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FLUX APPROXIMATION ON UNFITTED MESHES AND
APPLICATION TO MULTISCALE HYBRID-MIXED METHODS?

T. CHAUMONT-FRELET†, D. PAREDES‡, AND F. VALENTIN¶

Abstract. The flux variable determines the approximation quality of hybridization-
based numerical methods. This work proves that approximating flux variables in dis-
continuous polynomial spaces from the L2 orthogonal projection is super-convergent on
meshes that are not necessarily aligned with jumping coefficient interfaces. The results
assume only the local regularity of exact solutions in physical partitions. Based on the
proposed flux approximation, we demonstrate that the mixed hybrid multiscale (MHM)
finite element method is superconvergent on unfitted meshes, supporting the numerics
presented in MHM seminal works.

1. Introduction

Many numerical algorithms rely on their accuracy in approximating flux variables de-
fined on the skeleton of geometric partitions of physical domains. Finite volume methods,
discontinuous finite element methods and hybrid finite element methods are examples of
numerical methods of this type, but we also find the fundamental importance of flux recov-
ery in some domain decomposition methods. As a result, there has been growing interest
in developing discrete fluxes with optimal convergence properties (see [5], [17], [16], and
[15] for instance).

In this work, we are interested in retrieving discrete fluxes associated with the solution
u of partial differential equations defined in a domain Ω composed of regions ω where the
regularity of the solution is high, although u can only have moderate overall regularity.
We assume that the geometric partition TH of Ω used to define the discrete flux is general,
with characteristic length H, and composed of polytopal elements whose boundary may
not fit on the interfaces of ω. Within such a scenario, we demonstrate that the exact flux
λ can be accurately approximated through its L2 orthogonal projection into a space ΛH,`

of discontinuous piecewise polynomials of degree ` ≥ 0 on faces of ∂TH the boundary of
TH, notably,

inf
µH∈ΛH,`

‖λ− µH‖Λ = O(H`+3/2),
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2 FLUX APPROXIMATION ON UNFITTED MESHES AND MHM METHODS

where H is a characteristic length associated to the discretization of ∂TH. The norm
‖·‖Λ naturally appears in the analysis of hybridized methods and is rigorously introduced
hereafter. Here, we understand a flux variable λ as the normal component of vector (tensor)
functions σ ∈H(div,Ω) restricted to the skeleton of TH. We have borrowed the term flux
from fluid flows, although it may represent other physical quantities (e.g., traction in the
elasticity model). This aim is similar to that found in the fictitious domain method [3] or
in CutFEM [6], to name a few.

We take advantage of the proposed flux approximation to renew the analysis of the mixed
hybrid multiscale method (MHM) on unfitted meshes. The MHM method was originally
proposed in [12] and a priori and a posteriori error estimates proposed in [2], and extended
to polygonal elements in [4] (see [14] for an abstract framework). It is conceived from the
primal hybridization of the original model, and characterizes the exact solution in terms
of a global formulation placed on the skeleton of a domain partition and independent local
problems. Lagrange multipliers play the role of Neumann boundary conditions for local
problems. Such decomposition leads to discretization, decouples global and local problems
and gives rise to the MHM method. Regarding the analysis, and assuming that the local
problems that define the multi-scale basis functions are exactly solved, we note that the
original technique used to prove that the MHM method converges is fundamentally based
on the accuracy of the approximation flux in a polynomial space ΛH,` of degree ` on the
boundary partition (see [8] for a recent alternative proof). Specifically, if uH denotes the
MHM solution, the convergence of uH toward u in the (broken) Sobolev norm behaves as
follows (c.f. [2]): for 0 ≤ q ≤ `, we have

‖∇(u− uH)‖TH ≤ C` inf
µH∈ΛH,`

‖λ− µH‖Λ ≤ C`H
q+1|u|Hq+2(TH),

where C` is a positive constant depending on `. We note that the above estimate depends
on the regularity of the exact solution placed on the geometric partition of Ω rather than
the physical partition. Also, the constant depends on the degree of the polynomial, but
lacks its precise dependence, which is important for establishing convergence with respect
to `.

Therefore, in addition to the proposed discrete fluxes in general unfitted meshes, this
work fills the gap in the original numerical analysis of the MHM method. In particular we
(i) demonstrate that the MHM method is superconvergent. Specifically, the convergence
rate of ‖∇(u − uH)‖TH behaves like O(H`+3/2) when H → 0 (and H stay fixed), which
was numerically anticipated in [13] and [4], (ii) prove that the MHM method achieves
convergence in unfitted meshes assuming local regularity in the physical domain unlike
the previous MHM literature and (iii) explicit the dependence of the constant on the error
estimates in the polynomial degree `. We show that the MHM method converges optimally
when `→∞. Such a convergence result is also new.

The outline of this article is as follows: Section 2 provides the functional setting given in
an abstract form to be particularized in the next sections. Section 3 includes a description
of the physical partition and the mesh, followed by the definition of broken spaces and
associated norms. In Section 4, we introduce our new flux interpolation operator and
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establish error estimates. These error estimates are used in Section 5 to revisit the analysis
of the MHM method. Section 6 is devoted to numerical illustrations, and concluding
remarks follow in Section 7.

2. Functional setting and norms

If U ⊂ Ω is a measurable set, L2(U) is the usual Lebesgue space of square-integrable
functions, equipped with its inner product (·, ·)U and the associated norm ‖·‖2

U := (·, ·)U .
We also employ the notation L2(U) := [L2(U)]d, and we keep the same notation for its
inner product and norm. For m ∈ N?, Hm(U) is the usual Sobolev space that we equip
with the norm

‖v‖2
Hm(U) :=

∑
α∈Nd

|α|≤m

(
1

d2
U

)m−|α|
‖∂αv‖2

U

and semi-norm

|v|2Hm(U) :=
∑
α∈Nd

|α|=m

‖∂αv‖2
U

for all v ∈ Hm(U), where dU is the diameter of U and the the partial derivative ∂α

is understood in the sense of distributions. We refer the reader to [1] for an in-depth
discussion of these spaces. We shall also use the Sobolev space H(div,U) of functions
w ∈ L2(U) with ∇ ·w ∈ L2(U), see [11].

We write H1/2(∂U) for the image of H1(U) by the trace operator. Its dual, that we
denote by H−1/2(∂U), is the image of H(div,U) by the normal trace operator, and we
reserve the notation 〈·, ·〉∂U for the duality pairing between H−1/2(∂U) and H1/2(∂U).

If P is a collection of non-overlapping measurable sets, we introduce for m ∈ N? the
broken Sobolev space

Hm(P) :=
{
v ∈ L2(Ω) | v|ω ∈ Hm(ω) ∀ω ∈ P

}
,

with its norm and semi-norm

‖v‖2
Hm(P) :=

∑
ω∈P

‖v‖2
Hm(ω) and |v|2Hm(P) :=

∑
ω∈P

|v|2Hm(ω) ∀v ∈ Hm(P).

If V ⊂ Ω is contained in an hyperplane and measurable with respect to the surface
measure, we employ the same notations as above for L2(V) its norm and inner-product,
with integration performed with respect to the surface measure. Hm(V) is also defined
likewise, with multi-indices running over Nd−1. Finally, if Q is a collection of such disjoint
sets V , then Hm(Q) is the associated broken Sobolev space. We will also need the (possibly
infinite) Sobolev-Slobodeckij semi-norm

|v|2H1/2(V) :=

∫
V

∫
V

|v(x)− v(y)|2

|x− y|d
dydx ∀v ∈ L2(V),
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and its piecewise version

|v|2H1/2(Q) :=
∑
V∈Q

|v|2H1/2(V) ∀v ∈ L2(Q).

Consider an affine subspace Zr of Rd of dimension (d− 1) ≤ r ≤ d (i.e. an hyperplane
or the whole Rd), and a closed connected subset U ⊂ Zr with non-empty interior. We
denote by hU the diameter of the smallest ball containing U , and by ρU the diameter of
the largest ball B such that U is star-shaped with respect to B. We also denote by FU the
set of “faces” of U . Then, the shape-regularity parameter of U is the constant

βU :=
hU
ρU
.

There exist a,u(j) ∈ Rd and functions yj : Zr → R such that

x = a+
r∑
j=1

yj(x)u(j) ∀x ∈ Zr.

Then, for ` ∈ N the space P`(U) of polynomials of degree ` on U collects all the functions
v : U → R of the form

v =
∑
α∈Nr

|α|2≤`

vα

r∏
j=1

y
αj

j ,

where each vα ∈ R.
When considering a collection C := {U1, . . . , Un} of disjoint affine sets as described above,

we let βC := max1≤j≤n βUj
, and P`(C) stands for the set of functions v : ∪nj=1Uj → R such

that v|Uj
∈ P`(Uj) for 1 ≤ j ≤ n.

3. Partitions of the Domain

We consider a Lipschitz polytopal domain Ω ⊂ Rd, with d ∈ {2, 3}, and denote by
dΩ the diameter of Ω. The domain Ω is decomposed into two separate and independent
partitions. They are detailed next.

3.1. Physical partition. We assume that Ω is partitioned into “physical subdomains”
ω ∈ PΩ. We will assume that each ω has a Lipschitz boundary. As a result [20, Theorem
5, Page 181], there exists extension operators Eω : L2(ω) → L2(Ω) satisfying (Eωv) = v
for all v ∈ L2(Ω) and such that, for all m ∈ N, Eω : Hm(ω)→ Hm(Ω) with

‖Eωv‖m,Ω ≤ CE,ω,m‖v‖m,ω
for all v ∈ Hm(ω) for some constants CE,ω,m, and we set CE,PΩ,m := maxω∈PΩ

CE,ω,m. This
physical partition typically corresponds to regions of space occupied by different materials,
each being linked with a constant (or smooth) coefficient in the considered model problem
(more in Section 5). Importantly, we may expect the model’s solution to be smooth in
each of the physical subdomains ω ∈ PΩ.
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3.2. Geometrical partitions. We further partition the domain into a computational
mesh TH characterized by a size H > 0. This partition is made of polytopal regions K,
and we collect the element boundaries ∂K in the set ∂TH. We denote by FH the faces
of partition TH, and for K ∈ TH, FK is the set of faces of K. For the sake of simplicity,
we assume that for two distinct regions K+, K− ∈ TH, that when intersection ∂K+ ∩ ∂K−
is non-empty, it is either a full face, a full edge, or a single vertex of both regions. We
highlight that we do not assume any conformity between the partition TH with the physical
partition PΩ.

We denote by Cqu(TH) the quasi-uniformity constant of TH, i.e., the smallest real number
such that

H ≤ Cqu(TH)HK ∀K ∈ TH.
Then, for each K ∈ TH, there exists a constant Ctr,K solely depending on βK and Cqu(TH)
such that

(3.1) ‖v‖2
FK
≤ C2

tr,K

(
H−1‖v‖2

K +H‖∇v‖2
K

)
and

(3.2) |v|H1/2(FK) ≤ Ctr,K‖∇v‖K
for all v ∈ H1(K), see, e.g., [10, Lemmas 6.1 and 6.4]. We write Ctr,TH := maxK∈TH Ctr,K ,
which only depends on βTH and Cqu(TH). Notice that because Cqu(TH) enters our analysis,
our results are essentially relevant on quasi-uniform meshes where the ratio between the
maximal and minimal element diameter is not large.

The following space of element-wise zero mean value functions

P⊥0 (TH) :=
{
v ∈ H1(TH) | (v, q0)TH = 0 ∀q0 ∈ P0(TH)

}
,

will be useful.
We further introduce another level of geometrical discretization. Namely, each face

F ∈ FH is partitioned into a meshMF
H with elements D and characteristic length H. For

0 ≤ q ≤ `, and ` ≥ 0, the orthogonal projector πD,` : L2(D)→ P`(D) satisfies

(3.3) ‖ξ − πD,`ξ‖D ≤
(
CP,D,qHD

`+ 1

)q+1

|ξ|Hq+1(D) ∀ξ ∈ Hq+1(D),

where CP,D,q only depends on the shape of D, and not on its size. Upper bounds for CP,D,q

expressed in terms of the geometrical features of D are listed in Remark 3.1. In addition,
using Banach space interpolation theory (see, e.g. [21, Chapters 22, 34 and 36]), we can
combine the case q = 0 and q = 1 of (3.3) to show that

(3.4) ‖ξ − πD,`ξ‖D ≤
(
CP,D,hHD

`+ 1

)1/2

|ξ|H1/2(D) ∀ξ ∈ H1/2(D),

for some constant CP,D,h only depending on the shape of D. We denote by MH :=
∪F∈FHMF

H the global skeletal mesh, and we set

CP,MH ,q := max
F∈FH

max
D∈MF

H

CP,D,q, CP,MH ,h := max
F∈FH

max
D∈MF

H

CP,D,h.
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We also set M∂K
H := ∪F∈FK

MF
H for each K ∈ TH and Mω

H := {D ∈MH | D ⊂ ω}.
In contrast to TH, we assume that the partition MH fits the physical partition PΩ.

It means that every element D ∈ MH entirely belongs to a single physical subdomain
ω ∈ PΩ. Notice that we do not assume that the elements D ∈ MH are polygons, so that
curved boundaries are allowed.

Remark 3.1 (Projection constants). When d = 2, the elements D ∈ MH correspond to
segments, so there is only one possible shape and one constant CP,D,q. When d = 3, several
formulas giving explicit upper bound for CP,D,q in terms of its geometrical characteristics
are available in the literature. For instance, if D is a polygon, it follows from [9, Lemma 4.2
and Remark 2] that it only depends on βD, q and the ratio hD/mine∈FD

he (the he denoting
the lengths of the edges of D). We note, however, that the result in [9] are designed for
virtual element interpolation operators, whereas we need a projection without compatibility
constraints. As a result, the dependence on CP,D,q on hD/mine∈FD

he may be suboptimal.
Indeed, a careful inspection of [7, Lemma 23] shows that the key parameter is the continuity
constant of Stein’s extension operator Hq(D)→ Hq(Rd−1). For the sake of simplicity, we
do not pursue such a detailed analysis here.

4. Flux interpolation

This section presents our first set of results, where we construct an interpolation operator
for flux variables and establish associated error estimates.

4.1. Continuous and discrete fluxes. We consider that the continuous flux variable
belongs to the space

Λ(∂TH) :=

{
µ ∈

∏
K∈TH

H−1/2(∂K)

∣∣∣∣ ∃σ ∈H(div,Ω);
σ · nK = µ|∂K ∀K ∈ TH

}
.

If µ ∈ Λ(∂TH) and v ∈ H1(TH), we define the pairing

〈µ, v〉∂TH =
∑
K∈TH

〈µ, v〉∂K .

For µ ∈ Λ(∂TH), we define the (semi) norm

(4.1) ‖µ‖Λ = sup
v∈P⊥

0 (TH)
‖∇v‖TH=1

〈µ, v〉∂TH .

Notice that ‖·‖Λ becomes a norm when restricted to the subspace of elements µ ∈ Λ such
that 〈µ, v0〉∂TH = 0 for all v0 ∈ P0(TH).

For a given integer ` ∈ N, we introduce an interpolation operator that is well defined for
all µ ∈ Λ ∩ L2(∂TH) by setting

(πH,`µ)|D = πD,`µ ∀D ∈MH

and it follows that the discrete flux πH,`µ ∈ Λ(TH) ∩ L2(∂TH).
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4.2. Error estimates. We start with a duality result that is similar to [3].

Lemma 4.1 (Duality). For all µ ∈ Λ(∂TH) ∩ L2(∂TH), we have

(4.2) ‖µ− πH,`µ‖Λ ≤ Ctr,TH

(
CP,MH ,hH

`+ 1

)1/2

‖µ− πH,`µ‖∂TH .

Proof. Let v ∈ H1(TH). For all K ∈ TH, we have

〈µ− πH,`µ, v〉∂K = (µ− πH,`µ, v)∂K =
∑

D∈M∂K
H

(µ− πD,`µ, v)D.

Recalling that πDH,`µ is the L2(D) projection of µ onto P`(D), and using (3.4), we have

(µ− πD,`µ, v)D = (µ− πD,`µ, v − πD,`v)D ≤ ‖µ− πD,`µ‖D‖v − πD,`v‖D

≤
(
CP,D,hHD

`+ 1

)1/2

‖µ− πD,`µ‖D|v|H1/2(D),

and therefore, involving (3.2), we obtain

〈µ− πH,`µ, v〉∂K ≤
(
CP,MH ,hH

`+ 1

)1/2

‖µ− πH,`µ‖FK
|v|H1/2(FK)

≤ Ctr,TH

(
CP,MH ,hH

`+ 1

)1/2

‖µ− πH,`µ‖FK
‖∇v‖K .

By summation, we see that

〈µ− πH,`µ, v〉∂TH ≤ Ctr,TH

(
CP,MH ,hH

`+ 1

)1/2

‖µ− πH,`µ‖∂TH‖∇v‖TH

for all v ∈ H1(TH), and (4.2) follows by definition (4.1) of ‖·‖Λ. �

As a direct consequence of Lemma 4.1 and (3.3), we have the following result.

Corollary 4.2 (Approximation). Let 0 ≤ q ≤ `. Assuming µ ∈ Λ(∂TH) ∩Hq+1(∂TH), it
holds

(4.3) ‖µ− πH,`µ‖Λ ≤ Ctr,TH

(
CA,MH ,qH

`+ 1

)q+3/2

|µ|Hq+1(MH),

where CA,MH ,q := max(CP,MH ,h, CP,MH ,q).

In practical application, the variable λ ∈ Λ(∂TH) to be approximated is related to
the “flux” of the solution u to the model problem under consideration. For instance,
λ|∂K = ∇u · nK for the Laplace operator. This motivates the main result of this section.

Theorem 4.3 (Interpolation error estimate). Let 0 ≤ q ≤ ` and µ ∈ Λ(∂TH)∩Hq+1(∂TH).
Assume that there exists u ∈ Hq+3(PΩ) such that

|µ|Hq+1(MH) ≤ |u|Hq+2(MH).
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Then, we have

(4.4) ‖µ− πH,`µ‖Λ ≤

CE,PΩ,q+3Ctr,TH

(
CA,MH ,qH

`+ 1

)q+3/2 (
H−1/2‖u‖Hq+2(PΩ) +H1/2‖u‖Hq+3(PΩ)

)
.

Proof. In view of (4.3), it is sufficient to establish that

|u|Hq+2(MH) ≤ CE,PΩ,q+3Ctr,TH
(
H−1/2‖u‖Hq+2(PΩ) +H1/2‖u‖Hq+3(PΩ)

)
.

First, because the mesh MH fits the physical partition PΩ, we have

|u|2Hq+2(MH) =
∑

D∈MH

|u|2Hq+2(D) ≤
∑
ω∈PΩ

∑
D∈Mω

H

|u|2Hq+2(D)

=
∑
ω∈PΩ

∑
D∈Mω

H

‖Eωu‖2
Hq+2(D) ≤

∑
ω∈PΩ

‖Eωu‖2
Hq+2(∂TH).

On the other hand, for K ∈ TH, we can apply (3.1) to ∂α(Eωu) for |α| ≤ q + 2. It follows
that

‖Eωu‖2
Hq+2(∂K) ≤ C2

tr,K

(
H−1‖Eωu‖2

Hq+2(K) +H‖Eωu‖2
Hq+3(K)

)
,

and therefore

‖Eωu‖2
Hq+2(∂TH) ≤ C2

tr,TH

(
H−1‖Eωu‖2

Hq+2(Ω) +H‖Eωu‖2
Hq+3(Ω)

)
≤ C2

E,PΩ,q+3C
2
tr,TH

(
H−1‖u‖2

Hq+2(ω) +H‖u‖2
Hq+3(ω)

)
,

for all ω ∈ PΩ. By summation over ω ∈ PΩ, it follows that

|u|2Hq+2(MH) ≤ C2
E,PΩ,q+3C

2
tr,TH

(
H−1‖u‖2

Hq+2(PΩ) +H‖u‖2
Hq+3(PΩ)

)
.

�

We close this section with an important property of our interpolation operator previously
observed in [4].

Proposition 4.4 (Mass conservation). Assume that λ ∈ Λ(∂TH) ∩ L2(∂TH). Then, we
have

(4.5) 〈π`,Hλ, v0〉∂TH = 〈λ, v0〉∂TH ∀v0 ∈ P0(TH).

Proof. Since λ (and π`,Hλ) belongs to L2(∂TH) by assumption, we can regroup the duality
pairings into face-by-face L2 products, leading to

〈λ− πH,`λ, v0〉∂TH =
∑
F∈FH

(λ− πH,`λ, [[v0]])F =
∑
F∈FH

∑
D∈MF

H

(λ− πD,`λ, [[v0]])D = 0

since [[v0]] ∈ P0(D) for all D ∈ MH , and πD,` is the orthogonal projection onto P`(D) ⊃
P0(D). �
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5. The MHM method for the Poisson problem

In this section, we revisit the convergence analysis of the MHM method using the inter-
polation operator introduced in Section 4. This analysis improves over the existing works
[2, 4]. In particular, we obtain better constants and optimal rates in H. In addition, we
are able to establish `-convergence when the mesh is fixed and the polynomial degree is
increased, which is new in the MHM context.

5.1. Model problem. Throughout this section, we fix f ∈ L2(Ω) and focus on the model
problem of finding u ∈ H1

0 (Ω) such that

(5.1) (A∇u,∇v)Ω = (f, v)Ω ∀v ∈ H1
0 (Ω),

where, for a.e. x in Ω, A(x) is a symmetric matrix. We assume that A is measurable and
that there exists two constants 0 < amin ≤ amax < +∞ such that

amin ≤ min
ξ∈Rd

|ξ|=1

A(x)ξ · ξ, max
ξ∈Rd

|ξ|=1

A(x)ξ · ξ ≤ amax,

for a.e. x in Ω. For the sake of simplicity, we introduce the weighted norm

‖v‖2
A,TH :=

∑
K∈TH

∫
K

Av · v ∀v ∈ L2(TH).

5.2. MHM formulation. Owing to Poincaré inequality, it is easily seen that the applica-
tion ‖∇·‖A,TH is a norm over P⊥0 (TH). We can therefore define the mappings T : Λ(∂TH)→
P⊥0 (TH) and T̂ : L2(Ω)→ P⊥0 (TH) by requiring that

(5.2) (A∇T (µ),∇v)TH = 〈µ, v〉∂TH , (A∇T̂ (g),∇v)TH = (g, v)TH ∀v ∈ P⊥0 (TH),

for all µ ∈ Λ(∂TH) and g ∈ L2(Ω).
Then, the continuous MHM formulation consists of finding (λ, u0) ∈ Λ(∂TH) × P0(TH)

such that

(5.3)

{
〈µ, T (λ)〉∂TH + 〈µ, u0〉∂TH = 〈µ, T̂ (f)〉∂TH ∀µ ∈ Λ(∂TH),

〈λ, v0〉∂TH = (f, v0)TH ∀v0 ∈ P0(TH).

It is shown in [2] (see also [19]), that actually

λ|∂K = ∇u · nK |∂K and u0|K =
1

|K|

∫
K

u

for all K ∈ TH, and that

(5.4) u = u0 + T (λ) + T̂ (f).

Introducing the following finite dimensional subspace of Λ(∂TH)

ΛH,`(∂TH) :=
{
µ ∈ Λ(∂TH) ∩ L2(∂TH) | µ|D ∈ P`(D), ∀D ∈MF

H ∀F ∈ FH
}
,

the discrete formulation then consists in finding (λH , u0,H) ∈ ΛH,`(∂TH)×P0(TH) such that

(5.5)

{
〈µH , T (λH)〉∂TH + 〈µH , u0,H〉∂TH = 〈µH , T̂ (f)〉∂TH ∀µH ∈ ΛH,`(∂TH)

〈λH , v0〉∂TH = (f, v0)TH ∀v0 ∈ P0(TH),
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and we set

(5.6) uH := u0,H + T (λH) + T̂ (f).

5.3. Convergence analysis. We start with a quasi-optimality result. Because the MHM
formulation is a saddle point problem, Galerkin orthogonality cannot be immediately em-
ployed, and a compatibility condition is required. The approximation result follows the
proof in [18, Lemma 7], but now with optimal constants.

Lemma 5.1 (Best approximation). We have

(5.7) ‖∇T (λ− λH)‖A,TH = min
µH∈ΛH,`

〈λ−µH ,v0〉∂TH=0 ∀v0∈P0(TH)

‖∇T (λ− µH)‖A,TH .

In addition, if λ ∈ L2(∂TH), then

(5.8) ‖∇T (λ− λH)‖A,TH ≤ ‖∇T (λ− πH,`λ)‖A,TH .

Proof. Consider µH ∈ ΛH,` with 〈λ− µH , v0〉∂TH = 0 for all v0 ∈ ΛH . We have

‖∇T (λ− λH)‖2
A,TH = (A∇T (λ− λH),∇T (λ− λH))TH

= 〈λ− λH , T (λ− λH)〉∂TH .(5.9)

Then, using the first equations of (5.3) and (5.5), we observe that

〈µH , T (λ− λH)〉∂TH = 0,

so that, from (5.9), it holds

‖∇T (λ− λH)‖2
A,TH = 〈λ− µH , T (λ− λH)〉∂TH = (A∇T (λ− µH),∇T (λ− λH))TH .

Next, from the Cauchy-Schwartz inequality, we get

‖∇T (λ− λH)‖A,TH ≤ ‖∇T (λ− µH)‖A,TH ,

and (5.7) follows. Then, (5.8) follows from (4.5). �

We are now ready to establish the main result of this section.

Theorem 5.2 (Error estimate). Let 0 ≤ q ≤ `, and ` ≥ 0, and assume that u ∈ Hq+3(PΩ).
Then, we have

(5.10) ‖∇(u− uH)‖TH ≤

CPΩ,TH,q

√
amax

amin

(
CA,MH ,qH

`+ 1

)q+3/2 (
H−1/2‖u‖Hq+2(PΩ) +H1/2‖u‖Hq+3(PΩ)

)
.

Proof. We have

‖∇T (λ− λH)‖TH ≤ a
−1/2
min ‖∇T (λ− λH)‖A,TH ≤ a

−1/2
min ‖∇T (λ− πH,`λ)‖A,TH ,
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and

‖∇T (λ− πH,`λ)‖2
A,TH = 〈λ− πH,`λ, T (λ− πH,`λ)〉∂TH

≤ ‖λ− πH,`λ‖Λ‖∇T (λ− πH,`λ)‖TH
≤ a1/2

max‖λ− πH,`λ‖Λ‖∇T (λ− πH,`λ)‖A,TH ,
so that

‖∇T (λ− λH)‖TH ≤
√
amax

amin

‖λ− πH,`λ‖Λ.

Hence, (5.10) follows from (4.4). �

Remark 5.3 (Super-convergence). Under local regularity assumptions for the exact solu-
tion in the physical partition of Ω, the error estimate in Theorem 5.2 indicates that the
MHM method achieves superconvergence when the skeleton diameter of the mesh H tends
to zero with an additional O(H1/2) convergence rate. Furthermore, the estimate (5.10)
establishes that the MHM method provides optimally convergent solutions with respect to
the degree of polynomial interpolation ` on the faces. These are novel results that are sup-
ported by numerical evidence presented in previous works. We also recover the (optimal)
convergence classically found when H, the diameter of the TH partition, vanishes. This
is demonstrated by assuming the exact solution is locally regular on the physical partition,
which is also new.

6. Numerical examples

In this section, we illustrate the error estimate proved in Theorem 5.2. For this, we define
the domain Ω = (0, 1)2, and propose two benchmarks: First, we exhibit the convergence
rates in (5.10) with respect to the parametersH and ` assuming the exact solution is known.
Then, we consider a case of discontinuous coefficient for A. We highlight the influence of
the crossover interface when it coincides (or not) with an edge degree of freedom belonging
to the partition skeleton. In addition, we check the accuracy of the method in relation
to the contrast of coefficients in A. It is worth mentioning that local problems are solved
with sufficient precision so that they do not influence the error estimates.

6.1. Assessing convergence. Consider the problem (5.1) with A the identity matrix
and define f(x) = 8 π2 sin(2π x1) sin(2 π x2) such that the exact solution for (5.1) is
u(x) = sin(2 π x1) sin(2 π x2) for all x ∈ Ω.

We approximate u by uH calculated on a criss-cross mesh TH composed of 16 rectangular
triangles. Each edge of the skeleton meshMH is sequentially divided into two equal parts to
define the family of approximation spaces {ΛH,`(∂TH)}H,`>0, for H = H, 1

2
H, . . . , 1

32
H, and

for ` = 0, 1, 2, 3. We depict in Figure 1 and Figure 2 the corresponding associated errors.
From Figure 1 notice that we retrieve the super-convergence predicted in Theorem 5.2 with
respect to the diameter of the skeleton mesh H. In Figure 2, we observe an exponential
decay as the polynomial degree ` is increased. Since here the solution is analytic, this decay
corresponds to the estimate (5.10) from Theorem 5.2 under the additional assumption that
the constants depending on q in the estimate do not grow too fast as q increases. Notice
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that since we are not able to control the growth of these aforementioned constant in terms
of q, our estimate only ensures super-algebraic convergence rates for C∞ functions. More
work would be required to establish exponential convergence for analytic solutions.

0.015625 0.03125 0.0625 0.125 0.25 0.5
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

Figure 1. Convergence rates as a function of H for four options of `. A
triangular mesh of diameter H = 1

2
is used.

0 1 2 3 4
10

-8

10
-6

10
-4

10
-2

10
0

10
2

Figure 2. Convergence rates as a function of ` for three types of refinements
in MH (here c = 4).
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6.2. Assessing robustness. We now consider problem (5.1) with f = 1 in Ω andA = a I,
where a : Ω→ R is defined by

(6.1) a(x) =

{
a?, for x ∈ (0, 1)×

(
0, 1

2

)
1, for x ∈ (0, 1)×

(
1
2
, 1
) ,

and I is the identity matrix, and a? ∈ R+. Since no closed formula is available for the exact
solution, we consider a reference solution (still denoted by u) calculated from the standard
Galerkin method on the space of continuous piecewise linear functions using a fine mesh
with 1,048,576 squares that fits in the physical partition PΩ.

We denote by T 0
H the cross-mesh composed of 16 rectangular triangles with edges aligned

on the jump interface. We define a family of partitions {T δH}δ>0 built of a perturbation of
T 0
H, where δ is the parameter that measures the gap between the skeleton mesh Mδ

H and
the physical partition PΩ. We propose three scenarios for the mesh TH, labeled S0, S1 and
S2 and depicted in Figure 3. In the configuration S0, the mesh TH = T 0

H and then the
edges ofM0

H fit PΩ. As for S1, the mesh TH is such that the edges inMH are not aligned
with the physical interface. In the last configuration S2, the edges in MH don’t fit in PΩ

again, but the physical interface cuts the edges where there is a degree of freedom.

Figure 3. Description of three mesh settings. The black dots represent the
boundaries of each edge E ∈MH .

We studied the robustness of the MHM method in relation to δ measuring the approxi-
mation error of scenarios S0, S1 and S2. Here, we set ` = 2 and a? = 10, and the results
are summarized in Figure 4. We observe that the error blows up when the edges are not
aligned with the interface of the jump coefficient in the configuration S1. This drawback
is fully overcome by using the S2 setting, which turns out to be equivalent to the case
where the coarse mesh has aligned edges (S0 setting). It is also interesting to note that
the error is much larger in the S1 scenario than in the S2 one, although it decreases in the
S1 scenario when the value of δ approaches zero. The error in the S2 scenario remains low
and insensitive to the value of δ, from which we conclude that the MHM method works on
meshes with small edges.
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0.0079 0.0161 0.0333 0.0714 0.1667

2.601  10
-3

5.220  10
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6.935  10
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7.685  10
-3

8.443  10
-3

1.358  10
-2

Figure 4. Comparison between errors in settings S1 and S2 when δ varies,
and the error in the S0 scenario. Here ` = 2 and a? = 10.

We illustrate the elevation of uH in Figure 5 within the different scenarios S0, S1 and S2.
We see that the spurious oscillation plagues the numerical solution in the configuration S1,
which is corrected by taking MH such that each face in MH belong to a single physical
subdomain (setting S2).

Figure 5. Elevation of uH using the setting S0 (left), S1 (middle) and S2

(right). Here δ = 1
6
.

We also measure the error associated with the contrast amax

amin
= a? when changing the value

of a?. We use the S0 and S2 settings since the S1 scenario is not covered by Theorem 5.2.
The results are summarized in Figure 6. This shows that the MHM method is less sensitive
to the contrast a? than estimated by the theory, and so (5.10) might be not sharp about
the influence of contrast on error. This aspect deserves further investigation.
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Figure 6. Comparison between the approximation error of the settings S0

and S2 with respect to contrast a?, and the theoretical rate in (5.10) given

by
√

amax

amin
=
√
a?.

7. Conclusion

We proposed a strategy to approximate fluxes in partitions not aligned with physical
interfaces. Under local regularity assumptions, the theoretical result showed that the ap-
proach provides approximate fluxes with optimal convergence rates driven by exact solution
regularity in physical regions. In other words, we replace the restrictive assumption about
the regularity of the exact solution in each mesh element with the regularity of the solu-
tion in physical regions. In addition, we highlight the dependence of the constant on the
polynomial degree used to approximate the exact fluxes.

We leverage these findings to improve the convergence results for the MHM method ap-
plied to the Poisson problem. We mainly prove that the MHM method is super-convergent
on non-aligned meshes, assuming exact solution regularity only in the physical partition.
Such mathematical analysis supports the numerical evidence originally anticipated in [13].
It is worth mentioning that the results can be easily extended to MHM methods applied
to other operators such as the linear elasticity model or the reactive-advective-diffusive
equation, for example. Furthermore, the discrete flux can be exploited in other flux-based
numerical methods or domain decomposition techniques and inherit from its properties.
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