseudostress, vorticity, fluxes, and so on. Using numerical methods based on fully mixed variational
formulations enjoys many advantages. However, in such a case, regularity issues may appear in treating the
convective and advective terms as well as in the other coupling mechanisms. Remedies exist, for example
augmentation (adding redundant Galerkin residual terms to endow the final formulation with the necessary
regularity to control nonlinearities in usual Hilbert spaces). While this approach allows us to treat the
convective and advective nonlinearities, it fails in maintaining the key feature of local conservativity (of
momentum and mass, for example). Relatively recent efforts have been done in designing an alternative
approach, where one looks at the fully mixed forms of the underlying problem without augmenting them.
In turn, one requires to work on a more general functional setting, for example on Banach spaces. This
is a classic idea going back to the work [3], which has got fresh attention due to the possibility of writing
more and more complex nonlinearly coupled multiphysics problems in mixed form. As a non-exhaustive
list of contributions taking advantage of the use of Banach frameworks for solving the aforementioned
kind of problems, we refer to [2, 4, 6, 7, 8, 10, 11, 17, 18, 21].

Using these arguments, in [13] the authors have recently introduced a Banach spaces-based mixed finite
element method for a slightly simpler model: the coupled Stokes and Poisson—Nernst—Planck equations.
Even if the underlying model difference is just the presence of the convective term, we note that the
structure of a fully mixed form for the Navier—Stokes equations requires a different setup — for example,
employing different mixed variables sought in different spaces than those used for Stokes flows in fully
mixed form. Moreover, the results in this paper extend further the analysis carried out in [13] by utilizing
a different fixed-point strategy.

Outline. The rest of the manuscript is organized as follows. Notations and basic definitions to be utilized
throughout the paper are collected in the remainder of this section. Section 2 states the strong form of
the coupled problem, in its usual primal form, and also defining the new mixed variables. The weak
formulation is defined in Section 3, and the the well-posedness analysis of the continuous weak problem
is developed in Section 4. The Galerkin method is defined in Section 5. There we also show its unique
solvability and provide a generic error estimate. Section 6 specifies finite element subspaces and states
the expected orders of convergence. Section 7 showcases a number of numerical examples which serve as
computational confirmation of the theoretical convergence rates computed in appropriate weighted norms,
and other tests that exemplify the use of the proposed family of fully mixed methods in the simulation of
ionized electrolyte flows.



Preliminary definitions and notational conventions. Throughout the paper, €2 is a bounded
Lipschitz-continuous domain of R™, n € {2,3}, with polygonal (resp. polyhedral) boundary I' in R?
(resp. R?), and whose outward normal at I := 012 is denoted by v. Standard notation will be adopted
for Lebesgue spaces L{(Q2) and Sobolev spaces Wh(€2) and Wé’t(Q), with [ > 0 and ¢ € [1,40), whose
norms, either for the scalar and vectorial case, are denoted by || - |00 and | - |;+q, respectively. Note
that WO4(Q) = LY(Q), and if t = 2 we write H'(Q) instead of W»2(£2), with norm and seminorm denoted
by | - |10 and | - |1, respectively. In addition, letting ¢, ¢ € (1,400) conjugate to each other, that is
such that 1/t + 1/t' = 1, we denote by WY/*(I") the trace space of Wht(Q), and let W /*:*(T') be the
dual of WY#(T') endowed with the norms | - |_y /v ».r and | - |1/w 11, respectively. On the other hand,
given any generic scalar functional space M, we let M and M be the corresponding vectorial and tensorial
counterparts, whereas | - | will be employed for the norm of any element or operator whenever there is no
confusion about the spaces to which they belong. Furthermore, as usual, I stands for the identity tensor
in R := R™", and | - | denotes the Euclidean norm in R := R™. Also, for any vector field v = (v;)i=1
we set the gradient and divergence operators, respectively, as

0v; "y Ov;
Vv = - , div(v) := 2 — and VW = (v;wj)ij=1n -
5xj ii=1 4 ax] ’ b
J=Ln j=1
Additionally, for any tensor fields 7 = (74;)ij=1,n and ¢ = (ij)ij=1,n, We let div(7) be the divergence
operator div acting along the rows of 7, and define the transpose, the trace, the tensor inner product
operators, and the deviatoric tensor, respectively, as

n

n
1
Th= (Tji)ij=1,n, tr(T) = Z Tii, T:C:= Z Ti;Gij, and =7 Etr(T)]I.
i=1 ij=1

On the other hand, given ¢ € (1, +00), we also introduce the Banach spaces

H(divi; Q) := {T eL2(Q): div(r)e Lt(Q)} , (1.1a)
H(divy; Q) = {T eLX(Q): div(r)e Lt(Q)} , (1.1b)
H(divy: Q) = {T eLYQ):  div(r) e Lt(Q)} , (1.1c)
which are endowed with the natural norms defined, respectively, by
7T give:0 == [Tloo + [div(T)]os0 V1 e H(div; Q) (1.2a)
7] dive:o == |Tllo,o + [Idiv(T)]o.s0 V1 e H(div; ), (1.2b)
HTHt,divt;Q = HT 0,t;Q + HdiV(T)HQt;Q VTe Ht(divt; Q) . (1.20)

Then, proceeding as in [16, eq. (1.43), Section 1.3.4] (see also [5, Section 4.1] and [10, Section 3.1]), it is
easy to show that for each ¢t > nQ—fQ there holds

(t-v,v) = J

{T Vo + vdiv(T)} ¥ (r,v) € H(divi; Q) x HY(Q) (1.3a)
Q

(tv,v) = f {T Vv + v div(r)} V(7,v) e H(divy; Q) x H(Q), (1.3b)

Q
where (-, -) is the duality pairing between H=/2(I') and HY/2(T"), as well as between H~Y2(T") and H/2(T").
Furthermore, given ¢, t’ € (1,400) conjugate to each other, there also holds (cf. [15, Corollary B. 57])

(v, = L {T Vv + vdiv(T)} ¥ (r,0) € H(dive: Q) x Wh' (Q) (1.4)

where (-, > stands for the duality pairing between W~V/4*(I") and WVH(I).



2 The model problem

We consider the electrohydrostatic model describing the flow of a Newtonian and incompressible fluid
occupying the domain €2, and whose mathematical representation is given by the coupled Navier—Stokes
and Poisson—Nernst—Planck equations. Its behavior is determined by the concentrations & and & of
ionized particles, and by the electric current field . More precisely, and regarding firstly the fluid, we
look for the velocity u and the pressure p such that (u,p) is solution to the Navier—Stokes equations

—pAu + A(Vwu +Vp = — (& —-&)elp+f in Q,
2.1
diviu) =0 in Q, u=g on I, Jsz, 21)

Q

where p is the constant dynamic viscosity, A is the fluid density, ¢ is the dielectric coefficient, also known
as the electric conductivity coefficient, f is a source term, g is the Dirichlet datum for u on I'; and the null
mean value of p has been incorporated as a uniqueness condition for this unknown. Note that, due to the
incompressibility of the fluid (cf. second equation of (2.1)), g must satisfy the compatibility condition

f g-v=0. (2.2)
r
Furthermore, ¢, &1 and &3 solve the Poisson—Nernst—Planck equations, given by

e =cVx in Q, —divip) = (&1—&)+ [ in Q,

2.3
x =g on I, (23)
where y is the electrostatic potential, and for each ¢ € {1, 2}
& —div(ri(Vé + qi&ie @) — &u) = f; in Q,
(2.4)
& =g on I,
o . 1 ifi=1 ., .
where k1 and ko are the diffusion coefficients, ¢; := 1 ifj_o 8 the charge of each particle, f, fi,

and fy are external forces, and g, g1 and go are Dirichlet data for y, & and &», respectively, on I'. We
end the description of the model by remarking that ¢, k1, and ko are all assumed to be bounded above
and below, which means that there exist positive constants €, €1, &, and K, such that

g0 < e(x) < e and kK < ki(x) < & for almost all xe Q, Vie {1,2}. (2.5)

Since we are interested in employing a fully-mixed variational formulation for the coupled model (2.1) —
(2.4), we first adopt the approach from [11] (see also [10]) for the fluid and introduce the velocity gradient
and the Bernoulli-type stress tensor as further unknowns, that is

A
t:=Vu in Q@ and o := ut—g(u@)u)—p]l in Q. (2.6)

In this way, noting that div(u® u) = (Vu)u = tu, which follows from the fact that div(u) = 0, we find
that the first equation of (2.1) can be rewritten as

A
—div(o) + S tu = — (& —&)etp +f in Q.

Next, taking matrix trace and the deviatoric part of the second equation of (2.6), we find that the latter
and the incompressibility condition, which becomes now tr(t) = 0, are equivalent to the pair

A 1 A
d _ _ A d . _ 1 A .
o =put 5 (u®u)® in Q and p ntr(a + 2(u@u)) in Q, (2.7)
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whence the pressure can be eliminated from the formulation and computed afterwards in terms of o and
u as indicated in the second column of (2.7).

On the other hand, for the Nernst—-Planck equations we introduce for each i € {1, 2} the total fluxes
oi = ki (V& + i&e 'p) — Gu in Q,

so that the respective transport equation reads now §; — div(e;) = f; in Q. Consequently, (2.1) —
(2.4) can then be rewritten in terms of t, o, u, ¢, x, o; and §;, i € {1, 2}, as

t =Vu in Q,
o = pt — 3(®u? in Q, div(e) - Jtu= (& -&)elp—f in Q,
u=g on I, SQtr(a—i—%(u@u)) =0,
lop=vy in Q, —divip) = (&—&)+f in Q, (2.8)

x =g on I,

LUz‘=V(Sz'+qi&s_lc,o—/-fi_lfiu in Q,

Ri

& —div(iey) = f; in Q, & =g on I', ie{l,2}.

And we note that the uniqueness condition for p rewrites equivalently as the null mean value constraint
for tr(o + 3(u®u)).

3 The fully-mixed formulation

In this section we derive a Banach spaces-based fully-mixed formulation of (2.8). We use the integra-
tion by parts formulae (1.3a) - (1.4) along with the Cauchy—Schwarz and Hélder inequalities. We split
the discussion into a preliminary discussion on functional spaces, and then present each sub-problem
separately.

3.1 Preliminaries

We begin by determining the right spaces where the unknowns must be sought by taking a closer look
at the terms %tu, %(u ®u), (& —&)etp, ¢&e e and n[l & u in the second and sixth rows of
(2.8). To be more precise, ignoring the bounded functions e, and m;l, as well as the constant ¢;, an
immediate application of the Cauchy—Schwarz and Holder inequalities, yields

UQ(& —&)p-v| < & — &llog2ea lelozialv]oa, (3.1a)
| @w:s| < lulosalulosnlsloa. (3.1b)

| oy < o o Voo, (3.10)

UQ &w-1i| < |&llozealeloziolTiloq, (3.1d)

L &Gu-1i| < |&llo2ea [ulozselTiloq, (3.1e)

where ¢, j € (1,+00) are conjugate to each other; and v and 7; are test functions associated to u and o,
respectively. In this way, denoting
2j

conjugate of p), r :=2j, and s := 571 (conjugate of ), (3.2)
j—

p = 2L, QZZm(



it follows that the above expressions make sense for & € LP(Q), ¢ € L"(Q), u, v € L4(Q), t,s € L2(),
and 7; € L?(Q). Since we need that u € L*(f2), we impose that 2j < 4. The specific choice of ¢ (and
hence of j, p, r and the respective conjugates ¢ and s) will be addressed later on. In the meantime we
consider generic values in (3.2). Moreover, since ¢ € L"(£2), from the first equation in the fourth row of
(2.8), we deduce that x should be initially sought in W17 (Q).

In turn, for reasons that will become clear below and owing to the continuous embedding from H*(Q)
in LY(Q) for t € (1, +00) in R? (resp. t € (1,6] in R3), the unknowns ¢; and u are initially sought in H ()
and H'(Q), respectively, assuming that p € (2, +00) and r € (2,4] in R?, and p € (2,6] and r € (2,4] in R3.
In terms of ¢, the latter constraint becomes /¢ € [%, 3], which yields p € [3,6]. Equivalently, j € [%, 2] and
r € [3,4], though going through the respective intervals in the opposite direction to £ and p, respectively.

3.2 The Navier—Stokes equations

The analysis of the mixed formulation for the Navier—Stokes equations is inspired by the work done by
[6, Section 2.1]. As they do, we first assume that g € HY2(T'). Then, by a direct application of (1.3b)

with ¢ > nQ—fQ and T € H(div; ), we test the first equation of (2.8) obtaining

f T:t+ f u-div(r) = {(tv,gr V1 e H(divy; Q). (3.3)
Q Q

It is easy to notice that, thanks to Cauchy—Schwarz’s inequality and the free trace property of t, the first
term of (3.3) makes sense for t € L2 (2), where

L2(Q) := {senﬂ(@); tr(s) = o}.

In turn, knowing that div(7) € L!(Q), and using Holder’s inequality, we deduce from the second term
of (3.3) that, we look for u € L (Q), where #' is the conjugate of £. On the other hand, testing the first
equation of the second row of (2.8) against tensors in L2(Q2), we get

—fo':s—i—,ujt:s—)\j(u@u):s:O VselLZ(Q), (3.4)
0 Q 2 Ja

from where, by the Cauchy—-Schwarz and Hoélder inequalities, we deduce that the third term makes sense
for u € L*(Q) setting ¢’ = 4 and therefore ¢ = 4/3. Furthermore, aiming to use the same space of 7, then
we seek o € H(div,/3;) as well. On the other hand, as we know that div(o) € L*/3(Q), we test the
second equation of the second row of (2.8) against vector functions in L*(2), which yields

—Ldiv(a)-v—i— % Ltu.v = L(gg—gl)shp.wfﬂf-v VveL'Q). (3.5)

Notice from the above deduction and the already established spaces for t, u and v, that the first, second
and fourth terms of (3.5) are well-defined, the latter if the datum f belongs to L*?(£2), which is henceforth
assumed. As for the third, which will depend on where to look £ := (&1, &) and ¢, we will refer to it
later. We now consider the decomposition

H(divys; Q) = Ho(divys; Q) @ RI, (3.6)
where
Ho(divy/s; Q) := {T € H(divy/s; Q) : J tr(r) = O}, (3.7)
Q

implying that o can be uniquely decomposed (also using the second equation of the third row of (2.8)),
as o = oy + ¢gll, where

) _ 1 B A
oo € Hy(divy;Q) and ¢o := o] fﬂtr(a) = T fﬂtr(u@u). (3.8)
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Thus, similarly to the case of the pressure, the constant cy can be computed once the velocity is known,
and hence it only remains to obtain og. In this regard, we notice that (3.4) and (3.5) do not change if o
is replaced by . In turn, as t is sought in L2 (), and using the compatibility condition (2.2), we realize
that testing (3.3) against 7 € H(divy/s;2) is equivalent to doing it against 7 € Ho(div,3;(2). Therefore,
taking into account the above discussion, and introducing the notations

i=(ut), v=(v,s), W= (w,9)eH:==LYQ) x L2(Q), and Q := Ho(divy/s; ),

we redenote from now on o as simply o € Q. Then, from the expressions (3.3), (3.4) and (3.5), we state
the following mixed formulation for the Navier—Stokes equations: Find (4, o) € H x Q such that

a(i, V) + c(w;i,v) + b(v,0) = Feo (V) VveH,
b(u,7) = G(7) VreqQ,

where, given z € L*(Q), the bilinear forms a: Hx H - R, b: Hx Q — R, and c(z;-,-) : H x H — R,
are defined as

(3.9)

a(w,v) := ufﬁ:s Vw,veH,
Q

b(v,7) == — T:S—Jv-div(‘r) Vv, 1) e HxQ,
Q
and

c(z;w,V) := ;{fgﬁz-v—fg(w@)z):s} Vw,ve H,

whereas, given n := (1, 172) and ¢ in the same spaces where & and ¢ will be sought respectively, the
linear functionals Fy, 4, : H — R and G : Q — R are given by

F, (V) = fg(ng—m)a_lq‘)-v + fﬂf-v VveH, (3.10)
and
G(t) == —{(tv,gr VveQ. (3.11)
In turn, it is easy to see that a, b, c(z,-,-), and G are bounded. In fact, using the norms
Ve = [vioae + [sloe V¥V :i= (v,s)eH, |7lq = |Tlaiv,s0 Y7T€Q,

applying the Cauchy—Schwarz and Holder inequalities, and using (1.3b) along with the continuous injection
iy : HY(Q) — L*(Q), we find that there exist positive constants, denoted and given as

A .
lal == p, bl =1, el =5, |Gl = @+ lial) lglir
and |F| := max {e;! Q"4 1},
such that
la(w, V)| < |a]|[W|u|V[a  VW,VeH,
b(v,7)| < [bl[Vlalrlq V(¥,7)eHxQ,
. (3.12)
e(z:%,9)| < lel [zloa IWla ¥l VzeL'(Q), V. w.¥veH, and
G(T) < IG] |7l V7TeQ.
and
Fro)| < IF] {0 mlop |@lore + floame) Mosa  ¥veL(@).
Furthermore, simple algebraic calculations show that
c(z;v,¥) =0 VzeL'(Q), VveH. (3.13)



3.3 The electrostatic potential equations

The derivation of the mixed formulation for the electrostatic potential equations (fourth and fifth rows of
(2.8)) has been presented in [13, Section 3.3]. It reads: Find (¢, x) € X2 x M;j such that

Cl((p,Qb) + bl('l,b, X) = F(’(p) V,ltb € Xl )

(3.14)
b)) = Ge(d)  ¥YAeMs,

where

X := H'(div,; ), M; := L"(Q), X;:= H(divs;Q), My := L(Q),

and the bilinear forms a : Xo x Xy > Rand b; : X; xM; - R, i € {1, 2}, and the functional F : X1 — R,
are defined, respectively, as

@)= | To v V) EXex X1, (3.15)
bi(ah, \) L Miv() V(b \) e Xi x M, (3.16)
F(¢) :={p-v,gr  VepeXy, (3.17)

whereas, given 1 := (11, 72) € L?(Q), the functional G,, : My — R is defined by

G(N) = _LM"I_"Q) _ Lf)\ VAeMs. (3.18)

Note from (3.1a) - (3.1e) that 71 and 72 must belong to L”(€2). Also, in order for the first term on the
right-hand side of (3.18) to make sense, we require that p > r.

For the boundedness of a, b;, i € {1, 2}, F, and Gy, we recall that the norm of X; and X, are defined
by (1.2c) with ¢ = s and ¢ = r, respectively, whereas those of My and My are given by | - o0 and
| llo,s:2, respectively. Then, employing again the Cauchy-Schwarz and Hélder inequalities, bounding gt
according to (2.5), and using that | - o~q < |Q|~/?"|| - |0 ., which follows from the fact that p > r,
we find that there exist positive constants

1 —r)/pr
lal == —, il = ool == 1, and |GJ == max{1,]e @
€0
such that
la(@, )| < |a] [&]x, [¥lx,  V(d ) € Xo x Xy,
i(0, M| < 0] [lx, M, V(9 0) € Xi x My, Vie{1,2}, and (3.19)
1Gp(N)| < HGH{HT]1—772|0,p;Q+Hf O,T;Q}HA;O,S;Q VAeMs.

Regarding the boundedness of F, we need to apply [15, Lemma A.36], which, along with the surjectivity
of the trace operator mapping W (Q) onto wl/ ST(T"), yields the existence of a fixed positive constant
C,, such that for the given g € WY/*"(I'), there exists vy € WHT(Q) satisfying vy|r = g and

F@)| < |F[|]x, YepeXy, with [F|:= Crlgliysmr-

3.4 The ionized particles concentration equations

The following mixed variational formulation for the ionized particles concentration equations has been
proposed in [13]: Find (6,&;) € H; x Q; such that
ai(o, Ti) + ¢i(Ti,&) — coul(Tin &) = Fi(mi) VT;€eH,;,

(3.20)
ci(os,mi) — di(&,m;) = Gi(ni) VYmieQ,



where

H; := H(div,;Q), Qi = L°(Q), (3.21)
and the bilinear forms a; : H; x H; > R, ¢; : H; x Q; — R, and d; : Q; x Q; — R, and the functionals
F; :H; - R and G; : Q; — R, are defined, respectively, as

ai(Cini) = JQ ; Coomi V(G € Hy x H,, (3.22a)
ei(Ti,ms) = J pdiv(r) Y (ram) € Hi x Qi) (3.22b)
di(9,mi) J Vini (Fi,mi) € Qi x Qi (3.22¢)
Fi(ti) = {Ti-v,9;) VT1;eH;, (3.22d)
Gi(m) = —JQ fimi Vmie Qi (3.22¢)

whereas, given (¢, v) € Xo x L*(12), the bilinear form cgy : H; x Q; — R is set as

Copv(Tiy i) 1= L {qﬂh’e—ld) — fiflmv}'ﬂ' V(Ti,m) e Hy x Q;.

It is concluded that a;, ¢;, d;, Fi, G; and cgy are all bounded with the norm defined by (1.2a) with
t = p for H;, and certainly the norm | - [jo,p;0 for Q;. Indeed, applying the Cauchy—Schwarz and Holder
inequalities, bounding both e~! and ! according to (2.5), noting that || - [o.o < |Q]®=2/22| - ||o »a,
invoking the identity (1.3a) and the continuous injection i, : H'(2) — L(Q), and utilizing (3.1d) and
(3.1e), we find that there exist positive constants

lail = % leal == 1, (difl = 1Q0®27%, [Fi] = 1+ Jipl) lgilljr
1Gill = Ifiloe, and e :=max{eg", 67"},
such that
|ai(Ci, 7o)| < Jlall [Colle, [ 7ille, V(€ m) € Hi x Ha,
lci(Tom)| < llesl |7illa [mill: V(76 m) € Hi x Q,
|di(0i,mi)| < |ldi |9]q; Inilq, ¥ (0,m) € Qi x Qi
[Fi(m)| < [Fill |7, V7ieH,
Gi(m)| < |Gil [nilq,  VmieQi and

Y (Ti,mi) € Hy x Q;.

p:Q, Where

s I

In the rest of the paper will be used indistinctly either [|n]q, xq, or |1

con(Tim)l < lel{ 0

In o= |m 0002 + "772”0%9 V1 = (m,m2) € Q1 x Qa.
Summarizing, and putting together (3.9), (3.14), and (3.20), we find that, under the assumptions that
fe L¥3(Q), ge HY2(T), fe L7(Q), g€ WY (I'), f; € Le(Q), g; € H/2(I'), and p > r, the weak form of
(2.8) reduces to: Find (d,0) € H x Q, (¢, x) € X2 x My, and (7,&) € H; x Q;, ¢ € {1,2}, such that

a(l, V) + c(w;4,v) + b(v,0) = Fe,(V) VveH,
b(u,7) = G(7) VreQq,
alp, ) + (¥, x) = F(¥) Vipe Xy, (3.23)
ba(,A) = Ge(A)  VAe M,
ai(oi, Ti) + ci(Ti,&) — cou(Ti&) = Fi(Ti) Vr;€eH;,

ci(oi,mi) — di(&imi) = Gi(m) Ve Q.



4 The continuous solvability analysis

In this section we proceed similarly to how it was done in [10] and [17] (see also [2, 5, 6, 13, 18], and some
of the references therein) and adopt a fixed-point strategy to analyze the solvability of (3.23)

4.1 The fixed-point approach

We begin by rewriting (3.23) as an equivalent fixed-point equation, for which we first introduce the
operator S : L*(Q2) x (Q1 x Q2) x X3 — L*(Q) defined by

S(Z>777¢) =u V(Z?na(b) € L4(Q) X (Ql X Q2) X X27

where (d,0) = ((u,t),0) € H x Q is the unique solution (conditions for its existence are to be derived
below) of the problem (3.9) (equivalently, the first and second rows of (3.23)) when c(u,-,-) and F¢ ., are
replaced by c(z,-,-) and F,, 4, respectively, that is

a(i,V) + c(z; 1, V) + b(¥,0) = F,p4(¥) VYveH,

7 (4.1)
b(d,7) = G(7) VreQ.

=1}

In turn, we also introduce the operator T : Q; x Qo — X defined as

T(n) :==¢ VneQ xQa,

where (¢, x) € X2 x M; is the unique solution (to be confirmed below) of problem (3.14) (equivalently,
the third and fourth rows of (3.23)) with n instead of &

CL((,D7 1/)) + bl ('ﬂb, X) = F(¢) v¢ € X1 ) (4 2)
ba(p,N) = Gup(\)  VYieM,. '
Similarly, for each i € {1,2}, we define the operator T; : X5 x L4(Q) — Q; as
Ti(p,v) =&  V($,v)eXz x LY(Q),

where (0;,&) € H; x Q; is the unique solution (to be confirmed below) of problem (3.20) (equivalently,
the fifth and sixth rows of (3.23)) with (¢, v) instead (¢, u), that is

ai(05, 7)) + ci(T6,&) — con(Ti &) = Fi(ri) VrieH, )
ci(oi,mi) — di&,ni) = Gi(n)  VmieQi,
so that we can define the operator T : Xy x L4(€2) — (Q1 x Q2) as
T(g,v) = (Tie V). Ta(dv)) = (G1.6) =€ V($v) e Xo x LI(9). (4.4)
Finally, defining the operator T : Xp x L*(Q) — X3 x L*(Q) as
T(¢.2) = (T(N(¢.2)). S(z. T(.2). T(1(4,2)) (45)

we observe that solving (3.23) is equivalent to seeking a fixed point of T, that is: Find (¢, u) € X x L4(Q)
such that

T<§07u) = ((,0711).
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4.2 Well-posedness of the uncoupled problems

In this section we show that the problems (4.1), (4.2) and (4.3) are well-posed; and therefore the respective
operators S, T, and T, are well-defined. To that end, we will employ Babuska—Brezzi theory in Banach
spaces for the general case (cf. [3, Theorem 2.1, Corollary 2.1, Section 2.1], and for a particular one
[15, Theorem 2.34]), as well as a recently established result for perturbed saddle point formulations in
Banach spaces (cf. [12, Theorem 3.4]) along with the Banach-Nec¢as-Babuska Theorem (also known as
the generalized Lax—Milgram Lemma) (cf. [15, Theorem 2.6]).

To prove that, given an arbitrary (z,n, @) € L*(Q) x (Q1 x Q2) x Xa, (4.1) is well-posed, equivalently
that S is well-defined, we cite the work done in [6, Section 3.2.1] and the references therein. It has to be
emphasized that a will denote the V —ellipticity constant of a, 3 is the constant of the inf-sup condition
of b and iy denotes the continuous injection of H!(2) into L*(2) (for more details see [6, Section 3.2.1]).
In turn, they proved the following lemma.

Lemma 4.1. For each (z,1n, ¢) € L*(Q) x (Q1 xQ2) x Xz there exists a unique (d,0) = ((u,t),0) e HxQ
solution of (4.1), and hence one can define S(z,n,¢) = u € L*(Q). Moreover, there exists a positive
constant Cg, depending only on |Q|, |li4], 1, A\, & and B, such that

IS(z,m, )04 = |l 0.0:0(¢

00+ Hf

040 < [tlm < CS{H"? 04/30 + (1 + |z |0,4;Q)HgH1/2,r}- (4.6)

Proof. The proof is analogous to that of [6, Lemma 3.1]. O

Furthermore, proceeding similarly to the derivation of (4.6) (see [6, Lemma 3.1]), we get

00t Hf

Iolq = 1o aiv.gi0 < Cs(1+ [zlo o) Il ol owaa + (Ut lelosollglyar) (A7)

where Cg is a positive constant depending, as well, on ||, i4, i, A, &, and 3.

In order to prove that, given an arbitrary n € Q; x Qg2, problem (4.2) is well-posed (and, equivalently,
that T is well-defined), we take inspiration from the work done in [13, Section 4.2.2] and the references
therein. It should be noted that throughout the analysis performed in [13, Section 4.2.2] for the well-
definedness of T, suitable ranges were specified for the index of each space (cf. [13, Lemma 4.4]), in
particular for [ and, consequently, for j, 7, s, p, and o. In our case, we have that 2j < 4. Therefore, these
ranges do not change, and the appropriate ranges needed for the analysis will be as follows

le[2,4o00), je(1,2], ped+o0), oc(L4f3), re(@4], se4/3,2) ifn=2,
1=3,7=3/2, p=6,0=6/5, r=3,s=3/2 ifn=23.

On the other hand, as a consequence of [13, Lemmas 4.3 and 4.4] and the boundedness stated in (3.19),
we are able to conclude that the operator T is well-defined. More precisely, we denote by @ and 3; the
inf-sup constants for the bilinear forms a and b;, ¢ € {1,2}, respectively (cf. [13, Lemmas 4.3 and 4.4,
respectively]), and state the following result from [13, Theorem 4.5].

Theorem 4.2. For each m € Q1 x Qg there exists a unique (g, x) € Xa x M; solution to (4.2), and hence
one can define r11(17) = € Xg. Moreover, there exists a positive constant Ct, depending only on, €y,
Cy, |9, @&, and B2, such that

IT)lx, = lelxe < Co{lglyenr + Iflosa + Inlopo}- (48)

Employing [3, Corollary 2.1, Section 2.1, eq. (2.16)] we observe that the a priori bound for the yx
component of the unique solution to (4.2) reduces to

1 a a a
e < 5 (1220 prng + 5% (1 o) 1Galg. (1.9
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Asin (4.8), the same inequality is obtained for (4.9), but with a different constant, in particular depending
additionally on ;. Therefore, as before, we still denote the largest of them by Cs, and simply say that
the right-hand side of (4.8) constitutes the a priori estimate for both ¢ and x.

Finally, in order to prove that, given an arbitrary (¢,v) € Xg x L4(9), (4.3) is well-posed for each
i € {1,2}, we observe first that the operator T is defined in the same way as in [13, Section 4.2.3].

Therefore we introduce the bilinear forms A, Ay @ (H; x Q;) x (H; x Q;) — R given by

A((szﬁi)v (Tiani)) = ai(CiaTz’) + Ci(Tiv’ﬂi) + Ci(Civni) - di(ﬁ)m)’ (4'1()&)
A~y ((6i, %), (Tismi) == A((C,04), (Tinms)) — copn(Tinth), (4.10b)

for all (¢;, %), (14,m) € H; x Qq, so that (4.3) can be re-stated as: Find (0, &;) € H; x Q; such that
Ayy ((0,8), (Tismi) = Fi(me) + Gi(mi) YV (14,m) € Hi x Q.

Thus, the proof reduces to first showing that the bilinear forms that are part of A satisfy the hypotheses of
[12, Theorem 3.4] and then combine the consequence of this result with the effect of the extra term given
by c¢~v (-, ), to conclude that Ay, satisfies a global inf-sup condition. Indeed, it is clear from (3.22a),
(3.22¢) and the upper bound of k; (cf. (2.5)) that a; and d; are symmetric and positive semi-definite,
which proves the assumption i) of [12, Theorem 3.4]. Next, taking into account the definitions of ¢; (cf.
(3.22b)) and the spaces H; and Q; (cf. (3.21)), and using again that L () is isomorphic to its dual Le(Q),
we easily find that the null space V; of the operator induced by ¢; becomes

V= {neHi . div(m) = o}, (4.11)

and thus 1 1
ai(7i, 7i) = —|7i 60 = %HTZ'HEHVQ;Q VTie Vi, (4.12)

from which the hypothesis ii) of [12, Theorem 3.4], i.e., the continuous inf-sup condition a;, is clearly

satisfied with constant & := & L.

From what has been developed in [13, Section 4.2.3], we are in position to establish that, for each
i € {1,2}, (4.3) is well-posed, which means, equivalently, that T, is well-defined. Indeed, recalling that
aa > 0 is the inf-sup constant of A (for more details, see [13, eq. 4.33, Section 4.2.3]), we proceed to
state the following result [13, Theorem 4.6].

Theorem 4.3. For each i € {1,2}, and for each (¢, v) € Xo x L4(2), such that there holds

aa
2]’

H¢“0,7’;Q + HV (4.13)

0,rQ S

there exists a unique (¢;,&) € H;y x Q; solution to (4.3), and hence one can define rTi((]f),v) =& € Q;.
Moreover, there exists a positive constant Cy., depending only on |i,| and ca, such that

Fi(o,v)la, = leila, < l@s&lnxa, < Ca{laihar + Iflo0} - (4.14)

We end this section by observing from the definition of T (cf. (4.4)) and the priori estimates given by
(4.14) for each i € {1, 2}, that

2

2
F@ M axa: == 3 T@ Vo < G Y {lgilr + 1
=1

=1

0,9;9}7 (4.15)
for each (¢, v) € Xo x L*(Q) satisfying (4.13).
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4.3 Solvability analysis of the fixed-point scheme

Knowing that the operators S, T, T and thus also T are well defined, we now address the solvability
of the fixed-point equation (4.5) applying Banach’s Theorem. We first derive sufficient conditions under
which T maps the following closed ball (with radius to be specified later on) of X5 x L*(2) into itself

W) = {(9.2)eXo x THQ) : [(@2)] = |9lx, + lzloso < 6} (4.16)

Then, given (¢,z) € W(8), we have from the definition of T (cf. (4.5)) and the a priori estimate for T
(cf. (4.15)) that, under the assumption (cf. (4.13))

aa
I#lx, + lzlose < ,
: 2]
which suggests to define § := 5“”’2” , followed by an application of the a priori estimates for S (cf. (4.6)) T

(cf. (4.8)) and T (cf. (4.15)), we deduce

IT(6,2)lxoxniie) < O {(1+ Agg) (Ihars + IFlore + Agur.) + [Eloasme + lglar},

where C is a positive constant depending only on Cg, Cy, Cx, and (1 + 0), and we also define

T

2

Mgt = 3 {loiljer + [ filogn)
i=1

Therefore, we have proved the following lemma.

Lemma 4.4. Assume that the data are sufficiently small so that

Cr{(1+ Agr.) (Igljere + Iflore + Agusi) + IEloasse + lgljar} < 4. (4.17)
Then, T(W(6)) < W(9).

We now aim to prove that the operator T is Lipschitz-continuous, for which it suffices to show that S,
T, T; (i = {1,2}) and T satisfy suitable continuity properties. We begin by studying S.

Lemma 4.5. There ezists a positive constant Lg, depending on o, €, || and ||c|, such that

”S(Z’ n, ¢) - S(ZOa Mo, ¢0)HH

(4.18)
< Lg {]:(20777070-')0) |1z — zollo.0 + [Dollorsa |1 — Mollope + [1llop0 [l — @ o,r;0}7
fOT (lll (z7n7¢)7 (Z07T]07¢0) € L4(Q) X (Ql X Q2) X X27 where
F(2z0,M0, Do) := Cs {H??ollo,p;ﬂ lpollor + [floa/3:0 + (1 + [zollo,40) Hgllm,r}- (4.19)

Proof. Given (z,m, ®), (z0,M0, ®y) € L* () x (Q1 x Q2) x Xa, we let S(z,1,¢) := u € L*Q) and
S(zo, Mg, ) = ug € L4Y(Q), where 0y := (n0.1,702); and (4,0) = ((u,t),0) € H x Q and (do, 00) =
((ug,t0),00) € H x Q are the respective solutions to (4.1). It follows from the second equations of (4.1)
that —uy € V (where V denotes the kernel of the operator induced by the bilinear form b [6, cf. (3.11)]),
and then V-ellipticity of a ([6, cf. (3.12)]) gives

o [t -ty < a(ii — o, i — dp) . (4.20)



In turn, applying the first equations of (4.1) to Vv = 1 — tp, we obtain

a(u,d —up) + c(z;u,u —tp) = Fy (U — ), (4.21a)

—

)
a(ﬁo, a— ﬁo) + C(Zo; ﬁo, u— uo) = F’?o:‘f’o(_’ — uo) s (4.21b)
so that, subtracting (4.21b) from (4.21a), and using, thanks to the bilinearity of c(z;-,-) and (3.13), that
C(Z; ﬁa u— uO) = C(Z; u-— ﬁOa u-— ﬁO) + C(Z; ﬁ07 u— ﬁO) = C(Z; ﬁOa d— ﬁO) )

we find
a(ﬁ — U, d — ﬁo) = (Fn,¢ — Fgﬂp)(l—i — ﬁo) + C(Zo —Z;Up, U — l_io) . (4.22)

In turn, it is clear from (3.10) that subtracting and adding ¢, to the factor ¢ in the first term, we get
(Frns = T ) (5 =) = J;) a {(?72 —m) ¢ — (o2 —no,1) ¢0} - (u—y)
_ L 1 {(772 —m) (& — o) + ((12 —m0.2) — (M —M0,1)) ¢0} (u—ug).

1/4”.

Then, bearing in mind the boundedness of ¢ by €9 and by the fact that | - [jo.o < |©] we obtain

(Frs = Fgo,) (6 — 10) < &5 1907 { Il 2 |6 — o

s+ Im = mlo . |bollore I — dolm, (4.23)

while the boundedness property of ¢ (cf. (3.12)) results in

(20 — ;0. i — ) < |c] | I — toxs (4.24)

Finally, employing (4.23) and (4.24) in (4.22), by substituting the resulting estimate into (4.20), simpli-
fying by ||d — tp|lg and bounding |ty|g by the upper bound in (4.6), we arrive at the required inequality
(4.18) with Lg := o ! max {5 |Q|Y/4, [ }. O

The next result establishes the continuity of T, whose proof can be found in [13, Lemma 4.9].

Lemma 4.6. There exists a positive constant Lg., depending only on |Q|, &, B2, and |a|, such that

IT(m) = T(no)lx., < Vm, mo€ Qi x Q. (4.25)

In turn, the continuity of T is provided in [13, Lemma 4.10].
Lemma 4.7. There exists a positive constant Lz, depending only on €o, k, aa, and Ck, such that
N N 2
[T, v) = T v)larxe < Ly Y {lgilhjor + 1
i=1

for all (¢,v), (pg, Vo) € Xo x LH(Q) satisfying (4.13).

o} (6, v) = ($0,v0) xpori)  (4:26)

Having proved Lemmas 4.5, 4.6, and 4.7, we now aim to derive the continuity of the fixed-point operator
T. Given (¢, z), (¢g,20) € W(J) (cf. (4.16)), from the definition of T (cf. (4.5)) we have that

IT(¢,2) — T(¢g, 20) | x, w1000y = IT(T(,2)) — T(T(bp,20))x,
+ 1S (2, T(¢,2), T(T(¢,2))) — S(20, T(¢, 20), T(T (g, 20)))

Then, applying the continuity of T (cf. Lemma 4.6, (4.25)) and T (cf. Lemma 4.7, (4.26)), we get

(4.27)

ot l(®,2) — (dg,20)x,xLe()  (4:28)

2
IT(T(¢,2)) = T(T(¢0,20)) x> < Lo Y, {lgilhjor + Ifi
i=1
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where L is a positive constant depending only on Lt and Lz. On the other hand, to bound the second

term of (4.27), we apply the continuity of S (cf. Lemma 4.5, (4.18)), in particular, setting n = T(¢,z),
no = T(¢g,20), ¢ = T( (¢,2)), and ¢y = T(T(¢by,20)) in (4.18), followed by the continuity of T (cf.
Lemma 4.6, (4.25)) and T (cf. Lemma 4.7, (4.26)), we deduce

I8 (2. T(¢.2), T(T(,2)) ~ S(z0, T(¢.20). T(T(¢y. 20))) 0.4

<& ot ) 1(®,2) = (0,201}

where C is a positive constant depending only on Cr, C, Ls, Lg, and L, and also where
Fr = F(zo, (o, 20), T(T (g, 20))) -
In turn, applying the a priori estimates of T, T (cf. (4.8),(4.15)), and using that |Zollo4:0 < 0, we get
Fr = F(z0, T(g,20), T(T(by, 20)))

{1T (@0, 20)l0.00 IT(T (0, 20)) 40)ghor} (4.30)
Cr {Agus, (Igljsrr + 1flome + Mgz o}

where Cz > 0 is a constant depending only on Cf, Ck, and 6. Then, replacing the estimate of (4.30)
into (4.29), we deduce the existence of a positive constant Co, depending only on Cy and Cx, such that

1S(z, T(¢, 2), T(T(,2))) — S(z0, Ty, 20), T(T (b, 20)))
< Cy {Agi,fi (ngl/s,r;r + | flose + Agi,fi) + |0z + Hgnm} |(¢,2) — (¢, 20)] .

Finally, from what has been deduced in (4.28) and (4.31), by a straightforward application into (4.27),
we arrive at

IT(¢,2) — T(Po:20)lx,xL2(0)
< Lt {Agi:fi (Hng/s,r;F + HfHOJ‘;Q + Agi,fi + 1) , }H(¢, Z) - (¢’07ZO)H )

where Lt is a positive constant depending only on Cr, C, Ls, Lg, Ly, and 4. Consequently, we are in
a position to establish the main result of this section.

Theorem 4.8. In addition to the hypothesis (4.17) of Lemma 4.4, assume that

Lr {8gos, (Ioljsrr + 1flore + Mg + 1) + [Elose + lehyor} <1. (433)

Then, the operator T has a unique fized point (p,u) € W(J). Equivalently, the coupled problem (3.23) has
a unique solution (d,o) e Hx Q, (¢, x) € Xo x My, and (64,&;) € H; x Q;, i € {1,2}, with (p,u) € W(J).
Moreover, there hold the following a priori estimates

(8, 0)|axq < Cﬁa{HSIIO,p;
0,:92 } and (4.34)

(@, ) xaxmy < Crf
(o &)l < < T{ng-ul/zﬁnfi ,Q} z'e{l,z},

where C§ » 15 a positive constant depending only on Cs and .

(4.29)

N

(

N

(4.31)

(4.32)

Proof. We first recall that the assumptions of Lemma 4.4 guarantee that T maps W(6) into itself. Then,
bearing in mind the Lipschitz-continuity of T : W(§) — W(J) (cf. (4.32)) and the assumption (4.33), a
straightforward application of the classical Banach Theorem yields the existence of a unique fixed point
(¢, u) € W(0) of this operator, and hence a unique solution of (3.23). Finally, recalling that |ufo 40 < 6,
it is easy to see that the a priori estimates provided by (4.6) (cf. Lemma 4.1), (4.8) (cf. Theorem 4.2),
and (4.14) (cf. Theorem 4.3) yield (4.34) and finish the proof. O
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5 The Galerkin scheme

In this section we introduce the Galerkin scheme of the fully mixed variational formulation (3.23), analyze
its solvability by applying a discrete version of the fixed-point approach adopted in Section 4.1, and
subsequently derive its a priori error estimate.

5.1 Preliminaries

We first let HY, HY, HY, X; 1, M; 5, H; pp, and Q; 4, @ € {1,2}, be a arbitrary finite element subspaces of
the spaces L*(Q), L2.(€), H(divy/s; ), Xi, My, Hi, and Q;, 7 € {1,2}, respectively. Hereafter, h denotes
both the sub-index of each subspace and the size of a regular triangulation 7; of Q made up of triangles K
(when n = 2) or tetrahedra K (when n = 3) of diameter hg, so that h := max{hgx : K € T,}. The
explicit finite element subspaces satisfying the stability assumptions that will be introduced throughout
the following analysis will be defined later in Section 6. Then, defining the spaces

Hh = H;_Ll X Ht R Qh = HZ’ N HO(div4/3a;Q)7

and denoting Uy, := (up,tp), Vi := (vp,sp) € Hy, the Galerkin scheme associated with (3.23) reads:
Find (ﬁh,Uh) € Hh X Qh, (cph,Xh) € X27h X Ml,ha and (0'2'7}1,&7}1) € Hi,h X Qiﬁ? 1€ {1,2}, such that

a(tp, V) + c(up; Uy, Vp) + b(Vi,00) = Fe, o, (Vi) VYV, e Hy,
b(dy, 1) = G(7s) V7hneQn,
a(en, ) +b1(Yp.xn) = F(ty) Vb € Xqp, (5.1)
ba(pp, An) = Ge, (An) VA€ My,
ai(oipn, Tin) + ci(Tins &in) — Copun(Tin,&in) = FilTin) VrineHp,
ci(TinsMin) — di(&insMin) = Gi(nin) V7in € Qin-

Next, we adopt the discrete version of the strategy used in Section 4.1 to analyze the solvability of (5.1).
Accordingly, we introduce the operator Sy, : H}! x (Qin x Qo) x X, — Hj' defined by

Sh(Zh, My, Gp) = up Y (zh, M, 1) € Hy x (Qua x Qan) X Xop

where (Up, o) = ((up,trn),on) € Hy x Qp is the unique solution (to be derived below under what
conditions it does exists) of the first and second rows of (5.1) when c(uy,-,-) and F¢, ., are replaced by
c(zy,-,-) and Fyy 4 , respectively, that is

a(ty, Vi) + c(zp; Up, vi) + b(Vh,00) = Fo, 0, (Vi) YV, eHy,

. (5.2)
b(tn, 7h) = G(74) V7,€Qp.

In turn, we also introduce the operator T}, : Q1,n X Qo — Xy, defined as

Trh(ng,) == wp Vn, e Q1 xQa,

where (¢}, xn) € Xo, X My is the unique solution (to be confirmed below) of the third and fourth rows
of (5.1) with n,;, instead of &,

a(en, ¥p) +b1(Yp, xn) = F(y,) Vb, € Xy,

(5.3)
bg(goh, >\h) = G"Ih ()\h) i >\h € Mg}h .

Similarly, for each i € {1,2}, we define the operator Ti,h :Xop x HY — Qg as
Tin(@n,vi) = &n YV (dn,vn) € Xop x HY,
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where (04,8 1) € Hip, x Qi is the unique solution (to be confirmed below) of the fifth and sixth rows
of (5.1) with (¢, vi) instead (¢, up), that is

a;i(Gihs Tin) * Ci(Tin, &in) — Copvn(Tins&in) = Fi(Tin)  VTin€Hip,

(5.4)
ci(oinsMin) — dil&insMin) = Gi(min) Y1 €Qin,

so that we can define the operator T‘h :Xop x HY — (Qup x Qap) as

Th(dp, vi) = (Tl,h(¢havh)a’T27h(¢hvvh)) = (&méon) = & V(op,vh)eXop x Hy . (5.5)

Finally, we define the discrete analogue of T (cf. (4.5)), that is T}, : Xop, x H} — X x H}! as

Tu(dnzn) = (T(Tn(@.2).Sn (2, Tu(9,2), Tu(Ta(:2)) ) ¥ (20 my) € HY x (Qua x Q).

And solving (5.1) is equivalent to seeking a fixed point of T}: Find (¢, up) € Xo 5, x H}! such that
Th(en,un) = (Pp,un). (5.6)

5.2 Discrete solvability analysis

In this section we proceed analogously to Section 4.2 and 4.3 and establish the well-posedness of the
discrete system (5.1) by studying the solvability of the equivalent fixed-point equation (5.6). In this
regard, we emphasize in advance that, the respective analysis being very similar to that developed in
previous sections, we limit ourselves here to collecting the main results and providing selected details of
their proofs.

Accordingly, we first prove that the discrete operators Sy, T}, and T‘i,h, i € {1,2}, and hence T}, and
T}, are all well-defined, which reduces, equivalently, to showing that problems (5.2), (5.3), and (5.4) are
well-posed. For this purpose, we now apply the discrete version of [3, Theorem 2.1, Corollary 2.1, Section
2.1], [15, Theorem 2.34], and [13, Theorem 3.4], which are given by [3, Corollary 2.2, Section 2.2], [15,
Proposition 2.42], and [13, Theorem 3.5], respectively. More specifically, following a similar approach
from, e.g. [6, Section 4.2] and [13, Section 5.2], our analysis is based on suitable hypotheses that must be
satisfied by the finite element subspaces used in (5.1), which are divided according to the requirements of
the associated decoupled problems. Explicit examples of discrete spaces verifying these hypotheses will
be specified later in Section 6.

According to the above, and to address first the well-definedness of Sy, we assume that

(H.1) there exists a positive constant 34, independent of h, such that

b Vh Th
sup 2T S g inlg Ve Qu.
Vp,eHy, thHH
G, +0

In addition, we let Vj, be the discrete kernel of the bilinear form b, that is
Vh = {VhEHhZ b(\7h,7-h)=0 VThEQh},

and suppose

(H.2) there exists a positive constant Cy4, independent of h, such that

Isnlo = Cal|viloan YVh = (Vh,sp) € V.

Then, given z;, € H}}, it follows from the bilinear form introduced in [6, eq. (3.9)], A, : Hy x H, — R,
defined by
Az, (W, Vi) == a(Wp, Vi) + c(zp; Wp, vi) VW, Ve H,
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and a (cf. (3.15)), the identity (3.13), and the assumption (H.2), that

L .o T p }
Az, (Y1, Vi) = a(¥i, Vi) = plsulga = 503 IValg a0 + 5 IsalSa YVa == (Vih.sn) € Vy,

which proves the V-ellipticity of A,, with constant agq := % min{Cy, 1}. Thus, the discrete analogue
of Lemma, 4.1 is as follows

Lemma 5.1. For each (zp,my, ¢p) € H x (Qup x Qopn) x Xop, there exists a unique (Up,op) =
((ap,tn),on) € Hy x Qy, solution (5.2), and hence one can define Sy(zn,ny,, @) = wy, € HY. Moreover,
there exists a positive constant Cs 4, depending only on ||, |ial|, 1, o, and By, such that

”Sh(zha Ny ¢h)
< CS,d{HUh

o0 < uploan < [dnla

l0.p:0 [ @]

om0 + [floasze + (1 + HZh|o,4;Q)HgH1/2,r}.
Proof. The proof is analogous to that of [6, Lemma 4.1]. O

Note here that the discrete analogue of (4.7) reads

[

lonlq = lonldivyse < Csa (1 + [znloa0) {th lo.pel@rlora + Iflasz0 + (1 + [z 0,4;Q)HgH1/2,r},

where Cg 4 is a positive constant depending as well on |Q|, [i4]|, 1, A, a4, and By.

In turn, for the well-definedness of T}, we need to introduce the discrete kernels of by and by, namely

Kmp:@%exmz bi(y, An) = 0 vMeMUJ,

Igh:{wﬁxmz @me)ZOVMﬁNh*,

respectively, and adopt the following assumptions:

(H.3) there exists a positive constant &g, independent of h, such that

a(p,, B
sup M > aq | olx, Ve, €Kop, and
Y€Ky h H"thX1
¥y +0
sup a(gy,¥,) > 0 Vy,eKipn, ¥, +0.
dreKa p

(H.4) for each i € {1,2} there exists a positive constant 3; 4 independent of h, such that

b; 7)\h s
sup M = 5@’,:1 H)\hHMz Y, € Mi,h .
YRreX;p “¢h|‘xz
Yy +0

As a consequence of (H.3) and (H.4) we provide next the discrete version of Theorem 4.2.

Theorem 5.2. For each m;, € Q1 x Qo there exists a unique (@y,, xn) € Xop x My, solution to (5.3),
and hence one can define Tp(ny,) 1= @), € Xo. Moreover, there exists a positive constant Cr 4, depending
only on, g, Cy, |Q|, g, and P24 such that

ITh(np)lx, = lenlx, < CT,d{HgHI/s,r;F + [ fllose + mn yﬂ,p;ﬂ}‘ (5.7)

Proof. See the proof of [13, Theorem 5.2]. O

18



Analogous to what was explained for the continuous operator T, here we can also assume that, except
for a constant Cr 4 depending additionally on f31 4, the a priori estimate for xp, which is now deduced
from [3, Corollary 2.2, eq. (2.25)], is also given by the right-hand side of (5.7).

It remains to prove the well-definedness of Th = (Tl’h,TQ’h), for which we first note that, being a;
and ¢; symmetric and positive semi-definite in the whole spaces H; and Q;, they certainly maintain their
properties in H; ;, and Q; p, respectively, so that the assumption i) of [12, Theorem 3.5] is clearly satisfied.
Next, given i € {1, 2}, we let V; ;, be the discrete kernel of ¢;, that is

Vin = {Ti,heHi,h c ci(Tinamin) = 0 Vi GQi,h}, (5.8)

and consider the hypotheses
(H.5) for each i € {1,2} there holds div(H; ;) < Q; p, and
(H.6) there exists a positive constant ﬁd > 0, independent of A, such that

Ci(Tihs Mish 5
sup GTEMTA) o 3 Y e Qun.
T, h€H; p HTZ':
Ti,h+0

i

It follows from (5.8), the definition of ¢; (cf. (3.22b)), and (H.5) that
Vi,h = {Ti,h . diV(T@h) = 0},

from which it is easy to notice that V; j is contained in the continuous kernel V; (cf. (4.11)) of ¢;, giving
rise to the discrete analogue of (4.12), that is

1

K

ai(Tip, Tin) = = |Tinldv,0  YTin € Vin (5.9)
Thus, it follows from (5.9) that a; satisfies the hypothesis ii) of [12, Theorem 3.5] with the constant
dq = K1, whereas (H.6) itself constitutes assumption iii). Consequently, a direct application of [12,
Theorem 3.5] implies the global discrete inf-sup condition for A (cf. (4.10a)) with a positive constant
aa g depending only on |a|, |/c;|, @, and B4, and thus the same property is shared by Ag, , for each

(¢p,vn) € Xo, x HY, satisfying the discrete version of (4.13), that is

Qe

Ad
2]

I®nlore + [vilore < (5.10)
We are now in position of establishing the well-definedness of Ti,h for each i € {1,2}, for which we cite
the following lemma from [13, Theorem 5.3].

Theorem 5.3. Given i € {1,2} and (¢y,,vy) € Xo x H} such that (5.10) holds, there exists a unique
(0in&in) € Hip x Qi solution to (5.4), and hence one can define T; (¢, vi) = & n € Qin. Moreover,

there exists a positive constant Cx 4, depending only on i, and cea 4, such that

ITsn(bnvi)la, = .n

Q < [(in&in)lmixq < Cid{ng'Hl/z,r + Hfi”O,g;Q}- (5.11)

Analogously to the continuous case, it follows from the definition of T (cf. (5.5)) and the a priori
estimates given by (5.11) for each i € {1, 2}, that

2

2
ITh(n vidlaixqe = X I Tin(es, vi)la: < Crg D) {Hgilh/z,r + | fi
i=1 i=1

|0,9;Q}
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for each (¢, vp) € Xop x Hj satisfying (5.10).

Having established that the discrete operators Sy, T}, Th, and hence T}, (under the constraint imposed
by (5.10)), are well defined, we now proceed as in Section 4.3 to address the solvability of the fixed-point
equation (5.6). Then, letting d4 be an arbitrary radius, we define

W(da) = {(nmn) € Xop x HE ()] = [l + [elose < b}
Reasoning analogously to the derivation of Lemma 4.4 (cf. beginning of Section 4.3), we define 64 := ?ﬁc’ﬁ’
and deduce that T}, maps W (dq) into itself under the discrete version of (4.17), i.e.
Cra{ (1 + Aguss) (I9l/srr + Iflore + Ags) + IEloyse + lglar} < b (5.12)

where Cr 4 is a positive constant depending only on Cs, Cr, CT’ and (1 + dq).

On the other hand, employing arguments analogous to those used in the proofs of Lemmas 4.1, 4.2, and
4.3, we can prove the continuity properties of Sy, T}, and T‘h, that is the discrete version of (4.18), (4.25),
and (4.26), which are exactly as the latter, but with constants denoted Lg 4, Lt 4, and LT, ¢ Therefore,
following a procedure analogous to the one that gave rise to (4.32), we deduce that, there exists a positive
constant L 4 which is obtained similarly to L, but instead of depending on Cs, Cr, Lg, Ly, Ls, and 4
it depends on Cs 4, Ct 4, Lsa, Ly g, L”I“,d’ and dq such that

IT(120) — (b0, 20) Ixriie) < Lra {Agis, (loljsrr + Iflore + Agus, + 1)

(5.13)
+floase + el } 1(@n20) = (Gn0:2n0)l

for all ((bha Zh)v (¢h,07 Zh,O) € W((Sd)
Consequently, we can now establish the main result of this section.

Theorem 5.4. Assume that the data are sufficiently small so that (5.12) holds. Then, the operator Ty, has
a fized point (@, up) € W(04). Equivalently, the coupled problem (5.1) has a solution (Up, o) € Hy x Qp,
(@nsxn) € Xop x Myp, and (oip,&in) € Hip x Qin, @ € {1,2}, with (¢, ur) € W(dq). Moreover, there
hold the following a priori estimates

opclenlora + [€loyso + lghyar},
0,70 HEh |0,p;9}, and (5.14)
oo} i€{l2},

(G, on)lx@ < Cioaflén]
[ons i) Ixaxats < Crafllghyser + 1f
l@in &mlxar < Crgflgilior + 1f:

where C o q 15 a positive constant depending only on Cs g and dq. In addition, under the extra assumption

ore + Agus, + 1) + |

Lrg {Agi:fi (HQ”l/s,r;F + |If l0,4/3:0 + Hng/z,r} < 1. (5.15)

the aforementioned solutions of (5.6) and (5.1) are unique.

Proof. As indicated above, the fact that Tj maps W(dq) into itself is consequence of (5.12). Then, the
continuity of T, (cf. (5.13)) and Brouwer’s theorem (cf. [9, Theorem 9.9-2]) imply the existence of solution
of (5.6). In turn, under the additional hypotheses (5.15), Banach’s fixed-point Theorem guarantees the
uniqueness of the solution. Additionally, bearing in mind that |up|o4.0 < dq, in either case, (4.6), (4.8),
(4.14) yield the a priori estimates (5.14) and conclude the proof. O
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5.3 A priori error analysis

In this section we consider arbitrary finite element subspaces that satisfy the assumptions specified in
Section 5.2, and establish the Céa estimate for the Galerkin error

2

|(d,0) = (tn,on)Exq + [(©:%) = (@nx0)xaxm, + X 1(068) = (Fin &in)lHxaq
=1

where ((ﬁ, o), (e, x), (o’l,fl)) € (H x Q) X (Xg X Ml) X (Hl X Ql), i€ {1,2}, is the unique solution of
(3.23), and ((Un, 1), (@, xn), (Gin &in)) € (Hp x Qp) x (Xop x Myp) x (Hip x Qip), i€ {1,2},is a
solution of (5.1). We proceed as in previous related work (see, e.g. [6]) by applying suitable Strang-type

estimates to the pairs of associated continuous and discrete schemes arising from (3.23) and (5.1) after
splitting them according to the three decoupled equations. Throughout the remainder of this section,

given a subspace Zj, of an arbitrary Banach space (Z o Z), we set
dist(z, Z) = inf |z — 2|z VzeZ.
ZhEZh

We begin the analysis by considering the first two rows of (3.23) and (5.1), so that, employing the
estimates provided by [6, eq. (4.27), Section 4.3], we deduce the existence of a positive constant Cf,
depending only on aq4, B4, ||al, |b], [c|, J, and d4, such that

|(6,0) — (n, on) [Hxq < C1 {dist(ﬁ, H;) + dist(o, Q)

) (5.16)
+Fep — Feyp, i, + lo(witi,) — c(us ), }-
Thus, proceeding as in (4.23) and using the boundedness of ¢ (cf. (3.12)), we easily obtain
[Fep = Fe, i, < <5t 1217 {I€l0p0 I — @rlora + 1€~ &xlope lenloral
and
Hc(u; ﬁa ) - C(uha u, )HH’ ‘ u H,
which, replaced back into (5.16), yields
(@, o) = (n,on)lxq < Cr {dist (i, Hy) + dist(o, Qu) } )
+Co {[€lo,p0 e - ¢ — &iloy, il |
where Cy := €} max {eo! Q|14 lel}-

Now, using the estimates obtained in [13, eq. (5.40), Section 5.3] for the third and fourth rows of
(3.23) and (5.1), we find that

I(@:%) = (@nrn)lxaxany < er {dist(, Xan) + dist(x, M) + | w0} (5.18)

with c¢p = EmaX{1,|Q|(”_T)/pT}.

On the other hand, using the estimates obtained in [13, eq. (5.42), Section 5.3] for the fifth and sixth
rows of (3.23) and (3.23), we get

2 2
Z g, 5@ - O'i,ha fi,h) HHiin { Z dlSt O'Za + dlSt(fza Qi h))
( 0,p;02 (

(5.19)

|u - uh“O,r;Q)} )

|u||0,r;ﬂ) 1€ — thO,p;Q + th
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with ¢z = ¢ max {1, ]|c|}.

For the remainder of the analysis we introduce the partial error

2

E = |(d,0) — (G on)lrxq + ), 1(@:.&) = (@i &in)lmxq,
i=1

and appropriately combining estimates (5.17), (5.18), and (5.19). In particular, using the right-hand side of
(5.18) to bound |[¢—@pllor0 in (5.17) and (5.19), by adding up the resulting inequalities, performing some
algebraic manipulations, and then using the a priori bounds for |¢lo.r0, [|¢nlo.r:0; [€]0.0:9: |€1]0,0:0, and
|ufo,4;0 provided by Theorems 4.8 and 5.4, we deduce the existence of a positive constant C., depending

on C'l, Cg, CT, CT, (5, 5d7 CS, CT? CT’ CT,d? and C~

and hence independent of A, such that

Ta0
2
E < C. {diSt((ﬁa o), Hy x Qp) + dist ((w, x), Xon x Myp) + Z dist (o4, &), Hy p x Qi,h)}
, ! (5.20)
+ Ce {”gHI/Q,F + [flo,ar3.0 + lgli/srr + Iflome + Z (lgill1 /2,0 + Hfi”O,Q,Q)}E'

i=1
Consequently, we are in a position to establish the Céa estimate.

Theorem 5.5. In addition to the hypotheses of Theorems 4.8 and 5.4, assume that

2

1
Ce {“gul/z,r + [£lloa/3.0 + lgli/srr + [ floma + 2 (lgill1 /2,0 + Hfz‘HO,@,Q)} S3- (5.21)
i=1
Then, there exists a positive constant C, independent of h, such that
2
|(d, 0) — (Tin, o4) [Exq + 195 X) = (n: X8) X0y + D, (06, &) = (@30, &in) | Hxs
i=1 (5.22)

2
<C {dist((a,u),Hh X Qh) + dist((cp,x),Xg,h X Mlyh) + Z dist((ai,&),HM X Qi,h)}-
i=1

Proof. Under the assumption (5.21), the a priori estimate for E follows from (5.20), which together with
(5.18), yields (5.22) and ends the proof. O

We end this section with the a priori estimate for |p — pp[o0,o where py, is the discrete pressure suggested
by the postprocessing formula given by the second identity in (2.7), which, according to (3.8), becomes

1 A A
pp = —Etr<o'h + I + E(uh ® uh)), with ¢, := —m JQ tr(uy, ® up) . (5.23)

Then, applying the Cauchy—Schwarz inequality, performing some algebraic manipulations, and employing
the a priori bounds for |uljp 4,0 and |uy|o4,0, we deduce the existence of a positive constant C, depending
on data, but independent of A, such that

’O,4;Q} .

lp — prloq < C{HU — opfoa + lu—uy

6 Specific finite element subspaces

We now define finite element subspaces satisfying the hypotheses (H.1) - (H.6) from Section 5.2, and
provide the rates of convergences for the Galerkin scheme (5.1).
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6.1 Preliminaries

In the following we use the notation introduced at the beginning of Section 5.1. Thus, given an integer
k = 0, for each K € T;, we let Py(K) and Py (K) be the spaces of polynomials of degree < k defined
on K and its vector version, respectively. Similarly, letting x be a generic vector in R", RTy(K) :=
P(K) + Pi(K)x and RTy(K) stand for the local Raviart-Thomas space of order k defined on K and its
associated tensor counterpart. Additionally, we let Py (73), Pr(Tr), Px(Tr), RT%(Tx) and RTy(7;) be the
global versions of Py (K), Pr(K), Pr(K), RT;(K) and RTy(K), respectively, that is

Pi(Th) := {UheLQ(Q) . uplk € PR(K) VKeTh},

Pi(Th) = {vheL2 Q) : vk € Pu(K) VKeTh},

Py(Th) := {she]L?(Q . splx € Pu(K) VKEE},
RT(Th) = {Qh € H(div; Q) :  an|k € RTy(K) VKGE},
RT,(T) i= {Tn e H(div;Q) :  Tulx e RT4(K) VK eTh},

We notice here that for each ¢ € (1, +0) there hold the inclusions Py(7,) < L{(Q), Pr(Tn) = LY(Q),
P,  LY(Q), RT4(Q) = H(divi;Q), RTx(Q) < H(divi;Q), and RTx(Th) < H(dive; ), which are

employed below to introduce our specific finite element subspaces. Indeed, we now set

H} = Pu(Th), H}l = L&(Q) n P(Tn), Hy := H}' x ]HI}EL, HY := RTy(73),
Qp = Hf n Ho(divys;Q), Hip = RTk(Tn), Qin = Pr(Th) (6.1)
X2,h = RTk('];L), Ml,h = Pk<771), Xl,h = RT]C(E), and M2,h = Pk(ﬁ)

6.2 Verification of the hypotheses (H.1) - (H.6)

We begin by observing that the hypotheses (H.1) and (H.2) are exactly the same as [6, (H.1) and
(H.2)], particularly is proved in [6, Lemma 5.1]. In turn, we emphasize that (H.3) corresponds exactly
to [6, (H.5)], and hence we omit most details and refer to [6, Section 5.2, Lemma 5.2]. Finally, it is clear
from (6.1) that (H.5) is trivially satisfied, whereas (H.6) was proved precisely by [17, Lemma 4.5].

6.3 The rates of convergence

Here we present the rates of convergence of the Galerkin scheme (5.1) with the specific finite element
subspaces introduced in Section 6.1, for which the respective approximation properties were previously
collected. In fact, it follows easily from [15, Proposition 1.135] and its vector and tensorial versions, along
with interpolation estimates of Sobolev spaces, that those of H}', H}JL, Qi,n, and My j, are given as follows

(AP}) there exists a positive constant C, independent of h, such that for each [ € [0,k + 1], and for each
v e WH4(Q), there holds

dist(v, Hj) := vgglflu v = vhlloan <
h

(AP};) there exists a positive constant C, independent of h, such that for each [ € [0,k + 1], and for each
s € H(Q) n L2.(Q), there holds

dist(s, HE) := inf I

ShE h

< Ch's|io.

23



(AP%) there exists a positive constant C, independent of h, such that for each [ € [0,k + 1], and for
each 7; € Wh?(Q), there holds

0,0 < Ch|n;

L,pi2

i, h i

dist(ni, Qin) == inf |9, — min
1i,h€Qi,n

(APZ‘) there exists a positive constant C, independent of h, such that for each [ € [0,k + 1], and for each
A e Wh(Q), there holds

dist(A\, My p) i= inf A = Mflore < C ht A
h

M

1,r;Q -

Furthermore, from [17, eq. (4.6), Section 4.1] and its tensor version, which, as the foregoing ones,
are derived classically by using the Deny-Lions Lemma and the corresponding scaling estimates (cf. [15,
Lemmas B.67 and 1.101]), we state below the approximation properties of Q, and H; ,

(APY) there exists a positive constant C, independent of h, such that for each [ € [1, k + 1], and for each
TeH(Q) N Ho(divy/3;§2) with div(7) € WH4/3(Q), there holds

dist(7,Qp) := Tig(g |7 = Thlldivyz0 < CH {HT|1,Q + HdiV(T)HlA/?);Q}a
h h

(AP‘;i) there exists a positive constant C, independent of h, such that for each [ € [1,k + 1], and for
each 7; € H'(Q) with div(T;) € W¢(Q), there holds
l,g;ﬂ} :

avge < O {I7ilie + |div(r)

dist(7;,H;p) = 7_}Hellf{} |Ti — Tin
i,h i,h

Finally, that of X j,, which we recall from [17, Section 4.5 (AP}})], becomes

(APf) there exists a positive constant C, independent of h, such that for each [ € [1,k + 1], and for
each ¢ € W (Q) with div(¢) € WH"(Q), there holds
|l,r;Q} .

i X9) = inf —
dist(¢p, X2) ol l¢ — oy

r,div,;Q < Chl {”¢|

1,r;) + “dlv(¢)

The rates of convergence of (5.1) are now provided by the following theorem.

Theorem 6.1. Let ((4,0),(9,8),(0:,&)) € (H x Q) x (Xg x My) x (H; x Q;), i € {1,2} be the
unique solution of (3.23) with (¢,u) € W(8), and let ((Gn, o), (Pn,&n), (Gin,&ip)) € (Hyp x Qp) X
(Xon x Myp) x (Hip x Qin), @ € {1,2} be a solution of (5.1) with (@y,,up) € W(da), which is guaranteed
by Theorems 4.8 and 5.4, respectively. In turn, let p and pp be given by (2.7) and (5.23), respectively.
Assume the hypotheses of Theorem 5.5, and that there exists | € [1,k + 1] such that u € WH4(Q),
t € H(Q) n LA(Q), o € H(Q) n Hy(divys;Q), div(o) € WHB3(Q), o € WH(Q), div(ep) € WHT(Q),
x € Wh(Q), o; € HY(Q), div(e;) € Whe(Q), and & € Whe(Q), i € {1,2}. Then, there exists a positive
constant C, independent of h, such that

2
|(8,0) = (@in, on)lExq + 2 — Prllog + (0. %) = (@ X0) Ixasan, + . 1(03,&) = (Fin &in)lHxa
=1
<CchH {HuhA;Q + [tlo + lolie + Idiv(e)|iaza + lelime + [divie) |-
2
+ 1l + O (loilie + |div(e:) e + H&'Iz,p;ﬁ)}-
=1

Proof. Tt follows straightforwardly from Theorem 5.5, (5.23), and the above approximation properties. [J
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Figure 7.1: Convergence test in 2D and 3D. Error history associated with the fully mixed method for
k =0 and in 2D (left), for £ = 1 and in 2D (middle), and for £ = 0 and 3D (right). Primary variables
(top) and mixed variables (bottom).

7 Numerical results

The computational tests in this section have been realized using the finite element library FEniCS [1].
The nonlinear algebraic systems are solved with Newton’s method with a residual tolerance of 1076, The
linear systems are solved with the direct method MUMPS. The zero-mean condition for the trace of the
pseudostress is enforced using a real Lagrange multiplier.

7.1 Verification of convergence

We choose the arbitrary model parameters u = € = 0.1, A = 0.5, k1 = 0.01, ko = 0.2, and, letting
x := (x,y) (resp. x := (x,%,2)) be a generic vector of R? (resp. R?), define the following manufactured
exact solutions to (2.8) in 2D and 3D, respectively

u(x) = ( cos(mz) sin(my) ) o) =t — gt

On Q = (0,1)%: < — sin(mz) cos(my)

(&1(%) = exp(—mzy), &a(x) = cos*(zy), x(x) = sin(z) cos(y),

sin(mz) cos(my) cos(z)
On Q = (0,1)3%: < u(x) = [ —2cos(mx) sin(wy)‘cos(wz) . p(x) =2t — %(y4 424,
cos(mx) cos(my) sin(mz)

£1(x) = exp(—ay + 2), &(x) = cos®(zyz), x(x) = sin(x) cos(y) sin(z),

\
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Figure 7.2: Convergence test in 2D and 3D. Approximate velocity, velocity gradient, pseudostress, electric
field, electrostatic potential, flux of cations, concentration of cations, flux of anions, concentration of
anions, computed with the second-order method.

and mixed variables
t=Vu, o=upVu-pl, ¢=eVx, o;=ri(VE+qle o) —&u.

With these smooth fields we construct forcing/source terms and non-homogeneous Dirichlet boundary
conditions f, g, f;, g;. For the 3D case we take the Banach exponents r = 3, s = 3/2, p = 6, o = 6/5, while
for the 2D computations we use r = p = 4, s = o = 4/3. The problem is numerically solved on a sequence
of nj'®* successively refined regular meshes. Errors in the norms from Theorem 6.1 are separated in the
contribution from each unknown. The error history is portrayed in Figure 7.1, where in the 2D case we
also run the convergence tests for the second-order scheme (using k& = 1). It is noted that, irrespective of
the spatial dimension or the polynomial degree, the method converges optimally. Furthermore, Figure 7.2
shows approximate solutions for primary and mixed variables, all fields sufficiently well captured.

We also study the conservation features of the method, for which we now let PF : L}(2) — Py (75) be
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’ DoF h ‘ e r momy, poty traj trag it ‘

k=0
145 0.707 | 7.20e+00 * 7.11le-13 1.18e-16 2.80e-16 1.23e-16 5
937 0.354 | 4.48e+00 0.69 1.05e-10 5.53e-16 1.02e-15 1.76e-16 4
2’065 0.177 | 2.13e4+00 1.07 3.33e-10 2.65e-15 2.18e-15 3.05e-16 4
8’097 0.088 | 9.69e-01 1.14 7.30e-12 4.90e-15 6.78e-15 7.53e-16 4
32065 0.044 | 4.60e-01 1.08 2.44e-12 1.24e-14 2.21e-14 1.49e-15 4
127617 0.022 | 2.24e-01 1.04 3.93e-12 1.27e-13 1.02e-13 2.80e-14 4

k=1
433 0.707 | 5.42e4-00 * 1.12e-07 4.43e-15 3.28e-15 9.77e-16 5
1’649  0.354 | 9.17e-01 2.56 5.17e-12  6.73e-15 1.50e-14 1.5le-15 4
6’433 0.177 | 1.78e-01 2.37 2.58e-12 1.8le-14 2.57e-14 2.33e-15 4
25’409 0.088 | 3.70e-02 2.26 2.90e-12 3.5le-14 5.34e-14 4.12e-15 4
100°997 0.044 | 8.28e-03 2.16 2.80e-12 8.73e-14 1.45e-13 1.03e-14 4
402689 0.022 | 1.97e-03 2.07 2.54e-12 1.98e-13 2.82e¢-13 2.34e-14 4

Table 7.1: Convergence test in 2D. Total error, experimental rates of convergence, /*-norm of the pro-
jected residual of the momentum, potential, and ionic transport equations, and Newton iteration count.
Computations with the two lowest-order polynomial degrees.

the projector defined, for each v € L!(R), as the unique element PF(v) € Py (7},) such that
| P = | va vaerum), (1)

and let PF : L'(Q) — Py (Ty) be its corresponding vector version. Then, the following numbers

momy, := | Py[div(os) — (S1,n — on) e 'op + £ 1o
poty, := |Prldiv(es) + (€1n — Eon) + fllee,  train = |PF&n — div(oin) — fillles,
are computed at each refinement level and tabulated in Table 7.1 together with the total error

2

0.0+ (0. %) = (@ Xn)Ixosan, + D 1(00.6) = (0in, &in) Qi
=1

€= H(ﬁ70-) - (ﬁhvah>HHXQ + Hp — Ph

and its experimental convergence rate r = log(e/@)[log(h/ﬁ)]*1 , where e and e denote errors produced
on two consecutive meshes of sizes h and lAz, respectively. We report on the 2D case only (in 3D we
obtain analogous results). The expected optimal convergence of the total error, and the announced local
conservativity are confirmed. We also see that after the first mesh refinement the number of Newton
iterations required for convergence is four.

7.2 Ion spreading in a charged enclosure

In order to further validate our numerical methods, inspired by the tests in [23, Section 5.2] we simulate
the phenomenon of electrodiffusion of ions in a charged reservoir. We follow the parametrization used
there, but we consider only constant coefficients (the referenced paper focuses on concentration-dependent
density, viscosity, and diffusivity). Another simplification with respect to [23] is that we only take the
canonical momentum Au (that is, without mass diffusion or migration due to the ionic species).

The mixing/spreading process is intrinsically time-dependent and so we include in the formulation the
following modified versions of the fully-discrete momentum and ion conservation equations

]- — — — — — 1 —
— f uZ‘H -V + a(u?*l,vh) + c(uZ”l; uZLJrl,Vh) +b(Vy,op) = — f uy' vy + Fe, o, (Vh),
At Jo At Jq

1 1
(o min) — di<mfﬁf17m,h> = Gi(mi,n) — di<mfﬂ,m,h> :
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The domain is Q = (0, 1) x (0, 2), which we discretize into a structured + X = Xo
mesh of 10’000 triangles. The boundary conditions are as follows: for
the fluid flow we impose no-slip u = 0 everywhere on the boundary.
For the chemical species we assume that the normal trace of the
total fluxes is zero everywhere on the boundary o; - v = 0 (that is,
the boundary is considered impenetrable for the ionic quantities),
which is imposed essentially in the space H; ;. For the electrostatic
sub-system we consider two separate sub-boundaries: on the top
segment (y = 2) we prescribe a given potential yo (representing a
ground condition, imposed naturally), on the vertical walls of the
reservoir we set zero normal trace of the electric field ¢ - v = 0,
and the bottom segment is regarded as a positively charged surface
@ - v = sg (the two last conditions are imposed essentially).

Figure 7.3: Ion spreading in a charged enclosure. Set up of the
geometry, boundary conditions for the electrostatic equations, and
initial distribution of positively and negatively charged ion particles. l ¢ v=sg |

for all v, € Hy, and for all n; , € Q; p, respectively, where the superscripts m, m+1 denote approximations
at time instants ™, t™*! using backward Euler’s method. For this we take a constant time step At = 0.01
and conduct the simulations until the final time ¢ = 2.5. The initial velocity is zero and the initial
concentrations of positively and negatively charged particles are as follows

o p{_(x—§+%)2+(y—1+%)2}

§i0(x) = 5 g X 2R2

)

respectively (see also the sketch in Figure 7.3). The model parameters are as follows

A=1, €=05 pu=008 r =t =001, sg=1, xo=0, & =3, R:i.
The numerical solutions are displayed in Figure 7.4, where we plot snapshots at five time instants of the
net charge (computed as the difference between positively and negatively charged ion species) and the
line integral convolution (similar to streamlines) of the fluid velocity. Exactly as in [23, Figure 6], in our
case we observe that the flow patterns that occur thanks to the interaction of difference of potential and
charges (different on the top and bottom boundaries) permit spreading into the reservoir, and the net
charge figures show the expected decay due to dissipation.
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