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Abstract

In this paper, we propose a mass conservative pseudostress-based finite element method
for solving the Stokes problem with both Dirichlet and mixed boundary conditions. We
decompose the velocity by means of a Helmholtz decomposition and derive a three-field
mixed variational formulation, where the pseudostress, the velocity, both in H(div), and an
additional unknown representing the null function, are the main unknowns of the system.
By employing suitable finite element spaces, the velocity is approximated using H(div)-
conforming finite elements, ensuring the desired mass conservation property. The proposed
method offers several advantages, including simplicity of implementation and compatibil-
ity with existing software packages for partial differential equation solvers. Additionally,
we extend the study to incorporate mixed boundary conditions for the Stokes problem and
complement the analysis with the introduction of a reliable and efficient residual-based a pos-
teriori error estimator. Numerical examples are provided to validate the theoretical results,
demonstrating the effectiveness and accuracy of the proposed method.

Key words: Stokes problem; mass conservation; conforming scheme, mixed finite element
method; Raviart–Thomas elements; BDM elements

Mathematics Subject Classifications (1991): 65N15, 65N30, 76D05, 76M10

1 Introduction

The Navier-Stokes (NS) problem is a challenging problem in numerical analysis, and the scientific
community has been focused on proposing more accurate and efficient methods to obtain good
approximations of its solution for several decades. In its most basic form, NS is written as
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297, Concepción, Chile, and CI2MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile, email:
jecamano@ucsc.cl
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follows:

ν∆u+ (u · ∇)u+∇p = f in Ω, divu = 0 in Ω, u = uD on Γ := ∂Ω,

∫
Ω
p = 0,

(1.1)
where the vector field u := (u1, . . . , ud)

t and the scalar field p are the velocity and pressure,
respectively, of a fluid with a given viscosity ν > 0 occupying a domain Ω ⊆ Rd (d = 2, 3). Here,
f is a given source force, and uD is a prescribed velocity on the boundary Γ := ∂Ω satisfying
the compatibility condition: ∫

Γ
uD · n = 0, (1.2)

where n denotes the outward unit normal vector on Γ. The first equation of (1.1) represents the
conservation of momentum of the system, whereas the second one represents the conservation
of mass.

For several years, the most commonly employed methods by engineers to approximate the
solution of (1.1) are based on conforming discretizations of the classical velocity-pressure for-
mulation, mainly because they are relatively cheap and easy to implement. Actually, in most of
the software designed to solve partial differential equations, such as Freefem++ and Fenics, the
classical families of finite elements for (1.1) are already available (see [21] for a detailed study
of these classical families). However, since the aforementioned conservation laws are imposed
weakly, these quantities are not exactly preserved, yielding instabilities of the numerical schemes
(see, for instance, [23] and [28]).

To study the mass conservation property of (1.1), one can restrict the analysis to the sim-
plified Stokes model:

−ν∆u+∇p = f in Ω, divu = 0 in Ω, u = uD on Γ,

∫
Ω
p = 0. (1.3)

In [26], the authors improved the lack of conservation of mass of conforming velocity-pressure
formulations for (1.1) by introducing a family of divergence-free conforming finite elements for
(1.3) on general triangular meshes in two dimensions. There, the divergence-free property is
attained by enriching the polynomial space for the velocity with suitable rational functions,
which makes the computational implementation more difficult and increases the computational
cost. The approach in [26] was later extended to the three-dimensional case in [27].

Another possible approach for obtaining mass conservative numerical methods for (1.1) is
to use nonconforming schemes, as demonstrated in [10], where the authors introduced a discon-
tinuous Galerkin scheme for (1.1). There, the divergence constraint is exactly satisfied at the
discrete level due to the use of divergence-conforming discrete spaces to approximate the veloc-
ity. Another example is the pressure-robust hybridized discontinuous Galerkin method proposed
by [24].

On the other hand, several approaches based on reformulations of (1.1) or (1.3) have also
been considered to improve the lack of conservation of laws. For instance, in [12] (see also [2]),
the introduction of the vorticity as a further unknown enables the authors to obtain a variational
formulation of (1.3) with the velocity in the Hilbert space H(div; Ω) := {v ∈ L2(Ω) : divv ∈
L2(Ω)}. This approach allows the velocity to be approximated by H(div; Ω)-conforming finite
elements, thereby obtaining a conforming, mass conservative numerical scheme. However, the
approach in [12] has not been extended to the Navier-Stokes problem (1.1), as the convective
term does not allow the same spaces to be used for the variables introduced in [12].
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More recently, in [22], the gradient of the velocity is introduced as an additional unknown,
leading to a new formulation where the velocity can be approximated usingH(div; Ω)-conforming
elements and providing exact mass conservation. As in [12], the convective term prevents the
extension of [22] to the Navier-Stokes problem (1.1).

An alternative method to approximate the solution of (1.3) is the so called pseudostress-based
formulation. This method involves rewriting (1.3) using the pseudostress tensor σ := ν∇u− pI
(refer to [7], [18], [19] and [20] for further information). The momentum equation can be
reformulated as −divσ = f in Ω, and the divergence constraint implies that p = −1

dtr (σ).
Then, the pressure can be eliminated from the system to obtain the first-order set of equations:

σd = ν∇u in Ω − divσ = f in Ω and u = uD on Γ,

∫
Ω
tr (σ) = 0. (1.4)

Here, I denotes the identity matrix, tr (σ) is the trace of the tensor σ, σd := σ − 1
dtr (σ)I

denotes the deviatoric part of σ, and div τ is the divergence operator div acting along the rows
of τ for any tensor field τ = (τij)i,j=1,d.

The corresponding variational problem is given by: Find (σ,u) ∈ H0(div ; Ω) × L2(Ω),
satisfying the variational equation∫

Ω
σd : τ d + ν

∫
Ω
u · div τ = ν⟨τn,uD⟩Γ, ∀ τ ∈ H(div ; Ω), (1.5)

and the differential equation
div σ + f = 0 in Ω. (1.6)

Here,

H(div ; Ω) :=
{
τ ∈ [L2(Ω)]d×d : div τ ∈ L2(Ω)

}
, L2(Ω) := [L2(Ω)]d,

H0(div ; Ω) :=
{
τ ∈ H(div ; Ω) :

∫
Ω
tr (τ ) = 0

}
,

and ⟨·, ·⟩Γ denotes the corresponding product of duality between the trace space H1/2(Γ) and its
dual H−1/2(Γ).

Based on (1.6), it is evident that conforming discretizations of (1.5)-(1.6) naturally conserve
momentum. This is one of the main benefits of this approach. Additionally, other variables
of interest, such as the gradient of velocity and vorticity, can be approximated through a sim-
ple postprocessing of σ, without applying any numerical differentiation, thus, avoiding further
sources of error. However, there is currently no literature on the conservation of mass of con-
forming discretizations of (1.5)-(1.6).

Motivated by the above, this paper presents a reformulation of (1.5)-(1.6) to obtain a mass
conservative and conforming numerical scheme for the Stokes problem. Specifically, it utilizes a
Helmholtz decomposition for u and derives a three-field mixed variational formulation for (1.4),
where the main unknowns of the resulting system are σ ∈ H0(div ; Ω), u ∈ H(div0; Ω) and an
additional unknown φ ∈ H1

0(Ω) representing the null function. Here,

H(div0; Ω) := {v ∈ H(div; Ω) : divv = 0 in Ω},

H1
0(Ω) := {ψ ∈ H1(Ω) : ψ = 0 on Γ}.
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Consequently, at the discrete level, the velocity can be approximated usingH(div; Ω)-conforming
finite elements, which ensures the desired mass conservation property. This constitutes one of
the main advantages of this work. Additionally, the resulting Galerkin scheme can be easily im-
plemented in two and three dimensions using softwares such as Freefem++ and Fenics, among
others. Furthermore, the study can be straightforwardly extended to the Stokes problem with
mixed boundary conditions and can be complemented with a reliable and efficient residual-based
a posteriori error estimator. Finally, we observe that, unlike most of the mass conservative nu-
merical schemes available in the literature (see [23]), and similar to classical conforming schemes
for Stokes, in this study, the velocity error is amplified by the inverse of the viscosity. This
aspect constitutes a topic for further research.

The rest of the article is organized as follows: In Section 2, we introduce the three-field
continuous problem and analyze its well-posedness. Then, in Section 3, we propose the mass
conservative numerical scheme and study its well-posedness and convergence. Afterward, in
Section 4, we derive a residual-based a posteriori error estimator and prove its reliability and
efficiency. In Section 5, we extend the previous results to the Stokes problem with mixed
boundary conditions.

We end this section by fixing some notations and introducing some preliminary results. We
begin by recalling that for any vector field v = (vi)i=1,d, the differential operators ∇v and divv
introduced above, are given by

∇v :=

(
∂vi
∂xj

)
i,j=1,d

and divv :=

d∑
j=1

∂vj
∂xj

.

In addition, for any tensor fields τ = (τij)i,j=1,d and ζ = (ζij)i,j=1,d, the transpose, the trace
and the tensor inner product are defined, respectively, as

τ t := (τji)i,j=1,d, tr (τ ) :=

d∑
i=1

τii and τ : ζ :=

d∑
i,j=1

τijζij .

For simplicity, in what follows we denote

(v, w)Ω :=

∫
Ω
vw, (v,w)Ω :=

∫
Ω
v ·w, (v,w)Γ :=

∫
Γ
u · v and (τ , ζ)Ω :=

∫
Ω
τ : ζ.

In the sequel, the norms of the well-known Lebesgue and Sobolev spaces L2(Ω) and H1(Ω), will
be denoted by ∥ · ∥0,Ω and ∥ · ∥1,Ω, respectively. We also write | · |1,Ω for the H1(Ω)-seminorm.
We additionally recall that the space H(div; Ω) equipped with the usual norm ∥v∥div,Ω :=
(∥v∥20,Ω + ∥divv∥20,Ω)1/2 is a Hilbert space, as well as the space H(div ; Ω) with the norm

∥τ∥div ,Ω := (∥τ∥20,Ω + ∥div τ∥20,Ω)1/2. (1.7)

Finally, by S and S we denote the corresponding vectorial and tensorial counterparts of the
generic scalar functional space S.

2 The continuous mass conservative mixed formulation

2.1 Derivation of the mass conservative mixed variational formulation

Here, we derive the mass conservative variational formulation and define the bilinear forms and
functionals involved. To that end, let us introduce the auxiliary problem: Find (σ,u, φ) ∈
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X0 ×V0 ×Ψ0 such that

(σd, τ d)Ω + (divσ,div τ )Ω + ν(div τ ,u+∇φ)Ω = ν⟨τn,uD⟩Γ − (f ,div τ )Ω (2.1)

∀ τ ∈ X, and
div σ + f = 0 in Ω, (2.2)

where

X := H(div ; Ω), X0 := H0(div ; Ω), V0 := H(div0; Ω) and Ψ0 := H1
0(Ω). (2.3)

Observe that if (σ,u, φ) ∈ X0 × V0 × Ψ0 is a solution to (2.1)-(2.2), then it is clear that
(divσ,div τ )Ω
= −(f ,div τ )Ω, for all τ ∈ X, and then, taking τ = ψI, with ψ ∈ Ψ0 in (2.1), and using the fact
that τ d = (ψI)d = 0, ⟨ψn,uD⟩ = 0 and div (ψI) = ∇ψ, it follows that

(∇φ,∇ψ)Ω = 0 , ∀ψ ∈ Ψ0,

which implies that φ = 0 in Ω and (σ,u) is a solution to (1.5)-(1.6).
Conversely, if (σ,u) ∈ X0 ×L2(Ω) is a solution to (1.5)-(1.6), from the Helmholtz decompo-

sition
L2(Ω) = V0 ⊕∇Ψ0, (2.4)

it readily follows that the velocity u can decomposed as follows

u = w +∇φ in Ω,

withw ∈ V0 and φ ∈ Ψ0. Then, noticing that (1.6) implies that (divσ,div τ )Ω = −(f ,div τ )Ω,
for all τ ∈ X, it is easy to see that (σ,w, φ) satisfies equations (2.1)-(2.2). But, proceeding
exactly as above one can deduce that φ = 0 in Ω, which implies that u = w ∈ V0, and therefore
(σ,u, φ) is a solution to (2.1)-(2.2). In this way, we have proved the following lemma

Lemma 2.1 If (σ,u) ∈ X0 × L2(Ω) is a solution to (1.5)-(1.6), then u ∈ V0 and (σ,u, 0) is a
solution to (2.1)-(2.2). Conversely, if (σ,u, φ) ∈ X0×V0×Ψ0 is a solution to (2.1)-(2.2), then
φ = 0 in Ω and (σ,u) is a solution to (1.5)-(1.6).

As a consequence of the previous lemma, in what follows we focus on studying and discretizing
the system (2.1)-(2.2). To do that we first recall that the space X (cf. (2.3)) can be decomposed
as follows:

X = X0 ⊕ P0(Ω)I,

where P0(Ω) is the space of constant polynomials on Ω. More precisely, each τ ∈ X can be
decomposed uniquely as:

τ = τ 0 + c I , with τ 0 ∈ X0 and c :=
1

d |Ω|
(tr τ , 1)Ω ∈ R .

Then, owing to the compatibility condition (1.2), after simple computations we realize that the
test space for (2.1) can be equivalently reduced to X0. In turn, as a consequence of the Helmholtz
decomposition (2.4), equation (2.2) can be equivalently imposed weakly as follows:

(div σ,v +∇ψ)Ω = −(f ,v +∇ψ)Ω ∀ (v, ψ) ∈ V0 ×Ψ0.
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In this way, defining the bilinear forms a : X0×X0 → R and b : X0×M → R and the functionals
F : X0 → R and G : M → R, respectively as follows

a(σ, τ ) := (σd, τ d)Ω + (divσ,div τ )Ω, b(τ , (v, ψ)) := ν(div τ ,v +∇ψ)Ω, (2.5)

F (τ ) := ν⟨τn,uD⟩Γ − (f ,div τ )Ω and G(v, ψ) := −ν(f ,v +∇ψ)Ω,

where
M = V0 ×Ψ0,

we rewrite (2.1)-(2.2) equivalently as the variational problem: Find (σ, (u, φ)) ∈ X0 ×M, such
that:

a(σ, τ ) + b(τ , (u, φ)) = F (τ ) ∀ τ ∈ X0,

b(σ, (v, ψ)) = G(v, ψ) ∀ (v, ψ) ∈ M.
(2.6)

Remark 2.2 Later on, in Remark 3.4, we provide more details on the introduction of the term
(divσ,div τ )Ω in the definition of the bilinear form a.

2.2 Analysis of the continuous problem

In this section we prove the well–posedness of problem (2.6). To that end, we first recall from
[14, Lemma 2.3] that the following inequality holds

Cd∥τ∥20,Ω ≤ ∥τ d∥20,Ω + ∥div τ∥20,Ω ∀ τ ∈ X0, (2.7)

which in particular implies that the seminorm

|τ |div ,Ω :=
{
∥τ d∥20,Ω + ∥div τ∥20,Ω

}1/2
∀ τ ∈ X0,

is a norm in X0, equivalent to the norm (1.7). According to this, in what follows we equip the
space X0 with the norm | · |div ,Ω. In turn, for the sake of the forthcoming analysis, and using
the fact that the well-known Poincaré inequality (see eg. [13, B.61])

∥w∥0,Ω ≤ CP |w|1,Ω ∀w ∈ H1
0(Ω),

with CP > 0 depending only on |Ω|, implies that the seminorm | · |1,Ω is equivalent to the norm
∥ · ∥1,Ω in H1

0(Ω), in what follows we endow the product space M with the viscosity-dependent
norm

∥(v, ψ)∥M,ν = ν{∥v∥2div;Ω + |ψ|21,Ω}1/2.

As wee shall see next, this norm will allows us to derive the stability properties of the bilinear
forms involved, with constants independent of ν. In fact, from the Cauchy-Schwartz inequality
we can easily deduce that

|a(σ, τ )| ≤ |σ|div ,Ω|τ |div ,Ω ∀σ, τ ∈ X0,

|b(τ , (v, ψ))| ≤ |τ |div ,Ω∥(v, ψ)∥M,ν ∀ τ ∈ X0, ∀v ∈ M,

6



where in the latter we utilized the fact that

∥v +∇ψ∥20,Ω = ∥v∥20,Ω + |ψ|21,Ω ∀ (v, ψ) ∈ M. (2.8)

In turn, from the definition of the bilinear form a, it is clear that

a(τ , τ ) = |τ |2div ,Ω ∀ τ ∈ X0, (2.9)

thus a is elliptic on X0.
Now we provide the corresponding inf-sup condition of the bilinear form b.

Lemma 2.3 There exists β > 0, independent of ν, such that

sup
0 ̸=τ∈X0

b(τ , (v, ψ))

|τ |div ,Ω
≥ β∥(v, ψ)∥M,ν ∀ (v, ψ) ∈ M. (2.10)

Proof. It follows analogously to the proof of the inf-sup condition in [18, Theorem 2.1]. In fact,
given (v, ψ) ∈ M, we let τ̃ := −∇z + 1

d|Ω|(div z, 1)ΩI in Ω, with z ∈ H1
0(Ω) being the unique

weak solution of the auxiliary problem

−∆z = ν(v +∇ψ) in Ω, z = 0 on Γ,

satisfying
|z|1,Ω ≤ Cν∥v +∇ψ∥0,Ω. (2.11)

Then, we observe that div τ̃ = ν(v +∇ψ) in Ω, which together with (2.11) implies |τ̃ |div ,Ω ≤
C̃ν∥v +∇ψ∥0,Ω. From the latter, and the identity (2.8), we obtain

sup
0 ̸=τ∈X0

b(τ , (v, ψ))

|τ |div ,Ω
≥ b(τ̃ , (v, ψ))

|τ̃ |div ,Ω
≥ C̃−1

ν2(∥v∥2div,Ω + |ψ|21,Ω)
ν∥v +∇ψ∥0,Ω

= β∥(v, ψ)∥M,ν ,

with β = C̃−1 > 0. □
We now provide the well-posedness of problem (2.6).

Theorem 2.4 There exists a unique (σ, (u, φ)) ∈ X0 × M solution to (2.6) with φ = 0 in Ω.
Furthermore, the following a priori estimates hold:

|σ|div ,Ω ≤ νc1∥uD∥1/2,Γ + c2∥f∥0,Ω and ν∥u∥0,Ω ≤ c3ν∥uD∥1/2,Γ + c4∥f∥0,Ω, (2.12)

with c1, c2, c3, c4 > 0, all of them independent of ν.

Proof. The well-posedness of (2.6) follows straightforwardly from (2.9), (2.10) and the Babuška–
Brezzi theory, and from Lemma 2.1 we deduce that φ = 0 in Ω. In turn, to derive the estimates
(2.12) we first observe that from [14, Theorem 1.7] and (2.7), there holds

|⟨τn,uD⟩Γ| ≤ νC|τ |div ,Ω∥uD∥1/2,Γ, ∀ τ ∈ X0,

with C > 0 independent of ν, which implies that

∥F∥X′
0
≤ νC∥uD∥1/2,Γ + ∥f∥0,Ω.
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Then, noticing that
∥G∥M′ ≤ ∥f∥0,Ω,

the estimates in (2.12) can be easily obtained from [13, Theorem 2.34, estimate (2.30)] and the
fact that divu = 0 in Ω. □

We end this section by providing the converse of the derivation of (2.6).

Theorem 2.5 Let (σ, (u, φ)) ∈ X0 ×M be the unique solution of (2.6). Then, −div σ = f
in Ω, φ = 0 in Ω, u = uD on Γ and ν∇u = σd in Ω, which implies that u ∈ H1(Ω).

Proof. The identity −div σ = f in Ω follows from the second equation of (2.6) and the
Helmholtz decomposition (2.4) whereas identity φ = 0 in Ω follows from Lemma 2.1. The rest
of the identities follow from the first equation of (2.6), considering suitable test functions and
integrating by parts backwardly. We omit further details.

□

3 Galerkin Scheme

In this section we introduce the Galerkin scheme associated to problem (2.6), analyze its solv-
ability and finally derive the corresponding a priori error estimate.

3.1 The discrete problem

Let Th be a regular family of regular triangulations of the polyhedral region Ω by triangles T
in R2 or tetrahedra in R3 of diameter hT , such that Ω = ∪{T : T ∈ Th} and define h :=
max{hT : T ∈ Th}. Given an integer l ≥ 0 and a subset S of Rd, we denote by Pl(S) the space
of polynomials of total degree at most l defined on S. Hence, for each integer k ≥ 0 and for each
T ∈ Th, we define the local Raviart–Thomas space of order k and the Brezzi–Douglas–Marini
element of order k + 1, respectively as (see, for instance [5]):

RTk(T ) := [Pk(T )]
d ⊕ P̃k(T )x, and BDMk+1(T ) = [Pk+1(T )]

d

where x := (x1, . . . , xd)
t is a generic vector of Rd and P̃k(T ) is the space of polynomials of total

degree equal to k defined on T . In this way, we define the discrete spaces

Vk
h := {zh ∈ H(div; Ω) : zh|T ∈ RTk(T ), ∀T ∈ Th} ,

Xk+1
h := {τh ∈ H(div; Ω) : τh|T ∈ BDMk+1(T ), ∀T ∈ Th} ,

and let

Xk+1
h :=

{
τ h ∈ H(div ; Ω) : ct τ h ∈ Xk+1

h ∀ c ∈ Rd
}
, Xk+1

h,0 := Xk+1
h ∩H0(div ; Ω),

Vk
h,0 := Vk

h ∩H(div0; Ω),

Ψk+1
h,0 :=

{
φh ∈ C(Ω) : φh|T ∈ Pk+1(T ), ∀T ∈ Th

}
∩H1

0(Ω),

Mk
h := Vk

h,0 ×Ψk+1
h,0 ,

8



in such a way, the Galerkin scheme associated to problem (2.6) reads: Find (σh, (uh, φh)) ∈
Xk+1
h,0 ×Mk

h, such that:

a(σh, τ h) + b(τ h, (uh, φh)) = F (τ h) ∀ τ h ∈ Xk+1
h,0 ,

b(σh, (vh, ψh)) = G(vh, ψh) ∀ (vh, ψh) ∈ Mk
h.

(3.1)

Remark 3.1 Observe that the discrete space Vk
h,0 becomes

Vk
h,0 = {vh ∈ Vk

h : divvh = 0 in Ω},

thus the numerical scheme (3.1) produces exactly divergence-free approximations for the velocity
u.

In what follows we establish the well-posedness of (3.1) and derive the corresponding a priori
error estimates.

3.2 Well-posedness

We begin by observing that the bilinear form a satisfies

a(τ , τ ) = |τ |2div ,Ω ∀τ ∈ Xk+1
h,0 .

Next, to prove the discrete version of (2.10) we recall from [5, Section 2.5] that there exist inter-
polator operators ΠRTh : H1(Ω) → Vk

h and ΠBDMh : H1(Ω) → Xk+1
h satisfying the approximation

property
∥Π⋆h(τ)− τ∥0,T ≤ chmT |τ |m,T , ∀τ ∈ Hm(T ), ∀T ∈ Th, (3.2)

for all 1 ≤ m ≤ l⋆(k) and ⋆ ∈ {RT,BDM}, with lRT (k) = k + 1 and lBDM (k) = k + 2, and the
commutative property

div(Π⋆h(τ)) = Pk(div τ), ∀τ ∈ H1(Ω), ∀ ⋆ ∈ {RT,BDM}, (3.3)

where Ph is the L2-projection on

Qkh := {q ∈ L2(Ω) : q|T ∈ Pk(T ), ∀T ∈ Th},

which satisfies ∫
Ω
(Pk

h(v)− v)zh = 0 ∀ zh ∈ Qkh,

and the local approximation property

∥v − Pk
h(v)∥0,T ≤ Chm|v|m,T , ∀T ∈ Th, (3.4)

for all 0 ≤ m ≤ k + 1 and for all v ∈ Hm(Ω). Notice that from (3.3) and (3.4) we have that

∥div τ − div(Π⋆h(τ))∥0,T ≤ Chm|div τ |m,T , ∀T ∈ Th, (3.5)

for all 0 ≤ m ≤ k + 1 and for all τ ∈ H1(Ω) with div τ ∈ Hm(Ω).
In what follows we will employ a tensor version of ΠBDMh , denoted by ΠBDM

h : H1(Ω) → Xkh,
which is defined row-wise by ΠBDMh , and the vector version of Pk

h , denoted by Pk
h : L2(Ω) →

Qk
h := [Qkh]

d, defined component-wise by Pk
h .

Now we adapt the proof of [18, Lemma 3.2] to deduce the discrete inf-sup condition of b.
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Lemma 3.2 There exists β̂ > 0, independent of h and ν, such that

sup
0 ̸=τh∈Xh,0

b(τ h, (vh, ψh))

|τ h|div ,Ω
≥ β̂∥(vh, ψh)∥M,ν ∀ (vh, ψh) ∈ Mk

h. (3.6)

Proof. We let B ⊆ Rd be a bounded and open convex domain such that Ω ⊂ B, and given
(vh, ψh) ∈ Mk

h, we let z ∈ H1
0(B) be the unique weak solution of the auxiliary problem

−∆z = h(vh, ψh) in B, z = 0 on ∂B,

with

h(vh, ψh) :=

{
ν(vh +∇ψh), in Ω

0, in B\Ω.
It is well known that z ∈ H2(B) (see [25]) and

∥z∥2,Ω ≤ Cν∥h(vh, ψh)∥0,B = Cν∥vh +∇ψh∥0,Ω = C∥(vh, ψh)∥M,ν . (3.7)

Notice that, since vh ∈ Vk
h,0, then according to [5, Corollary 2.3.1], vh ∈ Qk

h. Then, we let

τ̂ h := −ΠBDM
h (∇z|Ω)+ 1

d|Ω|(tr (Π
BDM
h (∇z|Ω)), 1)ΩI in Ω and apply (3.2), (3.3), (3.4) and (3.7),

to deduce that

div τ̂ h = ν(vh +∇ψh) ∈ Qk
h and |τ̂ h|div ,Ω ≤ Ĉ∥(vh, ψh)∥M,ν .

Therefore, we proceed as in the proof of Lemma 2.3 to obtain the desired estimate. □
These properties and the Babuška-Brezzi theory allow us to conclude the well-posedness of

(3.1). This result is established next.

Theorem 3.3 There exists a unique (σh, (uh, φh)) ∈ Xk+1
h,0 ×Mk

h solution to the Galerkin scheme
(3.1). In addition, there exist positive constants c̃1, c̃2, c̃3 and c̃4, independent of h and ν, such
that

|σh|div ,Ω ≤ νc̃1∥uD∥1/2,Γ + c̃2∥f∥0,Ω and ∥(uh, φh)∥M,ν ≤ c̃3ν∥uD∥1/2,Γ + c̃4∥f∥0,Ω, (3.8)

Proof. The existence and uniqueness of solution is a straightforward application of the Babuška-
Brezzi theory, whereas estimate (3.8) follows analogously to the proof of (2.12). We omit further
details. □

Remark 3.4 Let Kh be the discrete kernel of the bilinear form b, that is:

Kh :=
{
τ ∈ Xk+1

h,0 : b(τ , (v, ψ)) = 0, ∀ (v, ψ) ∈ Mk
h

}
=
{
τ ∈ Xk+1

h,0 : (div τ ,v +∇ψ)Ω = 0, ∀ (v, ψ) ∈ Mk
h

}
.

It should be noted that if τ ∈ Kh, it does not necessarily satisfy div τ = 0 in Ω. Therefore,
without introducing the term (divσ,div τ )Ω in the definition of the bilinear form a (cf. (2.5)),
the ellipticity of a on Kh would not be satisfied, thereby preventing the utilization of the Babuška-
Brezzi theory to establish the well-posedness of the discrete problem.

In turn, it is worth noting that although the analysis in this section was conducted using
BDMk+1 elements for approximating the pseudostress and RTk elements for the velocity, alter-
native options are also valid. For example, another viable choice would be to approximate both the
pseudostress and velocity using RTk elements. In general, the choice of the discrete spaces Xh,
Vh, and Ψh for σ, u, and φ, respectively, must satisfy the inclusions div (Xh) ⊆ Vh∩H(div0; Ω)
and div (Xh) ⊆ ∇Ψh in order to ensure that the discrete inf-sup condition (3.6) holds.
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3.3 A priori error estimates

Now we derive the Cea’s estimate and the corresponding rates of convergence.

Theorem 3.5 Let (σ, (u, 0)) ∈ X0×M and (σh, (uh, φh)) ∈ Xk+1
h,0 ×Mk

h be the unique solutions
of (2.6) and (3.1), respectively. Then, there exist positive constants ĉ1, ĉ2, ĉ3 and ĉ4, independent
of ν and h, such that,

|σ − σh|div ,Ω ≤ ĉ1 inf
τh∈Xk+1

h,0

|σ − τ h|div ,Ω + ĉ2 ν inf
vh∈Vk

h,0

∥u− vh∥0,Ω, (3.9)

and

∥(u− uh, φh)∥M,ν ≤ ĉ3 inf
τh∈Xk+1

h,0

|σ − τ h|div ,Ω, + νĉ4 inf
vh∈Vk

h,0

∥u− vh∥0,Ω. (3.10)

Proof. The proof follows from a direct application of [14, Theorem 2.6] and the fact that

inf
(vh,ψh)∈Mh

∥(u, 0)− (vh, ψh)∥M,ν ≤ ν inf
vh∈Vk

h,0

∥u− vh∥0,Ω.

□
Next, to derive the rate of convergence for the Galerkin scheme (3.1), we recall from [5,

Section 2.5] that (3.2), (3.3) and (3.4) imply the global estimate

∥τ − Π⋆h(τ)∥div,Ω ≤ chm
{
|τ |m,Ω + |div τ |m,Ω

}
⋆ ∈ {RT,BDM},

for all 1 ≤ m ≤ k + 1, for all τ ∈ Hm(Ω) with div τ ∈ Hm(Ω). From this estimate and the error
estimates (3.9) and (3.10) we readily obtain the corresponding theoretical rates of convergence.
This result is established next.

Theorem 3.6 Let (σ, (u, 0)) ∈ X0×M and (σh, (uh, φh)) ∈ Xk+1
h,0 ×Mk

h be the unique solutions
of (2.6) and (3.1), respectively, and assume that σ ∈ Hm(Ω), divσ ∈ Hm(Ω), u ∈ Hm(Ω) for
1 ≤ m ≤ k + 1. Then, there exist positive constants ĉ1, ĉ2, ĉ3 and ĉ4, independent of ν and h,
such that,

|σ − σh|div ,Ω ≤ ĉ1h
m{|σ|m,Ω + |divσ|m,Ω} + νĉ2h

m|u|m,Ω, (3.11)

and
∥(u− uh, φh)∥M,ν ≤ ĉ3h

m{|σ|m,Ω + |divσ|m,Ω} + νĉ4h
m|u|m,Ω. (3.12)

Remark 3.7 Recalling that the exact pressure can be recovered through the post-processing for-
mula p = −1

dtr (σ), it is clear that a suitable approximation for p is ph := −1
dtr (σh). Moreover,

from (2.7) and (3.11) it is easy to see that the following estimate holds

∥p− ph∥0,Ω ≤ ĉ1h
m{|σ|m,Ω + |divσ|m,Ω} + νĉ2h

m|u|m,Ω,

with ĉ1, ĉ2, independent of ν and h.
On the other hand, from (3.12) we observe that

∥u− uh∥0,Ω ≤ ĉ3h
mν−1{|σ|m,Ω + |divσ|m,Ω} + ĉ4h

m|u|m,Ω,

then the error of the velocity is amplified by the inverse of the viscosity, which is corroborated in
Example 1 in Section 6 (see Table 6.1).
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4 A posteriori error analysis

In this section we apply several well-known results from previous works, in particular from [6],
[16] and [18], to derive a reliable and efficient residual-based a posteriori error estimator for our
mixed finite element scheme (2.6). We begin as in [8] by introducing some notations that will
allow us to derive the analysis in two and three dimensions in a unified framework.

Let Eh be the set of edges or faces of Th, whose corresponding diameters are denoted he, and
define

Eh(Ω) :=
{
e ∈ Eh : e ⊆ Ω

}
and Eh(Γ) :=

{
e ∈ Eh : e ⊆ Γ

}
.

For each T ∈ Th, we let Eh,T be the set of edges or faces of T , and we denote

Eh,T (Ω) =
{
e ⊆ ∂T : e ∈ Eh(Ω)

}
and Eh,T (Γ) =

{
e ⊆ ∂T : e ∈ Eh(Γ)

}
.

We also define the unit normal vector ne on each edge or face by

ne := (n1, .., nd)
t ∀ e ∈ Eh .

Hence, when d = 2, we can define the tangential vector se by

se := (−n2, n1)t ∀ e ∈ Eh .

However, when no confusion arises, we will simply write n and s instead of ne and se, respectively.
The usual jump operator [[·]] across internal edges or faces are defined for piecewise continuous

matrix, vector, or scalar-valued functions ζ by

[[ζ]] = (ζ
∣∣
T+

)
∣∣
e
− (ζ

∣∣
T−

)
∣∣
e

with e = ∂T+ ∩ ∂T−,

where T+ and T− are the elements of Th having e as a common edge or face. Finally, for
sufficiently smooth scalar ψ, vector v := (v1, .., vd)

t , and tensor fields τ := (τij)1≤i,j≤d, for d = 2
we let

curl (ψ) :=
( ∂ψ
∂x2

, − ∂ψ

∂x1

)t
, rot (v) :=

∂v2

∂x1
− ∂v1

∂x2
, curl (v) =

(
curl (v1)

t

curl (v2)
t

)
,

curl (τ ) =

(
rot (τ 1)
rot (τ 2)

)
and γ∗(τ ) = τs, (4.1)

and for d = 3 we let

curl (v) = ∇× v , curl (τ ) =

curl (τ 1)
curl (τ 2)
curl (τ 3)

 and γ∗(τ ) =

τ 1 × n
τ 2 × n
τ 3 × n

 , (4.2)

where τ i is the i−th row of τ and the derivatives involved are taken in the distributional sense.
Then we let (σh, (uh, φh)) ∈ Xk+1

h,0 ×Mk
h be the unique solution to (3.1) and introduce the

global a posteriori error estimator:

Θ =

{ ∑
T∈Th

Θ2
T

}1/2

, (4.3)
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where, for each T ∈ Th, the local error indicator is defined as follows:

Θ2
T := ∥f + divσh∥20,T + h2T

∥∥∥ν∇uh − σd
h

∥∥∥2
0,T

+ h2T

∥∥∥curl (σd
h

)∥∥∥2
0,T

+
∑

e∈Eh,T (Ω)

he

∥∥∥[[γ∗

(
σd
h

)]]∥∥∥2
0,e

+
∑

e∈Eh,T (Γ)

he

∥∥∥γ∗

(
σd
h − ν∇uD

)∥∥∥2
0,e

+
∑

e∈Eh,T (Γ)

heν
2 ∥uD − uh∥20,e ,

(4.4)

where γ∗ is the tangential component defined in (4.1) for d = 2 and (4.2) for d = 3 and uD is
assumed to be in H1(Γ).

In the following sections we prove the reliability and efficiency of Θ. We begin with the
reliability estimate.

4.1 Reliability of the a posteriori error estimator

In what follows we prove the following result.

Theorem 4.1 Assume that uD ∈ H1(Γ) and let (σ, (u, 0)) ∈ X0 × M and (σh, (uh, φh)) ∈
Xk+1
h,0 ×Mk

h be the unique solutions of (2.6) and (3.1), respectively. Then, there exists Crel > 0,
independent of h and ν, such that

|σ − σh|div ,Ω + ∥(u− uh, φh)∥M,ν ≤ CrelΘ (4.5)

To that end, we begin by recalling that the ellipticity of a and the inf-sup condition of b (cf.
(2.9) and (2.10), respectively) imply the global inf-sup estimate (see [13, Proposition 2.36]):

|ζ|div ,Ω + ∥(w, ϕ)∥M,ν ≤ CS(ζ, (w, ϕ)), (4.6)

for all (ζ, (w, ϕ)) ∈ X0 ×M, where C > 0 is a constant independent of h and ν, and

S(ζ, (w, ϕ)) := sup
(τ ,(v,ψ))∈X0×M

(τ ,(v,ψ))̸=0

a(ζ, τ ) + b(τ , (w, ϕ)) + b(ζ, (v, ψ))

|τ |div ,Ω + ∥(v, ψ)∥M,ν
.

In particular, for (ζ, (w, ϕ)) = (σ−σh, (u−uh,−φh)), with (σ, (u, 0)) and (σh, (uh, φh)) being
the unique solutions of (2.6) and (3.1), respectively, it is easy to see that

|S((σ − σh, (u− uh,−φh)))| ≤ ∥R1∥X′
0
+ ∥R2∥M′ ,

where R1 ∈ X′
0 and R2 ∈ M′ are given, respectively, by

R1(τ ) := a(σ − σh, τ ) + b(τ , (u− uh,−φh))

= −(f + divσh,div τ )Ω + ν⟨τn,uD⟩Γ − (σd
h, τ )Ω − ν(div τ ,uh +∇φh)Ω,

for all τ ∈ X0, and

R2(v, ψ) := b(σ − σh, (v, ψ)) = −ν(f + divσh,v +∇ψ)Ω,
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for all (v, ψ) ∈ M, and ∥·∥X′
0
and ∥·∥M′ denote the norms of the dual spaces X′

0 and M′ induced
by | · |div ,Ω and ∥ · ∥M,ν , that is

∥R1∥X′
0
= sup

0 ̸=τ∈X0

|R1(τ )|
|τ |div ,Ω

and ∥R2∥M′
0
= sup

0 ̸=(v,ψ)∈M

|R2(v, ψ)|
|(v, ψ)|M,ν

.

According to the above, to prove (4.5), it suffices to estimate ∥R1∥X′
0
and ∥R2∥M′ . We begin

by observing that the Cauchy-Schwartz inequality implies

∥R2∥M′ ≤

∑
T∈Th

∥f + divσh∥20,T


1/2

. (4.7)

In turn, proceeding analogously to [18, Section 4.1], that is, making use of a stable Helmholtz
decomposition for H0(div ; Ω), and utilizing the local approximation properties of ΠBDMh (cf.
(3.2) and (3.5)) and the Clément interpolation operator (see [11]), we readily obtain

∥R1∥X′
0
≤ C

∑
T∈Th

Θ2
T


1/2

, (4.8)

where C > 0 is a constant independent of ν and h.
In this way, from (4.6), (4.7) and (4.8) we readily obtain (4.5).

4.2 Efficiency of the a posteriori error estimator

The main result of this section is stated as follows

Theorem 4.2 Assume that uD is a piecewise polynomial. Then there exists Ceff > 0, inde-
pendent of h, such that

CeffΘ ≤ |σ − σh|div ,Ω + ν∥u− uh∥0,Ω.

To prove this result, we introduce the following lemma which establishes suitable estimates
for each term defining Θ.

Lemma 4.3 There exist C1 > 0, C2 > 0, C3 > 0 and C4 > 0, independent of h and ν, such
that

a) ∥f + divσh∥0,T ≤ ∥divσ − divσh∥0,T ≤ |σ − σh|div ,T ∀T ∈ Th,

b) h2T

∥∥∥ν∇uh − σd
h

∥∥∥2
0,T

≤ C1

{
ν2∥u− uh∥20,T + h2T ∥σd − σd

h∥20,T
}

∀T ∈ Th,

c) h2T

∥∥∥curl (σd
h

)∥∥∥2
0,T

≤ C2 ∥σd − σd
h∥20,T ∀T ∈ Th,

d) he

∥∥∥[[γ∗

(
σd
h

)]]∥∥∥2
0,e

≤ C3 ∥σd − σd
h∥20,we

for all e ∈ Eh(Ω), where the set we is given by

we := ∪
{
T ′ ∈ Th : e ∈ Eh,T ′

}
,
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e) heν
2 ∥uD − uh∥20,e ≤ C4

{
ν2∥u− uh∥20,T + h2T ∥σd − σd

h∥20,T
}

for all e ∈ Eh,T (Γ).

f) Additionally, if uD is piecewise polynomial, there exists C5 > 0, independent of h, such

that he

∥∥∥γ∗

(
σd
h −∇uD

)∥∥∥2
0,e

≤ C5 ∥σd−σd
h∥20,Te for all e ∈ Eh(Γ), where Te is the triangle

of Th having e as an edge.

Proof. The estimate a) follows from the identity f = −divσ in Ω (see Theorem 2.5). In
turn, after slight modifications of the proofs of lemmas 4.11, 4.13 and 4.14 in [18] one can
easily deduce the two-dimensional versions of b)–f). Finally, to deduce the three-dimensional
counterparts of b)–f) it suffices to slightly modify the proofs of lemmas 4.12, 4.9, 4.10 and 4.14
and 4.13, respectively in [16]. We omit further details. □

We remark here that if uD were not piecewise polynomial but sufficiently smooth, then
higher order terms given by the errors arising from suitable polynomial approximations would
appear in (4.2). More precisely, estimate (4.2) would become

CeffΘ+ h.o.t. ≤ |σ − σh|div ,Ω + ν∥u− uh∥0,Ω. (4.9)

5 The Stokes problem with mixed boundary conditions

In this section we briefly explain how to extend the results from the previous sections to obtain a
mass conservative stress-based mixed finite element method form the Stokes problem with mixed
boundary conditions. More precisely, we consider a domain Ω ⊆ Rd, d = 2, 3, with polygonal
boundary ∂Ω = Γ ∪ Σ, where Γ,Σ ⊂ ∂Ω are such that Γ ∩ Σ ̸= ∅, and focus on extending the
previous results to the problem

σ = 2νe(u)− pI, −divσ = f in Ω, divu = 0 in Ω,

u = uD on Γ, σn = 0 on Σ,
(5.1)

where e(u) := 1
2(∇u+∇ut) and n is the exterior unit normal on ∂Ω.

5.1 Continuous Problem

To introduce the variational system of (5.1) we first recall from [14, Section 2.4.3] that e(u)
can be decomposed as e(u) = ∇u − γ in Ω, with γ := 1

2(∇u − (∇u)t) in Ω. Then, using the
incompressibility condition divu = 0 in Ω, and proceeding as in Section 1, we rewrite (5.1) as

σd = 2ν∇u− 2νγ, −divσ = f in Ω, σ = σt,

u = uD on Γ, σn = 0 on Σ.

In this way, combining the techniques in Section 2.1 and in [14, Section 2.4.3.2], we obtain the
variational problem: Find (σ, (γ,u, φ)) ∈ XΣ × (Y×M), such that

â(σ, τ ) + b̂(τ , (γ,u, φ)) = F̂ (τ ) ∀ τ ∈ XΣ,

b̂(σ, (η,v, ψ)) = Ĝ(η,v, ψ) ∀ (η,v, ψ) ∈ Y×M,
(5.2)
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where

XΣ := {τ ∈ X : τn = 0 on Σ}, Y := {η ∈ L2(Ω) : η + ηt = 0 in Ω},

and the bilinear forms â : XΣ×XΣ → R and b̂ : XΣ× (Y×M) → R, and the functionals F̂ ∈ X′
Σ

and Ĝ ∈ (Y×M)′ are given by

â(σ, τ ) := (σd, τ d)Ω + (divσ,div τ )Ω, b̂(τ , (η, (v, ψ))) := 2ν(τ ,η)Ω + 2ν(div τ ,v +∇ψ)Ω,

F̂ (τ ) := 2ν⟨τn,uD⟩Γ − (f ,div τ )Ω and Ĝ(η,v, ψ) := −2ν(f ,v +∇ψ)Ω,
with ⟨·, ·⟩Γ being product of duality between the trace space H1/2(Γ) and its dual H−1/2(Γ).

Now, to verify the well-posedness of (5.2), we first observe that thanks to [14, Lemma 2.5],
the seminorm | · |div ,Ω is also a norm on XΣ, which implies that â is XΣ–elliptic. In addition, as
for the Dirichlet case, we endow Y×M with the ν-dependent norm

∥(η,v, ψ)∥Y×M,ν = ν{∥η∥20,Ω + ∥v∥2div;Ω + |ψ|21,Ω}1/2

and similarly to [14, Section 2.4.3.2], given (η,v, ψ) ∈ Y×M, we can obtain that there exists τ̃ ∈
XΣ, satisfying (τ̃ ,η)Ω = ν∥η∥20,Ω, div τ̃ = ν(v+∇ψ) and |τ̃ |div ,Ω ≤ Cν(∥v+∇ψ∥0,Ω+∥η∥0,Ω),
which can be employed to deduce the inf-sup condition

sup
0 ̸=τ∈XΣ

b̂(τ , (γ,v, ψ))

|τ |div ,Ω
≥ β∥(γ,v, ψ)∥Y×M,ν ,

with β > 0, independent of ν.

According to the above, and applying the Babuška–Brezzi theory, we obtain the well-
posedness of (5.2). This result is presented in the following theorem, whose proof is omitted
since it is analogously to the proof of Theorem 2.4.

Theorem 5.1 There exists a unique (σ, (γ, (u, φ))) ∈ XΣ × (Y × M) solution to (5.2) with
φ = 0 in Ω. Furthermore, the following a priori estimates hold:

|σ|div ,Ω ≤ νc1∥uD∥1/2,Γ + c2∥f∥0,Ω and ν(∥u∥0,Ω + ∥γ∥0,Ω) ≤ c3ν∥uD∥1/2,Γ + c4∥f∥0,Ω,

with c1, c2, c3, c4 > 0, all of them independent of ν.

5.2 Galerkin scheme

Now, to introduce the Galerkin scheme associated to (5.2), we adopt the notations introduced
in Section 3 and additionally introduce the discrete spaces:

Ykh := {ηh ∈ L2(Ω) : ηh + ηth = 0 in Ω and ηh|T ∈ [Pk(T )]
d×d ∀T ∈ Th},

Xk+1
h,Σ := Xk+1

h ∩ XΣ.

Then, the discrete problem associated to (5.2) reads: Find (σh, (γh,uh, φh)) ∈ Xk+1
h,Σ ×(Ykh×Mk

h),
such that

â(σh, τ h) + b̂(τ h, (γh,uh, φh)) = F̂ (τ h) ∀ τ h ∈ Xk+1
h,Σ ,

b̂(σh, (ηh,vh, ψh)) = Ĝ(ηh,vh, ψh) ∀ (ηh,vh, ψh) ∈ Ykh ×Mk
h.

(5.3)
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Notice that, since Vk
h,0 ⊆ Qk

h and ∇Ψk+1
h,0 ⊆ Qk

h, then Xk+1
h,Σ ×Ykh×Vk

h,0 and Xk+1
h,Σ ×Ykh×∇Ψk+1

h,0

are subspaces of the well-known Arnold-Falk-Winther elements for the elasticity problem (see
[4]).

In the following theorem we summarize the well-posedness and the error estimates for the
discrete scheme (5.3)

Theorem 5.2 There exists a unique (σh, (γh, (uh, φh))) ∈ Xk+1
h,Σ × (Ykh×Mk

h) solution to (5.2).
Furthermore, the following a priori estimates hold:

|σh|div ,Ω ≤ νc̃1∥uD∥1/2,Γ + c̃2∥f∥0,Ω and ∥(γh, (uh, φh))∥Y×M,ν ≤ c̃3ν∥uD∥1/2,Γ + c̃4∥f∥0,Ω,
(5.4)

with c1, c2, c3, c4 > 0, all of them independent of ν. In addition, if (σ, (γ, (u, 0))) ∈ X0×(Y×M)
is the unique solution of (5.2), then there exist positive constants ĉ1, ĉ2, ĉ3, ĉ4, ĉ5 and ĉ6,
independent of ν and h, such that,

|σ − σh|div ,Ω ≤ ĉ1 inf
τh∈Xk+1

h,0

|σ − τ h|div ,Ω + νĉ2 inf
vh∈Vk

h,0

∥u− vh∥0,Ω,+νĉ3 inf
ηh∈Yk

h,0

∥γ − ηh∥0,Ω

(5.5)
and

∥(γ − γh, (u− uh, φh))∥Y×M,ν ≤ ĉ4 inf
τh∈Xk+1

h,0

|σ − τ h|div ,Ω + νĉ5 inf
vh∈Vk

h,0

∥u− vh∥0,Ω

+ νĉ6 inf
ηh∈Yk

h,0

∥γ − ηh∥0,Ω.
(5.6)

Finally, if σ ∈ Hm(Ω), divσ ∈ Hm(Ω), γ ∈ Hm(Ω) and u ∈ Hm(Ω) for 1 ≤ m ≤ k + 1. Then,
there exist positive constants c̃1, c̃2, c̃3, c̃4 > 0, independent of ν and h, such that,

|σ − σh|div ,Ω ≤ ĉ1h
m{|σ|m,Ω + |divσ|m,Ω} + νĉ2h

m(|u|m,Ω + |γ|m,Ω), (5.7)

and

∥(γ − γh, (u− uh, φh))∥Y×M,ν ≤ ĉ3h
m{|σ|m,Ω + |divσ|m,Ω} + νĉ4h

m(|u|m,Ω + |γ|m,Ω). (5.8)

Proof. It is clear that â is Xk+1
h,Σ –elliptic. In turn, given (ηh, (vh, ψh)) ∈ Ykh ×Mk

h, by adapting

[3, Theorem 11.9] to our context we can easily deduce that there exists τ̃ h ∈ Xk+1
Σ,h , satisfying

(τ̃ h,ηh)Ω = ν∥ηh∥20,Ω, div τ̃ h = ν(vh+∇ψh) in Ω and |τ̃ h|div ,Ω ≤ Cν(∥vh+∇ψh∥0,Ω+∥ηh∥0,Ω),
which can be employed to deduce the estimate

sup
0 ̸=τh∈Xk+1

h,Σ

b̂(τ h, (γh,vh, ψh))

|τ h|div ,Ω
≥ β∗∥(γh,vh, ψh)∥Y×M,ν , ∀(ηh, (vh, ψh)) ∈ Ykh ×Mk

h,

with β∗ > 0, independent of h and ν. In this way, employing similar arguments to those in
applied in Section 3 we can obtain that problem (5.2) is well-posed and the estimates (5.4)–(5.8)
hold. We omit further details □
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5.3 A posteriori error estimator

Let us consider the notations and definitions introduced in Section 4. Then, analogously to
Section 4.1 we employ the associated global inf-sup condition, to obtain

|σ − σh|div ,Ω + ∥(γ − γh, (u− uh, φh))∥Y×M,ν ≤ C(∥R̂1∥X′
Σ
+ ∥R̂2∥(Y×M)′) (5.9)

with

R̂1(τ ) := â(σ − σh, τ ) + b̂(τ , (γ − γh, (u− uh,−φh)))

= −(f + divσh,div τ )Ω + 2ν⟨τn,uD⟩Γ − (σd
h + 2νγh, τ )Ω − 2ν(div τ ,uh +∇φh)Ω,

for all τ ∈ XΣ, and

R̂2(η, (v, ψ)) := b(σ − σh, (η, (v, ψ))) = −2ν(σh,η)Ω − 2ν(f + divσh,v +∇ψ)Ω

= −ν(σh − σth,η)Ω − 2ν(f + divσh,v +∇ψ)Ω,

for all (η, (v, ψ)) ∈ Y×M. In this way, we assume that there exists a convex domain B ⊆ Rd,
such that Ω̄ ⊆ B and Σ ⊆ ∂B to obtain a stable Helmholtz decomposition for XΣ (see [1, Lemma
3.9] for d = 2 and [15, Theorem 3.2] for d = 3) and assume further that uD ∈ H1(Γ), to proceed
similarly to [18] and [16], to obtain

∥R̂1∥X′
Σ
+ ∥R̂2∥(Y×M)′ ≤ CΘ̂, (5.10)

with C > 0, independent of h and ν, and

Θ̂ =

{ ∑
T∈Th

Θ̂2
T

}1/2

,

where for each T ∈ Th, the local error indicator Θ̂T is defined by

Θ̂2
T := ∥f + divσh∥20,T + h2T

∥∥∥2ν∇uh − σd
h − 2νγh

∥∥∥2
0,T

+ h2T

∥∥∥curl (σd
h + 2νγh

)∥∥∥2
0,T

+
∑

e∈Eh,T (Ω)

he

∥∥∥[[γ∗

(
σd
h + 2νγh

)]]∥∥∥2
0,e

+
∑

e∈Eh,T (Γ)

he

∥∥∥γ∗

(
σd
h + 2νγh − 2ν∇uD

)∥∥∥2
0,e

+
∑

e∈Eh,T (Γ)

heν
2 ∥uD − uh∥20,e .

(5.11)
We summarize the main results of this section in the following theorem.

Theorem 5.3 Assume that uD ∈ H1(Γ) and that there exists a convex domain B ⊆ Rd, such
that Ω̄ ⊆ B and Σ ⊆ ∂B. Then, there exists Ĉrel > 0, independent of h and ν, such that

|σ − σh|div ,Ω + ∥(γ − γh, (u− uh, φh))∥Y×M,ν ≤ ĈrelΘ̂. (5.12)

In addition, if uD is a piecewise polynomial, then there exists Ĉeff > 0, independent of h and
ν, such that

Ĉeff Θ̂ ≤ |σ − σh|div ,Ω + ν(∥γ − γh∥0,Ω + ∥u− uh∥0,Ω) (5.13)
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Proof. We begin by observing that (5.12) follows from (5.9) and (5.10). In turn, analogously to
Lemma 4.3 we can bound each one of the terms defining Θ̂ (cf. (5.11)) by applying estimates
already available in the literature (see, for instance, [9, Section 6] and [17, Section 4]) to obtain
(5.13). We omit further details.

□

6 Numerical results

In this section, for simplicity, we restrict ourselves to the Stokes problem with Dirichlet boundary
condition in two-dimensions and report two numerical examples to illustrate the performance of
the proposed finite element scheme and confirm the theoretical results. We begin by mentioning
that the numerical results below are performed by imposing the divergence-free constraint for
the velocity by means of a suitable Lagrange multiplier rh ∈ Qh. More precisely, we replace the
numerical scheme (3.1) by the system: Find (σh,uh, φh, rh, λh) ∈ Xk+1

h ×Vk
h ×Ψk+1

h,0 ×Qkh ×R,
such that

a(σh, τ h) + b(τ h, (uh, φ)) + λh(tr τ h, 1)Ω = F (τ h),

b(σh, (vh, ψh) + (rh, divvh)Ω = G(vh, ψh),

(sh, divuh)Ω = 0,

ηh( trσh, 1)Ω = 0,

∀ (τ h,vh, ψh, sh, ηh) ∈ Xk+1
h ×Vk

h × Ψk+1
h,0 ×Qkh × R. Notice that the condition ( trσh, 1)Ω = 0

is imposed through a penalization strategy using a scalar Lagrange multiplier (adding just one
row and one column to the system).

We now introduce some additional notations. In what follows, N stands for the total number
of degrees of freedom defining Xk+1

h ×Vk
h × Ψk+1

h,0 × Qkh × R associated to the system (3.1) We
denote the individual errors by

e(σ) := |σ − σh|div ,Ω , e(u) := ∥u− uh∥0,Ω , e(p) := ∥p− ph∥0,Ω ,

where p is the exact pressure and the approximate pressure ph is computed through the post-
processing formula ph = −1

dtr (σh). In turn, noticing that from (4.5) and (4.9) we have

CeffΘ+ h.o.t. ≤ |σ − σh|div ,Ω + ν∥u− uh∥0,Ω ≤ CrelΘ,

we let
eν(σ,u) :=

{
(e(σ))2 + (νe(u))2

}1/2
,

and define the effectivity index with respect to Θ (cf. (4.3)) by

eff(Θ) := eν(σ,u)/Θ.

In addition, we let r(%) be the experimental rate of convergence given by

r(%) :=
log(e(%)/e′(%))

log(h/h′)
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where e(%) is any of the errors defined above and h and h′ are two consecutive meshsizes with
errors e and e′. However, when the adaptive algorithm is applied (see details below), the ex-
pression log(h/h′) appearing in the computation of the above rates is replaced by −1

2 log(N/N
′),

where N and N ′ denote the corresponding degrees of freedom of each triangulation.

The examples to be considered in this section are described next. Example 1 is used to
illustrate the performance of the two dimensional mixed finite element scheme under a quasi-
uniform refinement, whereas Examples 2 is utilized to illustrate the behavior of the adaptive
algorithm associated to the a posteriori error estimators Θ defined in (4.4). Here we apply the
following adaptive procedure from [29]:

1) Start with a coarse mesh Th.

2) Solve the discrete problem (3.1) for the current mesh Th.

3) Compute ΘT := Θ for each triangle T ∈ Th.

4) Check the stopping criterion and decide whether to finish or go to next step.

5) Use blue-green refinement on those T ′ ∈ Th whose indicator ΘT ′ satisfies

ΘT ′ ≥ 1

2
max
T∈Th

{ΘT : T ∈ Th } .

6) Define resulting meshes as current meshes Th, and go to step 2.

The first example focuses on the performance of our method as a function of the viscosity
ν, by considering an exact solution (u, p) in the domain Ω := (0, 1)2 given by

u(x1, x2) =

 2x21x2(2x2 − 1)(x2 − 1)(x1 − 1)2

−2x1x
2
2(x2 − 1)2(2x1 − 1)(x1 − 1)

 , p(x1, x2) = x51 + x52 −
1

3
,

In Table 6.1, we summarize the convergence history for a sequence of quasi-uniform triangula-
tions, considering the viscosity ν = 1 and ν = 1.0e−6. We see there that the rate of convergence
provided by Theorem 3.6 is attained by the unknowns. In addition, the l∞–norm of divuh in
each mesh is close to 0 which shows that this method is mass conserving.

In our second test we consider a singularly perturbed problem where the solution has bound-
ary layers at x1 = 1 and x2 = 1. We consider ν = 0.01, Ω = (0, 1)2 and the exact solution is
given by

u(x1, x2) =

 x2 −
exp(x2/ν)− 1

exp(1/ν)− 1

x1 −
exp(x1/ν)− 1

exp(1/ν)− 1

 , p(x1, x2) = x2 − x1,

In Table 6.2 we present the convergence history of the method (in its lowest-order configuration),
considering firstly a quasi-uniform refinement (at the top) and secondly an adaptive refinement
(at the bottom). There, we observe that the a posteriori error estimator clearly improves the
performance of the method, that is, the error decays faster and with optimal rate of convergence
with the adaptive procedure, which can be also seen in Figure 6.2. In turn, examples of some
adapted meshes are collected in Figure 6.1. We can observe there a clear clustering of elements
near the boudary layer as expected.
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Errors and rates of convergence with k = 0 and ν = 1.0

N h e(σ) r(σ) e(u) r(u) e(p) r(p) ∥divuh∥l∞ ∥φh∥l∞
374 0.373 0.606 – 0.327e-2 – – 2.8e-17 1.8e-16
1466 0.190 0.306 1.017 0.181e-2 0.884 0.790e-2 2.011 6.9e-17 3.3e-16
5630 0.095 0.145 1.078 0.093e-2 0.962 0.176e-2 2.165 1.1e-16 6.7e-16
22094 0.049 0.072 1.061 0.046e-2 1.072 0.044e-2 2.121 2.2e-16 1.2e-15
87368 0.028 0.037 1.183 0.023e-2 1.182 0.012e-2 2.321 5.1e-16 5.4e-15

Errors and rates of convergence with k = 0 and ν = 1.0e−6

N h e(σ) r(σ) e(u) r(u) e(p) r(p) ∥divuh∥l∞ ∥φh∥l∞
374 0.373 0.583 – 344.270 – – 1.8e-12 3.0e-10
1466 0.190 0.287 1.051 63.551 2.510 0.776e-2 2.031 4.5e-13 3.5e-10
5630 0.095 0.138 1.055 8.761 2.859 0.174e-2 2.159 1.3e-13 1.6e-09
22094 0.049 0.068 1.067 1.864 2.345 0.429e-3 2.120 1.1e-13 2.3e-09
87368 0.028 0.035 1.171 0.283 3.321 0.1163-3 2.308 5.7e-14 4.9e-09

Table 6.1: Example 1: Degrees of freedom, meshsizes, errors, rates of convergence, L∞–norm
of divuh and φh for the Galerkin scheme (3.1) with k = 0, considering ν = 1.0 and ν = 1.0e−6.

Numerical scheme with k = 0 and quasi-uniform refinement
N eν(σ,u) r(σ,u) Θ eff ∥divuh∥l∞ ∥φh∥l∞
602 5.3246 – 5.3310 0.9988 0.4e-14 1.5e-14
2318 6.8262 -0.3686 6.8294 0.9995 0.7e-14 3.3e-8
9008 6.0515 0.1775 6.0526 0.9998 1.4e-14 3.3e-8
35474 4.1995 0.5331 4.1999 0.9999 2.8e-14 1.9e-8
140852 2.3912 0.8168 2.3914 0.9999 5.7e-14 1.2e-10

Numerical scheme with k = 0 and adaptive refinement
N eν(σ,u) r(σ,u) Θ eff ∥divuh∥l∞ ∥φh∥l∞
602 5.3246 – 5.3310 0.9988 3.6e-15 1.5e-14
1496 6.7340 -0.5160 6.7365 0.9996 1.1e-14 3.8e-05
3350 4.9944 0.7414 4.9951 0.9999 5.7e-14 1.4e-06
7964 2.7041 1.4171 2.7043 0.9999 5.7e-14 1.7e-07
19520 1.5309 1.2691 1.5310 0.9999 1.1e-13 4.3e-08
41780 1.0389 1.0190 1.0390 0.9999 2.8e-13 1.3e-08
89522 0.6854 1.0917 0.6854 0.9999 3.4e-13 6.0e-09

Table 6.2: Example 2: convergence history and effectivity index for the Galerkin scheme (3.1)
with k = 0 under quasi-uniform and adaptive refinements.

References
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