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Study of avalanche models using well balanced finite volume
schemes

Rodrigo Abarca Del Rio, Fernando Campos,
Dieter Issler, Mauricio Sepúlveda
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Avalanches are natural disasters that have a
significant human and economic impact on a global
scale. Chile is a mountainous country and is sig-
nificantly affected by these events. In this research,
we are interested in using a numerical technique
based on a well-balanced Finite Volume method
to examine snow avalanche behaviour. As an
avalanche model, we investigate the Saint-Venant
system with Voellmy-Salm friction. We analyze
the finite volume approach using a hydrostatic re-
construction scheme. The Rigopiano avalanche in
Italy was used to test this strategy. The numeri-
cal model is explained and the results for the real
avalanche case are presented graphically. Finally,
some conclusions and suggestions for further re-
search are presented.

Keywords: Avalanches; natural disasters; Saint
Venant’s equations; well balanced finite volumes;
hydrostatic reconstruction

Las avalanchas son desastres naturales que
tienen un impacto humano y económico significa-
tivo a escala global. Chile es un páıs montañoso y
se ve significativamente afectado por estos even-
tos. En esta investigación, estamos interesados
en utilizar una técnica numérica basada en un
método de Volúmenes Finitos bien balanceado para
examinar el comportamiento de las avalanchas
de nieve. Como modelo de avalancha, investig-
amos el sistema de Saint-Venant con la fricción de
Voellmy-Salm. Analizamos el enfoque de volumen
finito utilizando un esquema de reconstrucción
hidrostática. La avalancha de Rigopiano en Italia
se utilizó para probar esta estrategia. Se explica
el modelo numérico y se presentan gráficamente
los resultados para el caso real de avalancha. Fi-
nalmente, se presentan algunas conclusiones y
sugerencias para futuras investigaciones.

Palabras Claves: Avalanchas; desastres naturales;
ecuaciones de Saint Venant; volúmenes finitos
bien balanceados; reconstrucción hidrostática

Introduction

The effects of climate change on natural disas-
ters are attracting considerable attention. These
changes are susceptible to trigger snow avalanches.
Snow avalanches are defined as the rapid descent
of snow masses down steep slopes as result of grav-
ity, often dragging soil, rocks or vegetation (Puda-
saini and Hutter, 2007).

An estimated 250 people per year fatalities are
due to snow avalanches worldwide (Schweizer et
al., 2015). In certain regions, the economic cost to
avoid the effects of snow avalanches can be very
high. For example, it is estimated that the av-
erage annual cost in Canada exceeds $5 billion
(Schweizer et al., 2015).

1



In Chile, there are large areas with high alti-
tudes where snow avalanches can occur. Accord-
ing to published statistics on fatalities in central
Chile between 1906 and 2001, of the 378 total
victims, 241 (63.8%) were related to mining ac-
tivities, while 52 (13.8%) were related to tourism
(Ramı́rez and Mery, 2007).
Currently, only the mining sector in the Center-
North zone uses meteorological records, data anal-
ysis, and avalanche simulation for avalanche risk
management (Ramı́rez and Mery, 2007).. In Chile,
there is no governmental avalanche warning ser-
vice, and only private groups such as ski resorts
and mining enterprises take preventative steps.
Using a numerical model to simulate snow height
and flow velocity is one method for analyzing
avalanche dynamics. Numerous physical models
exist to describe avalanches. For this purpose,
the Saint-Venant system of differential equations
is widely used (Pudasaini and Hutter, 2007). The
model includes friction effect as a source term.
The friction model or rheology used varies depend-
ing on the fluid characteristics. Consideration will
be given to the Voellmy-Salm rheology proposed
by Salm (1993) and Voelmy (1955). However,
we can mention that other physical model can
be used. For example, the Savage-Hutter equa-
tions of various types are used to model avalanches
(Savage and Hutter, 1991). The numerical model
that we use is the finite volume method, which
uses a non-conservative scheme. The main ap-
proach is described by Bouchut (2004), along with
the hydrostatic reconstruction scheme. This ap-
proach will be used to conduct our simulations.
The scheme is well-balanced, consistent, and sta-
ble (Bouchut, 2004).
We might list a few publications that complement
and work with this strategy. The hydrostatic re-
construction is utilized by Audusse (2004) for a
well-balanced approach for the Saint-Venant prob-
lem with topography, including proofs and numer-
ical examples, as well as an extension to second or-
der. The enhanced second-order approach shown
by Kurganov and Petrova (2007) preserves steady
states and fluid height positivity. In reference
to pyroclastic avalanches, a numerical technique
using the Voelmy-Salm rheology is discussed by
Michieli Vitturi et al. (2018) along with other nu-
merical examples.
The Rigopiano avalanche in Italy was investigated
using the numerical technique in this study. There
is abundant literature about this disaster, and nu-
merous studies have been conducted in the zone
to establish the event’s characteristics. The me-
teorological conditions and fluid dynamics are de-
tailed by Frigo et al. (2020). The velocity and de-

parture distance estimates are provided by Issler
(2020). We will provide graphs of the numerical
simulations performed with the scheme, using es-
timates for the physical parameters and assump-
tions about the initial conditions that we consider
reasonable according to the available data. Fi-
nally, we will conclude, describe various numerical
approach enhancements that may be investigated,
and provide some suggestions for future studies.

Methodology

We consider the Saint-Venant system with
Voellmy-Salm rheology as avalanche model. The
model is given by

∂th+ ∂x(hu) + ∂y(hv) = 0,

∂t(hu) + ∂x

(
hu2 + g

h2

2

)
+ ∂y(huv) + gh∂xz =

u√
u2 + v2

(
µhg +

g

ξ
(u2 + v2)

)
,

∂t(hv) + ∂x(huv) + ∂y

(
hv2 + g

h2

2

)
+ gh∂yz =

v√
u2 + v2

(
µhg +

g

ξ
(u2 + v2)

)
,

(1)
where h = h(x, y, t) is the fluid height, u =
u(x, y, t) and v = v(x, y, t) are the components of
the velocity, z = z(x, y) is the topography height,
g is the gravitational constant, µ is Coulomb’s co-
efficient of friction (Popov, 2010) and ξ is turbu-
lent friction coefficient (Ferziger and Peric, 2002).
We also consider the initial conditions

h0 = h(x, y, 0), u0 = u(x, y, 0), v0 = (x, y, 0)
(2)

We define Z = gz and we set U = (h, hu, hv) as
the system solution.
We have made the following assumptions for the
avalanche model:

1. The avalanche can be treated as an homoge-
neous fluid (the density is constant in space
and time).

2. The velocity in the vertical direction is neg-
ligible.

3. The pressure distribution is hydrostatic in
the vertical direction.

4. The curvature of the bed is negligible.

5. Normal and shear stresses on the free surface
are negligible.

6. We can consider that the bed has a gentle
slope concerning the horizontal plane of ref-
erence. This means we can approximate the
normal to the bed with the vertical direction.
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The last assumption is not realistic in everyday
avalanche events with steep terrain. However,
first, we will develop the scheme for this model.
Later, we will show a more accurate physical
model that considers this problem. Then, we
will discuss a way to adapt the numerical scheme
for the new model.
In this work we use a non-conservative finite vol-
ume scheme. We study this method in parts, first
developing the one-dimensional model, then using
this scheme for the two-dimensional problem, and
finally, we include friction in the model.

One-dimensional frictionless model

The one-dimensional model without friction is
given by

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x

(
hu2 + g

h2

2

)
+ gh∂xz = 0,

(3)

We define U = (h, hu). We can write the equa-

tions as a quasi-lineal system in the variable Ũ =
(U,Z).{

∂tU + ∂xF (U,Z) +B(U,Z)∂xZ = 0,
∂tZ = 0,

(4)

with

F =

 hu

hu2 + g
h2

2

 , B =

(
0
h

)
(5)

We consider a critical point for this system a point
(U,Z) such that FU (U,Z) is not invertible. We
can write the equations in the form

∂t(U,Z) +A(U,Z)∂x(U,Z) = 0 (6)

with

A(U,Z) =

(
FU FZ +B
0 0

)
(7)

The eigenvalues of A(U,Z) are

λ1 = u−
√
gh, λ2 = 0 λ3 = u+

√
gh (8)

Then, we have that at every noncritical point, the
system is hyperbolic (A(U,Z) is diagonalizable).
The stationary states are the solutions U(x) inde-
pendent of time. This states are relevant because
generally represent the solution when time tend
to infinity. The stationary states are the functions
h(x), u(x) that satisfy hu = cte.,

u2

2
+ gh+ Z = cte.,

(9)

The stationary states at rest are given by{
u = 0,
h+ z = cte.

(10)

In the finite volume method, a mesh of points
xi+1/2, i ∈ Z, in space is created. Finite volumes
are defined by Ci =]xi−1/2, xi+1/2[. We consider
a time step ∆t and define tn+1 = tn +∆t, n ∈ N.
We want to approximate the solution U(x, t) by
discrete values Un

i , i ∈ Z, n ∈ N. This is,

Un
i ≈ 1

∆xi

∫
Ci

U(tn, x)dx (11)

We consider a first order non-conservative finite
volume scheme given by

Un+1
i − Un

i +
∆t

∆xi
(Fi+1/2− − Fi−1/2) = 0, (12)

with

Fi+1/2− = Fl(Ũ
n
i , Ũ

n
i+1), Fi+1/2+ = Fr(Ũ

n
i , Ũ

n
i+1)

(13)
where Ũn

i = (Un
i , Zi), and Fl and Fr are the left

and right numerical fluxes, respectively.
We impose a CFL condition for the time step to
prevent that the numerical values explode. The
condition have the following form

∆ta ≤ ∆x (14)

where a = máx|λ|, is the maximum modulus of the
eigenvalues of the matrix system, evaluated for all
cells at time step n (Audusse, 2004).
A well balanced scheme for this problem is the hy-
drostatic reconstruction scheme (Bouchut, 2004).
Due to the presence of topography, to calculate
the fluxes between the mesh elements it is nec-
essary to reconstruct the left and right solution
states at each interface. We denote this states
Ul = (hl, hlul) and Ur = (hr, hrur), respectively.
We also denote the reconstructed states as U∗

l =
(h∗

l , h
∗
l ul) and U∗

r = (h∗
r , h

∗
rur), respectively.

In the hydrostatic reconstruction scheme, the
steady state relations are replaced by{

u = cte.,
gh+ Z = cte.,

(15)

With these relations, the reconstructed states are
obtained by

gh∗
l = (ghl − (∆Z)+)+,

gh∗
r = (ghr − (−∆Z)+)+,

(16)
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where ∆Z = Zr − Zl. The fluxes will be given by

Fl(Ul, Ur, Zl, Zr) = F(U∗
l , U

∗
r )

+

 0
gh2

l

2
− g(h∗

l )
2

2

 ,

Fr(Ul, Ur, Zl, Zr) = F(U∗
l , U

∗
r )

+

 0
gh2

r

2
− g(h∗

r)
2

2

 ,

(17)
where F is a consistent numerical flux for the
Saint-Venant problem without topography. In our
case, we will use the Lax-Friedrichs flux, given by

F(Ul, Ur) =
1

2
(F (Ul) + F (Ur))−

∆xi

2∆t
(Ur − Ul),

(18)
It can be proven that with this flux, the scheme
is conservative in h, preserves the non-negativity
of h in the interface, and is well balanced, con-
sistent and stable. Further details and technical
explanations of concepts and the proofs of these
propositions are presented by Bouchut (2004).

Two-dimensional frictionless model

Now we can proceed with the avalanche model in
two dimensions without friction force. The two-
dimensional Saint-Venant problem with friction-
less topography is given by

∂th+ ∂x(hu) + ∂y(hv) = 0,

∂t(hu) + ∂x

(
hu2 + g

h2

2

)
+∂y(huv) + gh∂xz = 0,

∂t(hv) + ∂x(huv)+

∂y

(
hv2 + g

h2

2

)
+ gh∂yz = 0,

(19)

The solutions of the system can develop discon-
tinuities, which means we have to consider weak
solutions. This solutions are well defined under
the assumption that the topography z ∈ W 1,∞(R)
(Dafermos, 2000). To find a unique physical so-
lution we use an entropy condition as an addi-
tional admissibility criteria. The details of the
theory about uniqueness of solution are explained
by Fjordholm et al. (2011).
For the finite volume method, we consider a mesh
of elements Ci in two dimensions. Let Γij be the
edge between the volumes Ci and Cj , and nij the
unitary normal vector with orientation from Ci to
Cj . Let Un

i be the values of the solution in some

interior point of the element Ci at time tn. The
finite volume method is given by

Un+1
i − Ui +

∆t

|Ci|
∑
j∈Ki

|Γij |Fij = 0, (20)

where |Ci| is the area of the control volume Ci,
|Γij | is the length of the edge Γij , Ki is the set of
indices of the cells that share edges with Ci, and
Fij is the flux between Ci and Cj with

Fij = F (Ui, Uj , Zi, Zj , nij). (21)

Let n = (n1, n2) be the unit vector with its rota-
tion matrix given by

Rn =

(
n1 −n2

n2 n1

)
(22)

Let x′ = Rnx and (u′, v′) = R−1
n (u, v). Then U ′ =

(h, hu′, hv′) is a solution to the two-dimensional
problem. We can compute the numerical fluxes
through the following one-dimensional problem

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x

(
hu2 + g

h2

2

)
+ gh∂xz = 0,

∂t(hv) + ∂x(huv) = 0,
(23)

Let Fl(U
′
l , U

′
r,∆Z) = (F 0

l , F
1
l , F

2
l ) be the flux ob-

tained from the one-dimensional problem with U ′.
Them the left flux of the original two-dimensional
problem is given by

Fl(Ul, Ur,∆Z, n) =

 F 0
l (U

′
l , U

′
r,∆Z)

Rn

(
F 1
l (U

′
l , U

′
r,∆Z)

F 2
l (U

′
l , U

′
r,∆Z)

)
(24)

Let (h, hu, hv)∗ = (h,−hu,−hv). By symmetry
we have

Fr(Ul, Ur,∆Z) = −Fl(U
∗
r , U

∗
l ,−∆Z)∗,

(25)
The right flux of the original two-dimensional
problem is given by

−Fr(Ur, Ul,−∆Z, n) =

 F 0
r (U

′
l , U

′
r,∆Z)

Rn

(
F 1
r (U

′
l , U

′
r,∆Z)

F 2
r (U

′
l , U

′
r,∆Z)

)
(26)

Now we explain how we solve the one-dimensional
problem in (??). We can obtain the numerical flux
for the problem with the first and second equa-
tion with the method for one-dimensional prob-
lems shown in the previous section.
The third equation is a passive transport equation

∂t(hv) + ∂x(huv) = 0 (27)
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We obtain the flux for this part using

F 2
l =

{
F 0
l vl if F 0

l ≥ 0,
F 0
l vr if F 0

l ≤ 0,
(28)

And analogously with F 2
r .

Two-dimensional model with friction

Now we can consider the two-dimensional prob-
lem with friction given by (??). Friction in
the Voelmy-Salm rheological model includes two
parts:

1. Coulomb friction:

Fc =
(u, v)√
u2 + v2

(µhg) (29)

2. Turbulent friction:

Ft =
(u, v)√
u2 + v2

(
g

ξ
(u2 + v2)

)
(30)

Each type of friction is treated differently in the
numerical scheme.
We can include the Coulomb friction in the nu-
merical method by modifying the source term in
our scheme. To do this, the numerical fluxes are
computed with

Fij = F (Ui, Uj ,∆Zij−f ij
1 (xj−xi)1−f ij

2 (xj−xi)2, nij)
(31)

where xi and xj are arbitrary points in the inte-
rior of the elements Ci and Cj , respectively. We
define

f ij = −φgµ

(
(ghi − ghj −∆Zij)

xj − xi

|xj − xi|2
,
(uij , vij)

∆t

)
(32)

In the above expression, we use

uij =
hiui + hjuj

hi + hj
, vij =

hivi + hjvj
hi + hj

(33)

φgµ(X,Y ) =

proj
gµ

(
proj
gµ

(X) +
2

1 +max(1,−X · Y/gµ|Y |)
Y

)
(34)

with

proj
gµ

(X) =

 X if |X| ≤ gµ,

gµ
X

|X|
if |X| > gµ,

(35)

For the turbulent friction, we use a splitting
method to ensure the scheme stability (Bouchut
et al., 2020). Once the solution of the finite vol-
ume method is obtained, which we will denote as

h∗, u∗, v∗, we proceed to include the turbulent fric-
tion. The final solution is given by

h = h∗

u =
u∗h∗ξ

g
√
w∗∆t+ h∗ξ

v =
v∗h∗ξ

g
√
w∗∆t+ h∗ξ

(36)

where w = u2 + v2.

Model in global coordinates

As we explained before, the model studied con-
siders a smooth slope. In real situations, this as-
sumption can be unsatisfactory. A way to solve
this problems is to use a model in global coordi-
nates that considers the effect on vertical velocity
given by steep terrain. The scheme derived from
this flow analysis is explained in detail by Zugliani
and Rosatti (2021). In Figure 1 we show a con-
trol volume for the one-dimensional model with a
slope angle θ.

Figure 1: Control volume (x is horizontal axis and
z is vertical axis). hv is the height of the fluid, zb
is the height of the terrain topography and ux is
the velocity component in x.

The system of equations in global coordinates
is given by

∂thv + ∂x(hvux) = 0,

∂t(hvux) + ∂x

(
hvu

2
x + g cos2 θ

h2
v

2

)
+g cos2 θhv∂xzb = −τ0

ρ

sτx
cos θ

,

(37)

where
τ0
ρ

= µghv cos
2 θ + g

u2
x

ξ cos2 θ
(38)

sτx =
ux

|ux|
cos θ (39)
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This model can be extended to two dimensions,
giving the following system



∂thv + ∂x(hvux) + ∂y(hvuy) = 0,

∂t(hvux) + ∂x

(
hvu

2
x + gcos2θ

h2
v

2

)
+ ∂y(hvuxuy)

+g cos2 θhv∂xzb =
ux

|u|

(
µghv cos

2 θ + g

(
u2
x + u2

y

ξ cos2(θ)

))
,

∂t(hvuy) + ∂x(hvuxuy) + ∂y

(
hvu

2
y + g cos2 θ

h2
v

2

)
+g cos2 θhv∂xzb =

uy

|u|

(
µghv cos

2 θ + g

(
u2
x + u2

y

ξ cos2(θ)

))
(40)

We can rewrite this system in the form of the
avalanche model (??) as follows



∂thv + ∂x(hvux) + ∂y(hvuy) = 0,

∂t(hvux) + ∂x

(
hvu

2
x + g̃

h2
v

2

)
+ ∂y(hvuxuy)

+g̃hv∂xzb =
ux

|u|

(
µg̃hv +

g

ξ̃
(u2

x + u2
y)

)
,

∂t(hvuy) + ∂x(hvuxuy) + ∂y

(
hvu

2
y + g̃

h2
v

2

)
+g̃hv∂xzb =

uy

|u|

(
µg̃hv +

g

ξ̃
(u2

x + u2
y)

)
.

(41)

where g̃ = g cos2 θ and ξ̃ = ξ cos2 θ. In this way we
can use the hydrostatic reconstruction method for
this system with the new parameters g̃ and ξ̃. We
recall that this method allows incorporating the
Coulomb friction. In the case of turbulent fric-
tion, it is added by means of splitting, and to do
so the original parameter g is used, as can be seen
from the system of equations.

Results

The numerical scheme was applied for the case of
the snow avalanche of January 18, 2017 at Rigopi-
ano, Gran Sasso National Park (Frigo et al., 2020).
This natural disaster destroyed the Rigopiano ho-
tel, resulting in the death of 29 people. The
avalanche was a mixture of snow and wood, dis-
placing rocks and trees in its path. The damage
generated in the event shows that the avalanche
was of great intensity. Figure 2 shows an aerial
view of the path of the avalanche before and after
the event.

Figure 2: Aerial view of the path of the avalanche
over Rigopiano Hotel, before (2015) and after
(2017) the catastrophic event. The image is taken
from Frigo et al. (2020).

Figure 3 shows a map of the Abrazzo region,
where the avalanche happened. The position of
the Rigopiano Hotel is indicated. The location
of snow measurement points in the area is also
shown. We also show a map of Italy with the po-
sition of the Abrazzo region.

Figure 3: Geographical area of the Abrazzo region
with the Rigopiano Hotel (green triangle) position.
Snow gauges in the area are also shown (yellow
circles). Italy map on top with Abrazzo region
marked in red. The right diagrams show the re-
lief’s height and slope, indicating the avalanche’s
main flow. The image is taken from Bocchiola et
al. (2020).

A simulation of the avalanche at Rigopiano us-
ing the system of equations in global coordinates
given in (??) is now presented. The numerical
method consists of finite volumes with a hydro-
static reconstruction scheme, with the parameters
for the new physical model being modified. Figure
4 displays the topography z of the Rigopiano area
under study.
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Figure 4: Rigopiano topography with height z.
This surface is considered as the relief without
snow of the area. Right scale is given in m.

We worked with a sub-domain of this domain
for the numerical simulation, based on the area
shown in the Figure 3. This sub-domain’s di-
mensions are approximately 989 m x 989 m, with
approximates coordinates in Figure 4 given by
[4.0001·105, 4.0100·105]×[4.6970·106, 4.6980·106].
The topography in this sub-domain is shown in
Figure 5.

Figure 5: Topography in sub-domain with height
z. The isolevels are shown. Right scale is given in
m.

The initial condition for the snow height is con-
sidered to be a constant slope with a maximum
height of 2 m that goes to 0 m at the isolevel
z = 1600 m. As data we used g = 9.8 m/s2,
µ = 0.15, k = g/ξ = 0.002 and an angle of slope
θ = 30°. Figures 6-10 show the results at different
times.

Figure 6: Simulation at t = 0 s. The snow depth
h is shown with the isolevels. The scale is in m.

Figure 7: Simulation at t = 5 s. The snow depth
h is shown with the isolevels. The scale is in m.

Figure 8: Simulation at t = 10 s. The snow depth
h is shown with the isolevels. The scale is in m.
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Figure 9: Simulation at t = 15 s. The snow depth
h is shown with the isolevels. The scale is in m.

Figure 10: Simulation at t = 20 s. The snow depth
h is shown with the isolevels. The scale is in m.

Conclusions

In this work, we model an avalanche using the
Saint-Venant system of differential equations with
topography and friction given by the Voellmy-
Salm rheology. We use the finite volume method
with hydrostatic reconstruction to analyze a real
case. This scheme was evaluated for different
examples taken from the literature, considering
the one-dimensional and two-dimensional cases, as
well as the frictional and frictionless cases. These
testing allowed us to calibrate and validate the nu-
merical model.
The study’s primary focus and so called “real”
event was the Rigopiano avalanche. We found that
the steep terrain is an essential factor in the re-
sults. It is necessary to consider this conditions’
effect on the flow and incorporate it’s impact in
the system of equations. Due to the lack of specific
information, the exact information is unavailable,
we assumed the initial snow depth at the start of
the avalanche. Therefore, we considered setting
a maximum snow height of 2 m as a reasonable
assumption. We have credible estimations for the

friction characteristics and the slope angle to con-
sider for the system, which we put at 30 degrees,
based on the relevant literature and research. We
first selected a smaller domain for the simulations,
but discovered later that the actual avalanche be-
gan near the edge of the original dominion. With
these considerations, our initial numerical results
have been improved. We can still consider other
improvements. We may search other more sophis-
ticated physical models that more realistically de-
scribe the avalanche’s flow characteristics. In ad-
dition, it is feasible to work with more precise nu-
merical models, particularly for the inclusion of
friction and the influence of slope angle on veloc-
ity.
For the numerical scheme and the hydrostatic
reconstruction, a Lax-Friedrichs flux was used,
which is simple to implement but has the disad-
vantage of having too much numerical dissipation.
This can be improved by replacing the flow with
an upwind HLLC flow and by means of second
order extensions employing the Riemann solver
of Osher-Solomon-Toro. Some numerical experi-
ments are being done in this regard, which could
be used in future works.
Future development opportunities exist in Chile
for applications connected to avalanches, particu-
larly due to the growing influence of rising temper-
atures. In certain locations of Chile, winter snow-
fall accumulations are substantial, and avalanches
pose already a serious threat. To tackle these
catastrophes, it is essential to use a range of in-
vestigation methods. Numerical models such as
those provide in this research work may be used
to augment field observations and laboratory stud-
ies. There is further work to be done in this field
of research in Chile. This is the first effort of this
kind in Chile, to the best of our knowledge, and we
hope that these ideas will be refined and applied
to real-world situations in the near future.
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2022-28 Jorge Albella, Rodolfo Rodŕıguez, Pablo Venegas: Numerical approxima-
tion of a potentials formulation for the elasticity vibration problem
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