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Coupled finite volume methods for settling in inclined vessels
with natural convection

Fernando Betancourt, Raimund Bürger,
Julio Careaga, Lucas Romero

PREPRINT 2024-09

SERIE DE PRE-PUBLICACIONES
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Abstract. A widely applied technology of gravity-driven solid-liquid separation in mineral pro-
cessing is the use of lamella settlers. These units are continuously operated tanks equipped with
a number of parallel inclined plates immersed in the mixture to be separated. The inclination of
the plates exploits the well-known Boycott effect that describes the enhancement of settling rates
beneath inclined surfaces. This effect is usually attributed to a rapidly upward-streaming layer of
clear liquid. The essence of this effect can be studied by examining gravity settling in an inclined
tube or rectangular channel. The lower and upper surfaces of the channel represent the plate onto
which the particles start to settle and below which the clarified liquid streams upward, respectively.
In addition an increase of temperature in some part of the fluid causes a local change in the density
of the fluid and circulation of the fluid within the vessel. It has been proposed to exploit this be-
haviour to accelerate the settling process by additional heating. To examine this hypothesis a model
and corresponding numerical method to describe inclined settling enhanced by natural convection
are formulated. The model consists in a two-dimensional scalar conservation law for the solids
concentration coupled with a version of the Stokes system that accounts for density fluctuations in
the mixture enhanced by a Boussinesq approximation of the effect of temperature. In addition a
convection-diffusion equation describes heat transport and diffusion. The main outcome is a nu-
merical method that allows one to simulate the effect of controllable parameters such as the initial
concentration, difference of temperature, and angle of inclination on the progress of the solid-liquid
separation. Numerical examples are presented. Results reconfirm that the enhancement of settling
rates depends critically on the dimensions of the settling vessel, intensity of heating, and particle
size, and is marginal for settling of relatively large particles and channels with a moderate length
to width aspect ratio.

1 Introduction

1.1 Scope

Solid-liquid separation processes in mineral processing are usually driven by gravity (sedimenta-
tion), centrifugal force (centrifugation), or an applied pressure (filtration). Widely applied current
technologies include lamella settlers (that are also known as lamella clarifiers, inclined plate settlers,
or lamella separators). These units are continuously operated tanks equipped with a number of
parallel inclined plates immersed in the mixture to be separated (see Figure 1). Settling in such
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Figure 1. Schematic of a lamella settler.

an equipment takes place solely due to gravity forces. The inclination of the plates is therefore
chosen such that purely vertical sedimentation is avoided and the well-known Boycott effect [4] is
exploited. The latter effect describes the increase of settling rates beneath inclined surfaces.

The flow and solid-liquid separation between inclined parallel plates can be studied by examining
gravity settling in a tube or rectangular channel with an angle of inclination identical to that of
the lamella settler. The lower and upper surfaces of the channel represent the plate onto which
the particles start to settle and below which the clarified liquid streams upward, respectively. We
herein focus on describing on the effect of influencing the process by natural convection. In fact, an
increase of temperature in some part of the fluid causes a local change in the density of the fluid,
which as consequence causes circulation of the fluid within the vessel. It has been proposed [35] to
exploit this behaviour to accelerate the settling process.

It is the purpose of this contribution to present a mathematical model and corresponding nu-
merical method to describe inclined settling coupled with natural convection. The model consists
in a two-dimensional scalar conservation law for the solids concentration coupled with a version of
the Stokes system that accounts for density fluctuations in the mixture enhanced by a Boussinesq
approximation of the effect of fluctuating temperature plus a convection-diffusion equation for heat
transport and diffusion. The main outcome is a simulator that allows one to determine the effect
of controllable parameters such as the initial concentration, difference of temperature, and angle
of inclination on the progress of the solid-liquid separation. The Boycott effect [4] as well as the
Boussinesq approximation have been studied widely; several mathematical models and numerical
schemes for the approximate solution of both have been proposed. Nevertheless, and to point out
the main novelty of the work, a numerical scheme that would allow the coupling between both
systems has not been proposed so far. That said, we mention that also the solid concentration of
the mixture influences its capacity of heat conduction and diffusion, a property that needs to be
taken into account for various solid materials. In fact, heat should be applied moderately only to
avoid influencing the process excessively or even causing damage to the equipment due to excessive
heat.
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1.2 Related work

In his famous note [4], Boycott reported that corpuscles blood settled more rapidly in inclined
tubes than in vertical ones. He presented a number of rough experiments that differed in the
dimensions and angle of inclination of the tube. Recognizing that both parameters influence the
speed of production of liquid (clear serum) he asked for an explanation of the phenomenon. One
of the first attempts to explain the phenomenon is due to Ponder [33] and later Nakamura and
Kuroda [28] (see also [39,41]), who developed the so-called Ponder-Nakamura-Kuroda (PNK) theory
that postulated that the settling rate of an initially homogeneous suspension would be determined
by the settling velocity vsettl multiplied by the cross-sectional area of the vessel available for settling.
However, the PNK theory produces an acceptable approximation only under idealizing assumptions,
and mostly over-predicts the increase in settling rate, as is pointed out by Graham and Lama [22].
On the other hand, that work, as well as others of the 1960s and 1970s [1, 29, 32, 44], provide
experimental support and partial theoretical explanations of the Boycott effect and underline the
importance of the initial solids concentration on the settling velocity of particles.

The standard kinematic sedimentation theory by Kynch [24] postulates that the solid-fluid rel-
ative velocity vr in a monodisperse suspension of small rigid spheres is a function of local solids
volume fraction ϕ such that vr = vr(ϕ)k, where k is the unit vector pointing into the direction of
gravity, and vr(ϕ) is a given constitutive function that should satisfy vr(0) = 1. It is well known that
if we define fbk(ϕ) := ϕ(1−ϕ)vr(ϕ) and z to be the downward-increasing vertical spatial coordinate
(depth), then one-dimensional settling of a monodisperse suspension in a cylindrical closed column
can be described by the first-order nonlinear conservation law

∂ϕ

∂t
+

∂fbk(ϕ)

∂z
= 0,

supplied with initial conditions [12–14]. (The kinematic theory gives rise to first-order quasilinear
PDEs, also in the cases of extensions to polydisperse suspensions [6] and rotating systems [16].)
The same theory is employed herein to describe the solid-liquid separation aligned with gravity. A
common choice of the function vr(ϕ) is due to Richardson and Zaki [36], namely

vr(ϕ) = v0(1− ϕ)nRZ−1, hence fbk(ϕ) = v0ϕ(1− ϕ)nRZ , (1.1)

where v0 is the Stokes velocity, that is the settling velocity of one particle in quiescent pure fluid,
and nRZ > 1 is a material specific exponent. The equation for fbk(ϕ) can also be written in terms
of the hindered settling velocity vhs such that fbk(ϕ) = ϕvhs(ϕ). For choices of fbk(ϕ) alternative
to (1.1) and methods of obtaining this function from experiments we refer to [5].

With respect to mathematical models, we mention that based on their previous work [26], Mc-
Caffery et al. [27] formulate a two-dimensional model to predict the behaviour of solid particles
in an inclined channel during hydraulic separation. On the other hand, Bürger et al. [11] derive
spatially multi-dimensional model equations for sedimentation-consolidation processes. Their ap-
proach is based on the mass and linear momentum balance equations for the solid and liquid phases,
introducing constitutive assumptions, and applying a dimensional analysis. Specific computational
methods applied to the simulation of the Boycott effect include the works by Latsa et al. [25],
who employ upwind schemes to simulate sedimentation in inclined tanks; Wan [43] who advances
a finite element-finite volume method for the simulation of two immiscible fluids; and Kleine and
Reddy [23] who develop a κ-ε-type finite element method to conserve the mass of the system. On
the other hand, McCaffery et al. [27] employ a Godunov-type finite volume (FV) scheme coupled
with a particular control volume method [31]. Based on a FV method including a pressure sta-
bilization technique for the Stokes problem coupled with the mentioned Godunov scheme for the
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Figure 2. Schematic of PNK theory. Inclination angle θ ∈ (0, π/2] is measured
with respect to the horizontal axis and vector k = (cos(θ),− sin(θ))t is pointing in
the direction of gravity. Axes x and y are relative to the domain as indicated in the
image.

concentration equation, Bürger et al. [8] solve the model equations by an adaptive multiresolution
method. For a related model including sediment compressibility, which makes the concentration
equation degenerate parabolic (cf., e.g., [7,10]), Bürger et al. [9] propose a stabilized finite volume
element (FVE) method while Ruiz-Baier and Lunati [37] present a discontinuous FVE method.

A classical reference to the phenomenon of convection is Ostrach [30], who underlines the ex-
tremely complex nature of the problem of natural convection in cavities due to the large number
of parameters involved. More recent numerical studies related to the phenomenon of natural con-
vection include Christon et al. [17] who also review solutions found in the literature to critical
parameters for the occurrence of instability of a differentially heated, vertical cavity, while Dou et
al. [19] simulate the convection process with the difference that in their case, the fluid container is
inclined. Our approach has in particular been motivated by the treatment by Reyes et al. [35] who
study the heat-assisted sedimentation of suspensions of mineral particles in inclined vessels. To this
end they use simulations by OpenFoam in two space dimensions for various operating conditions.

1.3 Outline of the paper

The remainder of this work is organized as follows. In Section 2 we provide the theoretical
framework, starting in Section 2.1 with a general description of the settling process. Next, in
Section 2.2 we review in some detail the descriptions of inclined settling by PNK theory [28, 33]
and McCaffery et al. [27]. The governing equations of the present approach are formulated in
Section 2.3. Roughly speaking, our model is consistent with that by McCaffery et al. [27] (who
treat the iso-thermal case). However, our equation of motion of the mixture does not include an
advective acceleration term, but does include temperature- and concentration-dependent mixture
viscosity, a Boussinesq approximation to the dependence of density on temperature, and of course
the model includes a heat convection-diffusion equation. In Section 3 the numerical scheme is
introduced. After stating some preliminaries in Section 3.1, in particular the Cartesian mesh of
control volumes and “ghost cells,” we introduce the three building blocks of the discretization of
the governing equations, namely FV schemes for the approximation of the concentration equation
(Section 3.2), the Stokes system (Section 3.3), and the heat equation (Section 3.4). In Section 3.5
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Figure 3. Initial and boundary conditions and schematic of the phenomenon of
natural convection. Here T0 is the initial and cold (right) wall temperature, and Th

is the temperature at the hot (left) wall, with ∆T ≥ 0. The top and bottom walls
are assumed to be isolated.

we specify the Courant-Friedrichs-Lewy (CFL) condition for the explicitly solved concentration and
heat equations, that is the bound of the time step in terms of the spatial meshwidths so that the
scheme behaves stably. The schemes outlined in Sections 3.2 to 3.4 are combined by a strategy
to handle the fully coupled model, as is outlined in Section 3.6, see Algorithm 1. In Section 4
we present numerical simulations of the inclined sedimentation process with natural convection for
various cases of interest. Simulation 1 (Section 4.1) addresses the so-called Diehl test that is based
on studying the behaviour of the mixture when a body of concentrated suspension is initially located
above clear liquid. This configuration is of interest to solve the inverse problem of flux identification
from experimental data [5,18]. In Simulation 2 (Section 4.2) we compare the results of simulations of
two different combinations of the temperature variation (due to heating) and coefficients of thermal
expansion. In Simulation 3 (Section 4.3) we simulate settling in inclined vessels under systematic
variation of the angle of inclination. The parameters are chosen as typical for applications in
mineral processing. However, the increase of rates of production of clear liquid and sediment
formation under heating turns out to be at most marginal compared with corresponding inclined
configurations without heating. A slight increase can, however, be observed if we assume that the
solid-fluid density is relatively small, as is documented in Simulation 4 (Section 4.4). Conclusions
of the study are collected in Section 5.
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2 Theoretical framework

2.1 Description of the settling process

The sedimentation process, thickening or clarification, consists of the operation of separating
part of the liquid from a suspension to obtain a flow of clear water or purer liquid and, on the
other hand, denser matter obtained from the suspension. The mechanism considered in this work
is sedimentation by gravity, in which solid particles settle downward to the bottom of the vessel or
container. In the wastewater and mining industry, the vessel in which the sedimentation process
is carried out is called settler or tank. In our examples, the tank is composed of two thermally
isolated walls and two walls exposed to heating sources, for which one of them is assumed to have
a constant temperature (room temperature) and the other one is at a higher temperature. The
tank is assumed to have constant depth so that a two-dimensional description is appropriate with
a length to width aspect ratio 4:1, and an angle of inclination θ with respect to the horizontal, see
Figure 3.

2.2 Inclined settling

The Ponder-Nakamura-Kuroda (PNK) theory [28, 33, 39, 41] postulates that the increase in set-
tling rate in an inclined vessel is due to the increase of horizontal settling area due to the incli-
nation of the channel (compared with a vertical orientation). Within the PNK theory, the rate of
descent U(t) of the clear liquid/suspension interface is determined by

U(t) = vhs(ϕ)

(
b

sin θ
+H(t) cot θ

)
,

where vhs is the given hindered settling velocity obtained from the vertical theory, b is the width
of the vessel, θ is its angle of inclination with respect to the horizontal axis and H(t) is the height
of the interface at time t, see Figure 2. It is well known that PNK theory produces an acceptable
approximation only under idealizing assumptions, and mostly over-predicts the increase in settling
rate. In fact, a simple one-dimensional kinematic model is not adequate for the description of
settling in an inclined vessel; rather, a coupled transport-flow model is needed. One model of that
kind was studied by McCaffery et al. [27]. It can be described by the transport equation

∂ϕ

∂t
+ div

(
ϕq + ϕvhs(ϕ)k

)
= 0, (2.1)

where q is the volume average velocity of the mixture and k is the downward-pointing unit vector
(aligned with gravity), coupled to the version of the Stokes system

−div
(
2µ(ϕ)e(q)

)
+ λ∇p = λ∆ρ∗ϕk, (2.2)

div q = 0, (2.3)

where µ(ϕ) is the (concentration-dependent) viscosity of the mixture, e(q) := 1
2(∇q + (∇q)T) is

the symmetric part of the gradient of q, and

∆ρ∗ :=
ρs − ρf

ρf
, λ :=

D2gρf
v0µf

, (2.4)

are non-dimensional parameters, where D is the characteristic length of the problem. Equation
(2.1) expresses the conservation of mass of the solid component while (2.2) and (2.3) represent the
conservation of linear momentum and of mass of the mixture, respectively. The sought unknowns
in (2.1)–(2.3) are the solids volume fraction ϕ, the velocity q and the pressure p, all functions of
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spatial position x and time t. Notice that (2.1)–(2.3) stipulates a strong (”two-way”) coupling
between the unknowns: on one hand, the solution of (2.1) depends on the local behaviour of q
due to the transport term ϕq, and the velocity field q, in turn, depends on the local fluctuations
of concentration through the variable viscosity and the right-hand side in (2.2). The strategy
in [27] to approximate the nonlinear part of (2.1) was based on the Godunov numerical flux, while
a FV scheme is employed for the flow equations (2.2) and (2.3). Bürger et al. [8] enhanced the
numerical results of [27] by using a multiresolution FV scheme. In the same line, Ruiz-Baier
and Torres [38] used a scheme based on FVE methods and studied inclined sedimentation. They
included in Equation (2.2) the additional convective term ∂tq + q · ∇q, obtaining fully transient
model equations.

2.3 Governing equations

In addition to the classic two-phase sedimentation process, we take into account the phenomenon
of natural convection in cavities (cf., e.g., [2, 17, 40], and references cited in these works). In this
phenomenon, the movement of the fluid is produced by the difference in density generated by
modifying the temperature of parts of the vessel that contain the suspension (see Figure 3).

Under the Boussinesq approximation, we may assume the density of the mixture ρ depends on
the temperature of the mixture denoted by T , this is, ρ(T ) = ρ0 − βρ0(T − T0), where

β = − 1

ρ0

∂ρ

∂T

and ρ0 = ρ(T0), where T0 is a reference temperature. These assumptions lead to the modified
momentum balance and energy equations (see for instance [3])

ρ0

(
∂q

∂t
+ q · ∇q

)
− div

(
2µ(ϕ)e(q)

)
+∇p = ρ0gk − ρ0gkβ(T − T0),

ρ0cp

(
∂T

∂t
+ q · ∇T

)
− κdiv(∇T ) = 0,

where κ is the conduction heat transfer coefficient and cp is the heat capacity of the fluid.
Sedimentation in inclined vessels coupled with natural convection was studied by Reyes et al. [34],

where the governing equations given by the conservation equations of mass, momentum and internal
energy for the liquid and solid phase are solved using the computational fluid mechanics software
Open Foam. The momentum balance and energy equations utilized in [34] are

ρ(ϕ)

(
∂q

∂t
+ q · ∇q

)
− div (2µ(ϕ, T )e(q)) +∇p = ρ(ϕ, T )gk,

ρ(ϕ)cp(ϕ)

(
∂T

∂t
+ q · ∇T

)
− κ(ϕ) div(∇T ) = 0.

Note that cp and κ depend on the solids volume fraction ϕ, while µ and ρ depend on temperature T
and volume fraction ϕ. The Boussinesq approximation in this case is applied to ρ as

ρ(ϕ, T ) = ρ(ϕ) +
∂ρ(ϕ, T0)

∂T
(T − T0) = ρ(ϕ) +

∂(ϕρs + (1− ϕ)ρf)

∂T
(T − T0)

= ρ(ϕ) + (1− ϕ)
∂ρf
∂T

(T − T0) = ρ(ϕ)− (1− ϕ)ρfβf(T − T0),

(2.5)

where βf is the coefficient of thermal expansion of the fluid phase. In (2.5) the corresponding coef-
ficient of thermal expansion of the solid phase has been neglected. Then, following the dimensional
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analysis of [11] as well as Unwin [42], we omit the material derivative in the momentum balance.
Thus the final system of governing equations becomes

∂ϕ

∂t
+ div

(
qϕ+ ϕvhs(ϕ)k

)
= 0,

−div
(
2µ(ϕ, T )e(q)

)
+∇p = ρ(ϕ)k − (1− ϕ)βf(T − T0)k,

div q = 0,

ρ(ϕ)cp(ϕ)

(
∂T

∂t
+ q · ∇T

)
− κ(ϕ) div(∇T ) = 0.

(2.6)

These are three scalar equations plus one vector equation and five unknowns, namely the solids
volume fraction ϕ, the volume-average velocity q, pressure p and temperature T . This system is
closed by the constitutive relations

vhs = vhs(ϕ) = v0(1− ϕ)nRZ ,

µ = µ(ϕ) = µf(1− ϕ)−α, α ≥ 0,

κ = κ(ϕ) = κf(1− ϕ) + κsϕ,

cp = cp(ϕ) = cpf (1− ϕ) + cpsϕ.

(2.7)

To formulate the dimensionless version of (2.6), we introduce dimensionless variables and functions

x = x∗L, q = q∗v0, T = T ∗∆T + T0, t =
L

v0
t∗, ∇∗ = L∇, ∂

∂t
=

v0
L

∂

∂t∗
,

ρ = ρfρ
∗, κ = κfκ

∗, cp = cpf c
∗
p, p = ρgL(p∗ + k · x∗),

where L is the characteristic length of the domain, the subscript ‘f’ indicates fluid and an asterisk
denotes the corresponding dimensionless variable. We also define additional functions

f∗(ϕ, T ∗) := λ∆ρ∗ϕk − λ(1− ϕ)βfT
∗∆Tk, (2.8)

κ̃∗(ϕ) :=
µf

ρfv0LPr

(1 + ϕ∆κ∗)
(1 + ϕ∆c∗p) (1 + ϕ∆ρ∗)

.

For ease of notation, we drop the asterisk and directly write the dimensionless version of (2.6) as

∂ϕ

∂t
+ div

(
qϕ+ ϕvhs(ϕ)k

)
= 0, (2.9a)

−div
(
2µ(ϕ)e(q)

)
+ λ∇p = f(ϕ, T ), (2.9b)

div q = 0, (2.9c)

∂T

∂t
+ q · ∇T = κ̃(ϕ) div (∇T ) . (2.9d)

The dimensionless parameters ∆ρ∗ and λ, which are also introduced in [27], are defined in (2.4)
(with the characteristic length D replaced by L). Typical values in mineral processing are [11]:

v0 = 10−4m/s, νf = 10−6, µf = 10−4 Pa s,

g = 10m/s2, Pr = 7, L = 1m, Re = 10−2.
(2.10)

In what follows the dimensionless equations (2.9) are assumed to be in effect.
The velocity equation is complemented with zero-flux boundary conditions:

q · n = 0 on ∂Ω. (2.11)
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Regarding the mass equation, we will initially consider a constant and uniform density throughout
the domain,

ϕ(x, 0) = ϕ0 for all x ∈ Ω (2.12)

in addition to zero flux boundary conditions, i.e., (ϕq+ ϕvhs(ϕ)k) ·n = 0 on ∂Ω. In light of (2.11)
this condition reduces to (

ϕvhs(ϕ)k
)
· n = 0 on ∂Ω. (2.13)

Finally, for the heat equation, we impose the constant initial temperature

T (x, 0) = T0 for all x ∈ Ω (2.14)

and Dirichlet boundary conditions on the left and right walls are given by Th (hot wall) and T0

(cold wall), respectively, and zero flux boundary conditions for the top and bottom walls, that is

T (xa, y, t) = Th, T (xb, y, t) = T0 for all y ∈ (0, 4L), t > 0; (2.15)

(n · ∇T )(x, ya, t) = (n · ∇T )(x, yb, t) = 0 for all x ∈ (0, L), t > 0. (2.16)

(In the non-dimensional case, Th and T0 in (2.15) need to be replaced by one and zero, respec-
tively.) Finally, the following assumptions are made to ensure that the model is physically and
mathematically reasonable.

3 Numerical scheme

3.1 Preliminaries

To numerically solve system (2.9), we discretize Ω by Nx ·Ny square control volumes of constant
size ∆x × ∆y, which form a mesh T that satisfies all the assumptions of an admissible mesh
given in [20]. Since Ω is rectangular, xa ≤ x ≤ xb and ya ≤ y ≤ yb with xa < xb and ya <
yb, i.e., the left-bottom corner of Ω is (xa, ya). Each cell or control volume is then given by
[xi−1/2, xi+1/2]× [yj−1/2, yj+1/2] with xi+1/2 := xa+ i∆x and yj+1/2 := ya+ j∆y for i = 0, 1, . . . , Nx

and j = 0, 1, . . . , Ny. The center of a control volume Ki,j ∈ T is

xKi,j
:= (xi, yj) :=

(
xa + (i− 1

2)∆x, ya + (j − 1
2)∆y

)
.

We approximate all unknowns as piecewise constant functions over every control volume in T .
Furthermore, in order to impose the boundary conditions, extra control volumes or ghost cells are
incorporated next to each one of the straight boundaries of the domain. Figure 4 illustrates the
squared control volumes and the so-called ghost cells near the boundary at x = xb. During the
course of this section, K ∈ T (without indices) is assumed to be a generic control volume and
σ = K|K∗ the edge of K shared with its neighbour control volume K∗ ∈ T . In addition, we define
E as the set of edges related to T , mσ as the measure of the edge σ ∈ E , and nK,σ as the unit
normal vector at σ pointing outward to K. Furthermore, we define dK|K∗ := ∥xK∗ − xK∥ and
τσ := mσ/dσ.

The set of edges of K is denoted by EK , and the set of interior and exterior edges (with respect
to the boundary ∂Ω) are denoted by Eint and Eext, respectively. The set of neighbouring control
volumes to K is defined as NK and mK denotes the measure of K. In addition, we define HT (Ω) ⊂
L2(Ω) as the space of piecewise constant functions on each control volume of T , this is

HT (Ω) :=
{
w ∈ L2(Ω) : w|K ≡ k ∈ R, ∀K ∈ T

}
.

Here, for all w ∈ HT (Ω) and K ∈ T , the restriction of w to K is denoted by wK , and L2(Ω) is the
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Figure 4. Illustration of control volumes near the right boundary at x = xb and
neighbouring ghost cells. Boundary edges of KNx,j are such that e1 ∈ Eext and
e2, e3, e4 ∈ Eint.

space of square-integrable functions over Ω. Finally, we introduce the upwind operator for a given
velocity v ∈ R

Upw(v; a, b) := max{v, 0}a+min{v, 0}b for all a, b, c ∈ R.

In the remainder of this section, to refer to variables or functions restricted to a control volume
K = Ki,j we use both types of notations, i.e., ϕi,j ≡ ϕK .

3.2 Approximation of the concentration equation

We discretize (2.9a) by a FV scheme. We denote by

ϕ̄K :=
1

mK

∫
K
ϕ(x, t) dx, where mK :=

∫
K

dx = ∆x∆y,

the cell average of ϕ on the control volume K at time t > 0. In addition, we define ϕ̄n
K := ϕ̄K(tn),

where tn = n∆t for n ∈ N and ∆t > 0 is a time step specified later. To discretize the solid mass
balance equation (2.9a) we rewrite this equation as

∂ϕ

∂t
+ divF (q, ϕ) =

∂ϕ

∂t
+

∂F x

∂x
+

∂F y

∂y
= 0, (3.1)

where the x- and y- components of the flux vector F are given by

F x(qx, ϕ) := ϕqx + ϕvhs(ϕ) cos θ and F y(qy, ϕ) := ϕqy − ϕvhs(ϕ) sin θ, (3.2)

respectively. The fluxes F x and F y are approximated on cell boundaries by combining the Godunov
numerical flux [21] with an upwind flux. Equation (3.1) is then discretized by a fractional stepping
method: in the first step, the solution is updated in the x-direction, i.e., we compute

ϕ
n+1/2
i,j = ϕn

i,j −
∆t

∆x

(
F x,n
i+1/2,j − F x,n

i−1/2,j

)
, (3.3)
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and then, using these intermediate variables indexed with n+1/2, one updates the solution in the
y-direction and therefore computes the updated solution at time tn+1 by

ϕn+1
i,j = ϕ

n+1/2
i,j − ∆t

∆y

(
F y,n
i,j+1/2 − F y,n

i,j−1/2

)
. (3.4)

The numerical fluxes F x
i+1/2,j and F y

i,j+1/2 are defined by

F x,n
i+1/2,j

:= Upw
(
(qx,ni,j + qx,ni+1,j)/2;ϕ

n
i,j , ϕ

n
i+1,j

)
+G

(
ϕn
i,j , ϕ

n
i+1,j

)
cos θ,

F y,n
i,j+1/2

:= Upw
(
(qy,ni,j + qy,ni,j+1)/2;ϕ

n+1/2
i,j , ϕ

n+1/2
i,j+1

)
−G

(
ϕ
n+1/2
i,j+1 , ϕ

n+1/2
i,j

)
sin θ

(3.5)

for all i = 0, 1, . . . , Nx and j = 0, 1, . . . , Ny, where the velocity terms at the cell boundaries are
given by the averages and the Godunov numerical flux G for a flux density function f is given by

G(a, b) :=

 min
a≤ϕ≤b

f(ϕ) if a ≤ b,

max
a≥ϕ≥b

f(ϕ) if a ≥ b.
(3.6)

Notice that the evaluation of the right-hand side of (3.6) requires knowledge of the local extrema
of the function f . In the case of the functions F x and F y these extrema depend on the values
of qx and qy, which in turn vary in each cell and are part of the computation. This would make
the approximation of all terms in F x and F y through the Godunov numerical flux inconvenient.
However, if f is a function with exactly one maximum at ϕ̂ ∈ (0, 1), then (3.6) implies that

G(a, b) = min
{
f(min{a, ϕ̂}), f(max{b, ϕ̂})

}
for all a, b ∈ R+,

so G(a, b) can be evaluated easily, which motivates the “upwind plus Godunov” definition of nu-
merical fluxes (3.5).

The zero-flux boundary conditions (2.11) and (2.13) ensure that there is no loss or gain of mass
within the domain. A concentration value of ϕ = 1 is assigned to the ghost cells that share an edge
with the boundary cells with normal pointing towards the ground directions at each cell boundary
a, and the rest of the ghost cells are assigned a concentration value ϕ = 0. In other words, to impose
(2.13), Dirichlet boundary conditions are imposed on each one of the boundary edges of ∂Ω.

3.3 Approximation of the Stokes system

The system composed of (2.9b) and (2.9c) for the velocity field q and pressure p has the structure
of the Stokes system. The discrete gradient of w ∈ HT on K ∈ T is computed by differences
between wK and the values of w on each control volume adjacent to K. Then, we define the
discrete gradient operator as ∇T : HT (Ω)→ [HT (Ω)]d such that

(∇T w)K :=
1

mK

∑
L∈NK

mK|L
dK|L

xL − xK
2

(wL − wK) for all w ∈ HT (Ω) and K ∈ T . (3.7)

The adjoint operator of the discrete gradient given in (3.7) defines the discrete divergence acting
on vector functions divT : [HT (Ω)]d → HT (Ω) such that

divT (w)(x) :=
1

mK

∑
L∈NK

mK|L
dK|L

xL − xK

2
· (wK +wL) for all w ∈ [HT (Ω)]d and K ∈ T . (3.8)
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The specific definitions of the discrete operators (3.7) and (3.8) ensure that for every pair (v, w) ∈
(HT (Ω))2, the inner product

⟨v, w⟩T =
1

2

∑
K∈T

∑
L∈NK

mK|L
dK|L

(vL − vK)(wL − wK) (3.9)

in line with Neumann boundary conditions and the corresponding inner product

[v, w]T = ⟨v, w⟩T +
∑
K∈T

∑
σ∈EK∩Eext

mσ

dK,σ
vKwK (3.10)

related to Dirichlet boundary conditions are well defined. Moreover, since we assume variable
viscosity µ = µ(ϕ), we include µ(ϕ) as a weight function in the inner products. Consequently, (3.9)
and (3.10) are replaced by

⟨v, w⟩T ,µ :=
1

2

∑
K∈T

∑
L∈NK

mK|L
dK|L(µK + µL)

(vL − vK)(wL − wK),

[v, w]T ,µ := ⟨v, w⟩T ,µ +
∑
K∈T

∑
σ∈EK∩Eext

mσ

dK,σ
µKvKwK .

A stabilized method for the pressure is defined by following the treatment of [8]. An additional
term η2∆p is introduced to modify the continuity equation (2.9c), where η > 0 is a regularization
parameter. Then, assuming that µ(ϕ) > 0 and f ∈ [L2(Ω)]2, we consider the following perturbation
of the Stokes system (2.9b), (2.9c):

−div
(
µ(ϕ)∇qη

)
+ λ∇pη = f(ϕ, T ) in Ω ⊂ R2,

∇ · qη = η2∆pη in Ω ⊂ R2,

qη = 0 on ∂Ω,

(3.11)

where qη and pη denote perturbed solutions with respect to the original unknowns q and p, re-
spectively. We remark that for bounded values of pη, the divergence of qη tends to zero as η tends
to zero. The system (3.11) has the same structure as part of the problem studied in [15] with η
playing the role of ξ(ϕ). Therefore the analysis of [15] shows that (3.11) possesses unique solutions
q ∈ [L2(Ω)]2 and p ∈ L2(Ω). The weak formulation of (3.11) on the mesh T consists in finding
q ∈ ET (Ω), p ∈ HT (Ω), with p of zero measure in Ω such that

[q,u]T ,µ − λ

∫
Ω
p(x) divT u(x) dx =

∫
Ω
f(ϕ, T ) · u(x) dx for all u ∈ [HT (Ω)]2,∫

Ω
divT q(x)q(x) dx = −η2⟨p, q⟩T for all q ∈ HT (Ω).

(3.12)

(We have dropped the superscript η although the variables correspond to the perturbed equation.)
The parameter η must be adjusted to balance the accuracy and stability of the system. Then, after
an integration by parts on each control volume K ∈ T , system (3.12) is locally approximated by∑

σ∈EK
Sn

K,σ +
∑

σ∈E int
K

λ(mσ/2)nK,σ(p
n
K∗ − pnK) = f(ϕn

K , Tn
K),

∑
σ∈E int

K

(mσ/2)nK,σ · (qnK + qnK∗)−
∑

σ∈E int
K

η2τσ(p
n
K∗ − pnK) = 0,

(3.13)
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where E intK := EK ∩Eint, and for any control volume K ∈ T and interior edge σ = K|K∗ for K∗ ∈ T ,
the vector flux Sn

K,σ is defined as

Sn
K,σ :=

mσµ
n
Kµn

K∗

µn
KdK,σ + µn

K∗dK∗,σ
(qnK − qnK∗).

For an exterior edge σ ∈ Eext, we impose the zero-flux boundary condition (2.11) and define the
flux vector on the boundary as

Sn
K,σ :=

mσµ
n
K

dK,σ
qnK .

The system (3.13) is supplemented with an additional condition of vanishing pressure average
or incompressibility assumption on Ω, which serves as a uniqueness condition. This condition is
incorporated into the linear system (3.13) through the equation∑

K∈T
mKpnK = 0,

and the incorporation of an auxiliary unknown, augmenting the system by one row and one column.

3.4 Approximation of the heat equation

The heat equation (2.9d) is approximated by a semi-implicit scheme that is associated with a
relaxed CFL condition (see Section 3.5) that avoids excessively small time steps due to the diffusion
term in (2.9d). This semi-implicit scheme handles, in a first step, the transport part q ·∇T through
an explicit discretization, and then in the second step, we include the diffusive part κ̃(ϕ) div(∇T )
by means of an implicit scheme. The transport part of (2.9d) is discretized via a splitting procedure

to compute an intermediate solution, denoted by Tn+1/2, utilizing upwind numerical fluxes. Then,
for each control volume Ki,j ∈ T , we compute

T
n+1/2
i,j = Tn

i,j −
∆t

∆x

(
Ux,n
i+1/2,j − Ux,n

i−1/2,j

)
, (3.14)

T̃
n+1/2
i,j = T

n+1/2
i,j − ∆t

∆y

(
Uy,n
i,j+1/2 − Uy,n

i,j−1/2

)
, (3.15)

where the convective numerical fluxes above are defined as

Ux,n
i+1/2,j

:= Upw
(
(qx,ni,j + qx,ni+1,j)/2;T

n
i,j , T

n
i+1,j

)
for i ≥ 0 and j ≥ 1,

Uy,n
i,j+1/2

:= Upw
(
(qy,ni,j + qy,ni,j+1)/2;T

n+1/2
i,j , T

n+1/2
i,j+1

)
for i ≥ 1 and j ≥ 0.

For the diffusive part, we observe that if ϕ is assumed to be piecewise constant, locally on a control
volume K ∈ T

k̃(ϕK) div(∇TK) = div
(
k̃(ϕK)∇TK

)
.

Therefore, one way to approximate this term is to use the same scheme as for the viscous term in
(3.11). Then for an interior edge σ = K|K∗ ∈ Eint, we define the diffusive flux as

Dn
K,σ :=

mσκ̃
n
K κ̃nK∗

κ̃nKdK,σ + κ̃nK∗dK∗,σ
(Tn

K − Tn
K∗).
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For the boundary edges in Eext, we need to take into account the Dirichlet and Neumann boundary
conditions (2.15) and (2.16). Hence, the numerical diffusive flux at the boundaries is defined as

Dn
K,σ :=



mσκ̃
n
K

dK,σ
(Tn

K − 1) if σ ∈ Eext, x = xa,

mσκ̃
n
K

dK,σ
Tn
K if σ ∈ Eext, x = xb,

0 if σ ∈ Eext, y = ya or y = yb.

Then, for every K = Ki,j ∈ T and assuming that T̃
n+1/2
i,j has been computed via (3.15), we handle

the diffusive part of (2.9d) by the implicit scheme

Tn+1
i,j = T̃

n+1/2
i,j +∆t

∑
σ∈EK

Dn+1
K,σ . (3.16)

Since Dn+1
K,σ depends linearly on Tn+1

K , (3.16) leads to a linearly implicit system in terms of the
vector T n+1 = (Tn+1

K )K∈T .

3.5 CFL condition

The explicit scheme (3.3), (3.4) that approximates (2.9a) needs to be supplemented with a
suitable CFL condition to ensure its stability. Following [8], we assume that

∆t ≤ ∆tn+1
mass :=

∆y

2(max{|ωx,n
max|, |ωy,n

max|}+ 1)
. (3.17)

Here ωx,n
max and ωy,n

max are the maximal speeds of wave propagation in the x- and y-directions,
respectively. For a piecewise constant approximation of q at t = tn,

ωk,n
max = max

{∣∣∣∣dF k

dϕ
(qnK , ϕn

K)

∣∣∣∣ : K ∈ T
}
, k ∈ {x, y},

where the fluxes F x and F y are defined in (3.2). Note that since ∆tnmass varies in each time
iteration, our numerical scheme is adaptive. For the second heat equation, thanks to the semi-
implicit approach given by equations (3.14), (3.15) and (3.16), the only restrictive part in terms of
the time step is due to the convective term. Hence, given a piecewise constant approximation of q
at t = tn, the CFL condition arising from the heat equation is

∆t ≤ ∆tn+1
heat :=

1

2
min

{
∆x

∥qx,n∥∞
,

∆y

∥qy,n∥∞

}
, (3.18)

where ∥·∥∞ corresponds to the infinity norm on Ω. The above bound ∆tnheat is also time-dependent
since it varies with each time iteration. Having both restrictions for the time step, at each time
iteration t = tn, we set ∆t as the minimum among the two restrictions (3.17) and (3.18) , this is

∆t = min
{
∆tnmass,∆tnheat

}
, n ≥ 1. (3.19)

The fully coupled numerical scheme requires a sufficiently small initial time step ∆t0.

3.6 Coupling strategy

The system (2.9) is approximated by an adaptive method that combines the discretizations of
the three discrete sub-problems described above under the varying time step ∆t following the CFL
condition (3.19). The approximation of the solids volume fraction ϕ is computed by (3.3) and (3.4),
the discrete velocity q and pressure p are obtained by solving the linear system (3.13), and the
approximate temperature T is computed from (3.14) and (3.15) and the linear system (3.16).
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Algorithm 1 (Marching formula and coupling procedure)

Input: ρf , ρs, βf , κs, κf , cp,f, cp,s, λ, η, ∆x, ∆y
ϕn ← ϕ0, Tn ← T0, ∆t← ∆t0

n← 0
while t < tend do

compute qn and pn from system (3.13) given ϕn, Tn ▷ solve perturbed Stokes system
for i = 1, . . . , Nx do

for j = 1, . . . , Ny do

ϕ
n+1/2
i,j ← ϕn

i,j − ∆t
∆x

(
F x,n
i+1/2,j − F x,n

i−1/2,j

)
▷ approx. (2.9a); x axis

T
n+1/2
i,j ← Tn

i,j − ∆t
∆x

(
Ux,n
i+1/2,j − Ux,n

i−1/2,j

)
▷ approx. convective (2.9d); x axis

end for
end for
for i = 1, . . . , Nx do

for j = 1, . . . , Ny do

ϕn+1
i,j ← ϕ

n+1/2
i,j − ∆t

∆y

(
F y,n
i,j+1/2 − F y,n

i,j−1/2

)
▷ update ϕ from (2.9a)

T̃
n+1/2
i,j ← T

n+1/2
i,j − ∆t

∆y

(
Uy,n
i,j+1/2 − Uy,n

i,j−1/2

)
▷ approx. convective (2.9d)

end for
end for
compute T n+1 from (3.16) given (T̃

n+1/2
K )K∈T and ϕn+1 ▷ update T from (2.9d)

∆tmass ← ∆y/(2ωmax + 2)
∆theat ← 1

2 min
{
∆x/∥qx,n∥∞,∆y/∥qy,n∥∞

}
∆t← min{∆theat,∆tmass} ▷ update time step
t← t+∆t
n← n+ 1

end while
compute qn and pn from system (3.13) given ϕn, Tn

return {(ϕ1, q1, p1, T 1), . . . , (ϕn, qn, pn, Tn)}

The main idea for the coupling is the following. At each time iteration, we begin by solving
system (3.13) for q and p, both corresponding to time tn, then with the updated velocity qn we
approximate ϕ using formulas (3.3) and (3.4), in this case corresponding to tn+1. Then we use
qn and the updated volume fraction ϕn+1 to update the temperature T . This procedure for the
fully coupled numerical scheme including the marching formulas in time and space is described in
Algorithm 1.

4 Numerical results

For all examples, we have implemented the numerical scheme described in Section 3 in the software
Matlab. For the solution of the linear systems arising in (3.13) and (3.16), we make use of the
backslash Matlab function. In addition, in all simulations, we use an initial time step ∆t0 = 0.001,
constant room temperature T0 = 20 ◦C and xa = −1/2, xb = 1/2, ya = −2 and yb = 2. For the
batch flux and viscosity functions in (2.7) we set the exponents nRZ = 2.0 and α = 2.0, respectively.
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The rest of the parameters and constants are

κs = 3W/mK, κf = 5.8× 10−1W/mK, cp,s = 7.41× 102 J/kg, cp,f = 4.18 J/kg,

ρf = 1000 kg/m3, ρs = 2650 kg/m3, βf = 2.07× 10−4 ◦C−1,

λ = 9× 103, η = 1× 10−5,

(4.1)

and v0, g, νf , µf , Pr, L and Re are given in (2.10).

4.1 Simulation 1: Diehl test

We now assume that above a certain height yD, the concentration is homogeneous and equal to
ϕ0, with pure water below. In our current setting, this initial condition reads as follows

ϕ(x, y, 0) =

{
ϕ0 if yD ≤ y ≤ yb,

0 if 0 ≤ y < yD,

where yD ∈ (ya, yb). For this test, we keep T (x, y, 0) = 0 in the entire domain and use an angle
of inclination θ = 60◦. In addition, we set yD = 1, ∆x = ∆y = 0.025 and a total of 6400
control volumes. Figure 5 shows the simulation of the Diehl test at three time points; t1 = 0.0148,
t2 = 0.0336 and t3 = tend = 1.4200. The volume fraction (first column) initially loaded at the
top of the vessel begins to descend, generating a “tongue” of mixture which settle until all solid
particles are deposited at the bottom. Besides the thin layer of solid particles at the wall x = xb
for t = t3, a horizontal solid-liquid interface is created as expected. The temperature profiles
show that heat spreads at a slower pace than sedimentation, and evolves mostly through regions of
the domain with clear water. With respect to pressure we observe that while particles are moving
towards the bottom a higher pressure begins to appear towards the bottom as the sediment becomes
concentrated. For the volume average velocity we observe circular regions in which the speed is
maximum. The corresponding flow vectors, plotted in Figure 6, indicate that these circular regions
indeed correspond to the circulation effect.

4.2 Simulation 2: comparison of two heat conditions

In the next two numerical experiments we change the temperature variation ∆T and the co-
efficient of thermal expansion βf . For these examples, we use the same initial volume fraction
ϕ = ϕ0 = 0.5 and initial temperature T = 0 in Ω and t = tend = 1. The first example is pro-
duced with ∆T = 0 ◦C (equivalently Th = T0) and βf given in (4.1). The second is made with
a higher temperature variation ∆T = 40 ◦C and an amplified coefficient of thermal expansion
β = 2.07×10−2 ◦C−1. The result (see Figure 7) shows that apart from obvious changes in the tem-
perature profiles, variations in the volume fraction are hardly observable. However, the velocity
field exhibits variations near the top of the vessel clearly attributable to the change in temperature.

4.3 Simulation 3: analysis of clear liquid production and sediment

To measure the increase of efficiency in water recovery, we analyze the production of clear water
under various angles and temperature combinations and measure for each numerical simulation
the time quotient ηwater := trefwater/twater, where twater is defined as the time point at which the
total volume of water (clear liquid) reaches 90% of the total volume of the tank. Specifically, we
convert the numerical values of the solids volume fraction ϕ into values of the water volume fraction
ϕwater := 1 − ϕ, and a computational cell K is counted as part of the water forming as soon as
ϕwater,K > 0.98, i.e., concept of clear water employed here refers to the regions within the domain
in which the concentration of solids is less than 2%. The reference time trefwater is defined in the same
way for an angle θ = 90◦ (no inclination) and zero temperature variation ∆T = 0◦C (or Tc = T0).
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Figure 5. Simulation 1 (Diehl test) with θ = 60°, ∆T = 20 °C and ϕ0 = 0.5
for yD = 1 at (first row) t1 = 0.0148, (second row) t2 = 0.0336 and (third row)
t3 = tend = 1.4200.

To compute ηwater we perform numerical simulations under various temperatures and angles of
inclination, with ∆x = ∆y = 0.05 until twater is reached. In Table 1, we report the efficiency
coefficient for the numerical experiments varying θ = 90◦, 80◦, . . . , 40◦ and temperature differences
of ∆T = 0, 10, . . . , 40 ◦C with initial concentrations ϕ0 = 0.1, ϕ0 = 0.2, and ϕ0 = 0.4. (Selected
cases for ∆T = 10 ◦C are also illustrated in Figures 8 to 13, see below.) Results indicate, first of all,
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Figure 6. Simulation 1 (Diehl test) with θ = 60°, ∆T = 20 °C and ϕ0 = 0.5 for
yD = 1: velocity vector q at (a) t1 = 0.0148, (b) t2 = 0.0336 and (c) t3 = tend =
1.4200.

that inclination of the vessel always produces a gain in efficiency of at least 10% (for the values of θ
tested). The degree of gain depends significantly on ϕ0 and θ, but only marginally on ∆T . Notice
that that for ϕ0 = 0.1 and ϕ0 = 0.2, the highest increase in efficiency is achieved for θ = 40◦. Only
for ϕ0 = 0.1 we observe values of ηwater larger than two. Furthermore, for the (hypothetical) case
of a fairly concentrated initial suspension (ϕ0 = 0.4) we obtain the highest values of ηwater, that is
ηwater ≈ 1.3, for θ = 60◦. It is interesting to note that in this case there exists an optimal angle of
inclination.

In a second analysis we measure the potential gain in efficiency (through inclination and heating)
in terms of formation of the sediment. In this case, we define the efficiency indicator ηsolid :=
trefsolid/tsolid, where tsolid is defined as the time point in which the amount of mass of solids at a

concentration ϕ > 0.8 reaches 90% of the total. Similarly to the previous time reference, trefsolid is
defined as tsolid for the case of no inclination θ = 90◦ and zero temperature variation ∆T = 0 ◦C.
Note that here we define as “settled solid” those parts of the domain in which the solid concentration
is greater than 80%. We utilize the same numerical simulations as for the computation of ηwater. In
Table 2 the observed values of ηsolid for the corresponding numerical experiments are listed. Results
are similar to those for ηwater in that for given values of ϕ0 and θ does not vary appreciably with ∆T
in most cases. However, in many instances the gains in efficiency measured by ηsolid related to ϕ0

and θ differ visibly from those measured by ηwater. For instance, the case ϕ0 = 0.1 and θ = 90◦

leads for ∆T > 0 ◦C to values ηsolid ≈ 0.8, so there is even a loss of efficiency, while the same pair of
parameters led to the best values of ηwater. A closer inspection of the entries of Table 2 reveals that
for ϕ0 = 0.1 there is no distinguished optimal angle of inclination (in terms of maximizing ηsolid)
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Figure 7. Simulation 2 (comparison of two heat conditions): batch sedimentation
with θ = 60° and ϕ0 = 0.5 at t = 1 with (first row) ∆T = 5°C and βf = 2.07× 10−4

and (second row) ∆T = 40°C and βf = 2.07× 10−2.

while for ϕ0 = 0.2 and ϕ0 = 0.4 the optimal angle is θ = 40◦ (among the values tested). Notice,
furthermore, that for ϕ0 = 0.4 and θ = 40◦, we have ηwater ≈ 1.2 but ηsolid ≈ 1.8.

Simulations under the scenarios described before for a fixed variation of temperature ∆T = 10 ◦C
varying the angle of inclination are presented in Figures 8 to 13. Figures 8, 10 and 12 show the
simulations of the volume fraction at t = 3 computed with ϕ0 = 0.1, ϕ0 = 0.2 and ϕ0 = 0.4,
respectively. Figures 9, 11 and 13 show the simulations of the temperature at t = 3 computed with
ϕ0 = 0.1, ϕ0 = 0.2 and ϕ0 = 0.4, respectively. We observe that for angles close to 90◦, at that
time still a considerable portion of the mixture is present at the original concentration ϕ0 while for
θ = 50◦ or θ = 40◦, the separation is almost complete. These results of Figures 8, 10 and 12 are
consistent with those obtained in [8] (where the iso-thermal case was treated and a smaller number of
combinations of initial concentrations and inclination angles was discussed) and with analyses that
involve experimental data (and are limited to the iso-thermal case as well), see [1,22,27,32,35,44].
That said, it is noteworthy that Figures 9, 11 and 13 indicate that a considerable portion of the
mixture becomes heated to the maximal temperature, and that the temperature distribution follows
the upward stream of liquid, but that according to Tables 1 and 2, there is hardly any increase in
efficiency due to convection. This result may well be explained by an inadequate adjustment of
parameters in the present study such as the temperature difference applied, location and duration
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Table 1. Simulation 3: efficiency coefficient ηwater for various combinations of ini-
tial concentration ϕ0, angle of inclination θ, and applied temperature difference ∆T .
(Here and in Table 2, the entry “1” for ∆T = 0 ◦C and θ = 90° indicates the refer-
ence value.)

ϕ0 ∆T [◦C] θ = 90° θ = 80° θ = 70° θ = 60° θ = 50° θ = 40°

0.1

0 1 1.215070 1.447193 1.629246 1.864724 2.127147
10 0.998308 1.218234 1.449904 1.631780 1.867789 2.124425
20 0.996914 1.215088 1.452628 1.629677 1.864581 2.121582
30 0.997948 1.214746 1.450139 1.627519 1.867663 2.110494
40 0.996198 1.215925 1.447670 1.625294 1.864499 2.107478

0.2

0 1 1.249885 1.381455 1.530540 1.699557 1.966316
10 1.001554 1.250289 1.381584 1.531768 1.694235 1.951882
20 1.000144 1.250637 1.381763 1.529472 1.684920 1.943776
30 1.000500 1.250817 1.381987 1.530769 1.687113 1.929612
40 1.000315 1.250694 1.382238 1.528604 1.696916 1.921460

0.4

0 1 1.103264 1.179044 1.297321 1.264294 1.206245
10 0.999611 1.106751 1.181789 1.301679 1.264293 1.202108
20 1.001250 1.105600 1.186230 1.304353 1.270945 1.204229
30 1.001242 1.105028 1.186373 1.307331 1.277490 1.210443
40 1.000194 1.104611 1.185703 1.307119 1.281623 1.218690

Table 2. Simulation 3: efficiency coefficient ηsolid for various combinations of initial
concentration ϕ0, angle of inclination θ, and applied temperature difference ∆T .

ϕ0 ∆T [◦C] θ = 90° θ = 80° θ = 70° θ = 60° θ = 50° θ = 40°

0.1

0 1 1.221111 1.303926 1.259727 1.310197 0.877267
10 0.999255 1.220158 1.305909 1.259315 1.294494 0.792031
20 0.998618 1.221504 1.307935 1.258765 1.288716 0.800016
30 0.997702 1.221718 1.304169 1.258108 1.286185 0.808227
40 0.998959 1.219700 1.307614 1.257316 1.280646 0.813885

0.2

0 1 1.179874 1.267256 1.370405 1.427996 1.566994
10 0.997718 1.180092 1.264177 1.369244 1.433853 1.567584
20 0.997507 1.181715 1.264612 1.370823 1.439480 1.521487
30 0.998763 1.182454 1.265060 1.369597 1.432235 1.518220
40 0.999303 1.182337 1.265513 1.371144 1.434327 1.518475

0.4

0 1 1.073771 1.215368 1.374468 1.559977 1.801505
10 1.000917 1.073161 1.215618 1.375958 1.562195 1.803902
20 1.000068 1.074787 1.214544 1.373723 1.561252 1.802245
30 1.000947 1.074353 1.214594 1.375496 1.560161 1.800374
40 1.000615 1.073730 1.213830 1.374109 1.558926 1.802090

of heating and choice of parameters accounting for heat conduction and transport. However, it
could also be that enhancement of circulation in itself does not necessarily accelerate clear liquid
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Figure 8. Simulation 3: simulated concentration ϕ at t = 3 for ϕ0 = 0.1. Here and
in Figures 9 to 13, ∆T = 10 °C, and the angles of inclination are (a) θ = 90°, (b)
θ = 80°, (c) θ = 70°, (d) θ = 60°, (e) θ = 50° and (f) θ = 40°.
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Figure 9. Simulation 3: simulated temperature T at t = 3 for ϕ0 = 0.1.

production and settling; for instance the upward-streaming portion of the circulation possibly
accounts for (undesired) entrainment of particles.

4.4 Simulation 4: measuring improvements of settling time

A preliminary analysis of the numerical results of Simulations 1 to 3 indicates that although
numerical results agree with experimental evidence and the numerical method works correctly, the
conjectured improvement of separation efficiency, that is the acceleration of liquid production or
sediment formation (as indicated in Tables 1 and 2) through additional heating is at most marginal.
This property likely arises since the onset of convection is much slower, and the convection velocity
is much smaller, than the velocity associated with the settling of particles. This conjecture is
underlined by a simulation made for the convection of pure water (ϕ0 = 0) with ∆T = 40°C and
the two different choices of βf utilized in Simulation 2 (see Figure 7). The simulated time, t = 9, is
large enough so that both velocity fields can be considered stationary. The value βf = 2.07× 10−4,
used in Figure 14 (a), is realistic for water and is the value used in Simulations 1 and 3. Notice that
the norm of the velocity is at most 0.25, where velocity is refereed to v0 (see (2.10)). This supports
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Figure 10. Simulation 3: simulated concentration ϕ at t = 3 for ϕ0 = 0.2.
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Figure 11. Simulation 3: simulated temperature T at t = 3 for ϕ0 = 0.2.

that the conjecture that in Simulations 1 and 3 the settling process, enhanced by the circulation
due to inclination of the vessel, occurs significantly more rapidly than the onset of heat-driven
convection, and that therefore the added effect of convection is marginal.

Finally, we show in Figure 14 (b) the same simulation for pure liquid but assuming that βf =
2.07 × 10−2. This parameter is of course unrealistic, but we now observe a velocity field with
velocities that are about 18 times larger than those of Figure 14 (a) for βf = 2.07 × 10−4. This
leads to the conjecture that increasing βf may lead to more rapid convection that could lead to
better visible separation efficiency in a simulation with ϕ0 > 0. In the dilute regime (ϕ ≪ 1)
the dominating term in (2.8) is the second one, and it involves the factor λβf . Since for aqueous
suspensions, βf needs to be considered as a constant, one may attempt to produce evidence of heat-
driven acceleration of the separation by increasing λ. Without compromising other parameters thus
can be done by decreasing v0, for example by assuming that the particle size is relatively small.
Alternatively, one may assume that the density difference is relatively small, and increase the heat
diffusivity. This has been done in Simulation 4 (see Figure 15), where we utilize ρs = 1050 kg/m3

and ρf = 1000 kg/m3 along with a function κ̃ increase by a factor 20, combined with a number
of applied temperature differences. The quantity plotted in Figure 15 is the percentage of solids
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Figure 12. Simulation 3: simulated concentration ϕ at t = 3 for ϕ0 = 0.4.
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Figure 13. Simulation 3: simulated temperature T at t = 3 for ϕ0 = 0.4.

trapped in sediment, that is in a region with solids concentration over 0.9. The enlarged views
(Figure 15 (b), (d) and (f)) indicate that this percentage consistently grows more rapidly with
increasing applied temperature ∆T .

5 Conclusions

We have proposed a two-dimensional mathematical model to simulate the sedimentation process in
inclined vessels (known as the Boycott experiment) under the presence of heat sources. The resulting
governing equations signify an extension to the model presented in [8, 9, 11], where the novelty
resides in the addition of the temperature distribution described through the heat equation. Using
the Boussinesq approximation, we end up coupling the heat equation by means of a temperature-
dependent source term in the momentum balance. The two phenomena, gravity settling, and
induced natural convection, interact as driving forces for the studied process. The adaptive finite
volume numerical scheme proposed to approximate the equations is built taking into account the
nonlinear flux present in the concentration equation, the solution of the linearly implicit system
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Figure 14. Velocity field for convection of pure fluid (ϕ0 = 0) for θ = 60° at t = 9
with ∆T = 40°C (a) βf = 2.07× 10−4, (b) βf = 2.07× 10−2.

arising from the perturbed Stokes system with nonlinear viscosity function, and a semi-implicit
time approximation for the heat equation. The adaptive treatment of the time step, added to the
implicit resolution of the nonlinear diffusive term at the heat equation, allows the use of time steps
that are not so restrictive, thereby increasing the speed of the simulations. Through a series of
numerical examples, we have shown that the application of heat can increase the settling velocity of
suspended particles. This phenomenon can be explained by density changes of the liquid and to a
lesser extent, due to the reduction in its viscosity, which causes a natural convection that modifies
the velocity field of the mixture. In the main example, Simulation 3 (Section 4.3), the effect of
the heat source is overshadowed by gravity settling, leading to a minimal effect on water recovery.
However, in Simulation 4 (Section 4.4), it is shown that under changes in the parameters, the
velocity field induced by the heat source can get the order of magnitude of the velocity generated
by the solid-liquid density differences. On the other hand, we observe that the initial conditions
modify the results, as it was pointed out in Simulation 3, where the temperature profile is reached
much later in the numerical experiments, when most of the solid has been settled.

The findings reported in this article have significant applications in various industries, from
wastewater treatment to mineral separation in mining. The ability to accelerate the settling of
particles in a controlled manner can result in significant savings in time and energy, in addition
to improving the efficiency of different processes developed in the industry. Heat-assisted sedi-
mentation represents an interesting technique that deserves further research and development. Its
potential to optimize processes and improve efficiency in a variety of applications makes it an area
for future study and practical uses. Further studies can be done by considering different geome-
tries in two and three dimensions, testing different batch flux functions, and the use of advanced



COUPLED FINITE VOLUME METHODS FOR SETTLING IN INCLINED VESSELS WITH NATURAL CONVECTION25

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

time t

(a)

0.9 0.92 0.94 0.96 0.98

0.55

0.6

0.65

0.7

0.75

time t

(b)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

time t

(c)

0.9 0.92 0.94 0.96 0.98

0.6

0.65

0.7

0.75

time t

(d)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

time t

(e)

0.92 0.94 0.96 0.98

0.65

0.7

0.75

0.8

time t

(f)

Figure 15. Simulation 4: evolution of the percentage of solids concentrated at
more than 90% for (a) θ = 40◦, (b) enlarged view of (a), (c) θ = 50◦, (d) enlarged
view of (c), (e) θ = 50◦ and (f) enlarged view of (e), starting from ϕ0 = 0.05.

numerical methods such as discontinuous Galerkin or mixed finite elements. In addition, another
interesting focus to continue with this research is to compare our numerical scheme with experi-
ments carried out under operational conditions in the industry. A future extension of this work
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can be the addition of the neglected terms arising from the nonlinear Navier-Stokes equations in
its transient version, and studying the impact of our quasi static approach in the simulations.
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