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A DEGENERATING CONVECTION-DIFFUSION MODEL OF A FLOTATION

COLUMN: THEORY, NUMERICS AND APPLICATIONS∗

FERNANDO BETANCOURTA, RAIMUND BÜRGERB,∗∗, STEFAN DIEHLC, MARÍA DEL CARMEN MARTÍD,

AND YOLANDA VÁSQUEZE

Abstract. The operation of a froth flotation column can be described by a nonlinear convection-
diffusion partial differential equation that incorporates the solids–flux and drift–flux theories as
well as a model of foam drainage. The resulting model contains some non-standard ingredients
such as discontinuous fluxes and degenerating diffusion accounting for foam drainage. It predicts
the bubble and gangue particle volume fractions as functions of height and time. The steady-state
(time-independent) version of the model defines so-called operating charts that map conditions on
the gas and pulp feed rates that allow for operation with a stationary froth layer. In addition, a
robust numerical scheme allows for the efficient simulation of the dynamic (transient) behaviour of
the flotation column. Examples, in part for the addition of solid particles, are presented.

1. Introduction and research problem

Froth flotation is an important stage especially of copper mining in Chile. The flotation process
selectively separates hydrophobic materials (that are repelled by water) from hydrophilic (that
would be attracted to water), where both are suspended in a viscous fluid. It is well known that
a flotation column works as follows: gas is introduced close to the bottom and generates bubbles
that rise through the continuously injected pulp that contains the solid particles. The hydropho-
bic particles (the valuable mineral particles) attach to the rising bubbles, forming froth that is
removed through a launder. The hydrophilic particles (slimes or gangue) do not attach to bubbles
but settle to the bottom (unless they are trapped in the bulk upflow) and are removed continuously
as flotation tailings. Close to the top, additional wash water can be injected to assist with the
rejection of entrained impurities and increase froth stability (Pal and Masliyah, 1989; Finch and
Dobby, 1990; Vandenberghe et al., 2005; Wills and Napier-Munn, 2006; Dunne et al., 2019; Con-
cha and Bascur, 2024). This unit operation is particularly suitable for processing low-grade ores
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Figure 1. Left: Schematic of a flotation column; cf. the Reflux Flotation Cell by
Dickinson and Galvin (2014). Right: The corresponding one-dimensional conceptual
model with a non-constant cross-sectional area A(z). Wash water is sprinkled at the
effluent level z = zE and a mixture of aggregates and feed slurry is fed at z = zF,
where zU < zF < zE divide the real line into the zones inside the column and the
underflow and effluent zones.

but requires huge amounts of process water. Since water is a scarce resource for most economic
activity in Chile, in particular in the desert areas where most mines are located, the improvement
of the scientific understanding of flotation processes and the development of tools for the design,
simulation and control of flotation devices is of critical economical, ecological and societal impor-
tance. This situation has been motivating collaborative research between applied mathematicians
and metallurgical engineers at Universidad de Concepción, jointly with collaborators from Panama,
Spain and Sweden.

References to current research on modelling flotation and developing strategies for its control in-
clude Cruz (1996), Maldonado et al. (2009), Bergh and Yianatos (2011), Tian et al. (2018a,b), Azhin
et al. (2021a,b), and Quintanilla et al. (2021a,b,c). The development of control strategies requires
dynamic models along with a classification of steady-state (stationary) solutions. These models
should focus on separation aligned with gravity, and therefore they are spatially one-dimensional.
In fact, we wish to avoid the additional computational effort associated with spatially two- or three-
dimensional models based on computational fluid dynamics (CFD) (but see Wang et al. (2018) for
a review on CFD-based models). The sought unknowns are the volume fractions of gas (bubbles),
liquid, and solid particles as functions of time and spatial position, so the resulting governing
equations are partial differential equations (PDEs).

It is the purpose of this contribution to present a summary of recent research conducted by the
authors (Betancourt et al., 2023; Bürger et al., 2019, 2020a, 2020b, 2022, 2023; Vásquez, 2022)
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related to a PDE model formulated as a system of two nonlinear, scalar convection-diffusion equa-
tions (see below). The approach provides a complete model of the solids-gas-fluid hydrodynamics,
including froth drainage, in a flotation column. Several variants of the setup have been considered
in these works; we here refer to the one utilized by Bürger et al. (2022), see Figure 1. The novelty of
the present work are new operating charts, steady-state computations and numerical simulations,
and an analysis of the effect of varying the parameters of the drift-flux velocity function on the
size, location, and shape of the desirable (feasible) steady-state region of an operating chart.

2. Related work

The final model incorporates several available (partial) theories, including the following:

• The drift-flux theory (Wallis, 1969) to describe the bubble velocity relative to the ambient
mixture. With additional bulk flows due to the inlets and outlets of the column that theory
has mostly been used for steady-state investigations of flotation columns (Vandenberghe et
al., 2005; Stevenson et al., 2008; Dickinson and Galvin, 2014; Galvin and Dickinson, 2014;
Galvin et al., 2014). In the current approach, it is part of the transient simulation model.

• The similar, established solids flux theory for sedimentation of gangue particles (Kynch,
1952; Diehl, 2001, 2008; Ekama and Marais, 2004).

• A one-dimensional formulation of available theories of drainage of froth due to capillarity,
drainage, and dissipation that describes the variation of fluid volume fraction through the
foam (Neethling et al., 2002; Neethling and Cilliers, 2003; Stevenson, 2006; Stevenson et
al., 2008; Brito-Parada et al., 2012; Neethling and Brito-Parada, 2018).

• The description of a continuously operated column in one space dimension including singu-
lar source terms, discontinuous spatial variation of bulk flows, and replacement of boundary
conditions through the principle of continuity of flux, akin to models of continuous sedi-
mentation of flocculated suspensions in clarifier-thickeners (Diehl, 1996; Bürger et al., 2004,
2005).

3. Main results

The final model was chosen as a topic of study of mathematical and numerical analysis, and in
particular gave rise to the last author’s doctoral thesis (Vásquez, 2022). The main results from the
viewpoint of applications are the following:

• The model describes the transient variation of bubble and solids concentrations as functions
of height and time. A time-independent version describes steady-state solutions. Exploiting
jump conditions (consequences of the principle of continuity of flux) and entropy conditions
(arising from uniqueness issues), one may establish conditions for the existence of desirable
bubble concentration profiles, in particular for the existence of a froth layer. These are
algebraic conditions for the range of operating parameters (feed rates, wash water rates,
and gas concentrations) that can conveniently be mapped as operating charts.

• In-house experiments with a laboratory flotation column indicate a narrow range of condi-
tions for froth stability, in agreement with theoretical stability analysis.

• Analysis of the impact of varying the parameters of the drift-flux velocity function demon-
strated significant modifications to the operating charts and adjustments to capillarity pa-
rameters were directly linked to changes in the froth layer, emphasizing the critical role of
capillary forces in the system’s dynamics.

• A robust numerical scheme to (approximately) solve the time-dependent model and simu-
late the transient operation of the flotation column. Numerically simulated concentrations
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provably attain physically relevant values (volume fractions are nonnegative and sum up to
one).

• The pulp-foam interface does not need to be tracked explicitly. Transient simulations with
constant inputs converge to steady states predicted by the operating charts.

4. Mathematical model

The three phases and their (dimensionless) volume fractions are the fluid ϕf = ϕf(z, t), the
solids ψ = ψ(z, t), and the bubbles (aggregates) ϕ = ϕ(z, t), where ϕf + ψ + ϕ = 1. A mixture
of fluid and solid particles is addressed as suspension. The volume fraction of solids within the
suspension that fills the interstices between bubbles φ is defined by

φ :=
ψ

ψ + ϕf
=

ψ

1− ϕ
.

In what follows, we provide the description for the column drawn in Figure 1, where the feed pulp
and the gas are assumed to enter through the same feed inlet at z = zF and the effluent height level
z = zE and that of injection of wash water z = zW are identified (zE = zW). Thus, the interior
of the flotation column can be subdivided into two zones (zones 1 and 2, see Figure 1). Variants
of this setup can be handled by similar equations, for example when there is a separate gas inlet
(Betancourt et al., 2023) or we consider a general model with an arbitrary number of feed inlets
(Bürger et al., 2023); those configurations give rise to three or more zones.

The system of PDEs that governs the evolution of ϕ and ψ can be formulated as

A(z)
∂ϕ

∂t
+

∂

∂z

(
A(z)J(ϕ, z, t)

)
=

∂

∂z

(
A(z)γ(z)

∂D(ϕ)

∂z

)
+QFϕF(t)δ(z − zF),

A(z)
∂ψ

∂t
+

∂

∂z

(
−A(z)F̃ (ψ, ϕ, z, t)

)
=

∂

∂z

(
A(z)γ(z)

−ψ
1− ϕ

∂D(ϕ)

∂z

)
+QFψF(t)δ(z − zF).

(4.1)

Here A = A(z) is the cross-sectional area of the tank, and J = J(ϕ, z, t) and F̃ = F̃ (ψ, ϕ, z, t) are
convective flux functions that depend discontinuously on z at the feed inlet (z = zF), the underflow
outlet (z = zU) at the bottom, and the overflow outlet (z = zE). The system (4.1) is valid for t > 0
and is solved with initial conditions. The function γ indicates the interior of the tank:

γ(z) :=

{
1 inside the tank, i.e., if zU ≤ z ≤ zE,

0 outside the tank, i.e., if z < zU or z > zE.

Moreover, the cross-sectional area is assumed to satisfy

A(z) =

{
AE for z ≥ zF,

AF for z < zF;

we hereby take into account that part of the available total cross-sectional area of the column is
occupied by the feed inlet for z ≥ zF. The nonlinear function D models capillarity when bubbles
are in contact and has the properties

D(ϕ) :=

∫ ϕ

0
d(s) ds, where d(ϕ) = D′(ϕ)

{
= 0 for 0 ≤ ϕ ≤ ϕc,

> 0 for ϕc < ϕ ≤ 1.

Here ϕc is a critical bubble volume fraction that marks the transition between pulp and froth.
Consequently, at each point (z, t) where ϕ(z, t) ≤ ϕc, there holds D(ϕ(z, t)) = 0. The last term on
the right-hand sides of (4.1) describes a singular source located at level z = zF, where QF(t) is the
corresponding volume feed rate (as a given function of time) and ϕF(t) and ψF(t) are the respective
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bubble and solids feed concentrations. Outside the tank, the mixture is assumed to follow the outlet
streams. Consequently, boundary conditions are not needed; conservation of mass determines the
outlet volume fractions in a natural way.

Details of the fluxes and capillarity functions of (4.1) are now given. Applying the conservation
of mass to each of the three phases, introducing the volume-average velocity, or bulk velocity, of
the mixture q and the relative velocities of both the aggregate-suspension and the solid-fluid, one
obtains the flow rates (velocities) in and out of the flotation column

q(z, t) :=


qE := (−QU +QF +QW)/A in the effluent zone,

q2 := (−QU +QF)/A in zone 2,

q1 = qU := −QU/AU in zone 1 and the underflow.

The drift-flux and solids-flux theories utilize constitutive functions for the aggregate upward batch
flux jb(ϕ) and the solids batch sedimentation flux fb(φ) := φvhs(φ), where vhs(φ) is the hindered-
settling function. For simplicity, we use the well-known expression due to Richardson and Zaki
(1954) vhs(φ) = v∞(1− φ)nRZ , where nRZ > 1, and v∞ is the velocity of a single particle. In the
underflow and effluent, all phases are assumed to have the same velocity, i.e., they follow the bulk
flow. Then the total convective fluxes for ϕ and φ are given by

J(ϕ, z, t) =


jE(ϕ, t) := qE(t)ϕ in the effluent zone,

j2(ϕ, t) := q2(t)ϕ+ jb(ϕ) in zone 2,

j1(ϕ, t) := q1(t)ϕ+ jb(ϕ) in zone 1,

jU(ϕ, t) := q1(t)ϕ in the underflow zone,

F (φ, ϕ, z, t) =


fE(φ, ϕ, t) := −(1− ϕ)qE(t)φ in the effluent zone,

f2(φ, ϕ, t) in zone 2,

f1(φ, ϕ, t) in zone 1,

fU(φ, ϕ, t) := −(1− ϕ)q1(t)φ in the underflow zone,

with the zone-settling flux functions (positive in the direction of sedimentation, that is, decreasing z)

fk(φ, ϕ, t) := (1− ϕ)fb(φ) +
(
jb(ϕ)− (1− ϕ)qk(t)

)
φ

=(1− ϕ)fb(φ) +
(
jk(ϕ, t)− qk(t)

)
φ, k = 1, 2.

Here the batch drift-flux function jb = jb(ϕ) is given by jb(ϕ) = ϕṽ(ϕ), where the drift-flux velocity
function ṽ(ϕ) is given by

ṽ(ϕ) :=

vterm(1− ϕ)nb for 0 ≤ ϕ ≤ ϕc,

vterm
(1− ϕ)2nS+1

(1− ϕc)2nS+1−nb
for ϕc < ϕ ≤ 1.

(4.2)

Here, vterm is the constant velocity of a single bubble in liquid and nb a dimensionless constant.
The expression in the first case of (4.2) is valid as long as the bubbles are not all in contact with
each other. This contact is assumed to occur whenever ϕ exceeds the critical concentration ϕc.
The expression in the second case of (4.2) is derived from a compatibility condition which makes it
possible to express the drainage velocity of liquid in the froth relative to the bubbles with respect
to gravity and dissipation in terms of vterm and the dimensionless constant nS. The latter emerges
from empirical connections between the radius of Plateau borders in the foam, the radius of the
bubbles and the volume fraction of the liquid in the foam 1 − ϕ; see Bürger et al. (2022) for all
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details. The function d(ϕ) describes capillarity and is given by

d(ϕ) :=

0 for 0 ≤ ϕ ≤ ϕc,

vtermdcap
ϕ(1− ϕ)nS

(1− ϕc)2nS+1−nb
for ϕc < ϕ ≤ 1,

(4.3)

where dcap is a capillarity-to-gravity constant present in the froth when ϕ > ϕc and it involves
among others the surface tension of water; see Bürger et al. (2022). For the steady states and
operating charts as well as the numerical simulations in this work we utilize ϕc = 0.74 (cf. Eq. (21)
of Neethling and Cilliers, 2003) and nS = 0.46 (Stevenson et al., 2008). In light of (4.3) we obtain

D(ϕ) =

0 for 0 ≤ ϕ ≤ ϕc,

vtermdcap
ω(ϕc)− ω(ϕ)

(1− ϕc)2nS+1−nb(nS + 1)(nS + 2)
for ϕc < ϕ ≤ 1,

where ω(ϕ) := (1−ϕ)nS+1((nS +1)ϕ+1). Finally, we define the total convective flux for the solids
appearing in the governing system (4.1) by

F̃ (ψ, ϕ, z, t) :=

{
F (ψ/(1− ϕ), ϕ, z, t) for 0 ≤ ϕ < 1,

0 for ϕ = 1.

5. Desired steady states

In the case of absence of capillarity, Bürger et al. (2019) provided detailed constructions of all
steady states, and sorted out (Bürger et al. 2020a, 2020b) the most interesting steady states for
the applications and how to control these by letting the volumetric flows satisfy certain nonlinear
inequalities, which can be visualized in so-called operating charts. We assume that QF, ϕF, and ψF

are given variables and that QU and QW are control variables. In the present context that does
include capillarity and therefore froth drainage, we focus on the steady states for which a layer of
froth in zone 2 is possible. We consider only solutions where the froth layer does not fill the entire
zone 2, so that there is at least a small region above the feed inlet with aggregate volume fraction
below the critical one. The wash water is sprinkled at the top of the column, which is commonly
done and gives fewer steady states to analyze. A desired steady state is defined to be a stationary
solution that has

no aggregates below the feed level ⇒ ϕU = 0,

no solids above the feed level ⇒ φE = 0,

a froth layer that does not fill the entire zone 2 ⇒ ϕ(z+F ) < ϕc.

(5.1)

The reversed implications do not hold in the two first statements: since the bulk flow in zone 1 is
directed downwards, there exist steady-state solutions with a standing layer of aggregates below
the feed level, and analogously, if the bulk flow in zone 2 is directed upwards, there may be a layer
of standing solids when their settling velocity is balanced by the upward bulk velocity (Bürger et
al., 2019).

The construction of operating charts is detailed by Bürger et al. (2022). These are maps that
indicate the regions of the (QU, QF)-plane where for given material specific functions (4.2) and
(4.3) and values of ϕF, ψF, and QW, all algebraic inequalities that ensure that all of (5.1) hold are
satisfied. Verifying satisfaction of the condition concerning the width of the froth layer requires
solving (numerically) one ordinary differential equation per (QU, QF) pair. We omit any detail
of the procedure here (see Bürger et al., 2022; Betancourt et al., 2023) but provide in Figure 2
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(a) (b) (c) (d)

Figure 2. Examples of desired steady states for bubble concentration ϕ (blue)
and solids concentration ψ (black) We use fixed values of ϕF = 0.3, ψF = 0.2,
QF = 8.85 × 10−5m3/s and QW = 2 × 10−6m3/s and vary QU, choosing: (a)
QU = 5.94×10−5m3/s, (b) QU = 5.96×10−5m3/s, (c) QU = 5.975×10−5m3/s and
(d) QU = 5.977×10−5m3/s. Once the values of ϕF, QU, QF and QW are chosen, the
values of the effluent concentration ϕE are given by ϕE = QFϕF/(QW+QF−QU) and
used as input in the steady-state ODE to calculate the value of zfr. In particular,
we get (a) ϕE = 0.8537, (b) ϕE = 0.8592, (c) ϕE = 0.8634 and (d) ϕE = 0.8640.

some examples of steady states, shown as ϕ- and ψ-profiles with a vertical z-axis. (The steady-
state constructions, operating charts, and numerical simulations in this work are based on setting
zU = 0m, zF = 0.33m, and zE = 1m.) On the other hand, Figure 3 (a) is an example of an
operating chart; the narrow, wedge-shaped white region indicates the choices of (QU, QF) that
lead to a desirable steady state. In contrast, Figure 4 illustrates the dynamic effects of varying the
parameters of the drift-flux velocity function ṽ(ϕ), the terminal velocity vterm, and the dimensionless
constant nb on the operating charts. To systematically explore the influence of these parameters
on the operating conditions, we adjusted each parameter individually while keeping the others
constant. This approach allows us to isolate the effects of each parameter on the dynamics of the
system. The functions ṽ(ϕ) and D(ϕ) arising from this variation of nb and vterm are plotted in
Figure 5.

To understand the effects of capillarity on froth dynamics, in Figure 6 the exact solution for
calculating the foam height was first computed. Subsequent modifications were made to the
capillarity-to-gravity parameter dcap, which was incrementally increased by 5%, 15%, and 25%.
These modifications provided insight into how changes in capillary forces influence the height of
the froth layer.

Operating charts showing the effects of varying the dimensionless constant nb across different
values of the terminal velocity vterm. In the first row, vterm = 1.6× 10−2m/s with nb values of 2.0,
2.4, and 3.2. In the second row, vterm = 2.6 × 10−2m/s and nb varied as in the first row. In the
third row, vterm = 3.6× 10−2m/s, again with the same variations in nb. Each chart illustrates how
shifts in nb and vterm affect the regions indicating a desirable steady state.
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(a) (b)

Figure 3. (a) Operating chart for QW = 2 × 10−6m3/s, ϕF = 0.3 and ψF = 0.2.
The lines correspond to inequalities that have to be satisfied for a desired steady
state. All such are satisfied in the white region, which indicates the choices of
(QU, QF) that lead to a desirable steady state, (b) enlarged view of (a). The point
(QU, QF) = (5.9, 8.85) × 10−5m3/s marked with a star (“∗”) in the white region
results in a desired steady state with a froth layer at the top of the column. The
points marked with a cross (“×”) (QU, QF) = (5.4, 8.85) × 10−5m3/s and a plus
(“+”) (QU, QF) = (6.1, 8.85) × 10−5m3/s result in no froth (Figure 7 (a) and (b))
or a tank full of froth (Figure 7 (c) and (d)), respectively.

6. Numerical method

The numerical method used for the solution of the complete model is outlined by Bürger et al.
(2022). It is based on subdividing the computational domain (that is, the interval [zU, zE]) into
a number N of layers (subintervals) of equal height ∆z, and time is discretized via tn = n∆t,
n = 0, 1, 2, . . . . Without entering into any details, assume that the unknowns of the scheme are ϕnj
and ψn

j , where these quantities are approximate values of ϕ and ψ in cell j at time tn, respectively.
The general scheme can then be written in the form

ϕn+1
j = H

(
ϕnj−1, ϕ

n
j , ϕ

n
j+1, j, n

)
,

ψn+1
j = K

(
ϕnj−1, ϕ

n
j , ϕ

n
j+1, ψ

n
j−1, ψ

n
j , ψ

n
j+1, j, n

)
, j = 1, . . . , N ; n = 0, 1, 2, . . . .

(6.1)

The functions H and K are chosen in such a way that (6.1) represents a consistent finite difference
approximation of the system (4.1) (see Bürger et al. (2022) for all details). The formulation (6.1)
is useful to point out some particular properties of the numerical scheme of Bürger et al. (2022):
first of all, the scheme is explicit, that is, from given initial values ϕ0j and ψ0

j , j = 1, . . . , N , one
calculates successively ϕ1j and ψ1

j , j = 1, . . . , N , then ϕ2j and ψ2
j , j = 1, . . . , N , and so on for

n = 3, 4, . . . . Furthermore, the system (4.1) is triangular, which means that the first equation
contains apart from ∂ϕ/∂t only terms that depend on known functions and ϕ and its z-derivatives.
On the contrary, the second PDE, for the update of ψ, contains apart from ∂ψ/∂t terms that
depend on both ϕ and ψ. Thus, the bubble volume fraction ϕ can be updated independently from
the solids volume fraction ψ, which is also reflected in (6.1). The functions H and K are based on
particular numerical fluxes that satisfy the so-called monotonicity property, which ensures that if
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Figure 4. Operating charts showing the effects of varying the dimensionless con-
stant nb across different values of the terminal velocity vterm. In the first row,
vterm = 1.6 × 10−2m/s with nb values of 2.0, 2.4, and 3.2. In the second row,
vterm = 2.6 × 10−2m/s and nb varied as in the first row. In the third row,
vterm = 3.6 × 10−2m/s, again with the same variations in nb. Each chart illus-
trates how shifts in nb and vterm affect the region indicating a desirable steady state.

the initial values are physically relevant, i.e.,

ϕnj ≥ 0, ψn
j ≥ 0, ϕnj + ψn

j ≤ 1 for all j

is in effect for n = 0, then the same property is valid for all n = 1, 2, . . . . The latter property makes
the approach by Bürger et al. (2022) interesting for practical applications. That said, for a given
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(a) (b) (c)

(d) (e) (f)

Figure 5. Functions (a, b, c) ṽ(ϕ) and (d, e, f)D(ϕ) corresponding to the operating
charts of Figure 4.

layer thickness ∆z one needs to choose the time step ∆t in such a way that the so-called Courant-
Friedrichs-Lewy (CFL) condition is satisfied. Such a condition also ensures that the numerical
approximations converge (as ∆z,∆t → 0) to an exact solution of the model, as is outlined by
Bürger et al. (2023).

7. Numerical example

To demonstrate that operating points outside the white region lead to non-desired steady states,
we include an enlightening example similar to Example 2 of Bürger et al. (2022) but with different
parameters. We start from a column filled with only water at t = 0 s, i.e., ϕ(z, 0) = ψ(z, 0) = 0
for all z, when we start pumping aggregates, solids, fluid and wash water with ϕF = 0.3 and
ψF = 0.2. In the white region of the operating chart in Figure 3 (b), we choose the point (“∗”)
(QU, QF) = (5.9, 8.85) × 10−5m3/s. The wash water volumetric flow is QW = 2.0 × 10−6m3/s.
Then one obtains a desired steady state with a thin layer of froth at the top and solids only below
the feed level after about 800 s; see Figures 7 (a) and (c). At this time we perform two alternative
different changes corresponding to the points “×” and “+” in the operating chart in Figure 3 (b).
The jump from the middle point (“∗”) to “×” means a jump from QU = 5.9 × 10−5m3/s to the
smaller value 5.4 × 10−5m3/s and produces the solution in Figures 7 (a) and (b). Soon after
t = 800 s, the froth has been washed out upwards and the solids volume fraction is slightly higher
in the new steady state. If the jump from “∗” instead goes to “+”, i.e., the new value at t = 800 s
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Figure 6. Illustration of froth height response to incremental increases in the
capillarity-to-gravity parameter dcap. The scenario is depicted alongside three addi-
tional scenarios where dcap was increased by 5%, 15%, and 25%.

is the larger QU = 6.1 × 10−5m3/s, Figures 7 (c) and (d) show the reaction of the system until
t = 4000 s. The aggregates fill the entire column while the solids volume fraction has a lower value
in the new steady state.

8. Concluding remarks

The principal results of our approach have been summarized above. In light of the formulation
of the model and the numerical examples, some comments on the mathematical challenges as well
as limitations and future work are in place.

• The governing model is of nonlinear convection-diffusion type. Due to the nonlinearity in the
convective flux and the degenerating diffusion terms, solutions are in general discontinuous.
This makes a particular mathematical theory necessary.

• In addition, the governing model (4.1) involves coefficients that are discontinuous functions
of the spatial coordinate z. These ingredients, and their discretization, need to be handled
carefully. This is a topic of recent mathematical research; the theory is not a limiting case
of equations with smooth coefficients.

• The adjustments in the drift-flux velocity function ṽ(ϕ) and the capillarity-to-gravity pa-
rameter dcap profoundly influence the dynamics of the froth layer.

• According to the results presented in Figures 4, 5, and 6, it is clear that the model is
sensitive to the choice of parameters, then the techniques used in determining these will be
relevant for the correct implementation and validation of the model in each particular case
study.

• One of the necessary conditions for the existence of a steady state is equivalent to the well-
known condition of “positive bias flow” (Dunne et al., 2019), which is the net downward
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(a) (b)

(c) (d)

Figure 7. Example: Simulations with N = 800 of the volume fractions of (a), (c)
aggregates ϕ and (b), (d) solids ψ from a tank filled with only water. (a, b) The
initial operating point (QU, QF) = (5.9, 8.85) × 10−5m3/s (“∗” in Figure 3 (b)) is
at t = 800 s changed to (5.4, 8.85) × 10−5m3/s (“×” in Figure 3 (b)). (c, d) The
initial operating point (QU, QF) = (5.9, 8.85)× 10−5m3/s is at t = 800 s changed to
(6.1, 8.85)×10−5m3/s (“+” in Figure 3 (b)). Note the reversed z-axes for aggregates
and solids.

flow of water through zone 2. A proper formulation of this observation and its consequences
is being investigated.
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• The model variant with separated gas and pulp inlets includes a collection zone. We are
currently modeling the adhesion of hydrophobic particles to bubble surfaces to describe this
phenomenon.
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