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Abstract

We analyze a high order hybridizable discontinuous Galerkin (HDG) method for an optimal control problem
where the computational mesh does not necessarily fit the domain. The method is based on transferring the
boundary data to the computational boundary by integrating the approximation of the gradient. We prove
optimal order of convergence in the L?-norm for all the variables of the state and adjoint problems, and the
control variable as well. More precisely, order R* ! if the local discrete spaces are constructed using polynomials of
degree at most k on a triangulation of meshsize h. We present numerical experiments illustrating the performance
of method.
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1 Introduction

Most of the numerical method for partial differential equations (PDEs) rely on a polyhedral partition of the domain
of interest 2. In applications where the boundary of the domain is not piecewise linear, a special treatment must be
employed to represent, or approximate, {2 by the union of the elements of the partition and obtain an approximation
of the solution of the PDE with certain degree of accuracy. In this direction, it is possible to identify two different
approaches: fitted and unfitted methods. For a review we refer the reader to the introduction section in [18, 53].
Roughly speaking, in the former, the partition needs to adjusted to the boundary of Q in such a way that the
geometric error does not dominate the error of the Galerkin approximation, as it is in the case of isoparametric
finite elements, for instance. This type of methods are not practical for complex geometries or domains evolving in
time when high order methods are employed, since it might involve computing nonlinear mappings and consider a
remeshing procedure on each time step. As an alternative, unfitted methods do not require the partition to “fit”
the boundary of the domain, as it is in the case of immerse methods. The downside is that the geometric error in
unfitted methods dominates the error when using high order Galerkin approximations.

To overcome that limitation, that is, being able to obtain high order accurate approximations and use partitions
of the domain not fitted to it, the field has been quite active in recent years, especially by introducing boundary
correction and extrapolation techniques, as in the shifted boundary method [37] and in the cut finite element method
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[7], among others. In addition, high-order hybrid (HHO) methods have been developed on curved meshes [3] and
in polygonal unfitted meshes [6]. This work focuses on the transfer path method developed by [22] and analyzed in
[18] in the context of hybridizable discontinuous Galerkin (HDG) methods. The main idea is to transfer the data
from the curved boundary to the computational boundary through integration paths, while maintaining the high
order of convergence.

During the past and present decade, hybridizable discontinuous Galerkin (HDG) methods have been extensively
developed for different types of partial differential equations. For polyhedral domains, we can mention its devel-
opment in diffusion equations [14, 16, 17, 31], convection-difussion equations [15, 26, 42], the wave equation [19],
Stokes flow [9, 20, 27, 38], Oseen and Brinkman equations [1, 10, 28], Navier-Stokes equations [11, 41, 47], linear
and nonlinear elasticity [21, 40, 55], distributed optimal control problem [12, 59], just to name a few. In addition,
as mentioned before, an unfitted HDG method by employing the transfer path technique was introduced in the
context of linear elliptic equations in [22], subsequently completing its theoretical development in [18]. It has been
also used for solving equations, as for instance, Stokes flow [53], Oseen equations [54], the Helmholtz equation [8],
convection diffusion equations [23], the Grad-Shafranov equation [49, 50], among others. Even though this transfer
path method was originally developed for HDG schemes, it can be also applied to any mixed method, as long as the
gradient of the primal variable is one of the unknowns [44, 45]. Moreover, it has been successfully used in interface
problems where the computational interface does not match the actual interface [38, 46, 52].

On the other hand, optimal control problems governed by PDEs have numerous applications in science and
engineering, such as aerodynamics [43, 51], medicine [2, 32], and mathematical finance [4, 25], among others. These
types of problems have been extensively studied with finite element methods [13, 29, 30, 35, 36] and discontinuous
Galerkin methods [33, 34, 57, 58]. In this paper we extend the work done in [59], proposing an HDG method to
solve this optimal control problem in curved domains by employing the transferring path technique. More precisely,
let 2 be a Lipschitz domain in R? with d € {2,3} and boundary T' := 9 piece-wise C2. Given a source term
f € L*(Q), a target § € L*(Q) and g € H3/?(T"), we want to minimize the functional

T ) = gy ) — 3l + o eI (1)

subject to
-V -(aVy") = f+u" in 2, (1.2a)
v =y onl, (1.2b)

where y* := y*(u*), Y := {w € H'(Q), w = gonT}, U = L?(Q), a > 0 and a > 0 are given diffusion and
regularization parameters, respectively. We set

(y,u) = argmin J(y*, u"). (1.3)

Now, given a control u* € L?(f2), the weak formulation associated to the state equation (1.2) seeks y*(u*) € Y such
that
(aVy*,Vw)a = (f +u",w)a Yw e Hy(Q). (1.4)

A straightforward application of the Lax-Milgram Theorem provides existence and uniqueness of y* € H(Q).
Moreover, according to [39, Section 4.1.2], there exists a unique optimal control u € L?(2) of (1.2), and therefore
y = y(u) € H'(Q) is also unique. In order to characterize u, we make use of the adjoint state equation. More
precisely, the state y and the control u solve the optimal control problem (1.2) if and only if there exists (y,u, z) €
Y x L?(Q) x H}(Q) satisfying

(aVy,Vwi)g = (f +u,w1)g  Yw € HY(Q), (1.5a)
(aVz,Vwa)ag = (¥ — y,w2)a Ywy € Hy(Q), (1.5b)
(du—z,1)0 =0 Vre L3(Q). (1.5¢)



Since W C L%(Q), from (1.5¢) we have that u = Sz € H}(Q) with 8 := a~!. Therefore, the problem reduces
to find (y,2) € Y x H}(Q) such that

(aVy,Vuwi)a = (f + Bz,w1)a Yw € Hy (), (1.6a)
(aVz,Vws)g = (¥ — y,w2)a Ywq € H&(Q) (1.6b)

The rest of the paper is organized as follows. In Section 2, we will specify admissibility conditions on the family
of computational domain, introduce the transferring patch technique and set some notation. We will also provide
assumptions on the distance between I' and the computational boundary I',. The HDG scheme is presented in
Section 3 and its well-posedness is proved. Subsequently, in Section 4 we provide the a priori error estimates of the
method and present numerical experiments in Section 5. We end with concluding remarks in Section 6.

2 Preliminaries

In this section we introduce notation associated to the computational domain and to the family of paths that will
allow us to transfer the boundary data from I' to the computational boundary I';,. To that end, we will consider
the setting specified in [48] and establish a set of assumptions under which our analysis holds.

Admissible triangulations. Given a domain €2 and a discretization parameter h > 0, we denote by 2 an open
polygonal /polyhedral computational domain, with boundary Ty, triangulated by a simplicial mesh 7, of meshsize
h. For a simplex K, we denote its outward unit normal by ng, writing n instead of ng when there is no confusion.
Similarly, for a facet e, we write n instead of n. to refer to its normal vector. We also consider, by simplicity, that
the triangulation does not have hanging nodes. The set of facets and boundary facets of 7; are denoted by &
and €9, respectively. The set Qf := Q\ Qj, refers to the non-meshed region. We say the family {(Qp,77)}nso0 is
admissible if each member (Qp, Ty,) satisfies the following conditions:

(a) Qp, C

(b) Ty is uniformly shape-regular, that is, there exists v > 0, independent of h, such that hx < vpx, where px
is the radius of the largest ball contained in K and hx < h is the diameter of K

(c) there exists bijective a mapping ¢ : 'y, — T

(d) for every K € Tj, such that K NT'), # @, it holds that max{dist(z,Z) : x € KNIy and T € '} = O(hk).
Moreover,
(e) for every € > 0 there exists a pair (2p, Tp,) such that A(Q\ Q) < €, where A(-) denotes the Lebesgue measure.

Let us briefly comment on these conditions. In the event that condition (a) is not fulfilled, i.e., if Qp is not
completely contained in 2, the boundary data should be transferred from 9(£2; \ ©) to I" and the numerical scheme
does not change. The analysis presented in this manuscript can be modified to dealt with the latter situations, but
assuming the PDE is still valid outside Q. In turn, the role of condition (c) arises from the development of the
analysis, but it is not necessary for the computational implementation. On the other hand, by requiring condition
(d), we are limiting the minimum size that an element with a facet on the boundary could reach, with respect to
the distance between I';, and T'.



Transferring paths and polynomial extrapolation. Since the problem will be solved in 2, we must specify
a suitable boundary data on the computational boundary I',. To this end, we consider the idea proposed by [18]
and transfer the boundary data g from I' to I'j, through transferring paths. More precisely, let e € 82. For each
x € e, we define I(z) = |¢(x) — x| and denote by t(x) the unit tangent vector to the segment joining x and
¢(x). We notice that, for an admissible triangulation, I(x) < C'h with C' > 0 independent of h. A line integration
over this this segment, will allow us to transfer the boundary data. In fact, if a given function g, is the trace of a
function v and q := —Vwv, there holds

I(x)
go(@) = g0(8(x)) + / g-t((s)) ds, (2.1)

with z(s) = (¢p(x) — x)s/l(x) + x, s € [0,l(x)]. Now, at the discrete level, a polynomial approximation g, of
g will be available only inside €2;,. Hence, we will extrapolate g; to the segment [z, ¢(x)] in order to compute the
above integral. This is why we define the extension patch as

K ={x +st(x) : 0 < s <l(x), zce}.
Since ¢ is a bijection, we observe that € = U.cgo K¢,y

On the other hand, a bijection ¢ can be constructed in several ways. For instance, a particular construction in
two dimensions can be found in [22]. Tt is also possible to use the closest point projection as long it is unique. We
further suppose that

tix) =n forall xee.

This assumption makes possible to present a simpler analysis. If this does not hold true, we can decompose t as
the sum of its normal and tangential components, and the estimates that we will obtain remain valid as long as the
magnitude of the latter is sufficiently small.

We denote H' as the largest distance of a point in K¢, to the plane determined by e and ht as the distance

between e and the vertex of K¢ opposite to e. We set 7. = H- /ht and denote

R = maxr,, R, := maxr, 761/2.
ecé? ecé?

Now, given a polynomial g defined on a boundary element K¢ € T such that e = K¢ N T}, E(p) denotes its

extrapolation to K¢,,. In this direction, it is also useful to introduce the function

I(x)
AP(z) = 17" (x) /o (p(z) — E(p)(z(s))) -nds (2.2)

because it will allow us to quantify the extrapolation error on a transferring segment. It satisfies [18, section 2.3],

1
1172 AP| el < ETS’/Q Céri Cipo Pk, VP € [Pr(K)]?, (2.3a)
1
1172 AP [k e < Velk |he OnplKe,  Vpe[H' (Ki), (2.3b)
where
1 “MNel||Ke “Ne| ke
Céppi=——= 5 7”96 ., and Cf,, = hj‘ sup 7”VX mellx ,
VTe xeve X el ke xeve I mellke
with

Vi = {p € Pu(K{H UK p-n. #0}.
The constants C¢,, and Cf

¢ are indeed independent of h, but they depend on the shape regularity constant and
on the polynomial degree k [18].



Smallness assumptions. We state a set of assumption quantifying how close I" and I'y, must be in order to
ensure well-posedness and optimal convergence of the method. Let ¢ = a~'. For every facet of 82, we suppose hat

() (143 ) 2 (Ce €57 < 18 (A3) . < C,
(A4) 2max c7l(x) < 1/4.
(A2) reTht < 1/4, z€e

Let us comment on the feasibility of these assumptions. Let R < Cgrh°, for some Cr and 6 non-negative
constants independent of h. For instance, if  is polygonal/polyhedral and coincides with €, then Cr = 0 and
all the assumptions hold true. On the other hand, if I'j, is a piece-wise linear interpolation of I', then C'z > 0 and
0 = 1 and the assumptions are valid for A small enough and 7 of proportional to one. In a more general case,
) would be embedded in a background triangulation and €2 is constructed by the union of the elements lying
completely inside of Q. In this latter case, Cr > 0 and 6 = 0. We observe (A.2) - (A.4) are still true, whereas the
first one cannot be guaranteed. However, the numerical experiments suggest that the method is still optimal.

Sobolev space notation, mesh dependent inner-products and norms. In this paper we will make use of
the usual notations for Sobolev spaces, i.e., given a domain D in R™ and S a Lipschitz curve (d = 2) or surface
(d = 3), let s be a nonzero real number, we denote H*(D) and H*(S) by the usual definition of Sobolev spaces.
The corresponding norms are denoted by || - ||s,p and | - ||s,s, whereas the seminorm is denoted by |- |s.p. If s =0,
we just write || - ||p and || - ||s as usual. The spaces for vector valued functions will be boldfaced, for instance,
H*(D) := [H*(D)]* and H*(S) := [H*(S)]".

For each scalar-valued function n and ¢, we define
M7 = >, Ok and  (n,C)or, == Y (0,C)ox -
KeTh KeTh
Vector-valued functions are boldfaced and, for n and ¢, we write

d

d
(U»C)Th = Z(an)Th and <777C>6Th = Z<7713C1>37-h .
i=1

i=1

These inner products defined on the mesh induce the norms

1/2 1/2
-l = (Z I-II%> o, = (Z II-?)K> coand Hle, = [ DD I

KeTyn KeTn ece?d

1/2

1/2 1/2

In addition, for w > 0, we write |nllo7, w = [[w/=nllo, and |Inllr,w = [lw/Zn|r,. Finally, to avoid
proliferation of constants, we will write A < B instead of A < C B, where C' is a constant independent of h.

3 HDG formulation

In order to present the HDG scheme, we state the strong mixed formulation of the equation posed in the compu-
tational subdomain 25, which is given by

cp+Vy=0 in Qp, (3.1a) cr +Vz=0 in Qp, (3.1d)
Vp—pz=Ff in Qp, (3.1b) Vr+y=y in Qp,, (3.1e)
Y = @1 on Ty, (3.1c) zZ = g on T}y, (3.1f)



where @1 and @9 can be obtained by integrating (3.1a) and (3.1d) along the transferring paths. More precisely, for
any x € e, e € &Y and T € 09, we deduce that (cf. (2.1))

I(z) I(x)
p1(x) = g(&) + /0 cp-t(x(s))ds and @a(x) = /0 cr-t(xz(s))ds,

where z(s) = (T — x)s/l(x) + x, s € [0,(x)]. The HDG method seeks an approximation (pn, Yn, Yn:Ths Zhs 21)

of the exact solution (p,y, y‘eh’,r,z, z‘gh) in the space Vi, x Wy, x My, x Vi, x Wy, x M}, defined by
Vi = {v e [T : o, € P(F)Y, VE €T}, (3.20)
Wi = {we L*(Th) : w|, €Pu(K), VK € Th}, (3.2b)
My, = {p € L*(&) : ufe €Pyle), Vee &y} . (3.2¢)

such that

(cpnv1)7 = (Wn V- v1)7, + (Uhsv1-m)or, =0, (3.3a)
— (pn, Vwi)7, = (Bzn, w1)7, + (Ph -y wr)or, = (f,wi)7, (3.3b)
(crp,vo)7, — (21, V - v2)7, + (Zh,v2 -m)a7, = 0, (3.3¢)
= (rn, Vwa) 7, + (yn, w2) 75, + (T - nyw2)or, = (U w2) 7, » (3.3d)
(Pr -, p1)or\r, = 0, (3.3¢)
(Th - m, p2)orir,, =0, (3.3f)
(Gns e, = {21 1), s (3.3g)
(Zns p2)ry = (b, p2)r), (3.3h)

for all (vq,wy, p1,v2,wa, t2) € Vi X Wi, x My, X Vi, x Wy, x My,. Here,
Pr=pn+ 7Wn — Un)m and rh=7n+ 7(2n — Zn)m, (3.31)

T is a non-negative stabilization parameter and, for « € S,‘? ,

I(x) ()
A= g@ + [ B tal)ds  ad  Ghe) = [ B te)ds  (33)
0 0
are approximations to o (x) and ps(x), resp.

We now analyze existence and uniqueness of this HDG formulation by making use of Fredholm alternative. For
convenience in the notation, we define

E = a7, + e rallT, + allr (yn = )lids + 177 (20 = Z0)ll37, (3-4)

Ey = allePUV2QNR, + e P2 ORI, (3:5)

In other words, E/ quantifies the energy of the HDG solution in the computational domain €2;,, whereas E, is related
to the approximation of the boundary data.

Lemma 3.1. The HDG scheme (3.3) is wellposed.



Proof. Lety = 0, f = 0and g = 0. Testing (3.3) with v1 = pp, w1 = yn, v2 = 7 and wy = z,; and integrating
by parts in the second and fourth equations,

1/2

' pull% — Wn YV pr)7 + GhoPr-M)or, = 0,

(V'phmyh)'rh - <ph 'n7yh>67—h - B(Zh;yh)Th + <ﬁh 'n7yh>8Th = 07

YV2rul3 = (20, Vorh) 7 + (Bnarhm)ar, = 0,

e
(Voern,zn)7 — (rnmszn)or, + (Uns2n)7 + (Ph-m,zn)ar, = 0.

Adding the first and second equations, and the third and fourth one as well,

"2 pull% + (Bn -1 — pr-myn)or, — B (2, yn)7 + (GhePr o7, = 0,
[ 2 rp|% + (Fo-m — rhonzn)or, + Wne2n)T + GhyThom)ar, = 0.

Then, by (3.31) we deduce that
1 2 pull% + 172 (yn — Tn) |37, + Br - Tn)or — B (zhoyn)T = 0,
2 rnll3 + 172 (zn = 20)|37, + (P -1 Zn)om + (zhoyn)7 = 0,
Multiplying by « the first equation, adding both equations and recalling the definition in (3.4),
E + a(py-n,Yn)or, + (Pn-n,Zn)a, = 0. (3.6)
Moreover, by equations (3.3e) and (3.3g), it follows that
(P, Gn)or, = & (Ph M Un)oTirs + & Pn 1 Un)r, = @ (Pn -1, 0n)r, = a(Pn-n,¢})r, .
Similarly, by equations (3.3f) and (3.3h), it follows that (7}, - n,Z3)a7, = (F - n, %), , and we write (3.6) as
E + a(pn-n,¢h)r, + (Fn-n,¢)r, = 0. (3.7)

In turn, we can add ans subtract py(x) - n in the first expression of (3.3j) to write

() ()
@ = [ @@ mee)ds = [ e BEe)ee) - p@)]-nds+ o) -ni@).
Then, py(z) -n = c LI~ (x) pf(x) + AP*(x), where we recall the definition of AP*(z) in (2.2).
Thus, considering this identity in the first equation of (3.31), we obtain that
> g Yy q s
<ﬁh -n, SD?>Fh = <ph 'n, SO?>F}L + <T (yh - :I/\h)ﬂ 90}11>Fh
= <C_l l_l(m) @?7 90}1L>Fh, + <Aph7(:0}1L>Fh, + <T(yh - /y\h)v <»0’11>Fh
= R R QMR+ (RN TR G e+ (T (yn — Th)s o)T -
Similarly, the same arguments but now applied to @Q(w) in the second expression of (3.3j) yield to
rp(x) -n = c 17 (x) ph(x) + A (x) and also to
<’Fh7 SDSL>F)’1 = ”0_1/2 1_1/2 90}21”121 + <cl/2 11/2 Arh7c_1/2 l_1/2 (pg>f‘h, + <T(Zh - /z\h)a 903>Fh .

Therefore, by considering the identities obtained for (7}, ©%)r, and (7}, %), , and recalling the definition (3.5),
we rewrite (3.6) as

E+ By = — a(c /212 APr V2172000 — a2 (yp — gn) e R 2 oy,

_ <Cl/2 ll/2 Arh7C_1/2 l_1/2 Q0’21>Fh, . <Cl/2 l1/2 T(Zh o :Z\h)7C_1/2 Z_1/2 90’21>I‘h,- (38)



We now proceed to bound the right-hand side. To that end, we consider Young’s inequality to obtain

—a (PPN TR (PP T (g — ), R 2 o,
e Y [0 _ _
< 2aePIMEAPE 4 0 72 (yn — Gn) IR, + 1 e /272 o2

where we have considered Assumption (A.4). Similarly, we can deduce that

_ (cl/2 V2 AT 1212 903>Fh _ <c1/2 112, (2n — Eh),c_l/Q 1172 ¢§>Fh
1 - 1., _ _
< 2N, 4 Y (= B, + g TR G,

Substituting these inequalities in (3.8) we obtain that
1

5 (B +E,) < 2a||c2IMEAP R 4 2RI EATR (3.9)
Then, according to (2.3) and Assumption (A.1), we obtain that E + E, < 0, which implies that p, = 0, r, = 0,
o =0, o =0, yh|a7’h = gh|a7'h’ zh’m_h = /Z\h’c’iTh' Moreover, by considering this information in (3.3a) and

(3.3c), we have that
—(yn, V-v1)7, + (Yn,v1-n)or, =0 Vv €V,
— (Zh,v . ’Ug)Th + <Zh,’l.72 -’n,>a7*h =0 Vv eV,.

Integrating by parts, it follows that (Vyp,v1)7, = Vv € Vi, and (Vzp,v2)7, = 0Vvy € V. Hence, yp, and z,
are constants but they must be zero by (3.3¢g) and (3.3h). O

4 FError analysis.

As it is usual in the error analysis of this types of methods, we first decompose the error as the sum of the error of
the projection and the projection error. The latter will be controlled by the properties in Section 4.1, while for the
former we will employ an energy argument (Section 4.2) for the mixed variables and a duality argument (Section
4.3) for the primal variables.

4.1 HDG projection.

We consider the HDG projection introduced in [16], which is a projection into the product space V3, x Wp,. Given
(q,v) € V}, x Wp, it is defined by I, (q,v) := (IIyq,wv), where (IIy g, IIyyv) is the only element satisfying, for
all K € Tp,

(Mvq,s)k = (q,8)k Vs € [Pr_1(K)" (4.1a)
(HWv,t)K = (’U,t)K Vte ]P)k_l(K), (41b)
Myqg-n + 7Iwv,u)e = (g-n + 7o, 1), VuePyle), Ve COK. (4.1¢)

This projection is well-defined (cf. [16]). Moreover, if ¢ € H'*1(K) and v € H'TY(K), with [ € [0, k],

ITvg — gllx < PR gl + PR T ol (4.2a)
+1

Mo — vllx < AR vl + Tfﬁ V- qlivix (4.2b)
K



where 772%* is the maximum value in 0K and 7% is the second maximum value.

In the computational boundary I'y, and in the extrapolation region Q2f = U, ¢ EQK ¢ 1, the HDG projection satisfies

ext’
(cf. [18, Lemma 3.8)]),
[(Myq — q) “nllp, nr S Rt lali+1.0 + pEt Tvir1,0, (4.3a)
[0n((IIyvg — q) - n)[las (nt): < RY2||Ivq| 7 + (1 + R1/2) R gl (4.3b)

In addition, we will make use of the classical L? projection into Mj, denoted by Py;. On each K € 7T}, it satisfies
(cf. [24, Lemma 1.58 and Lemma 1.59]), for v € H'*1(K),

|’U — P]\/[U|m’[( 5 hH_l_m |'U|l+1,K Vm € {0, ey k}7 (44&)
lv = Puollor S B2 0l g - (4.4b)

4.2 Energy argument.

We introduce notation associated to the error, the projection of the error and the projection error, respectively:

eP = P — DPhn , eV = Y — Yn ) eV = Yy — /y\h ) (45&)
sf: =Iyp — pn EZ =lwy —yn Eg = Pyy — Y, (4-5b)
Ivp=p-Typ , Iyy=y - Uyy . (4.5¢)

In the same way we define e”, e?, €7, €}, €7, {—:i, Iyr and Iy z.
In order to shorten notation, we define £ = &, , + &, , that takes into account the error associated to the

mixed variables and the error corresponding to the stabilization term; and &, := &, + &,, that measures the
error in the approximation of the boundary data. More precisely,

Epy = alld? LB, + allr? (€ —eDl3n, 462) .= (2R, + 172 (6~ Dldn.  (460)
Eor = all™ 212 (1~ SR, (46D)  Ep = 202 (00— SR, (4.6d)

First of all, it is not difficult to deduce (cf. [16, 59]) that the projection of the errors satisfies the same equations
as the HDG scheme (3.3), but with different right-hand sides. That is,

(ceP vi)7 — (e],V-v1)7,, + <5'7,Z,v1 ‘nYor, = — (cIyp,v1)7T, , (4.7a)
— (8, V)7, — (Bej,wi)7 + () m,wi)on, = (Blwz,w)7, (4.7b)
(cel, vo)7s — (€5, V -wo)7, + (5,02 -n)o7, = — (cIyr,v2)7, , (4.7¢)
—(eh, Vwa)7,, + (), wa)73, + (€F, - My wa)or, = — (Twy, wa)7; (4.7d)
<€g-n7u1>37—h\ph =0, (4.7¢)

<€Z'”7M2>an\rh =0, (4.7f)

(efs madr,, = (o1 — b, m)r, (4.7g)

(ks n2)ry = (02— ¥5, pa)r, (4.7h)



V(’Ul, w1, W1, V2, Wa, /Jz) € Vi, x Wy x Mp x Vi, x Wy, x My, , with

P n=eP.on (-2, (4.8)

e m=c¢eb-n+71(—ci). (4.9)

By mimicking the steps in the proof of Lemma 3.1, i.e, considering specific test functions, adding the equations and
performing algebraic manipulations, it is possible to deduce the identities in the following lemma.

Lemma 4.1. There holds

&+ a <51}: "N, P1 — SD}1L>Fh, + <€Z "N, P2 — 30121>Fh, = -« (CIva sfl)Th + (IWZ,E?}JL)Th
- (CIVT7€Z)Th - (IWy7€}ZL)Th : (410)
Moreover, on I'y, we have that
el om=c T (pr — ) + ATVP 4 AR — Iyp-n, (4.11a)
eron = c U (g —h) + AIVT 4 AR — Tyr-n, (4.11b)

where we recall the definition of AP in (2.2).
Corollary 4.1.1. There exists a positive constant C, independent of h such that

£+ & < C(aTpy + Tr: + alle 7 + lleil7 )
where, for (q,v) € {(p.y), (r,2)},

Tqw = [vall7, + [Iwol7, + RIvalE, 4o + B2 [0n(Iva - n)llge ey (4.12)
Proof. We have from (4.8) that
<€£ ‘N, Y1 — <P]11>F;L = <€€ n, 1 — 90?>Fh + <T (E;Jz - 6%)7 Y1 — 90}11>Fh ’

and by (4.11a)

(€l m, o1 — o, =[P (o1 — IR, + (ATVP(2),01 — @), + (A% (2),01 — 1)1,
— (Iyp - m, 01— M, + (T (el —el), 01— or, -

Similarly, by (4.9) and (4.11b),
(€ -m 02 = @h)r,, =l V2UT 2 (@2 = @B)IIE, + (AT (@), 02 — @B)r, + (A% (2), 02 — ©B)r,
— Iy -n,02 — @h)r, + (T (e}, — i), 02 — ¥3)1, -
Then, replacing both expression in in the identity obtained in Lemma 4.1, we have that
E+ & = —alclvp.ef)n, + (Iwzel)7, — (clvr.eh)n — (Iwy,ei)n — a (AP o1 —¢f)p,

. _
— a (A% 1 — M, + allyp-n, 01 — @, — alr (el —el) o1 — @, — (AVT 09 — oM)p,

- <A€h'7<p2 - (pg>rh + <IVT "N, Y2 — (pg>rh - <T (62 - 5%)7 P2 — <)03>Fh :
Thus, using the Cauchy—Schwarz and Young’s inequalities, and after some algebraic manipulations

3 1 1 1 1 1
2o+ 58 < 2aclivpll, + 5 Mwal, + 5 ekl + 2¢ltvrl® + Iyl + 5 I3,

Lo 1/21/2 ATvp)2 +9 1/211/2 pAlvr )2
alle £, + 2lle T, (4.13)

+2aPIASTIR, + 2acl | Typ|}, + 2allTc 22 (e — D)3,

+ 2[NS R+ 2¢l || Tyr|}, + 2|T 22 (f —ef) 1R, -

10



On the other hand, by Assumption (A.4), we note that
Y z z a m 1 z z
2alre 202 (e —eD)If, + 20T P12 (e —eRlE, < IV R - e En + 7 17 =) B -

In addition, by (2.3) and recalling that R := maxre, we have that
ee&y

1
11172 Alva%h < §R2 \l(‘)n(lvp'n)H?zg,(H)2

and

P 1 C
/212 AR, < < maxer? (Co, Ch)? IR < < lehllF
3 6655 8

where in the last step we have considered Assumption (A.1). Similar estimates can be obtained for ||I'/2 ATz

and [|c!/21'/2 A%k ||2 . From what was obtained above, applied to (4.13) and after simple algebraic operations, we
deduce the following estimate

1 1 1 1
5€+ 58 <2ac|lvplf, + 5 ITwzl5, + 2¢llvrls, + 5 IHwyll7,
20c 9 9 2¢ o 9
+ =5 B 0nllvp - n)lgg (neye + 2acRIIvplp, o + 5 B0y - n)llg; (he)2

1 1.
+ 2eRITvrl, e+ 5 LG + 5 i3,

and the result follows. O

In the previous result, we see that the error estimates for e? and e” depend of ¢}, and ¢}. In order to bound
the latter, we employ a duality argument as detail in the next section.

4.3 Duality argument.

Consider the following dual system:

c®+Vy = 0 inQ, (4.14a) c®" + V¥* = 0 inQ, (4.144)
V-® + ¥° = 0O; in{, (4.14b) V- - ¥ = 0y inQ, (4.14e)
Y = 0 onl, (4.14¢) ¥?* = 0 onl. (4.14f)

To shorten notation, let © := ||O1||q + [|O2|lq. We assume that
120 + @ 20 1 [[®"Le < ©. (4.15a)

Lo+ [19°

This holds true, for instance, for convex polyhedral domains or when I' is C2. On the other hand, we observe that
(4.14) is posed on 2, whereas the HDG method seeks the solution in €. In other words, the duality argument will
involve expressions in €2, where we need to take into account the influence of the mismatch between ), and 2 in
(4.3). More precisely, we consider the following result that can be obtained similarly to the proof of [18, Lemma
5.5].

Lemma 4.2. Under the assumptions given in Section 2 and assuming that (4.15) holds true, we have

@ — Py¥|p,ney-— S hO, ¥ + clon¥|r,;-s < O,
[0n® — Pron¥r, S RhO, 19, = < ©.

Moreover, the same estimates hold for U=,

11



Lemma 4.3. We have that

alelz = alclyp. My @)y, — a(el.c(® —Iy®))y, + (%, Mwl)y + (), T)5, + S, (4.163)
||5Z||27h = (clyr,IIy®") 7, — (e},c(®" — Iy ®"))7, — (e, Uw¥*)y, — (€7, V)7, + S7, (4.16b)

where, SY = <£%<I> ‘n)r, — (e’?n,\l’)m and S* = (5%,@" ‘n)r, — (s}: -n, U, .

Proof. We consider the steps in Lemma 4.6 of [59] adapted to our context.

Let, in (4.14b), ©1 = ae] in Q4 and ©1 = 0in Q\ Q. By adding and subtracting convenient terms in order
to generate the error of the projection ® — ITyy® and ¥ — Il ¥, we have that that

IWVasi |7, = (4, V -y ®)7, + (], V- (2 -~y ®))7;, — (€}, clv @)y, — (7, ¢(® ~ My @),
- (EﬁaVHW\Ij)Th - (Eﬁ,V(\I’ _HW\I]))T;I, + (€Z75\Pz)7h'
Then, setting v1 = Iy ® in (4.7a) and wy = Iy ¥ in (4.7b) we obtain
IVaeh||7, = (clvp, Ty ®)7, + (e, Ty ® - n)oy, + (Blwz, 1w V), + (Bef, Mw¥)7, — (€5 -n, My W)y,

+ (6, V- (@~ Ty @), — (e, ¢(@ — Ty @))7;, — (e}, V(¥ —Tlw V)7, + (g3, BY7)7,  (4.17)

:(CIVpﬂl_‘[V(I))Th + (ﬂeZaHW\Ij)Th, - (52}376((1)_HV(I)))T}7 + (Ezvﬁlpz)'rh + 5, (418)
where

SY = (e, My ® - n)ar, — (€0 n,Mw oy, + (€, V- (@ — My ®))7, — (€7, V(¥ — Iy ¥))7, .

On the other hand, integrating by parts the above expression and using the HDG projection, particularly (4.1a)
and (4.1b), we deduce that

SV =(V — &V (My® — @) -n)or, — (€2 —eP) -0, My — Wor, + (€1, ® - n)or, — (€ -0, V)or,
= (] — el (Tly® — @) -n)oy;, — ((F —P) - n, TV — W)or, + (e, ® - n)r, — (F -m, )y,

where in the last step we have employ (4.7e¢) and and the fact that 52 is single-valued. Moreover, by (4.8) and
(4.1c),

SY = <Egv @ - n>Fh, - <€g "n, \Il>Fh, ’
which together with (4.18) implies (4.16a).
Finally, by taking ©2 = ¢} in Q5 and Oy = 0in Q\ Qp, setting vo = Iy ®” in (4.7¢) and we = Iy ¥* in

(4.7d) in (4.14e), similar arguments yield to (4.16b). O

The presence of the terms SY and S* is due to the fact that I';, does not fit I'; otherwise both would vanish by
(4.14c) and (4.14f). This is why in the following lemma we re-write S¥ and S* in order to quantify explicitly the
influence of the mismatch between I' and I',.

Lemma 4.4. We have the following decomposition: SY = 21‘7:1 SY and S* = ZZZI S7, where

12



S%L/ = <C_1 l_l (901 - (pi‘),\ll + Clan\lf>ph ) ST = <C_1 l_l (902 - 903)7\1}2 + Clan\llz>rh )

SY = (o1 — @8, 0p ¥ — Pp0p¥)r, , Si = (pa — ol 0, 0% — Py0pn ¥y, ,
Sy = (AP, O)r, §5 = (AT, W)y, ,

Sy = (Iyp-n, ¥ — Py9¥)r, , S; = (Iyr-n,¥* — Py 9%, ,

SY = — (rIwy, Py ), , St = — (rIwz, Py ¥%)p,

S¢ = (A%, W)r, S§ = (A%h, ¥%)p,

SY = —(r(cl —€}), Pu¥)r, . S = — (1 (e} — €;), Pu¥)r, .

Proof. In this proof we proceed analogously to the proof of [18, Lemma 5.4]. By (4.8) and (4.11a) we note that
ehn=¢eb-n+ T(ez—sg) = (o — ) — AlvP — Ak — Ivp-n + 7(e) —€),
then
8 = (e, @ n)r, — (¢ (1 @) = AVP - AT~ Iyp-n + (] — <)), Ur,

By (4.7g) and since ® = — ¢~ 1 V¥ in (4.14a), it follows

Y = —{p1 =@l PudaWhr, — (17 (o1 — @) = AVP — A — Iyp-n + 7 (e} — ), U)r, -
In turn, by (4.1¢), note that

(Ivp -n,¥)r, = (Iyvp-n,¥ — Py ¥, + (Ivp-n, Py¥)r,

= (Ivp-n, ¥V — Py¥)r, — (T Iwy, Pm¥)r,.

Therefore, the desired identity is obtained after a simple rearrangement of terms. On the other hand, the decom-

position for S* can be obtained analogously.

Corollary 4.4.1. There holds that
U S (Rh + 202 4 Roh) (Epy +E,)'7 ©

+ (33/2 ht/? [0n(Ivp - n)llqs (nt)2 + h||IVP'n||rh,hL> © + R, b [ Twylir, 5 ©,

where we recall the notation defined in (4.6). A similar estimate holds true for |S?|, but (v, z, p2) plays the role of

(.Y, ¢1).

Proof. We will only show the first inequality since both can be treated in the same way. First of all, by Lemmas

4.4 and 4.2, we have that

ISR PSR S51 < RAler = @tlr, -1 ©, S5 < AP, 2 0,

~

P
Ty O, ISl < [1A*]

~

Sil < hlIvp-nllr, e O, IS5 < 1PaTwyl

Ty,l2 @7

571 < llek — erllvn.22 ©-

13



On the other hand, let e be a side or face of I',. Since I(x) < h} 7., we obtain that

ISY] < max cre by — ¢, ®, S5 S Rhller = ¢tln, i1 O,
ecey
SIS nggrf/z W2 0 (Ivp - n)llag (he) © Sil S hlldvp-nlr, 5e O,
eccy
‘Sg| 5 361%)8(7—6 Te h1/2 HIVVy”Fh,hi 97 |Sg| g zrel%}(g’rg C:xt Cfnv h1/2H€§L)||7—h@)
h h

871 S maxry2re bl = vy ©-
€SCh

1/2

The result follows from the definition of (€p, + E,,) O

We are now in position to present the main results of our work. The first one controls the L2-norm of the
projection of the error associated to the scalar variables, whereas the second one provides the corresponding estimates
for the mixed variables and the boundary data.

Theorem 4.5. We have that
(1= m@w) (Valeln + leiln) SMwzlz + [Twylz + B2(R,h) (a2 Ty2 + Ty/2)
+ R W2 ([ wylle, v + w2, 5 ) (4.19a)
where
Hi(R,h) :=h + R*hY* + R, h,
Hy(R,h) :=h + R*?hY/? 4 R, h.

Moreover, if Hi(R,h) < 1, then

(€ + &) S 1+ Ha(Ro0) (a2 TH2 + TH2) + w2l + [wylr,

+ R0 (I Twylie, pe + 1 Twzllr, e ) - (4.19b)

Proof. Adding (4.16a) and (4.16b) we get

alepll, + lleil

5o=a(clyp,My®), —a(ef,c(®-My®)) . + (clyr, My d")7, — (e}, ¢ (®" — My ®"))7,
+ (€ w07, + (], 9%) 7, — (¥ 1w V)5, — (67, 9)7, + aSY + §7.
Let @5, ®} € [Pr_1(Tn)]% by (4.1a), rearranging terms and recalling the definitions in (4.2), we can deduce that
alepll, + il =alclvp, @ — @)y, — a(p—pu, (@ ~ Iy @)y, + (clyr, @ - @)7,
—(r—rp,c(@" -y ®"))7, + Iwz, Ow V)7, — (Iwy, Iw¥?)7,

+ (e, 9F —Uw¥*) 7, — (67, ¥ —Ow V)7, + aSY + 7.
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Then, by the Cauchy-Schwarz inequality, (4.1) and (4.15), we obtain
alleg 7 + leills SIvely 1@ = @ulln + 1P —pull7 [|1€ - v @[|ls, + [[Tvr|s, |27 — @7,
+ e = rull7 |27 =My 7|7, + [Iwzll7, [Dw¥ — V7, + [Twzll7 Y7,

+ 1wyl Tw®* = 97 + [Twyllz, 977 + llegllz 97 — w7

Th

+ lleillz ¥ = TMw 7, + a|SY] + [S7]

sh(Itvplin + Ikln + Ifvrlis + lieills, ) ©
+ (@ WITwzlz + 00 Mwylz + bllblis + hleillz) © + als’] + [s7].
Applying Corollary 4.4.1 and considering the fact that (1 4+ k) can be bounded above by a constant.
allelBs + i3 Sh(ITvpls + Ie8ln + Ivrls + legls ) @
+ (wzlls, + 1wl + Bl + hliiliz ) ©
+ (Rh + B20Y2 4 Reh) (Epy+ )1 ©
+ (R3/2 ht/? ||3n(IVP'n)HQ,3,(hL)2 + h ||IVP : ’n||rh,hL> © + R, ht/? ||IWZUHFh,hL ©
+ (Rh + R2RV? 4 R, h) (i + €)% 0
+ (B2 W2 on(Ivr ) lag gz + hITvr e, a0 ) © + RehV2 ||z, 40 ©.

Now, since ©1 = /aej in @, and ©1 = 0in Q\Q, and Oz = &} in Qp and Oy = 0 in 2\ Q, (cf. proof of
Lemma 4.3), and recalling the definition in (4.6), a simple rearrangement of terms implies

Valetllz + leilm sh (ITvells, + Ieflm + ITvrliz, + leiln )
+ (Iwzlm + 1wyllz + bl + hleilin ) + (Rh + B0 + Rob) Y

+ B2 32 (||0n(Ivp - n)lag gy + 10aTvr - m)llag o y2)

+ h (ITvp nllp, e+ 1 Tvr - nle,ne) + RehY? ([ Twyle, pe + 1w zle, e -

Then, by Corollary 4.1.1,
Valelz + leillz sk (Ivelln + Iivrls)
+ (Iwllg + Iwylls + Bliebliz, + Aleiln)
+ (h + Rh + R2h'? + R, h) (01/2 Ty + T2 + o'l 7 + \lfilln)
+ R¥/2pl2 <a1/2 TY? + m{g) + h <a1/2 TY? + T,E{j)

+ Ry b2 (|l Twy]

rht + w2, ne) -
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Rearranging terms, recalling the definition of H;(R,h) and taking into account that h + Rh is dominated by h,
and R? < R3/2,

(= B (R) (Valeglln + leilln) SItwlm + Iwylln + (b + B2 072 + Roh) (o2 TY2 4 T3?)

+ Re 1 ([ Twyllr, ne + [1Tw 2l 5 )
which implies (4.19a). Finally, (4.19b) follows from this estimate and Corollary 4.1.1. O

Corollary 4.5.1. Let us assume p and v in H*1(Q); and y and z in HFY(Q), with | € [0,k]. Let also T be of
order one. If Hi(R,h) < 1, then

Vally = ynl

7 ST (IPlane + Irhene + 12lane + [Wlisne) (4.20a)

7. + Iz — 2]
and
Va2 (p—pu)l7 + e/ (v —rp)ll7 AT IPlic1.0 + [Plito + [2lit1,0 + Ylite) - (4.20b)
Proof. First of all, by the definition (4.12) and the approximation properties if the HDG projection (cf. Section
, DYy pp prop proj
4.1), we have that
Tpy S B (1Pl + Wlit10)

and a similar expression is obtained for T, .. Moreover, |[Iwy|7, + [ Iwzl7, < A (lylisio + |2lie1.0). Then,
since Ho(R, h) and R, h'/? can be bounded above by a constant independent of h, (4.19a) implies

RITh rllTh S 1+1,Q 14+1,Q 1+1,Q 14+1,0Q wWYllr, ht w2, bt -
valeiln + leilln Sh* (ol + |7 + |4 + o) + [Hwyll + [[Iw ||
By a scaling argument and the properties of the HDG projection, we can show that
wyll, e+ Hwzlle, ne S A (e + |2lig,0) -
Thus, since y — yp, = €¥ + Iywy and z — z;, = €* + Iyz, (4.20a) follows. Finally, (4.20b) can deduced from
(4.19b) by considering similar arguments. O
We end this section mentioning that error estimates over the entire domain 2 con be obtained thanks to Corollary

4.5.1 and [18, Lemma 3.7] , that is,

Ip — prlle + I7 = ralle + ly — wnlle + Iz — zlle S AT

5 Numerical experiments

In this section we present numerical experiments to validate the theoretical orders of convergence of the approxi-
mation provided by the HDG method in the two-dimensional case. For all the computations we consider the spaces
specified in (3.2) with k£ € {0, 1, 2, 3} and the exact solutions y = sin(z + y) and z = exp(z + y). We fix a = 1,
a = 1and 7 = 1. We consider two different domains:

Example 1: A circular domain Q := {(z,y) € R? : 2% + y? < 0.75}.

Example 2: a kidney-shaped domain whose boundary satisfies the equation

2z 4 052 + y*] — 2 — 0.5)? — [(x + 0.5)% + 3?] +0.1 = 0.
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According to Corollary 4.5.1, the theoretical order of convergence for the L?-norm of the errors in all the
variables is k 4+ 1, as long as Assumption (A.1) - (A.4) hold true. This is what we actually observe in the numerical
experiments. More precisely, we have performed numerical simulations where I'y, is a piece-wise linear interpolation
of T by a piece-wise. In this case, the distance between I' and I'j, is of order h%, R is proportional to h and
therefore the set of assumptions is valid for h sufficiently small. The results (not reported here) showed the optimal
convergence rate predicted by Corollary 4.5.1.

On the other hand, we do report a more interesting and practical situation where the computational domain
is constructed by “embedding” € in a background mesh and considering 2; as the union of the elements lying
completely inside of 2 as depicted in Figures 1 and 2. In this setting, R is of order one and we cannot guaranty
(A.1) holds. However, as we observe in Tables 1 (Example 1) and Tables 3 (Example 2), the order of convergence
in all the variables is still £+ 1.

A N
/4 N\
/ \
/ \\
“‘ \
| |
\\\ //
N /
N
< / ¥
Figure 1: Representation of a circle domain. Figure 2: Representation of a kidney-shaped domain.

6 Conclusions

We have analyzed a high order HDG method for an optimal control problem governed by a second order elliptic
partial differential equation in a curved domain € approximated by a polygonal/polyhedral subdomain. We theo-
retically showed that, if the distance between I" and the computational boundary T, is proportional to h°+!, with
0 > 0, the method is well-posed and provides optimal order of convergence k + 1 for all the variables. This con-
vergence rate is also observed experimentally even for the case § = 0. This result is consistent with the estimates
obtained in previous works on boundary value problems. To the best of our knowledge, this is the first contribution
to control problems by using a boundary data transferring technique for unfitted computational domains. The
optimal performance of the method, validated theoretically and experimentally, constitutes a stepping stone to deal
with shape optimization problems.
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k‘ N H ey orderH ép orderH €5 order
16 ||2.04E—-02 — |845E—02 — |2.25E—02 -
96 |[1.60FE —02 0.27 ||[4.44F — 02 0.72 ||8.60E — 03 1.07
400 [[8.58E — 03 0.88 ||2.39E — 02 0.87 ||4.26E — 03 0.99

1680 ||4.75FE — 03 0.82 ||1.22F — 02 0.93 ||1.93F — 03 1.10

7000 ||2.57E — 03 0.86 ||6.27E — 03 0.94 |8.77E — 04 1.11

28504||1.33F — 03 0.94 ||3.18E — 03 0.97 ||4.21FE — 04 1.05

1| 16 |[[4.65E—-03 — |1.55E—-02 — |2.24E—-03 -
96 ||1.09E —03 1.63 ||2.56E — 03 2.01 ||[1.99E — 04 2.70
400 ||2.80E —04 1.90 ||6.53E — 04 1.92 ||5.31E — 05 1.85
1680 ||6.97E — 05 1.94 ||1.53E — 04 2.02 ||1.08E — 05 2.22
7000 ||1.68E — 05 1.99 ||3.42E — 05 2.10 ||1.15E — 06 3.14
28504||4.15E — 06 1.99 (|8.16E — 06 2.04 ||1.25E — 07 3.16

2| 16 ||259EF —-04 — ||I3.15E—-04 — |488E-05 —
96 ||3.08E£ —05 2.38 ||4.82E — 05 2.10 ||5.20E — 06 2.50
400 ||4.00E — 06 2.86 ||8.10E — 06 2.50 (|1.22E — 06 2.03
1680 |[5.156E — 07 2.86 ||[1.20E — 06 2.66 ||1.90E — 07 2.59
7000 |[5.92E — 08 3.03 ||9.85F — 08 3.50 [|9.99F — 09 4.13
28504(|7.22FE — 09 3.00 ||9.64F — 09 3.31 ||5.00E — 10 4.27

3| 16 |[1.60E—-05 — |728E—-05 — |[[1L.50E—-05 —
96 ||6.64E — 07 3.55||3.38E — 06 3.43 ||4.60E — 07 3.88
400 ||5.01E — 08 3.49 ||2.74E — 07 3.52 ||4.34EF — 08 3.32
1680 ||4.06 £ — 09 3.63 ||2.09F — 08 3.59 [|3.40E — 09 3.55
7000 ||1.42FE — 10 4.70 ||6.95F — 10 4.77 ||8.26F — 11 5.21
28504||7.02E — 12 4.28 ||2.58F — 11 4.69 ||2.24FE — 12 5.14

Table 1: History of convergence history of the error in y, p and ¥ for the circular domain €.
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