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Abstract

We introduce and analyze a new mixed variational formulation for a stationary magnetohydrody-
namic flows in porous media problem, whose governing equations are given by the steady Brinkman–
Forchheimer equations coupled with the Maxwell equations. Besides the velocity, magnetic field
and a Lagrange multiplier asssociated to the divergence-free condition of the magnetic field, a con-
venient translation of the velocity gradient and the pseudostress tensor are introduced as further
unknowns. As a consequence, we obtain a five-field Banach spaces-based mixed variational formu-
lation, where the aforementioned variables are the main unknowns of the system. The resulting
mixed scheme is then written equivalently as a fixed-point equation, so that the well-known Ba-
nach theorem, combined with classical results on nonlinear monotone operators and a sufficiently
small data assumption, are applied to prove the unique solvability of the continuous and discrete
systems. In particular, the analysis of the discrete scheme requires a quasi-uniformity assumption
on mesh. The finite element discretization involves Raviart–Thomas elements of order k ≥ 0 for
the pseudostress tensor, discontinuous piecewise polynomial elements of degree k for the velocity
and the translation of the velocity gradient, Nédélec elements of degree k for the magnetic field and
Lagrange elements of degree k + 1 for the associated Lagrange multiplier. Stability, convergence,
and optimal a priori error estimates for the associated Galerkin scheme are obtained. Numerical
tests illustrate the theoretical results.

Key words: Brinkman–Forchheimer equations, Maxwell equations, mixed finite element methods,
fixed point theory, a priori error analysis
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1 Introduction

Magnetohydrodynamics (MHD) is the study of the flow of electrically conducting fluids in the presence
of magnetic fields. The interest in the study of MHD has increased with respect to scientific and
engineering problems in recent years. In fact, the MHD applications cover a very wide range of physical
objects, from liquid metals to cosmic plasmas. Concerning to the mathematical model of MHD, it is
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based on the equations governing fluid motion in the presence of magnetic fields and the equations
governing electromagnetics fields in moving fluids. Briefly speaking, it is a coupled system where
the Navier–Stokes equations are coupled with the Maxwell equations trought the Lorentz force and
Ohm’s law. However, several physical situations require, sometimes, a modification or a simplification
of these equations in order to capture in a more realistic way the physical phenomena of interest.

As it is explained in [35], nowadays, it is common to use Darcy’s law in the modeling of the
fluid motion through a porous medium. Darcy’s empirical law represents a simple linear relationship
between the flow rate and the pressure drop in a porous medium. Nevertheless, this fundamental
equation may be inaccurate for modeling fluid flow through porous media with high Reynolds numbers
or through media with high porosity (see, e.g., [30, 32, 18] and references therein). To overcome this
limitation, it is possible to consider the Brinkman–Forchheimer equations (see for instance [10, 9]),
where terms are added to Darcys law in order to take into account high velocity flow and high porosity.
The latter and the increasing interest in the modelling of MHD in a porous media has motivated the
introduction of the coupled problem between the Brinkman–Forchheimer and Maxwell equations.

Concerning literature, we can find some papers devoted to the mathematical analysis of the coupled
Brinkman-Forchheimer and Maxwell equations (see, for instance, [1] and [35]). We begin mentioning
[1], where, for the stationary coupled problem, the authors prove existence of weak solutions and
uniqueness under small data assumptions. In addition, a convergence result, as the Brinkman coeffi-
cient tends to 0, of the weak solutions to a solution of the system formed by the Darcy–Forchheimer
equations and the magnetic induction equation is also established in [1]. Later on, in [35] the au-
thors show that the transient problem is also well-posed. However, neither [1] nor in [35] numerical
analysis is developed. Up to the author’s knowledge, there are no literature focused on the numerical
analysis of this coupled problem. On the other hand, several papers have been devoted to the design
and the analysis of numerical schemes for the simulation of the classical MHD. In fact, we can start
mentioning [24] where the authors study well-posedness and convergence analysis of a conforming
FEM for MHD. They use inf-sup stable velocity-pressure elements for the hydrodynamic variables
and standard H1-conforming finite elements for the magnetic field. In [21] and [26] we also observe
that the authors look for the magnetic field in H1(Ω)3. However, in a non-convex polyhedral domain,
the magnetic induction may have regularity below H1(Ω)3 and a nodal finite element approximation
can converge to a magnetic field that misses certain singular solution components induced by reen-
trant vertices or edges (see [13]). To circumvent this inconvenient, in [34] was proposed to impose
weakly the divergence-free condition of the magnetic field and by doing that, the magnetic field can
be approximated by curl-conforming Nédélec elements. Thus, the convex domain assumption is not
longer required. There exist other alternatives overcoming this difficulty. Meanwhile, we can mention
[25] (see also [14]) where the authors introduced a mixed finite element method based on weighted
regularization for the incompressible MHD system.

There exist many different discretizations for the classical incompressible MHD problem. A fully-
DG method is proposed in [29] for a linearized variant of the classical incompressible MHD system,
whereby all the variables are approximated through discontinuous finite element spaces. However,
this approach requires a large number of degrees of freedom. In [23] the authors design a new finite
element discretization, in an attempt to overcome the above mentioned difficulties. The velocity field
is discretized using divergence-conforming Brezzi–Douglas–Marini (BDM) elements and the magnetic
field is approximated by curl-conforming Nédélec elements. Recently in [36] the authors have studied a
mixed finite element scheme for stationary inductionless magnetohydrodynamic equations on a general
Lipschitz domain. They approximate the velocity and the current density by H(div)-conforming finite
elements. The H1-continuity of the velocity is enforced by discontinuous approach. However, in this
approach the magnetic field is considered as a datum.
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The goal of the present paper is to contribute to the development of a new numerical method for the
MHD model in porous media. We carry out in this article mathematical and numerical analysis of the
coupled system. The main advantages of our proposed scheme are the optimal order of convergence
reached even in non-convex domains and the possibility of computing further variables of interest, in
which no numerical differentiation is applied, and hence no further sources of error arise. Our scheme
is based on a new mixed finite element method for the steady Brinkman–Forchheimer and double-
diffusion equations recently introduced in [8]. In fact, the main novelty introduced in that paper is
that no augmentation procedure needs to be incorporated into the formulation. This has been possible
thanks to the introduction of mixed methods of finite elements based on suitable Banach spaces. A
similar idea was applied in [12] for the steady Boussinesq problem. On the other hand, recently
in [9] the authors have extended the result presented in [8] to the transient Brinkman–Forchheimer
equations introducing the velocity, the velocity gradient, and the pseudostress tensor as the main
unknowns of the system. In the same spirit of the previous works, we can mention [6]. In there the
authors have proposed a new mixed finite element method for the classical MHD system. This article
introduces non-standard Banach spaces for approximating the hydrodynamic unknowns, and Hilbert
spaces for the electromagnetics variables. Our work is an adaptation of the analysis realized in [8] for
the Brinkman–Forchheimer problem and the analysis presented for the Maxwell equations in [34] (see
also[6]) to our stationary MHD problem in porous media.

The work is organized as follows. The remainder of this section describes standard notation and
function spaces to be employed throughout the paper. In Section 2 we introduce the model problem,
reformulate it as an equivalent set of equations and derive our mixed variational formulation. Next,
in Section 3 we establish the well-posedness of this continuous scheme by means of classical results on
nonlinear monotone operators and the Banach fixed point theorem. The associated Galerkin scheme
is introduced and analyzed in Section 4. Its well-posedness is attained by mimicking the theory
developed for the continuous problem under a quasi-uniformity assumption on the mesh. In Section
5 we establish the corresponding Céa’s estimate and the consequent rates of convergence. Finally, in
Section 6 we present some numerical examples illustrating the good performance of our mixed finite
element method and confirming the theoretical rates of convergence.

Preliminary notations

Let Ω ⊂ R3, denote a bounded domain with polyhedral boundary Γ, and denote by n the outward unit
normal vector on Γ. Standard notations will be adopted for Lebesgue spaces Lp(Ω), with p ∈ [1,∞]
and Sobolev spaces Ws,p(Ω) with s ≥ 0, endowed with the norms ‖ · ‖0,p;Ω and ‖ · ‖s,p;Ω, respectively.
Note that W0,p = Lp(Ω) and if p = 2, we write Hs(Ω) in place of Ws,2(Ω), with the corresponding
Lebesgue and Sobolev norms denoted by ‖ · ‖0,Ω and ‖ · ‖s,Ω, respectively. In addition, H1/2(Γ) is
the space of traces of functions of H1(Ω) and H−1/2(Γ) denotes its dual. With 〈·, ·〉Γ we denote the
corresponding product of duality between H1/2(Γ) and H−1/2(Γ). By M and M we will denote the
corresponding vectorial and tensorial counterparts of the generic scalar functional space M. In turn,
for any vector field v = (vi)i=1,3, we set the gradient, divergence, and curl operators, respectively, as

∇v :=

(
∂vi
∂xj

)
i,j=1,3

, div(v) :=

3∑
j=1

∂vj
∂xj

, and

curl(v) :=

(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)t

.

The cross product of two vectors u = (ui)i=1,3 and v = (vi)i=1,3 in R3 is given by

u× v = (u2 v3 − u3 v2, u3 v1 − u1 v3, u1 v2 − u2 v1)t .
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In addition, it can be proved that for any vectors u, v and w in R3, the following identity is true

(u× v) ·w = − (w × v) · u . (1.1)

Furthermore, for any tensor fields τ = (τij)i,j=1,3 and ζ = (ζij)i,j=1,3, we let div(τ ) be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,3, tr(τ ) :=
3∑
i=1

τii, τ : ζ :=
3∑

i,j=1

τijζij , and τ d := τ − 1

3
tr(τ ) I,

where I is the identity matrix in R3×3. Additionally, we recall the Hilbert spaces

H(div; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ L2(Ω)

}
and

H(curl; Ω) :=
{

v ∈ L2(Ω) : curl(v) ∈ L2(Ω)
}

endowed with the norms

‖τ‖2div;Ω := ‖τ‖20,Ω + ‖div(τ )‖20,Ω and ‖v‖2curl;Ω := ‖v‖20,Ω + ‖curl(v)‖20,Ω ,

respectively. Both spaces are standard in mixed and electromagnetism problems, respectively. We
denote by H(div0; Ω) the subspace of H(div; Ω) with divergence zero. In addition, in the sequel we
will make use of the well-known Hölder inequality given by∫

Ω
|fg| ≤ ‖f‖0,p;Ω‖g‖0,q;Ω ∀ f ∈ Lp(Ω), ∀ g ∈ Lq(Ω), with

1

p
+

1

q
= 1 .

Finally, we recall the continuous injection ip of H1(Ω) into Lp(Ω) for p ∈ [1, 6] in R3 (cf. [33, Theorem
1.3.4]). More precisely, we have the following inequality

‖w‖0,p;Ω ≤ ‖ip‖ ‖w‖1,Ω ∀w ∈ H1(Ω) , (1.2)

with ‖ip‖ > 0 depending only on |Ω| and p. We will denote by ip the vectorial version of ip.

2 The continuous formulation

In this section we introduce the model problem and derive its corresponding weak formulation.

2.1 The model problem

We are interested in analyzing the behaviour of stationary magnetohydrodynamic flows in a fluid-
saturated porous medium. To that end, we consider a slight modification of the model analyzed in [1]
(see also [35]) and, for simplicity, we assume that the bounded Lipschitz polyhedral domain Ω ⊂ R3 is
simply-connected and with a connected boundary Γ. More precisely, we focus on solving the coupling
of the Brinkman–Forchheimer and Maxwell equations, which reduces to finding a velocity field u, a
pressure field p, and a magnetic field b, such that

−ν∆u + αu + F |u|p−2u +∇p− 1

µ
curl(b)× b = ff in Ω , (2.1a)
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div(u) = gf in Ω , (2.1b)

1

%µ
curl(curl(b)) +∇λ− curl(u× b) = fm in Ω , (2.1c)

div(b) = 0 in Ω , (2.1d)

where, the unknown λ is the corresponding Lagrange multiplier associated with (2.1d) (see [34] and
[6] for similar approaches), whereas gf ∈ L2(Ω) denotes a nonzero mass source, and ff ∈ L6/5(Ω),
fm ∈ L2(Ω) are external forces, which in particular are taken as 0 and 1

%curl(J0) in [1, eq. (13)],
respectively, with J0 denoting the source electric current density and % > 0, the electric conductivity.
In turn, the constant ν > 0 is the Brinkman coefficient, α > 0 is the Darcy coefficient, F > 0 is the
Forchheimer coefficient, p ∈ [3, 4] is a given number, and µ > 0 is the magnetic permeability. In
addition, we consider the following boundary conditions:

u = uD, n× b = 0, and λ = 0 on Γ , (2.2)

where uD ∈ H1/2(Γ) is the prescribed velocity on Γ satisfying the compatibility condition∫
Γ

uD · n =

∫
Ω
gf . (2.3)

In addition, due to (2.1a), and in order to guarantee uniqueness of the pressure, this unknown will be
sought in the space

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

Next, in order to derive a new mixed formulation for (2.1)–(2.3), we proceed as in [12] and [8].
More precisely, we now introduce as further unknowns a translation of the velocity gradient t and the
pseudostress tensor σ, which are defined, respectively, by

t := ∇u− 1

3
gf I and σ := ν∇u− p I in Ω . (2.4)

In this way, applying the matrix trace to the tensors t and σ, and utilizing the condition (2.1b), one
arrives at tr(t) = 0 in Ω and

p = −1

3
tr(σ) +

ν

3
gf in Ω . (2.5)

Hence, replacing back (2.5) in the second equation of (2.4) and after simple computations, we find
that the model problem (2.1)–(2.2) can be rewritten, equivalently, as follows: Find (u, t,σ) and (b, λ),
in suitable spaces to be indicated below, such that

∇u − 1

3
gf I = t in Ω , (2.6a)

ν t = σd in Ω , (2.6b)

αu + F |u|p−2u− div(σ)− 1

µ
curl(b)× b = ff in Ω , (2.6c)∫

Ω

(
tr(σ)− ν gf

)
= 0 , (2.6d)

1

%µ2
curl(curl(b)) +

1

µ
∇λ− 1

µ
curl(u× b) =

1

µ
fm in Ω , (2.6e)

div(b) = 0 in Ω , (2.6f)
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u = uD, n× b = 0, and λ = 0 on Γ . (2.6g)

At this point we stress that, as suggested by (2.5), p is eliminated from the present formulation
and computed afterwards in terms of σ and gf by using that identity. This fact justifies (2.6d),
which aims to ensure that the resulting p does belong to L2

0(Ω). Notice also that further variables
of interest, such as the velocity gradient G = ∇u, the vorticity ω = 1

2

(
∇u − ∇ut

)
, and the stress

σ̃ := ν (∇u +∇ut)− p I can be computed, respectively, as follows

G = t +
1

3
gf I, ω =

1

2

(
t− tt

)
, and σ̃ = σ + ν tt +

ν

3
gf I . (2.7)

2.2 The variational formulation

In this section we derive our five-field mixed variational formulation for the system (2.6). To that
end, we first proceed as in [12] and [8] to derive the mixed formulation associated to the Brinkman–
Forchheimer equations. In fact, multiplying (2.6a), (2.6b) and (2.6c) by suitable test functions τ , s,
and v, respectively, integrating by parts and using the Dirichlet boundary condition u = uD on Γ, we
get ∫

Ω
t : τ +

∫
Ω

u · div(τ ) = −1

3

∫
Ω
gf tr(τ ) + 〈τn,uD〉Γ , (2.8a)

ν

∫
Ω

t : s−
∫

Ω
σd : s = 0 , (2.8b)

α

∫
Ω

u · v + F

∫
Ω
|u|p−2u · v −

∫
Ω

div(σ) · v − 1

µ

∫
Ω

(
curl(b)× b

)
· v =

∫
Ω

ff · v , (2.8c)

for all (τ , s,v) ∈ X×Q×M, where X,Q and M are spaces to be defined below.

On the other hand, for the Maxwell equations (2.6e)–(2.6f), we proceed as in [34] (see also [6] for a
similar approach), that is, we introduce the space

H0(curl; Ω) :=
{

d ∈ H(curl; Ω) : n× d = 0 on Γ
}
,

and multiply (2.6e) by d ∈ H0(curl; Ω), and integrate by parts, to get

1

%µ2

∫
Ω

curl(b) · curl(d) +
1

µ

∫
Ω
∇λ · d− 1

µ

∫
Ω

(u× b) · curl(d) =
1

µ

∫
Ω

fm · d .

Then, applying the identity (1.1) to u, b, and curl(d) in the third term of the foregoing equation, and
testing (2.6f) by ξ ∈ H1

0(Ω), integrating by parts, and multiplying the resulting equation by 1/µ, we
obtain

1

%µ2

∫
Ω

curl(b) · curl(d) +
1

µ

∫
Ω
∇λ · d +

1

µ

∫
Ω

(curl(d)× b) · u =
1

µ

∫
Ω

fm · d , (2.9a)

1

µ

∫
Ω

b · ∇ξ = 0 , (2.9b)

for all (d, ξ) ∈ H0(curl; Ω) × H1
0(Ω). In this way, at first we are interested in finding σ ∈ X, t ∈ Q,

u ∈M, b ∈ H0(curl; Ω) and λ ∈ H1
0(Ω) satisfying (2.8)–(2.9) and the condition (2.6d).
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Now, we turn to specify the spaces X, Q, and M. We begin by noting that the first term in (2.8b)
is well defined for t, s ∈ L2(Ω), but due to the condition tr(t) = 0 in Ω, it makes sense to look for t,
and consequently the test function s, in Q = L2

tr(Ω), with

L2
tr(Ω) :=

{
s ∈ L2(Ω) : tr(s) = 0 in Ω

}
.

This implies that (2.8b) can be rewritten equivalently as

ν

∫
Ω

t : s−
∫

Ω
σ : s = 0 ∀ s ∈ L2

tr(Ω) . (2.10)

In turn, we let

C :=

{
d ∈ H0(curl; Ω) :

∫
Ω

d · ∇ξ = 0 ∀ ξ ∈ H1
0(Ω)

}
= H0(curl; Ω) ∩H(div0; Ω) , (2.11)

and observe that, since b satisfies (2.9b) with constant µ > 0, then b ∈ C (see [22, Section I.2.2]).
Then, since C is continuously embedded into Hs(Ω) for some s > 1/2 (cf. [2, Proposition 3.7]), which
in turn is continuously embedded into L3+δ(Ω), for some δ > 0 (see [33, Theorem 1.3.4]), we obtain

‖b‖0,3+δ;Ω ≤ c1 ‖b‖curl;Ω ∀b ∈ C .

Therefore, using the well-known embedding inequality

‖v‖0,q;Ω ≤ c2 ‖v‖0,6;Ω ∀ q ∈ [1, 6) , (2.12)

and defining δ∗ := 4 δ
1+δ > 0, it follows that∣∣∣∣∫

Ω
(curl(d)× b) · v

∣∣∣∣ ≤ ‖curl(d)‖0,Ω ‖b‖0,3+δ;Ω ‖v‖0,6−δ∗;Ω ≤ Cs ‖d‖curl;Ω ‖b‖curl;Ω ‖v‖0,6;Ω , (2.13)

for all d ∈ H(curl; Ω),b ∈ C and v ∈ L6(Ω), with Cs the resulting constant from the aforementioned
embedding inequalities. According to the above, the fourth and third terms in (2.8c) and (2.9a),
respectively, are well defined if we set M := L6(Ω), which, thanks to (2.12), is consistent with the
first and second terms of (2.8c), and consequently, the second and third terms in (2.8a) and (2.8c),
respectively, are well defined if div(σ) and div(τ ) belong to L6/5(Ω). In addition, using the fact that
the first and second terms in (2.8a) and (2.8b) (or (2.10)), respectively, are well defined if σ, τ ∈ L2(Ω),
we introduce the Banach space

H(div6/5; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ L6/5(Ω)

}
,

equipped with the norm ‖τ‖2div6/5;Ω := ‖τ‖20,Ω + ‖div(τ )‖20,6/5;Ω, and deduce that (2.8) is well defined

if we choose the spaces Q := L2
tr(Ω), M := L6(Ω), and X := H(div6/5; Ω), with their respective norms:

‖ · ‖0,Ω, ‖ · ‖0,6;Ω, and ‖ · ‖div6/5;Ω.

Now, for convenience of the subsequent analysis and similarly as in [6] (see also [5, 12]) we consider
the decomposition

H(div6/5; Ω) = H0(div6/5; Ω)⊕ R I ,

where

H0(div6/5; Ω) :=

{
τ ∈ H(div6/5; Ω) :

∫
Ω

tr(τ ) = 0

}
,
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that is, R I is a topological supplement for H0(div6/5; Ω). More precisely, each τ ∈ H(div6/5; Ω) can
be decomposed uniquely as

τ = τ 0 + d I , with τ 0 ∈ H0(div6/5; Ω) and d :=
1

3 |Ω|

∫
Ω

tr(τ ) ∈ R .

In particular, using from (2.6d) that
∫

Ω tr(σ) = ν
∫

Ω gf , we obtain

σ = σ0 + c0 I with σ0 ∈ H0(div6/5; Ω) and c0 =
ν

3 |Ω|

∫
Ω
gf . (2.14)

In this way, knowing explicitly c0 in terms of gf , it remains to find the H0(div6/5; Ω)-component σ0

of σ to fully determine it. In this regard, using the fact that div(σ) = div(σ0) and σ : s = σ0 : s, for
all s ∈ L2

tr(Ω), we deduce that (2.8b)–(2.8c) remain unchanged if σ is replaced there by σ0. Moreover
it is easy to see, thanks to the compatibility condition (2.3) satisfied by the Dirichlet datum uD, that
both sides of (2.8a) vanish for τ = I, and hence, testing this equation against τ ∈ H(div6/5; Ω) is
equivalent to doing it against τ ∈ H0(div6/5; Ω).

According to the above, and redenoting from now on σ0 as simply σ ∈ H0(div6/5; Ω), we arrive to
the variational problem: Find (u, t,σ) ∈ L6(Ω) × L2

tr(Ω) × H0(div6/5; Ω) and (b, λ) ∈ H0(curl; Ω) ×
H1

0(Ω), such that

[af (u, t), (v, s)] + [cf (b)(b),v] + [bf (v, s),σ] = [F1, (v, s)] ∀ (v, s) ∈ L6(Ω)× L2
tr(Ω) , (2.15a)

[bf (u, t), τ ] = [F2, τ ] ∀ τ ∈ H0(div6/5; Ω) , (2.15b)

[am(b),d] + [cm(b)(u),d] + [bm(d), λ] = [F3,d] ∀d ∈ H0(curl; Ω) , (2.15c)

[bm(b), ξ] = 0 ∀ ξ ∈ H1
0(Ω) , (2.15d)

where the operators af , bf , am, bm, cf (b̂), cm(b̂), for a given b̂ ∈ C (cf. (2.11)), are defined,
respectively, as

[af (u, t), (v, s)] := α

∫
Ω

u · v + F

∫
Ω
|u|p−2u · v + ν

∫
Ω

t : s , (2.16)

[bf (v, s), τ ] := −
∫

Ω
τ : s−

∫
Ω

v · div(τ ) , (2.17)

[am(b),d] :=
1

%µ2

∫
Ω

curl(b) · curl(d) , [bm(d), ξ] :=
1

µ

∫
Ω

d · ∇ξ , (2.18)

and

[cf (b̂)(b),v] := − 1

µ

∫
Ω

(
curl(b)× b̂

)
· v , [cm(b̂)(u),d] :=

1

µ

∫
Ω

(
curl(d)× b̂

)
· u , (2.19)

for all (v, s, τ ) ∈ L6(Ω) × L2
tr(Ω) × H0(div6/5; Ω) and (d, ξ) ∈ H0(curl; Ω) × H1

0(Ω). In turn, F1, F2,
and F3 are the bounded linear functionals defined by

[F1, (v, s)] :=

∫
Ω

ff · v , [F2, τ ] :=
1

3

∫
Ω
gf tr(τ ) − 〈τn,uD〉Γ , (2.20)

and

[F3,d] :=
1

µ

∫
Ω

fm · d . (2.21)
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In all the terms above, [·, ·] denotes the duality pairing induced by the corresponding operators.

Let us define the global unknown and space:

~u := (u, t,b) ∈ X := L6(Ω)× L2
tr(Ω)×C , (2.22)

where X is endowed with the norm

‖~v‖2X = ‖(v, s,d)‖2X = ‖v‖20,6;Ω + ‖s‖20,Ω + ‖d‖2curl;Ω ∀ ~v := (v, s,d) ∈ X. (2.23)

Now, recalling that the operator bm (cf. (2.18)) satisfies the inf-sup condition (see [34, Section 2.4]
or [28, Section 5.4]):

sup
d∈H0(curl;Ω)

d6=0

[bm(d), ξ]

‖d‖curl;Ω
≥ βm ‖ξ‖1,Ω ∀ ξ ∈ H1

0(Ω) , (2.24)

with βm > 0, analogously to [34], it is not difficult to see that (2.15) can be rewritten equivalently (to
be proved below in Lemma 2.1) as the following coupled problem: Find (~u,σ) ∈ X × H0(div6/5; Ω)
such that

[A(b)(~u), ~v] + [B(~v),σ] = [F, ~v] ∀ ~v ∈ X ,

[B(~u), τ ] = [G, τ ] ∀ τ ∈ H0(div6/5; Ω) ,
(2.25)

where, given b̂ ∈ C, the operator A(b̂) : X→ X′ is defined by

[A(b̂)(~u), ~v] := [a(~u), ~v] + [c(b̂)(~u), ~v] (2.26)

with

[a(~u), ~v] := [af (u, t), (v, s)] + [am(b),d] , (2.27)

[c(b̂)(~u), ~v] := [cf (b̂)(b),v] + [cm(b̂)(u),d] , (2.28)

whereas the operator B : X→ H0(div6/5; Ω)′ is given by

[B(~v), τ ] := [bf (v, s), τ ] . (2.29)

In turn, the functionals F and G are set as

[F, ~v] := [F1, (v, s)] + [F3,d] and [G, τ ] := [F2, τ ] . (2.30)

The following lemma establishes that problems (2.15) and (2.25) are in fact equivalents.

Lemma 2.1 If (u, t,σ) ∈ L6(Ω) × L2
tr(Ω) × H0(div6/5; Ω) and (b, λ) ∈ H0(curl; Ω) × H1

0(Ω) is a
solution of (2.15), then b ∈ C and (~u,σ) = ((u, t,b),σ) ∈ X×H0(div6/5; Ω) is a solution of (2.25).
Conversely, if (~u,σ) ∈ X × H0(div6/5; Ω) is a solution of (2.25), then there exists λ ∈ H1

0(Ω) such
that (u, t,σ) and (b, λ) is a solution of (2.15).

Proof. The first assertion is evident. On the other hand, let (~u,σ) ∈ X×H0(div6/5; Ω) be a solution
of (2.25). Note that (2.25) directly implies (2.15a), (2.15b) and (2.15d). Thus it only remains to show
the existence of λ ∈ H1

0(Ω) such that (2.15c) is satisfied. We prove this fact proceeding similarly as in
[6, Corollary 3.8]. Indeed, let F ∈ H0(curl; Ω) be the unique element in H0(curl; Ω) (guaranteed by
the Riesz representation theorem), such that

〈F,d〉curl = [F3,d]− [am(b),d]− [cm(b)(u),d] ∀d ∈ H0(curl; Ω) ,
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with 〈·, ·〉curl being the inner product of H0(curl; Ω). Testing the first equation of (2.25), with ~v =
(0,0,d), we deduce that 〈F,d〉curl = 0 for all d ∈ C, that is, F ∈ C⊥. Then, owing to the inf-
sup condition (2.24), and according to [20, Lemma 2.1-(ii)], we deduce that there exists a unique
λ ∈ H1

0(Ω), such that

[bm(d), λ] = 〈F,d〉curl = [F3,d]− [am(b),d]− [cm(b)(u),d] ∀d ∈ H0(curl; Ω) , (2.31)

which implies that (u, t,σ) ∈ L6(Ω) × L2
tr(Ω) × H0(div6/5; Ω) and (b, λ) ∈ H0(curl; Ω) × H1

0(Ω) is
solution of (2.15), completing the proof. �

As a consequence of the above, in what follows we focus on analyzing problem (2.25).

3 Analysis of the coupled problem

In this section we combine classical results on nonlinear monotone operators with the Banach fixed-
point theorem, to prove the well-posedness of (2.25) (equivalently (2.15)) under suitable smallness
assumptions on the data. To that end we first collect some previous results and notations that will
serve for the forthcoming analysis.

3.1 Preliminaries

We begin by stating a slight adaptation of the abstract result established in [8, Theorem 3.1].

Theorem 3.1 Let X1, X2, X3 and Y be separable and reflexive Banach spaces, being X1, X2 and X3

uniformly convex, and set X := X1×X2×X3. Let A : X → X ′ be a nonlinear operator, B ∈ L(X,Y ′),
and let V be the kernel of B, that is,

V :=
{
~v = (v1, v2, v3) ∈ X : B(~v) = 0

}
.

Assume that

(i) there exist constants L > 0 and p1, p2, p3 ≥ 2, such that

‖A(~u)−A(~v)‖X′ ≤ L
3∑
j=1

{
‖uj − vj‖Xj +

(
‖uj‖Xj + ‖vj‖Xj

)pj−2‖uj − vj‖Xj
}

for all ~u = (u1, u2, u3), ~v = (v1, v2, v3) ∈ X,

(ii) the family of operators
{
A( ·+ ~z) : V → V ′ : ~z ∈ X

}
is uniformly strongly monotone, that is

there exists α > 0 such that

[A(~u+ ~z)−A(~v + ~z), ~u− ~v] ≥ α ‖~u− ~v‖2X ,

for all ~z ∈ X, and for all ~u,~v ∈ V , and

(iii) there exists β > 0 such that

sup
~v∈X
~v 6=0

[B(~v), τ ]

‖~v‖X
≥ β ‖τ‖Y ∀ τ ∈ Y .
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Then, for each (F ,G) ∈ X ′ × Y ′ there exists a unique (~u, σ) ∈ X × Y such that

[A(~u), ~v] + [B(~v), σ] = [F , ~v] ∀~v ∈ X ,

[B(~u), τ ] = [G, τ ] ∀ τ ∈ Y .
(3.1)

Moreover, there exist positive constants C1 and C2, depending only on L, α, and β, such that

‖~u‖X ≤ C1M(F ,G) (3.2)

and

‖σ‖Y ≤ C2

M(F ,G) +
3∑
j=1

M(F ,G)pj−1

 , (3.3)

where

M(F ,G) := ‖F‖X′ + ‖G‖Y ′ +
3∑
j=1

‖G‖pj−1
Y ′ + ‖A(0)‖X′ . (3.4)

Next, we establish the stability properties of some of the operators involved in (2.15) and (2.25).
We begin by observing that the operators am, B and functionals F3, F, G are linear. In turn, from
(2.18), (2.29), (2.21), (2.30), and employing Hölder and Cauchy–Schwarz inequalities, there holds

|[am(b),d]| ≤ 1

%µ2
‖b‖curl;Ω ‖d‖curl;Ω ∀b,d ∈ H(curl; Ω) , (3.5)

|[B(~v), τ ]| ≤ ‖~v‖X ‖τ‖div6/5;Ω ∀ ~v ∈ L6(Ω)× L2
tr(Ω)×H(curl; Ω), ∀ τ ∈ H0(div6/5; Ω) , (3.6)

|[F3,d]| ≤ 1

µ
‖fm‖0,Ω‖d‖curl;Ω ∀d ∈ H(curl; Ω) , (3.7)

|[F, ~v]| ≤ CF

(
‖ff‖0,6/5;Ω + ‖fm‖0,Ω

)
‖~v‖X ∀ ~v ∈ L6(Ω)× L2

tr(Ω)×H(curl; Ω) , (3.8)

with CF := max
{

1, 1/µ
}

. Notice that (3.6) and (3.8) also hold for all ~v ∈ X. We have written (3.6)
and (3.8) in a more general form since both inequalities will be used later on to prove well-posedness
of the Galerkin scheme proposed in Section 4 and to derive the a priori error analysis (cf. Lemma
5.1). In addition,

|[G, τ ]| ≤ CG

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)
‖τ‖div6/5;Ω ∀ τ ∈ H0(div6/5; Ω) , (3.9)

where CG := max
{

1/
√

3, CΩ

}
and CΩ is a positive constant depending on ‖i6‖ (for more details see

[5, Lemma 3.5] and (1.2)).

Finally, using (2.13) and the definition of the operators cf (b̂) , cm(b̂) , c(b̂) (cf. (2.19), (2.28)), we

observe that for any b̂ ∈ C, there hold∣∣[cf (b̂)(b),v]
∣∣ ≤ Cs

µ
‖b̂‖curl;Ω ‖b‖curl;Ω ‖v‖0,6;Ω ∀ (b,v) ∈ H(curl; Ω)× L6(Ω) , (3.10)∣∣[cm(b̂)(u),d]

∣∣ ≤ Cs
µ
‖b̂‖curl;Ω ‖u‖0,6;Ω ‖d‖curl;Ω ∀ (u,d) ∈ L6(Ω)×H(curl; Ω) , (3.11)∣∣[c(b̂)(~u), ~v]

∣∣ ≤ Cs
µ
‖b̂‖curl;Ω

(
‖u‖20,6;Ω + ‖b‖2curl;Ω

)1/2 (‖v‖20,6;Ω + ‖d‖2curl;Ω

)1/2
≤ Cs

µ
‖b̂‖curl;Ω ‖~u‖X ‖~v‖X ∀ ~u = (u, t,b), ~v = (v, s,d) ∈ X , (3.12)

and, in addition,
[c(b̂)(~v), ~v] = 0 ∀ ~v ∈ X . (3.13)
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3.2 A fixed point strategy

We begin the solvability analysis of (2.25) (equivalently (2.15)) by defining the operator T : C → C
by

T(b̂) := b ∀ b̂ ∈ C , (3.14)

where b is part of the element (~u,σ) = ((u, t,b),σ) in X×H0(div6/5; Ω) satisfying

[A(b̂)(~u), ~v] + [B(~v),σ] = [F, ~v] ∀ ~v ∈ X ,

[B(~u), τ ] = [G, τ ] ∀ τ ∈ H0(div6/5; Ω) .
(3.15)

Notice that solving (2.25) is equivalent to finding b ∈ C such that

T(b) = b .

In this way, in what follows we focus on proving that T possesses a unique fixed-point. To that end,
we first show that the coupled problem (3.15) is well-posed, which means, equivalently, that T (cf.
3.14) is indeed well-defined. We observe that, given b̂ ∈ C, the problem (3.15) has the same structure
as the one in Theorem 3.1 (cf. (3.1)). Therefore, in order to apply this abstract result, we notice that,
thanks to the uniform convexity and separability of Lp(Ω), for p ∈ (1,+∞), all the spaces involved in
(3.15), that is, L6(Ω), L2

tr(Ω), C and H0(div6/5,Ω), share the same properties.

We continue our analysis by proving that, given b̂ ∈ C, the nonlinear operator A(b̂) (cf. (2.26))
satisfies hypothesis (i) of Theorem 3.1 with p1 = p ∈ [3, 4] and p2 = p3 = 2.

Lemma 3.2 Let p ∈ [3, 4]. Given b̂ ∈ C, there exists LMH > 0, depending on ν, F, α, |Ω|, Cs, %, and
µ, such that

‖A(b̂)(~u)−A(b̂)(~v)‖X′ ≤ LMH

{(
1 + ‖b̂‖curl;Ω

)(
‖u− v‖0,6;Ω + ‖b− d‖curl;Ω

)
+ ‖t− s‖0,Ω +

(
‖u‖0,6;Ω + ‖v‖0,6,Ω

)p−2‖u− v‖0,6;Ω

}
,

(3.16)

for all ~u = (u, t,b), ~v = (v, s,d) ∈ L6(Ω)× L2
tr(Ω)×H(curl; Ω).

Proof. Let ~u = (u, t,b), ~v = (v, s,d), and ~w = (w, r, e) ∈ L6(Ω) × L2
tr(Ω) × H(curl; Ω). From

the definition of the operator A(b̂) (cf. (2.26)), the Cauchy–Schwarz and Hölder inequalities, the
continuity bound of c(b̂) (cf. (3.12)), and simple computations, we deduce that

[A(b̂)(~u)−A(b̂)(~v), ~w] ≤ F ‖|u|p−2u− |v|p−2v‖0,q;Ω ‖w‖0,p;Ω

+α |Ω|2/3 ‖u− v‖0,6;Ω‖w‖0,6;Ω + ν ‖t− s‖0,Ω ‖r‖0,Ω +
1

%µ2
‖b− d‖curl;Ω ‖e‖curl;Ω

+
Cs
µ
‖b̂‖curl;Ω

(
‖u− v‖0,6;Ω + ‖b− d‖curl;Ω

)(
‖w‖0,6;Ω + ‖e‖curl;Ω

)
,

(3.17)

where 1/p + 1/q = 1. In turn, using [3, Lemma 2.1, eq.(2.1a)] to bound the first term on the right
hand side of (3.17), and the embedding (2.12) of L6(Ω) into Lp(Ω), with p ∈ [3, 4], we deduce that
there exists cp > 0, depending only on |Ω| and p, such that

‖|u|p−2u− |v|p−2v‖0,q;Ω ‖w‖0,p;Ω ≤ cp

(
‖u‖0,p;Ω + ‖v‖0,p;Ω

)p−2‖u− v‖0,p;Ω ‖w‖0,p;Ω

≤ cp |Ω|(6−p)/6
(
‖u‖0,6;Ω + ‖v‖0,6;Ω

)p−2 ‖u− v‖0,6;Ω ‖w‖0,6;Ω .
(3.18)
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Thus, replacing back (3.18) into (3.17), we obtain (3.16) with

LMH := max

{
α |Ω|2/3, F cp |Ω|(6−p)/6, ν,

1

%µ2
,
Cs
µ

}
,

which completes the proof. �

At this point we observe that since (3.16) holds for all ~u and ~v in L6(Ω)×L2
tr(Ω)×H(curl; Ω), it is

clear that it also holds for all ~u and ~v in X (cf. (2.22)). We write (3.16) in the current general form
since it will be used later on to derive the a priori error analysis (cf. Lemma 5.1).

Now, let us look at the kernel of the operator B (cf. (2.29)) that is

V :=
{
~v = (v, s,d) ∈ X : [B(~v), τ ] = 0 ∀ τ ∈ H0(div6/5; Ω)

}
which, proceeding similarly to [12, eq. (3.34)] reduce to

V := K×C , where K =
{

(v, s) ∈ L6(Ω)× L2
tr(Ω) : ∇v = s and v ∈ H1

0(Ω)
}
. (3.19)

In addition, we recall from [31, Corollary 3.51] that

‖curl(d)‖20,Ω ≥ αm ‖d‖2curl;Ω ∀d ∈ C . (3.20)

Thus, the following lemma shows that the operator A(b̂) satisfies hypothesis (ii) of Theorem 3.1
with p1 = p ∈ [3, 4] and p2 = p3 = 2.

Lemma 3.3 Given b̂ ∈ C, the family of operators
{
A(b̂)(· + ~z) : V → V′ : ~z ∈ X

}
is uniformly

strongly monotone, that is, there exists αMH > 0, depending on ν, α, αm, ‖i6‖, %, and µ such that

[A(b̂)(~u + ~z)−A(b̂)(~v + ~z), ~u− ~v] ≥ αMH ‖~u− ~v‖2X (3.21)

for all ~z = (z, r, e) ∈ X, and for all ~u = (u, t,b), ~v = (v, s,d) ∈ V.

Proof. Let ~z = (z, r, e) ∈ X and ~u = (u, t,b), ~v = (v, s,d) ∈ V. Bearing in mind the definition of
A(b̂), a, and c(b̂) (cf. (2.26), (2.27), (2.28)), and the identity (3.13), we get

[A(b̂)(~u + ~z)−A(b̂)(~v + ~z), ~u− ~v] = [a(~u + ~z)− a(~v + ~z), ~u− ~v] + [c(b̂)(~u− ~v), ~u− ~v]

= α ‖u− v‖20,Ω + F

∫
Ω

(
|u + z|p−2(u + z)− |v + z|p−2(v + z)

)
· (u− v)

+ ν ‖t− s‖20,Ω +
1

%µ2
‖curl(b− d)‖20,Ω .

(3.22)

In turn, using [3, Lemma 2.1, eq.(2.1b)], there exists Cp > 0 depending only on |Ω| and p, such that∫
Ω

(
|u + z|p−2(u + z)− |v + z|p−2(v + z)

)
· (u− v) ≥ Cp ‖u− v‖p0,p;Ω ≥ 0 ,

which, together with (3.20) and (3.22), yields

[A(b̂)(~u + ~z)−A(b̂)(~v + ~z), ~u− ~v] ≥ α ‖u− v‖20,Ω + ν ‖t− s‖20,Ω +
αm
%µ2
‖b− d‖2curl;Ω . (3.23)
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Next, employing the fact that t− s = ∇(u− v) ∈ Ω and u− v ∈ H1
0(Ω) in (cf. (3.19)), and using the

continuous injection i6 of H1(Ω) into L6(Ω) (cf. (1.2)), we deduce that

[A(b̂)(~u + ~z)−A(b̂)(~v + ~z), ~u− ~v] ≥ min
{
α,
ν

2

}
‖u− v‖21,Ω +

ν

2
‖t− s‖20,Ω +

αm
%µ2
‖b− d‖2curl;Ω

≥ min
{
α,
ν

2

}
‖i6‖−2 ‖u− v‖20,6;Ω +

ν

2
‖t− s‖20,Ω +

αm
%µ2
‖b− d‖2curl;Ω ,

which yields (3.21) with

αMH := min

{
‖i6‖−2 min

{
α,
ν

2

}
,
ν

2
,
αm
%µ2

}
. (3.24)

�

As a corollary of Lemma 3.3, replacing ~u, ~v ∈ V and ~z ∈ X in (3.21) by ~u− ~v, 0 ∈ V and ~v ∈ X,
respectively, we arrive at

[A(b̂)(~u)−A(b̂)(~v), ~u− ~v] ≥ αMH ‖~u− ~v‖2X , (3.25)

for all ~u, ~v ∈ X such that ~u− ~v ∈ V.

We end the verification of the hypotheses of Theorem 3.1, with the corresponding inf-sup condition
for the operator B (cf. (2.29), (2.17)).

Lemma 3.4 There exists a positive constant βMH, such that

sup
~v∈X
~v 6=0

[B(~v), τ ]

‖~v‖X
≥ βMH ‖τ‖div6/5;Ω ∀ τ ∈ H0(div6/5; Ω) . (3.26)

Proof. First, we note that from a slight adaptation of [12, Lemma 3.3] the following inf-sup condition
for bf holds

sup
(v,s)∈L6(Ω)×L2

tr(Ω)
(v,s)6=0

[bf (v, s), τ ]

‖(v, s)‖
≥ βMH ‖τ‖div6/5;Ω ∀ τ ∈ H0(div6/5; Ω) . (3.27)

Thus, (3.26) follows straightforwardly from (3.27) and the definition of the operator B (cf. (2.29)). �

Now, we are in a position of establishing the solvability of the nonlinear problem (3.15).

Lemma 3.5 For each b̂ ∈ C, the problem (3.15) has a unique solution (~u,σ) = ((u, t,b),σ) ∈
X × H0(div6/5; Ω), and hence T(b̂) := b ∈ C is well-defined. Moreover, there exists a positive

constant CT, independent of b̂, such that

‖T(b̂)‖curl;Ω ≤ ‖~u‖X ≤ CT

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

 . (3.28)

Proof. Given b̂ ∈ C, we first recall from (3.6), (3.8) and (3.9) that B, F and G are all linear
and bounded. Thus, thanks to Lemmas 3.2 and 3.3, the inf-sup condition of B given by (3.26), a
straightforward application of Theorem 3.1, with p1 = p ∈ [3, 4] and p2 = p3 = 2 to problem (3.15)
completes the proof. In particular, given b̂ ∈ C, noting from (2.26) that A(b̂)(0) is the null functional,
we get from (3.4) that

M(F,G) = ‖F‖X′ + 3‖G‖H0(div6/5;Ω)′ + ‖G‖
p−1
H0(div6/5;Ω)′ ,

14



and hence the a priori estimate (3.2) yields

‖~u‖X ≤ C1

{
‖F‖X′ + ‖G‖H0(div6/5;Ω)′ + ‖G‖

p−1
H0(div6/5;Ω)′

}
,

with a positive constant C1 depending only on LMH, αMH and βMH. The foregoing inequality together
with the bounds of ‖F‖X′ and ‖G‖H0(div6/5;Ω)′ (cf. (3.8), (3.9)) imply (3.28) with CT depending on

‖i6‖, LMH, αMH, µ and βMH, thus completing the proof. �

For later use in the paper we note here that, applying (3.3), and using again the bounds (3.8) and
(3.9) for ‖F‖X′ and ‖G‖H0(div6/5;Ω)′ , respectively, the a priori estimate for the second component of

the solution to the problem defining T (cf. (3.15)) reduces to

‖σ‖div6/5;Ω ≤ Cσ

∑
i∈{p,2}

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

i−1

, (3.29)

with Cσ depending on LMH, αMH, µ and βMH.

3.3 Well-posedness of the continuous formulation

Having proved the well-posedness of the coupled problem (3.15) which ensures that the operator T is
well defined, we now aim to establish the existence of a unique fixed-point of the operator T. For this
purpose, in what follows we will verify the hypothesis of the Banach fixed-point theorem. We begin
by providing suitable conditions under which T maps a ball into itself.

Lemma 3.6 Given r > 0, let W be the closed ball in C with center at the origin and radius r, and
assume that the data satisfy

CT

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

 ≤ r . (3.30)

Then, there holds T(W) ⊆W.

Proof. It is a direct consequence of the a priori estimate (3.28) and the assumption (3.30). �

We now aim to prove that the operator T is Lipschitz continuous.

Lemma 3.7 Let Cs, αMH, and CT be given by (2.13), (3.24), and (3.28), respectively. Then, there
holds

‖T(b̂)−T(b̂0)‖curl;Ω

≤ CsCT

µαMH

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

 ‖b̂− b̂0‖curl;Ω ,
(3.31)

for all b̂, b̂0 ∈ C.

Proof. Given b̂, b̂0 ∈ C, we let (~u,σ) := ((u, t,b),σ) and (~u0,σ0) := ((u0, t0,b0),σ0) ∈ X ×
H0(div6/5; Ω) be the corresponding solutions of (3.15) so that b := T(b̂) and b0 := T(b̂0). Then,
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subtracting the corresponding problems from (3.15), and using the definition of the operator A(b̂)
(cf. (2.26)), we obtain

[A(b̂0)(~u)−A(b̂0)(~u0), ~v] + [B(~v),σ − σ0] = −[c(b̂− b̂0)(~u), ~v] ,

[B(~u− ~u0), τ ] = 0 ,
(3.32)

for all ~v ∈ X and τ ∈ H0(div6/5; Ω). We note from the second equation of (3.32) that ~u − ~u0 ∈ V
(cf (3.19)). Hence, taking ~v := ~u− ~u0 ∈ V in the first equation of (3.32), applying (3.25) with ~u, ~u0

∈ X, and using the continuity bound of c(b̂) (cf. (3.12)), we obtain

αMH ‖~u− ~u0‖2X ≤ [A(b̂0)(~u)−A(b̂0)(~u0), ~u− ~u0] = −[c(b̂− b̂0)(~u), ~u− ~u0]

≤ Cs
µ
‖~u‖X ‖b̂− b̂0‖curl;Ω ‖~u− ~u0‖X ,

which, together with (3.28) to bound ‖~u‖X, implies (3.31), completing the proof. �

We are now in position to establish the main result concerning the solvability of (2.25)

Theorem 3.8 Given r > 0, let W be the closed ball in C with center at the origin and radius r, and
assume that the data satisfy (3.30) and

CsCT

µαMH

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

 < 1 . (3.33)

Then the operator T has a unique fixed point b ∈ W. Equivalently, the coupled problem (2.25) has
a unique solution (~u,σ) ∈ X × H0(div6/5; Ω), with b ∈ W. Moreover, there exist positive constants
CT, Cσ, depending on Cs, ν, F, α, αm, |Ω|, %, µ, and βMH, such that the following a priori estimates
hold

‖~u‖X ≤ CT

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

 , (3.34)

‖σ‖div6/5;Ω ≤ Cσ

∑
i∈{p,2}

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

i−1

. (3.35)

Proof. We begin by recalling from Lemma 3.6 that, under the assumption (3.30), T maps the ball
W into itself, and hence, for each b ∈W we have that both ‖b‖curl;Ω and ‖T(b)‖curl;Ω are bounded
by r. In turn, it is clear from (3.31) in Lemma 3.7 and Hypotheses (3.33) that T is a contraction.
Therefore, the Banach fixed-point theorem provides the existence of a unique fixed point b ∈ W of
T, equivalently, the existence of a unique solution (~u,σ) ∈ X×H0(div6/5; Ω), of the coupled problem
(2.25), with b ∈W. In addition, it is clear that the estimates (3.34) and (3.35) follow straightforwardly
from (3.28) and (3.29), respectively, which finishes the proof. �

We end this section by establishing the well-posedness of (2.15).

Corollary 3.9 Let ff ∈ L6/5(Ω), fm ∈ L2(Ω), gf ∈ L2(Ω), and uD ∈ H1/2(Γ), such that (3.30)
and (3.33) hold. Then, there exist a unique (u, t,σ) ∈ L6(Ω) × L2

tr(Ω) × H0(div6/5; Ω) and (b, λ) ∈
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H0(curl; Ω)×H1
0(Ω) solution to (2.15). In addition, (u, t,b) and σ satisfy (3.34) and (3.35), respec-

tively, and for λ, there exits a constant Cλ depending on Cs, ν, F, α, αm, |Ω|, %, µ, βMH, and βm, such
that

‖λ‖1,Ω ≤ Cλ

2∑
i=1

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

i

. (3.36)

Proof. We begin by recalling from Lemma 2.1 that the problems (2.15) and (2.25) are equivalents.
Thus, the well-posedness of (2.15) and stability bounds for (u, t,b) and σ follow from Theorem 3.8.
On the other hand, using the identity (2.31), the inf-sup condition (2.24), and the continuity bounds
of am, F3 and cm (cf. (3.5), (3.7), (3.11)), we deduce that

βm‖λ‖1,Ω ≤ sup
d∈H0(curl;Ω)

d6=0

[F3,d]− [am(b),d]− [cm(b)(u),d]

‖d‖curl;Ω

≤ 1

µ
‖fm‖0,Ω +

1

%µ2
‖b‖curl;Ω +

Cs
µ
‖b‖curl;Ω ‖u‖0,6;Ω .

Finally, bounding ‖b‖curl;Ω ‖u‖0,6;Ω by ‖~u‖2X in the foregoing inequality, and employing (3.34), we
obtain (3.36), completing the proof. �

4 Galerkin scheme

In this section we introduce and analyze the corresponding Galerkin scheme for the five-field mixed
formulation (2.15) (equivalently (2.25)). We mention in advance that, as we shall see in the forthcoming
subsections, the well-posedness analysis follows straightforwardly by adapting the results derived for
the continuous problem to the discrete case, so most of the details are omitted.

4.1 Discrete setting

We first let {Th}h>0 be a regular family of triangulations of the polyhedral region Ω made up of
tetrahedra T in R3 of diameter hT such that Ω = ∪

{
T : T ∈ Th

}
and define h := max

{
hT : T ∈ Th

}
.

Given an integer l ≥ 0 and a subset S of R3, we denote by Pl(S) the space of polynomials of total
degree at most l defined on S, P̃l(S) the space of homogeneous polynomials of degree exactly l on S
and Ml(S) the space of polynomials p in P̃l(S) satisfying p(x) · x = 0 on S, where x := (x1, x2, x3)t

is a generic vector of R3. Hence, for each integer k ≥ 0 and for each T ∈ Th, we define the local
Raviart–Thomas and Nédélec elements of order k (see for instance [4] and [31]), respectively, by

RTk(T ) := Pk(T )⊕ P̃k(T )x and NDk(T ) := Pk(T )⊕Mk+1(T ) .

In this way, introducing the finite element subspaces:

Hu
h :=

{
vh ∈ L6(Ω) : vh|T ∈ Pk(T ) ∀T ∈ Th

}
,

Ht
h :=

{
rh ∈ L2

tr(Ω) : rh|T ∈ Pk(T ) ∀T ∈ Th
}
,

Hσ
h :=

{
τ h ∈ H0(div6/5; Ω) : ctτ h|T ∈ RTk(T ) ∀ c ∈ Rn, ∀T ∈ Th

}
,

Hb
h := {dh ∈ H0(curl; Ω) : dh|T ∈ NDk(T ) ∀T ∈ Th} ,

Hλ
h :=

{
ξ ∈ H1

0(Ω) : ξh|T ∈ Pk+1(T ) ∀T ∈ Th
}
,

(4.1)
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the Galerkin scheme for (2.15) reads: Find (uh, th,σh) ∈ Hu
h × Ht

h × Hσ
h and (bh, λh) ∈ Hb

h × Hλ
h,

such that

[af (uh, th), (vh, sh)] + [cf (bh)(bh),vh] + [bf (vh, sh),σh] = [F1, (vh, sh)], (4.2a)

[bf (uh, th), τ h] = [F2, τ h] , (4.2b)

[am(bh),dh] + [cm(bh)(uh),dh] + [bm(dh), λh] = [F3,dh] , (4.2c)

[bm(bh), ξh] = 0 , (4.2d)

for all (vh, sh, τ h) ∈ Hu
h ×Ht

h ×Hσ
h and for all (dh, ξh) ∈ Hb

h ×Hλ
h.

Now, analogously to the continuous case, from [28, Section 5.4] we recall that the bilinear form bm
satisfies the discrete inf-sup condition:

sup
dh∈Hb

h
dh 6=0

[bm(dh), ξh]

‖dh‖curl;Ω
≥ βm ‖ξh‖1,Ω ∀ ξh ∈ Hλ

h , (4.3)

with βm > 0 being the same constant satisfying (2.24), which certainly is independent of h. Then,
defining the discrete version of C (cf. (2.11)) as

Ch :=

{
dh ∈ Hb

h :

∫
Ω

dh · ∇ξh = 0 ∀ ξh ∈ Hλ
h

}
, (4.4)

and denoting from now on

~uh := (uh, th,bh) , ~vh := (vh, sh,dh) ∈ Xh := Hu
h ×Ht

h ×Ch ,

the discrete version of (2.25) reads: Find (~uh,σh) ∈ Xh ×Hσ
h such that:

[A(bh)(~uh), ~vh] + [B(~vh),σh] = [F, ~vh] ∀ ~vh ∈ Xh ,

[B(~uh), τ h] = [G, τ h] ∀ τ h ∈ Hσ
h ,

(4.5)

where, as in the continuous case, given b̂h ∈ Ch, the operator A(b̂h) : Xh → X′h is defined by

[A(b̂h)(~uh), ~vh] := [a(~uh), ~vh] + [c(b̂h)(~uh), ~vh] , (4.6)

where Xh is endowed with the norm defined in (2.23).

At this point, we observe that owing to the discrete inf-sup condition (4.3), and using similar
arguments to the ones employed in Lemma 2.1, the discrete problems (4.2) and (4.5) are equivalent.
According to this, in what follows we focus on analyzing (4.5).

We now develop the discrete analogue of the fixed-point approach utilized in Section 3.2. To this
end, we introduce the operator Td : Ch → Ch defined by

Td(b̂h) := bh ∀ b̂h ∈ Ch , (4.7)

where (~uh,σh) = ((uh, th,bh),σh) ∈ Xh × Hσ
h is the unique solution (to be confirmed below) of the

problem

[A(b̂h)(~uh), ~vh] + [B(~vh),σh] = [F, ~vh] ∀ ~vh ∈ Xh ,

[B(~uh), τ h] = [G, τ h] ∀ τ h ∈ Hσ
h .

(4.8)

Therefore solving (4.5) is equivalent to seeking a fixed point of the operator Td, that is: Find bh ∈ Ch

such that
Td(bh) = bh . (4.9)
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4.2 Solvability analysis

We begin by proving that (4.8) is well-posed, or equivalently that Td (cf. (4.7)) is well defined.
We remark in advance that the respective proof, being the discrete analogue of the one of Lemma
3.5, makes use again of the abstract result given by Theorem 3.1. We note also that the discrete
kernel of bm, namely Ch (cf. (4.4)), is not included in its continuous counterpart C (cf. (2.11)), and
consequently, we can not employ the embedding C ⊆ Hs(Ω) for some s > 1/2. In order to overcome
this drawback, as we shall see in the following lemma, from now on we need to assume that the mesh
is quasi-uniform. Then, recalling the inverse inequality (see [11, Theorem 3.2.6]):

‖ξ‖0,q;Ω ≤ CI h
3 (1/q−1/p)‖ξ‖0,p;Ω, 1 ≤ p ≤ q ≤ ∞ , (4.10)

for all piecewise polynomial functions ξ and CI > 0 independent of h, we are able to establish general
versions of (3.10), (3.11), and (3.12).

Lemma 4.1 Assume that {Th}h>0 is a family of quasi-uniform triangulations. Given b̂ ∈ C + Ch,
there exists a positive constant Cs,d, independent of h and the physical parameters, such that∣∣[cf (b̂)(b),v]

∣∣ ≤ Cs,d
µ
‖b̂‖curl;Ω‖b‖curl;Ω ‖v‖0,6;Ω ∀ (b,v) ∈ Hb

h × L6(Ω) , (4.11)

∣∣[cm(b̂)(u),d]
∣∣ ≤ Cs,d

µ
‖b̂‖curl;Ω ‖u‖0,6;Ω ‖d‖curl;Ω ∀ (u,d) ∈ L6(Ω)×Hb

h (4.12)

and ∣∣[c(b̂)(~u), ~v]
∣∣ ≤ Cs,d

µ
‖b̂‖curl;Ω

(
‖u‖20,6;Ω + ‖d‖2curl;Ω

)1/2 (‖v‖20,6;Ω + ‖d‖2curl;Ω

)1/2
≤ Cs,d

µ
‖b̂‖curl;Ω ‖~u‖X ‖~v‖X

(4.13)

for all ~u = (u, t,b), ~v = (v, s,d) ∈ L6(Ω)× L2
tr(Ω)×Hb

h .

Proof. In order to show (4.11), we proceed similarly to the proof of [34, Proposition 3.2]. First, notice
that given b̂ ∈ C, (4.11) follow straightforwardly from (3.10), since b ∈ Hb

h ⊆ H(curl; Ω). Now, let

b̂ ∈ Ch and (b,v) ∈ Hb
h × L6(Ω). In order to prove (4.11) we let S : Ch → C be a linear operator

such that (see [28, Section 4])
curl(d) = curl(S(d)) ∀d ∈ Ch (4.14)

satisfying
‖d− S(d)‖0,Ω ≤ CS h

s ‖curl(d)‖0,Ω ∀d ∈ Ch , (4.15)

where s > 1/2 is the parameter such that C ⊆ Hs(Ω) (see [28, Lemma 4.5]). Next, adding and
subtracting S(b̂) in the operator cf (b̂) and using triangle inequality, we obtain∣∣[cf (b̂)(b),v]

∣∣ ≤ ∣∣[cf (b̂− S(b̂))(b),v]
∣∣+
∣∣[cf (S(b̂))(b),v]

∣∣ . (4.16)

In order to bound the first term on the right-hand side of (4.16) we apply Hölder’s inequality, the
inverse inequality (4.10), with q = 3 and p = 2, and the estimate (4.15), to obtain∣∣[cf (b̂− S(b̂))(b),v]

∣∣ ≤ 1

µ
‖b̂− S(b̂)‖0,Ω ‖curl(b)‖0,3;Ω ‖v‖0,6;Ω

≤ CSCI
µ

hs−1/2‖curl(b̂)‖0,Ω‖curl(b)‖0,Ω‖v‖0,6;Ω ≤
CSCI
µ

hs−1/2‖b̂‖curl;Ω‖b‖curl;Ω‖v‖0,6;Ω .

(4.17)
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In turn, using the estimates (3.10) and (3.20), and the identity (4.14), we are able to deduce∣∣[cf (S(b̂))(b),v]
∣∣ ≤ Cs

µ
‖S(b̂)‖curl;Ω ‖b‖curl;Ω ‖v‖0,6;Ω

≤ Cs

µα
1/2
m

‖curl(S(b̂))‖0,Ω ‖b‖curl;Ω ‖v‖0,6;Ω ≤
Cs

µα
1/2
m

‖b̂‖curl;Ω ‖b‖curl;Ω ‖v‖0,6;Ω .
(4.18)

Thus, replacing back (4.17) and (4.18) into (4.16), and using the fact that hs−1/2 < 1, since s > 1/2,

we obtain (4.11) with Cs,d = CSCI + Cs/α
1/2
m independent of h and the physical parameters. The

proof of (4.12) follows analogously to (4.11), reason why is omitted, whereas (4.13) follows from the
definition of the operator c(b̂) (cf. (2.28)) and estimates (4.11), (4.12). �

The following result establishes that the nonlinear operator A(b̂h) (cf. (4.6)) satisfies hypothesis
(i) of Theorem 3.1 with p1 = p ∈ [3, 4] and p2 = p3 = 2.

Lemma 4.2 Assume that {Th}h>0 is a family of quasi-uniform triangulations. Let p ∈ [3, 4]. Given
b̂h ∈ Ch, there exits LMH,d > 0, depending on ν, F, α, |Ω|, Cs,d, %, and µ, such that

‖A(b̂h)(~uh)−A(b̂h)(~vh)‖X′h ≤ LMH,d

{(
1 + ‖b̂h‖curl;Ω

)(
‖uh − vh‖0,6;Ω + ‖bh − dh‖curl;Ω

)
+ ‖th − sh‖0,Ω +

(
‖uh‖0,6;Ω + ‖vh‖0,6,Ω

)p−2‖uh − vh‖0,6;Ω

}
,

(4.19)

for all ~uh = (uh, th,bh), ~vh = (vh, sh,dh) ∈ Xh.

Proof. First, given b̂h ∈ Ch, we observe from the definition of the operator A(b̂h) (cf. (4.6)) that for
~uh = (uh, th,bh), ~vh = (vh, sh,dh) ∈ Xh there certainly holds

‖A(b̂h)(~uh)−A(b̂h)(~vh)‖X′h ≤ ‖a(~uh)− a(~vh)‖X′h + ‖c(b̂h)(~uh − ~vh)‖X′h .

Then, employing similar arguments to (3.16) and considering (4.13), we obtain (4.19), with

LMH,d := max

{
α |Ω|2/3, F cp |Ω|(6−p)/6, ν,

1

%µ2
,
Cs,d
µ

}
.

�

Next, in order to prove the hypotheses (ii) and (iii) of Theorem 3.1, we set the discrete kernel of
the operator B, which is given by Vh := Kh ×Ch, with

Kh :=

{
(vh, sh) ∈ Hu

h ×Ht
h : −

∫
Ω
τ h : sh −

∫
Ω

vh · div(τ h) = 0 ∀ τ h ∈ Hσ
h

}
. (4.20)

Then, from a slight adaptation of [8, Lemma 4.1], which in turn follows by using similar arguments to
the ones developed in [12, Section 5], we now provide the discrete inf-sup condition for the operator
bf (cf. (2.17)) and an intermediate result that will be used to show later on the strong monotonicity

of A(b̂h) on Vh.

Lemma 4.3 There exist positive constants βMH,d and Cd such that

sup
(vh,sh)∈Hu

h×H
t
h

(vh,sh)6=0

[bf (vh, sh), τ h]

‖(vh, sh)‖
≥ βMH,d ‖τ h‖div6/5;Ω ∀ τ h ∈ Hσ

h (4.21)

and
‖sh‖0,Ω ≥ Cd‖vh‖0,6;Ω ∀ (vh, sh) ∈ Kh . (4.22)
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In addition, we recall from [28, Theorem 4.7] that

‖curl(dh)‖20,Ω ≥ αm,d ‖dh‖2curl;Ω ∀dh ∈ Ch . (4.23)

We now establish the discrete strong monotonicity property of A(b̂h) (cf. (4.6)).

Lemma 4.4 Given b̂h ∈ Ch, the family of operators
{
A(b̂h)(· + ~zh) : Vh → V′h : ~zh ∈ Xh

}
is

uniformly strongly monotone, that is, there exists αMH,d > 0, depending on ν, αm,d, Cd, %, and µ such
that

[A(b̂h)(~uh + ~zh)−A(b̂h)(~vh + ~zh), ~uh − ~vh] ≥ αMH,d ‖~uh − ~vh‖2X , (4.24)

for all ~zh = (zh, rh, eh) ∈ Xh, and for all ~uh = (uh, th,bh), ~vh = (vh, sh,dh) ∈ Vh.

Proof. We follow an analogous reasoning to the proof of Lemma 3.3. In fact, let ~zh = (zh, rh, eh) ∈ Xh

and ~uh = (uh, th,bh), ~vh = (vh, sh,dh) ∈ Vh = Kh×Ch (cf. (4.20)). Then, according to the definition
of A(b̂h) (cf. (4.6)), and using the identity (3.13) (which is also true when b̂ ∈ Ch and ~v ∈ Xh), [3,
Lemma 2.1, eq.(2.1b)], and (4.23), we get, similarly to (3.23) that

[A(b̂h)(~uh + ~zh)−A(b̂h)(~vh + ~zh), ~uh − ~vh]

≥ α ‖uh − vh‖20,Ω + ν ‖th − sh‖20,Ω +
αm,d
%µ2

‖bh − dh‖2curl;Ω .
(4.25)

Next, bounding below the first term on the right hand side of (4.25) by 0, and using the fact that
~uh−~vh := ((uh−vh, th− sh),bh−dh) ∈ Kh×Ch in combination with the estimate (4.22), we obtain

[A(b̂h)(~uh + ~zh)−A(b̂h)(~vh + ~zh), ~uh − ~vh]

≥ ν

2
C2
d ‖uh − vh‖20,6;Ω +

ν

2
‖th − sh‖20,Ω +

αm,d
%µ2

‖bh − dh‖2curl;Ω ,

which yields (4.24) with

αMH,d := min

{
ν

2
,
ν C2

d

2
,
αm,d
%µ2

}
. (4.26)

�

Similar to the continuous case, replacing ~uh, ~vh ∈ Vh and ~zh ∈ Xh by ~uh−~vh, 0 ∈ Vh and ~vh ∈ Xh

in (4.24), we arrive at

[A(b̂h)(~uh)−A(b̂h)(~vh), ~uh − ~vh] ≥ αMH,d ‖~uh − ~vh‖2X , (4.27)

for all ~uh, ~vh ∈ Xh such that ~uh − ~vh ∈ Vh.

We continue with the discrete inf-sup condition for the operator B (cf. (2.29), (2.17)).

Lemma 4.5 There exists a positive constant βMH,d, such that

sup
~vh∈Xh
~vh 6=0

[B(~vh), τ h]

‖~vh‖X
≥ βMH,d ‖τ h‖div6/5;Ω ∀ τ h ∈ Hσ

h . (4.28)

Proof. The statement follows directly from the definition of the operator B (cf. (2.29)) and (4.21). �

We are now in position of establishing the discrete analogue of Lemma 3.5.
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Lemma 4.6 Assume that {Th}h>0 is a family of quasi-uniform triangulations. Then, for each b̂h ∈
Ch, the problem (4.8) has a unique solution (~uh,σh) = ((uh, th,bh),σh) ∈ Xh × Hσ

h , and hence

Td(b̂h) := bh ∈ Ch is well-defined. Moreover, there exists a positive constant CTd, independent of b̂h,
such that

‖Td(b̂h)‖curl;Ω ≤ ‖~uh‖X ≤ CTd

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

 . (4.29)

Proof. According to Lemmas 4.2 and 4.4 and the discrete inf-sup condition for B provided by (4.28)
(cf. Lemma 4.5), the proof follows from a direct application of Theorem 3.1, with p1 = p ∈ [3, 4] and
p2 = p3 = 2, to the discrete setting represented by (4.8). In particular, the a priori bound (4.29) is
consequence of the abstract estimate (3.2) applied to (4.8), which makes use of the bounds for ‖F‖X′h
and ‖G‖Hσ

h
′ (cf. (3.8), (3.9)). �

We remark here that, proceeding similarly to the derivation of (3.29), we obtain

‖σh‖div6/5;Ω ≤ Cσd

∑
i∈{p,2}

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

i−1

, (4.30)

with Cσd depending only on LMH,d, αMH,d and βMH,d.

We now proceed to analyze the fixed-point equation (4.9). We begin with the discrete version of
Lemma 3.6, whose proof, follows straightforwardly from Lemma 4.6.

Lemma 4.7 Given r > 0, let Wh be the closed ball in Ch with center at the origin and radius r, and
assume that the data satisfy

CTd

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

 ≤ r . (4.31)

Then, there holds Td(Wh) ⊆Wh.

Next, we address the discrete counterpart of Lemma 3.7, whose proof, being almost verbatim of
the continuous ones, is omitted. We just remark that Lemma 4.8 below is derived using the strong
monotonicity of A(b̂h) on Vh (cf. (4.24)) and the continuity bound of c(b̂h) (cf. (4.13)). Thus, we
simply state the corresponding result as follow.

Lemma 4.8 Assume that {Th}h>0 is a family of quasi-uniform triangulations. Let Cs,d, αMH,d, and
CTd be given by (4.13), (4.26), and (4.29), respectively. Then, there holds

‖Td(b̂h)−Td(b̂0,h)‖curl;Ω

≤ Cs,dCTd

µαMH,d

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

 ‖b̂h − b̂0,h‖curl;Ω ,

(4.32)
for all b̂h, b̂0,h ∈ Ch.

We are now in position of establishing the well-posedness of (4.5)
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Theorem 4.9 Assume that {Th}h>0 is a family of quasi-uniform triangulations. Given r > 0, let
Wh be the closed ball in Ch with center at the origin and radius r, and assume that the data satisfy
(4.31) and

Cs,dCTd

µαMH,d

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

 < 1 . (4.33)

Then the operator Td has a unique fixed point bh ∈Wh. Equivalently, the problem (4.5) has a unique
solution (~uh,σh) ∈ Xh × Hσ

h , with bh ∈ Wh. Moreover, there exist positive constants CTd , Cσd,
depending on Cs,d, ν, F, α, αm,d, |Ω|, %, µ, and βMH,d, such that the following a priori estimates hold

‖~uh‖X ≤ CTd

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

 , (4.34)

‖σh‖div6/5;Ω ≤ Cσd

∑
i∈{p,2}

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

i−1

. (4.35)

Proof. It follows similarly to the proof of Theorem 3.8. Indeed, we first notice from Lemma 4.7 that
Td maps the ball Wh into itself. Next, it is easy to see from (4.32) (cf. Lemma 4.8) and (4.33) that
Td is a contraction, and hence the existence and uniqueness results follow from the Banach fixed-point
theorem. In addition, it is clear that the estimates (4.34) and (4.35) follow straightforwardly from
(4.29) and (4.30), which ends the proof. �

We end this section by establishing the well-posedness of (4.2), whose proof is omitted since it
follows analogously to the proof of Corollary 3.9. We just remark that Corollary 4.10 below is derived
using the discrete inf-sup condition of bm (cf. (4.3)) and the continuity bound of cm(b̂h) (cf. (4.12)).

Corollary 4.10 Assume that {Th}h>0 is a family of quasi-uniform triangulations. Let ff ∈ L6/5(Ω),
fm ∈ L2(Ω), gf ∈ L2(Ω), and uD ∈ H1/2(Γ), such that (4.31) and (4.33) hold. Then, there exist a
unique (uh, th,σh) ∈ Hu

h×Ht
h×Hσ

h and (bh, λh) ∈ Hb
h×Hλ

h solution to (4.2). In addition, (uh, th,bh)
and σh satisfy (4.34) and (4.35), respectively, and for λh, there exits a constant Cλd depending on
Cs,d, ν, F, α, |Ω|, %, µ, βMH,d, and βm, such that

‖λh‖1,Ω ≤ Cλd

2∑
i=1

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

i

.

5 A priori error analysis

In this section we derive Céa’s estimate for the Galerkin scheme (4.2) with the finite element subspaces
given by (4.1) (cf. Section 4.1), and then use the approximation properties of the latter to establish
the corresponding rates of convergence. In fact, let (u, t,σ) ∈ L6(Ω) × L2

tr(Ω) × H0(div6/5; Ω) and
(b, λ) ∈ H0(curl; Ω) × H1

0(Ω), with b ∈ W, be the unique solution of the problem (2.15) and let
(uh, th,σh) ∈ Hu

h × Ht
h × Hσ

h and (bh, λh) ∈ Hb
h × Hλ

h, with bh ∈Wh, be the unique solution of the
discrete problem (4.2). Then, we are interested in obtaining an a priori estimate for the global error

‖u− uh‖0,6;Ω + ‖t− th‖0,Ω + ‖σ − σh‖div6/5;Ω + ‖b− bh‖curl;Ω + ‖λ− λh‖1,Ω . (5.1)
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For this purpose, in what follows we introduce some definitions. Hereafter, given a subspace Xh of a
generic Banach space (X, ‖ · ‖X), we set as usual

dist (x,Xh) := inf
xh∈Xh

‖x− xh‖X ∀x ∈ X .

We stress here that in order to derive an a priori bound for the global error (5.1), we first bound,
separately, the terms ‖~u − ~uh‖X + ‖σ − σh‖div6/5;Ω and ‖λ − λh‖1,Ω, being (~u,σ) = ((u, t,b),σ) ∈
X × H0(div6/5; Ω) the unique solution of the problem (2.25), and (~uh,σh) = ((uh, th,bh),σh) ∈
Xh×Hσ

h the unique solution of the discrete problem (4.5). This is done below in Lemmas 5.1 and 5.2,
respectively. We begin by bounding ‖~u− ~uh‖X + ‖σ − σh‖div6/5;Ω. To that end, we first notice that
differently to [8] we can not apply directly the Strang-type lemma derived in [8, Lemma 5.1] since Ch

is not included in its continuous counterpart C. Nevertheless, most of the arguments used to prove
[8, Lemma 5.1] are employed below in Lemma 5.1 for the context given by (2.25) and (4.5), namely
discrete strong monotocity of A(bh) (cf. (4.27)), continuity of the operator c(bh) (cf. (4.13)), and
discrete inf-sup condition of B (cf. (4.28)).

Next, we define the set

VG
h :=

{
~wh ∈ Xh : [B(~wh), τ h] = [G, τ h] ∀ τ h ∈ Hσ

h

}
, (5.2)

which is clearly nonempty, since (4.28) holds. Note from the second equation of (4.5) that ~uh ∈ VG
h

and then ~uh − ~wh ∈ Vh for all ~wh ∈ VG
h . In addition, we recall that the discrete inf-sup conditions

(4.28) and (4.3), and a classical result on mixed methods (see, for instance, [20, eq. (2.89) in Theorem
2.6]) ensure the existence of C1, C2 > 0, independent of h, such that:

dist (~u,VG
h ) ≤ C1 dist (~u,Xh) ≤ C1

(
dist (u,Hu

h) + dist (t,Ht
h) + dist (b,Ch)

)
(5.3)

and
dist (b,Ch) ≤ C2 dist (b,Hb

h) . (5.4)

Throughout the rest of the paper, given any r > 0, both c(r) and C(r), with or without sub-indexes,
denote positive constants depending on r, and eventually on other constants or parameters.

The announced preliminary result regarding ‖~u−~uh‖X + ‖σ−σh‖div6/5;Ω is established as follows.

Lemma 5.1 Assume that {Th}h>0 is a family of quasi-uniform triangulations. Let ff ∈ L6/5(Ω),
fm ∈ L2(Ω), gf ∈ L2(Ω), and uD ∈ H1/2(Γ), satisfying

Cs,dCT

µαMH,d

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

 ≤ 1

2
. (5.5)

Then, there exists a positive constant C1(r), independent of h, such that

‖~u− ~uh‖X + ‖σ − σh‖div6/5;Ω

≤ C1(r)

 ∑
j∈{p,2}

(
dist (u,Hu

h) + dist (t,Ht
h) + dist (b,Hb

h)
)j−1

+ dist (σ,Hσ
h )

 .
(5.6)
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Proof. We begin by noting that the first equation in (2.25) is well-defined even dough for test functions
in Xh. Then, we subtract the first equations of (2.25) and (4.5), to obtain

[A(b)(~u), ~vh]− [A(bh)(~uh), ~vh] + [B(~vh),σ − σh] = 0 ∀ ~vh ∈ Xh . (5.7)

Next, let ~wh = (wh, rh, eh) be an arbitrary element in VG
h (cf. (5.2)), adding and subtracting suitable

terms in (5.7), we arrive at

[A(bh)(~wh)−A(bh)(~uh), ~vh]

= [A(bh)(~wh), ~vh]− [A(b)(~wh), ~vh] + [A(b)(~wh)−A(b)(~u), ~vh]− [B(~vh),σ − σh] ,
(5.8)

for all ~vh ∈ Xh. Testing (5.8) with ~vh = ~wh − ~uh ∈ Vh, using (4.27) (cf. Lemma 4.4) and the fact
that [B(~wh − ~uh),σh − τ h] = 0 for all τ h ∈ Hσ

h , we get

αMH,d ‖~wh − ~uh‖2X ≤
∣∣[A(bh)(~wh), ~wh − ~uh]− [A(b)(~wh), ~wh − ~uh]

∣∣
+
∣∣[A(b)(~wh)−A(b)(~u), ~wh − ~uh]

∣∣ +
∣∣[B(~wh − ~uh),σ − τ h]

∣∣ , (5.9)

where, using the definitions of A(b) (cf. (2.26)) and A(bh) (cf. (4.6)), and employing Lemma 4.1 and
triangle inequality, we first deduce that∣∣[A(bh)(~wh), ~wh − ~uh]− [A(b)(~wh), ~wh − ~uh]

∣∣ =
∣∣[c(bh − b)(~wh), ~wh − ~uh]

∣∣
≤ Cs,d

µ
‖b− bh‖curl;Ω

(
‖~u− ~wh‖X + ‖~u‖X

)
‖~wh − ~uh‖X

≤ Cs,d
µ

{(
‖b‖curl;Ω + ‖bh‖curl;Ω

)
‖~u− ~wh‖X + ‖~u‖X‖b− bh‖curl;Ω

}
‖~wh − ~uh‖X .

Then, using the fact that b ∈W, bh ∈Wh, and bounding ‖b− bh‖curl;Ω by ‖~u− ~uh‖X, we arrive at∣∣[A(bh)(~wh), ~wh − ~uh]− [A(b)(~wh), ~wh − ~uh]
∣∣

≤
(
c1(r)‖~u− ~wh‖X +

Cs,d
µ
‖~u‖X ‖~u− ~uh‖X

)
‖~wh − ~uh‖X ,

(5.10)

with c1(r) depending on Cs,d, µ, and r. In turn, using Lemma 3.2, and simple computations, we get∣∣[A(b)(~wh)−A(b)(~u), ~wh − ~uh]
∣∣ ≤ ‖A(b)(~wh)−A(b)(~u)‖X′‖~wh − ~uh‖X

≤ LMH

{(
1 + ‖b‖curl;Ω

)(
‖u−wh‖0,6;Ω + ‖b− eh‖curl;Ω

)
+ ‖t− rh‖0,Ω +

(
2 ‖u‖0,6;Ω + ‖u−wh‖0,6,Ω

)p−2‖u−wh‖0,6;Ω

}
‖~wh − ~uh‖X ,

which combined with the property (a + b)p ≤ 2p−1(ap + bp) for a, b > 0 and p > 1, the fact that
b ∈W, using (3.34) in conjunction with (3.30) to bound ‖u‖0,6;Ω by r, and similar arguments to the
ones employed in (5.10), we deduce

|[A(b)(~wh)−A(b)(~u), ~wh − ~uh]| ≤ c2(r)
{
‖~u− ~wh‖X + ‖~u− ~wh‖p−1

X

}
‖~wh − ~uh‖X , (5.11)

with c2(r) depending on LMH, p, and r. In addition, we observe from (3.6), that∣∣[B(~wh − ~uh),σ − τ h]
∣∣ ≤ ‖σ − τ h‖div6/5;Ω ‖~wh − ~uh‖X ∀ τ h ∈ Hσ

h . (5.12)
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Thus, replacing back (5.10), (5.11) and (5.12) into (5.9), and bounding ‖~u‖X by (3.34), we obtain

‖~wh − ~uh‖X ≤ c3(r)
{
‖~u− ~wh‖X + ‖~u− ~wh‖p−1

X + ‖σ − τ h‖div6/5;Ω

}
+
Cs,dCT

µαMH,d

‖ff‖0,6/5;Ω + ‖fm‖0,Ω +
∑

j∈{p,2}

(
‖gf‖0,Ω + ‖uD‖1/2,Γ

)j−1

 ‖~u− ~uh‖X ,
with c3(r) depending on αMH,d, Cs,d, µ, LMH, p, and r. Hence, triangle inequality ‖~u − ~uh‖X ≤
‖~u− ~wh‖X + ‖~wh − ~uh‖X, and the assumption (5.5), yields

‖~u− ~uh‖X ≤ c4(r)
{
‖~u− ~wh‖X + ‖~u− ~wh‖p−1

X + ‖σ − τ h‖div6/5;Ω

}
, (5.13)

with c4(r) only depending on αMH,d, Cs,d, µ, LMH, p, and r.

On the other hand, to estimate the term ‖σ−σh‖div6/5;Ω, we consider an arbitrary element τ h ∈ Hσ
h

and use the discrete inf-sup condition (4.28), to get

βMH,d ‖σh − τ h‖div6/5;Ω ≤ sup
~vh∈Xh
~vh 6=0

[B(~vh),σh − σ]− [B(~vh),σ − τ h]

‖~vh‖
, (5.14)

where, using again (5.7) and adding and subtracting suitable terms, we obtain

[B(~vh),σh − σ] = [A(b)(~uh), ~vh]− [A(bh)(~uh), ~vh] + [A(b)(~u)−A(b)(~uh), ~vh] .

In turn, similarly to (5.10) and (5.11), using (3.34) and (4.34) in conjunction with (3.30) and (4.31)
to bound ‖u‖0,6;Ω, ‖uh‖0,6;Ω, and ‖~uh‖X by r, and the fact that b ∈W, we deduce, respectively, that

∣∣[A(bh)(~uh), ~vh]− [A(b)(~uh), ~vh]
∣∣ ≤ Cs,d

µ
‖~u−~uh‖X ‖~uh‖X ‖~vh‖X ≤ c5(r) ‖~u−~uh‖X ‖~vh‖X (5.15)

and∣∣[A(b)(~uh)−A(b)(~u), ~vh]
∣∣ ≤ LMH

√
3
{

1 + ‖b‖curl;Ω +
(
‖u‖0,6;Ω + ‖uh‖0,6;Ω

)p−2
}
‖~u− ~uh‖X‖~vh‖X

≤ c6(r) ‖~u− ~uh‖X‖~vh‖X ,
(5.16)

with c5(r) and c6(r) only depending on Cs,d, µ, LMH,p, and r. Thus, replacing back (5.15) and (5.16)
into (5.14), using (3.6), triangle inequality, and some algebraic manipulations, we obtain

‖σ − σh‖div6/5;Ω ≤ ‖σ − τ h‖div6/5;Ω + ‖τ h − σh‖div6/5;Ω

≤ c7(r)
{
‖σ − τ h‖div6/5;Ω + ‖~u− ~uh‖X

}
,

(5.17)

with c7(r) only depending on Cs,d, µ, LMH, p, βMH,d and r. Finally, combining (5.13) and (5.17), using
the fact that ~wh ∈ VG

h and τ h ∈ Hσ
h are arbitrary, taking infimum over the corresponding discrete

subspaces VG
h and Hσ

h , and applying (5.3)–(5.4), we conclude (5.6) completing the proof. �

The aforementioned result regarding ‖λ− λh‖1,Ω is established as follows.
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Lemma 5.2 Assume that {Th}h>0 is a family of quasi-uniform triangulations. Assume further that
the data satisfy (5.5). Then, there exists a positive constant C2(r), independent of h, such that

‖λ− λh‖1,Ω ≤ C2(r)

{ ∑
j∈{p,2}

(
dist (u,Hu

h) + dist (t,Ht
h) + dist (b,Hb

h)
)j−1

+ dist (σ,Hσ
h ) + dist (λ,Hλ

h)

}
.

(5.18)

Proof. Let ξh be an arbitrary element in Hλ
h. From the discrete inf-sup condition (4.3) and simple

computations, we have that

βm ‖ξh − λh‖1,Ω ≤ sup
dh∈Hb

h
dh 6=0

[bm(dh), ξh − λ] + [bm(dh), λ− λh]

‖dh‖
. (5.19)

In turn, subtracting (4.2c) to (2.15c) and after adding and subtracting suitable terms there holds

[bm(dh), λ− λh] = − [am(b− bh),dh] + [cm(bh − b)(uh),dh] + [cm(b)(uh − u),dh] , (5.20)

for all dh ∈ Hb
h . Next, using (3.5), (3.11) and (4.12) to bound, respectively, the three terms on the

right-hand side of (5.20), we deduce that

∣∣[bm(dh), λ− λh]
∣∣ ≤ { 1

%µ2
‖~u− ~uh‖X +

(Cs,d
µ
‖~uh‖X +

Cs
µ
‖~u‖X

)
‖~u− ~uh‖X

}
‖dh‖curl;Ω . (5.21)

Thus, replacing back (5.21) into (5.19), using triangle inequality, (3.34) and (4.34) in conjunction with
(3.30) and (4.31) to bound both ‖~u‖X and ‖~uh‖X by r, we get

‖λ− λh‖1,Ω ≤ ‖λ− ξh‖1,Ω + ‖ξh − λh‖1,Ω ≤ c(r)
{
‖~u− ~uh‖X + ‖λ− ξh‖1,Ω

}
, (5.22)

with c(r) depending on βm, %, µ, Cs,d, Cs, p, and r. Finally, combining (5.22) and (5.6), and using
the fact that ξh ∈ Hλ

h is arbitrary, we conclude (5.18) completing the proof. �

We are now in position of establishing the Céa estimate of (4.2). The aforementioned result follows
straightforwardly from Lemmas 5.1 and 5.2.

Theorem 5.3 Assume that {Th}h>0 is a family of quasi-uniform triangulations. Assume further that
the data satisfy (5.5). Then, there exists a positive constant C(r), independent of h, but depending on
r, LMH,d, αMH,d, %, µ,Cs,d, Cs, LMH, p, βm and βMH,d, such that

‖u− uh‖0,6;Ω + ‖t− th‖0,Ω + ‖b− bh‖curl;Ω + ‖σ − σh‖div6/5;Ω + ‖λ− λh‖1,Ω

≤ C(r)

 ∑
j∈{p,2}

(
dist (u,Hu

h) + dist (t,Ht
h) + dist (b,Hb

h)
)j−1

+ dist (σ,Hσ
h ) + dist (λ,Hλ

h)

 .

In order to establish the rate of convergence of the Galerkin scheme (4.2), we recall next the
approximation properties of the finite element subspaces Hu

h , Ht
h, Hσ

h , Hb
h and Hλ

h (cf. (4.1)), whose
derivations can be found in [4], [19], [20], [22], [31, Theorem 5.41] and [7, Section 3.1] (see also [12,
Section 5]):
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(AP)BF: there exist positive constants C1, C2, and C3, independent of h, such that for each v ∈
Wk+1,6(Ω), s ∈ Hk+1(Ω) ∩ L2

tr(Ω), and τ ∈ Hk+1(Ω) ∩ H0(div6/5; Ω) with div(τ ) ∈ Wk+1,6/5(Ω),
there hold

dist (v,Hu
h) := inf

vh∈Hu
h

‖v − vh‖0,6;Ω ≤ C1 h
k+1 ‖v‖k+1,6;Ω ,

dist (s,Ht
h) := inf

rh∈Ht
h

‖s− sh‖0,Ω ≤ C2 h
k+1 ‖s‖k+1,Ω ,

and
dist (τ ,Hσ

h ) := inf
τh∈Hσ

h

‖τ − τ h‖div6/5;Ω ≤ C3 h
k+1

{
‖τ‖k+1,Ω + ‖div(τ )‖k+1,6/5;Ω

}
.

(AP)M: there exist positive constants C4 and C5, independent of h, such that for each d ∈ Hk+1(Ω)∩
H0(curl; Ω) with curl(d) ∈ Hk+1(Ω), and ξ ∈ Hk+2(Ω) ∩H1

0(Ω), there hold

dist (d,Hb
h) := inf

dh∈Hb
h

‖d− dh‖curl;Ω ≤ C4 h
k+1

{
‖d‖k+1,Ω + ‖curl(d)‖k+1,Ω

}
,

and
dist (ξ,Hλ

h) := inf
ξh∈Hλh

‖ξ − ξh‖1,Ω ≤ C5 h
k+1 ‖ξ‖k+2,Ω .

Now we are in a position to provide the theoretical rate of convergence of the Galerkin scheme (4.2).

Theorem 5.4 In addition to the hypotheses of Theorems 3.8, 4.9, and 5.3, given an integer k ≥ 0,
assume that u ∈ Wk+1,6(Ω), t ∈ Hk+1(Ω) ∩ L2

tr(Ω), σ ∈ Hk+1(Ω) ∩ H0(div6/5; Ω) with div(σ) ∈
Wk+1,6/5(Ω), b ∈ Hk+1(Ω) ∩H0(curl; Ω) with curl(b) ∈ Hk+1(Ω), and λ ∈ Hk+2(Ω) ∩ H1

0(Ω). Then,
there exists a positive constant Crate, independent of h, such that

‖u− uh‖0,6;Ω + ‖t− th‖0,Ω + ‖b− bh‖curl;Ω + ‖σ − σh‖div6/5;Ω + ‖λ− λh‖1,Ω

≤ Crate h
k+1

{ ∑
j∈{p,2}

(
‖u‖k+1,6;Ω + ‖t‖k+1,Ω + ‖b‖k+1,Ω + ‖curl(b)‖k+1,Ω

)j−1

+ ‖σ‖k+1,Ω + ‖div(σ)‖k+1,6/5;Ω + ‖λ‖k+2,Ω

}
.

Proof. The result follows from a direct application of Theorem 5.3 and the approximation properties
provided by (AP)BF and (AP)M. Further details are omitted. �

We end this section by introducing suitable approximations for other variables of interest, such
as the pressure p, the velocity gradient G = ∇u, the vorticity ω = 1

2

(
∇u − ∇ut

)
, and the stress

σ̃ := ν (∇u +∇ut)− p I, are all them written in terms of the solution of the discrete problem (4.2a)–
(4.2b). In fact, using (2.5), (2.7), and (2.14), and after simple computations, we deduce that at the
continuous level, there hold

p = −1

3
tr(σ) +

ν

3
gf − c0 , G = t +

1

3
gf I , ω =

1

2

(
t− tt

)
,

and σ̃ = σ + ν tt +
(ν

3
gf + c0

)
I , with c0 =

ν

3 |Ω|

∫
Ω
gf ,

(5.23)
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provided the discrete solution (uh, th,uh) ∈ Hu
h ×Ht

h ×Hσ
h of problem (4.2a)–(4.2b), we propose the

following approximations for the aforementioned variables:

ph = −1

3
tr(σh) +

ν

3
gf − c0 , Gh = th +

1

3
gf I , ωh =

1

2

(
th − tth

)
,

and σ̃h = σh + ν tth +
(ν

3
gf + c0

)
I .

(5.24)

The following result, whose proof follows directly from Theorem 5.4, establishes the corresponding
approximation result for this post-processing procedure.

Corollary 5.5 Let (u, t,σ) ∈ L6(Ω)×L2
tr(Ω)×H0(div6/5; Ω) and (b, λ) ∈ H0(curl; Ω)×H1

0(Ω) be the
unique solution of the continuous problem (2.15), and let p,G,ω and σ̃ given by (5.23). In addition,
let ph,Gh,ωh and σ̃h be the discrete counterparts introduced in (5.24). Let an integer k ≥ 0 and
assume that the hypotheses of the Theorem 5.4 be hold. Then, there exists a positive constant Cpost,
independent of h, such that

‖p− ph‖0,Ω + ‖G−Gh‖0,Ω + ‖ω − ωh‖0,Ω + ‖σ̃ − σ̃h‖0,Ω

≤ Cpost h
k+1

{ ∑
j∈{p,2}

(
‖u‖k+1,6;Ω + ‖t‖k+1,Ω + ‖b‖k+1,Ω + ‖curl(b)‖k+1,Ω

)j−1

+ ‖σ‖k+1,Ω + ‖div(σ)‖k+1,6/5;Ω + ‖λ‖k+2,Ω

}
.

Proof. Recalling the formulae given in (5.23) and (5.24), and employing suitable algebraic manipu-
lations it is not difficult to show that there exists C > 0, independent of h, such that the following
estimate holds

‖p− ph‖0,Ω + ‖G−Gh‖0,Ω + ‖ω − ωh‖0,Ω + ‖σ̃ − σ̃h‖0,Ω ≤ C
{
‖t− th‖0,Ω + ‖σ − σh‖div6/5;Ω

}
.

Then, the result follows straightforwardly from Theorem 5.4. We omit further details. �

6 Numerical results

In this section we report two examples illustrating the performance of the mixed finite element method
(4.2), on a set of quasi-uniform triangulations of the respective 3D domains, and considering the finite
element subspaces defined by (4.1) (cf. Section 4.1). In what follows, we refer to the corresponding
sets of finite element subspaces generated by k = 0 as simply P0 − P0 − RT0 − ND0 − P1. Our
implementation is based on a FreeFemm++ code [27], in conjunction with the direct linear solver
UMFPACK [17]. In order to solve the nonlinear problem (4.2), given 0 6= w ∈ L6(Ω) we introduce the
Gâteaux dirivative and functional associated, respectively, to af and F1 (cf. (2.16), (2.20)), that is

[Daf (w)(u, t), (v, s)] := α

∫
Ω

u · v + F

∫
Ω
|w|p−2u · v + F(p− 2)

∫
Ω
|w|p−4(w · u)(w · v) + ν

∫
Ω

t : s

and

[F1(w), (v, s)] := [F1, (v, s)] + F (p− 2)

∫
Ω
|w|p−2w · v ,
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for all (u, t), (v, s) ∈ L6(Ω) × L2
tr(Ω). In this way, we propose the Newton-type strategy: Given

0 6= u0
h ∈ Hu

h , for i ≥ 1, solve

[am(bih),dh] + [cm(bih)(ui−1
h ),dh] + [bm(dh), λih] = [F3,dh] ,

[bm(bih), ξh] = 0 ,
(6.1)

for all dh ∈ Hb
h and ξh ∈ Hλ

h, and

[Daf (ui−1
h )(uih, t

i
h), (vh, sh)] + [bf (vh, sh),σih] = [F1(ui−1

h ), (vh, sh)]− [cf (bih)(bih),vh] ,

[bf (uih, t
i
h), τ h] = [F2, τ h] ,

(6.2)

for all (vh, sh) ∈ Hu
h ×Ht

h and τ h ∈ Hσ
h . More precisely, we first solve the linear system (6.1) with the

given u0
h, whose solution is denoted (b1

h, λ
1
h). Next, we solve (6.2) with the given (u0

h,b
1
h), so that,

starting from u0
h := (0, 1E− 6, 0)t, we perform just one Newton iteration to obtain (u1

h, t
1
h,σ

1
h) as an

approximate solution of it. Then, the process continues with uih for each i ≥ 1. In this way, for a
fixed tolerance tol = 1E− 6, the above iterations are terminated, which yields the number of Newton
iterations reported in the tables below, once the relative error between two consecutive iterates, say
coeffm and coeffm+1, is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖
‖coeffm+1‖

≤ tol ,

where ‖ · ‖ stands for the usual Euclidean norm in RDOF with DOF denoting the total number of degrees
of freedom defining the finite element subspaces Hu

h , Ht
h, Hσ

h , Hb
h and Hλ

h.

We now introduce some additional notations. The individual errors are denoted by:

e(u) := ‖u− uh‖0,6;Ω , e(t) := ‖t− th‖0,Ω , e(σ) := ‖σ − σh‖div6/5;Ω ,

e(b) := ‖b− bh‖curl;Ω , e(λ) := ‖λ− λh‖1,Ω , e(p) := ‖p− ph‖0,Ω ,

e(G) := ‖G−Gh‖0,Ω , e(ω) := ‖ω − ωh‖0,Ω , e(σ̃) := ‖σ̃ − σ̃h‖0,Ω ,

where the pressure p, the velocity gradient G, the vorticity ω, and the shear stress tensor σ̃ are further
variables of physical interest that are recovered by using the corresponding postprocessing formulae

ph, Gh, ωh, and σ̃h detailed in (5.23)–(5.24). Next, as usual, for each ? ∈
{

u, t,σ,b, λ, p,G,ω, σ̃
}

we let r(?) be the experimental rate of convergence given by

r(?) :=
log(e(?)/e′(?))

log(h/h′)
,

where h and h′ denote two consecutive meshsizes with errors e and e′ respectively.

The examples to be considered in this section are described next. In all them we take for sake of
simplicity ν = 1, µ = 1, α = 1, F = 10, and % = 1, and set the vector 1 := (1, 1, 1)t ∈ R3. In addition,
the mean value of tr(σih) over Ω, with i ≥ 1, is fixed via a Lagrange multiplier strategy (adding one
row and one column to the matrix system that solves (6.2) for uih, t

i
h, and σih).

Example 1: Accuracy assessment with a smooth solution in a convex domain.

In the first example we illustrate the performance of the Galerkin scheme (6.1)–(6.2) (cf. (4.2)) in a
convex domain. We consider the domain Ω := (0, 1)× (0, 0.5)× (0, 0.5), the inertial power p = 3, and

30



choose the data ff , fm, gf and uD such that the exact solution is given by

u(x) =

 sin(πx1) cos(πx2) cos(πx3)
−2 cos(πx1) sin(πx2) cos(πx3)
cos(πx1) cos(πx2) sin(3πx3)

 , p(x) = x2 x3 (x1 − 0.5) ,

b(x) = curl
(
x2

1 (x2 − 0.5)2x2
3 cos(πx3)21

)
, λ(x) = x1 x2 x3 (x2 − 0.5)(x3 − 0.5)(x1 − 1) .

The model problem is then complemented with the appropriate Dirichlet boundary conditions. Table
6.1 shows the convergence history for a sequence of quasi-uniform mesh refinements, including the
number of Newton iterations. Notice that we are able not only to approximate the original unknowns
but also the pressure field, the velocity gradient tensor, the vorticity, and the shear stress tensor
through the formula (5.24). Note also that e(t) = e(G) since t (resp. th) is just a translation of G
(resp. Gh). The results confirm that the optimal rates of convergence O(hk+1) predicted by Theorem
5.4 and Corollary 5.5 are attained for k = 0. The Newton method exhibits a behavior independent
of the meshsize, converging in four iterations in all cases. In Figure 6.1 we display some solutions
obtained with the five-field mixed P0−P0−RT0−ND0−P1 approximation with meshsize h = 0.0505
and 32, 928 tetrahedra elements (actually representing 613, 593 DOF).

Example 2: Accuracy assessment with a smooth solution in a non-convex domain.

In the second example we test the iterative method (6.1)–(6.2) (cf. (4.2)) in a non-convex domain. In
fact, we consider the Fichera’s corner domain Ω := (−1, 1)3 \ [0, 1)3, where, due to the regularity of
the Neumann problem (see [15] and [16] for details), there holds H0(curl; Ω)∩H(div0; Ω) ⊆ Hs(Ω) for
s ∈

(
1/2, 2/3

)
. We consider the inertial power p = 4 and choose the data ff , fm, gf and uD so that

the exact solution is given by

u(x) =

 − x1 (x2 − x3) (x2 + x3)
2x2 (x1 − x3) (x1 + x3)
− x3 (x1 − x2) (x1 + x2)

 , p(x) := x1 x2 x3 − cp ,

b(x) := curl
(

sin2(πx1) sin2(πx2) sin2(πx3)1
)
, λ(x) := sin(πx1) sin(πx2) sin(πx3) ,

where cp ∈ R is chosen in such a way p ∈ L2
0(Ω). The convergence history for a set of quasi-uniform

mesh refinements using k = 0 is shown in Table 6.2. Again, the mixed finite element method converges
optimally with order O(h), as it was proved by Theorem 5.4 and Corollary 5.5. In addition, some
components of the numerical solution are displayed in Figure 6.2, which were built using the five-field
mixed P0 − P0 − RT0 −ND0 − P1 approximation with meshsize h = 0.1414 and 42, 000 tetrahedra
elements (actually representing 782, 121 DOF). We observe that for this example the second diagonal
components of the velocity gradient and its translation, namely G22,h and t22,h, look quite similar
since they only differ in the term 1

3 gf (cf. (5.24)), with gf = div(u) = x2
1 − x2

3 small in Ω.
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