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A note on the generalized Babuška-Brezzi theory: revisiting

the proof of the associated Strang error estimates∗

Gabriel N. Gatica†

Abstract

In this note we simplify the derivation of the error estimates for the generalized Babuška-Brezzi
theory with Galerkin schemes defined in terms of approximate bilinear forms and functionals. More
precisely, we provide a straight proof that makes no use of any translated continuous or discrete
kernel nor of the distance between them, but of suitable upper bounds of the distances of each
component of the Galerkin solution to any other member of the respective finite element subspace.
In this way, the Strang error estimates are obtained simply by applying the aforementioned bounds
along with the triangle inequality, so that they become cleaner and with fully explicit constants.
The case in which the discrete bilinear forms can be evaluated at the continuous solution is also
considered, which yields the consistency terms to appear separately from the distances to the
subspaces, thus allowing the former to be handled independently from the latter.
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1 Introduction

The generalized Babuška-Brezzi theory establishes necessary and sufficient conditions for the well-
posedness of problems of the type: Find (σ, u) ∈ X2 ×M1 such that

a(σ, τ) + b1(τ, u) = F (τ) ∀ τ ∈ X1

b2(σ, v) = G(v) ∀ v ∈ M2 ,
(1.1)

where (X2, ∥ · ∥X2), (M1, ·∥M1), (X1, ∥ · ∥X1), and (M2, ·∥M2) are real Banach spaces, a : X2 ×X1 → R
and bi : Xi ×Mi → R, i ∈

{
1, 2

}
, are bounded bilinear forms, and F : X1 → R and G : M2 → R are

bounded linear functionals. The corresponding result reads as follows (cf. [1]).

Theorem 1.1. Let (X2, ∥ · ∥X2), (M1, ·∥M1), (X1, ∥ · ∥X1), and (M2, ·∥M2) be real Banach spaces,
such that M1, X1, and M2 are reflexive, and let a : X2 × X1 → R and bi : Xi × Mi → R, i ∈{
1, 2

}
, be bounded bilinear forms with induced operators given by A ∈ L(X2, X

′
1) and Bi ∈ L(Xi,M

′
i),

respectively. In addition, for each i ∈
{
1, 2

}
let

Ki := N(Bi) =
{
τ ∈ Xi : bi(τ, v) = 0 ∀ v ∈ Mi

}
, (1.2)
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†CI2MA and Departamento de Ingenieŕıa Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile,
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and assume that

i) one of the following equivalent pairs of hypotheses on a is satisfied

i-1) sup
ζ∈K1

a(τ, ζ) > 0 ∀ τ ∈ K2\
{
0
}
,

i-2) there exists α > 0 such that

sup
τ∈K2
τ ̸=0

a(τ, ζ)

∥τ∥
≥ α ∥ζ∥ ∀ ζ ∈ K1 ,

i-1)’ sup
τ∈K2

a(τ, ζ) > 0 ∀ ζ ∈ K1\
{
0
}
,

i-2)’ there exists α > 0 such that

sup
ζ∈K1
ζ ̸=0

a(τ, ζ)

∥ζ∥
≥ α ∥τ∥ ∀ τ ∈ K2 ,

ii) for each i ∈
{
1, 2

}
there exists a constant βi > 0 such that

sup
τ∈Xi
τ ̸=0

bi(τ, v)

∥τ∥
≥ βi ∥v∥ ∀ v ∈ Mi .

Then, for each pair (F,G) ∈ X ′
1 × M ′

2 there exists a unique (σ, u) ∈ X2 × M1 solution to problem
(1.1), and there hold the following a priori bounds:

∥σ∥ ≤ 1

α
∥F∥ +

1

β2

(
1 +

∥A∥
α

)
∥G∥ , (1.3)

∥u∥ ≤ 1

β1

(
1 +

∥A∥
α

)
∥F∥ +

∥A∥
β1 β2

(
1 +

∥A∥
α

)
∥G∥ . (1.4)

Moreover, the hypotheses i) and ii) are also necessary.

Proof. See [1, Section 2.1, Theorem 2.1, Corollary 2.1].

On the other hand, in order to introduce a general Galerkin scheme associated with (1.1), we now
let

{
X2,h

}
h>0

,
{
M1,h

}
h>0

,
{
X1,h

}
h>0

, and
{
M2,h

}
h>0

be families of finite dimensional subspaces of

X2, M1, X1, and M2, respectively, and let ah : X2,h×X1,h → R and bi,h : Xi,h×Mi,h → R, i ∈
{
1, 2

}
,

be bounded bilinear forms approximating a and bi, with induced operators Ah ∈ L(X2,h, X
′
1,h) and

Bi,h ∈ L(Xi,h,M
′
i,h), respectively. Then, given Fh ∈ X ′

1,h and Gh ∈ M ′
2,h approximating F and G,

respectively, we consider the discrete system: Find (σh, uh) ∈ X2,h ×M1,h such that

ah(σh, τh) + b1,h(τh, uh) = Fh(τh) ∀ τh ∈ X1,h

b2,h(σh, vh) = Gh(vh) ∀ vh ∈ M2,h .
(1.5)

Thus, as a direct application of Theorem 1.1 to the present discrete context, the well-posedness of
(1.5) reads as follows (see also [1, Section 2.2]).

Theorem 1.2. In addition to the previous notations and definitions, for each i ∈
{
1, 2

}
let

Ki,h := N(Bi,h) =
{
τh ∈ Xi,h : bi,h(τh, vh) = 0 ∀ vh ∈ Mi,h

}
, (1.6)

and assume that:
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i) one of the following equivalent pairs of hypotheses on ah is satisfied

i-1) sup
ζh∈K1,h

ah(τh, ζh) > 0

∀ τh ∈ K2,h\
{
0
}
,

i-2) there exists αd > 0 such that

sup
τh∈K2,h

τh ̸=0

ah(τh, ζh)

∥τh∥
≥ αd ∥ζh∥ ∀ ζh ∈ K1,h,

i-1)’ sup
τh∈K2,h

ah(τh, ζh) > 0

∀ ζh ∈ K1,h\
{
0
}
,

i-2)’ there exists αd > 0 such that

sup
ζh∈K1,h

ζh ̸=0

ah(τh, ζh)

∥ζh∥
≥ αd ∥τh∥ ∀ τh ∈ K2,h,

ii) for each i ∈
{
1, 2

}
there exists a constant βi,d > 0 such that

sup
τh∈Xi,h

τh ̸=0

bi,h(τh, vh)

∥τh∥
≥ βi,d ∥vh∥ ∀ vh ∈ Mi,h .

Then, for each pair (Fh, Gh) ∈ X ′
1,h ×M ′

2,h there exists a unique (σh, uh) ∈ X2,h ×M1,h solution to
problem (1.5), and there hold the following a priori bounds:

∥σh∥ ≤ 1

αd
∥Fh∥ +

1

β2,d

(
1 +

∥Ah∥
αd

)
∥Gh∥ , (1.7)

∥uh∥ ≤ 1

β1,d

(
1 +

∥Ah∥
αd

)
∥Fh∥ +

∥Ah∥
β1,d β2,d

(
1 +

∥Ah∥
αd

)
∥Gh∥ . (1.8)

Moreover, the hypotheses i) and ii) are also necessary.

We remark here that in the case that dim
(
K1,h

)
= dim

(
K2,h

)
, the Fredholm alternative in finite

dimensional spaces allows us to conclude that in Theorem 1.2 the assumptions i-1) and i-1)’ are
redundant with respect to i-2) and i-2)’, respectively, and hence the former can be dropped.

Furthermore, the a priori estimates for the Galerkin error ∥σ − σh∥ + ∥u − uh∥ were originally
established in [1, Section 2.3] by introducing the translated continuous and discrete kernels K2(G) and
K2,h(Gh) defined, respectively, by

K2(G) :=
{
τ ∈ X2 : b2(τ, v) = G(v) ∀ v ∈ M2

}
and

K2,h(Gh) :=
{
τh ∈ X2,h : b2,h(τh, vh) = Gh(vh) ∀ vh ∈ M2,h

}
,

and by previously estimating dist
(
τ,K2,h(Gh)

)
for each τ ∈ K2(G). Hereafter, given a subspace S of

a generic Banach space (X, ∥ · ∥X), we set dist(x, S) := inf
s∈S

∥x − s∥X for all x ∈ X. Note from the

second equations of (1.1) and (1.5) that, in particular, σ ∈ K2(G) and σh ∈ K2,h(Gh), which explains
the dependence on dist

(
σ,K2,h(Gh)

)
of the Strang error estimates provided in [1, Section 2.3].

At this point, we find it important to stress that the aforementioned results from [1] extend those
established in [3], where Hilbert spaces were considered, the same bilinear forms and linear functionals
were utilized for introducing the continuous and Galerkin formulations, and only the sufficiency of the
hypotheses was proved.
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The main purpose of this note, to be addressed in the next section, is to provide a more direct proof
of the a priori error estimates arising from (1.1) and (1.5). To this end, and instead of employing any
translated kernel, we base our analysis on the derivation of suitable upper bounds of ∥σh − τh∥ and
∥uh−vh∥ for each (τh, vh) ∈ X2,h×M1,h. To some extent, our approach can be seen as a generalization
of the technique employed in the proof of [2, Lemma 2.44], where the particular case in which X2 = X1,
M2 = M1, and the continuous and discrete bilinear forms and functionals coincide, was considered.

2 The a priori error estimates

We begin with the following two lemmas establishing the results referred to at the end of Section 1.

Lemma 2.1. Assume the hypotheses of Theorems 1.1 and 1.2, and let (σ, u) ∈ X2×M1 and (σh, uh) ∈
X2,h ×M1,h be the unique solutions of (1.1) and (1.5), respectively. Then, for each (τh, vh) ∈ X2,h ×
M1,h there holds

∥σh − τh∥ ≤
(
∥A∥
αd

+

(
1 +

∥Ah∥
αd

)
∥B2∥
β2,d

)
∥σ − τh∥

+

(
1 +

∥Ah∥
αd

)
1

β2,d
∥(b2 − b2,h)(τh, ·)∥M ′

2,h
+

1

αd
∥(a− ah)(τh, ·)∥K′

1,h

+
∥B1∥
αd

∥u− vh∥+
1

αd
∥(b1 − b1,h)(·, vh)∥K′

1,h

+
1

αd
∥F − Fh∥K′

1,h
+

(
1 +

∥Ah∥
αd

)
1

β2,d
∥G−Gh∥M ′

2,h

(2.1)

where the consistency terms in (2.1) are defined as

∥(b2 − b2,h)(τh, ·)∥M ′
2,h

:= sup
wh∈M2,h

wh ̸=0

(b2 − b2,h)(τh, wh)

∥wh∥
, (2.2)

∥(a− ah)(τh, ·)∥K′
1,h

:= sup
ζh∈K1,h

ζh ̸=0

(a− ah)(τh, ζh)

∥ζh∥
, (2.3)

∥(b1 − b1,h)(·, vh)∥K′
1,h

:= sup
ζh∈K1,h

ζh ̸=0

(b1 − b1,h)(ζh, vh)

∥ζh∥
, (2.4)

∥F − Fh∥K′
1,h

:= sup
ζh∈K1,h

ζh ̸=0

(F − Fh)(ζh)

∥ζh∥
, and (2.5)

∥G−Gh∥M ′
2,h

:= sup
wh∈M2,h

wh ̸=0

(G−Gh)(wh)

∥wh∥
. (2.6)

Proof. We first notice, thanks to the obvious reflexivity of M2,h, that the inf-sup condition for b2,h (cf.
ii)) is equivalent to stating

∥B′
2,h(Gh)∥ ≥ β2,d ∥Gh∥ ∀Gh ∈ M ′′

2,h .
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Hence, applying the converse of [2, Lemma A.42], we deduce that for each G̃h ∈ M ′
2,h there exists

τ̃h ∈ X2,h such that

B2,h(τ̃h) = G̃h and ∥τ̃h∥ ≤ 1

β2,d
∥G̃h∥M ′

2,h
. (2.7)

In particular, given τh ∈ X2,h, there exists τ̃h ∈ X2,h such that

B2,h(τ̃h) = b2,h(τh, ·)−Gh ∈ M ′
2,h ,

that is, such that
b2,h(τ̃h, wh) = b2,h(τh, wh)−Gh(wh) ∀wh ∈ M2,h , (2.8)

and

∥τ̃h∥ ≤ 1

β2,d
∥b2,h(τh, ·)−Gh∥M ′

2,h
:=

1

β2,d
sup

wh∈M2,h

wh ̸=0

b2,h(τh, wh)−Gh(wh)

∥wh∥
. (2.9)

Now, using from the second equation of (1.1) that b2(σ,wh) = G(wh), and then subtracting and adding
τh in the first component of b2(σ,wh), we find

b2,h(τh, wh)−Gh(wh) = −b2(σ − τh, wh) + (b2,h − b2)(τh, wh) + (G−Gh)(wh) ,

which, replaced back into (2.9), yields

∥τ̃h∥ ≤ ∥B2∥
β2,d

∥σ − τh∥ +
1

β2,d
∥(b2 − b2,h)(τh, ·)∥M ′

2,h
+

1

β2,d
∥G−Gh∥M ′

2,h
. (2.10)

In turn, it is clear from (2.8) and the second equation of (1.5) that σh − (τh − τ̃h) ∈ K2,h, whence,
according to i-2)’ from Theorem 1.2, we have

αd ∥σh − (τh − τ̃h)∥ ≤ sup
ζh∈K1,h

ζh ̸=0

ah
(
σh − (τh − τ̃h), ζh

)
∥ζh∥

. (2.11)

Then, employing the first rows of (1.5) and (1.1), we obtain for each ζh ∈ K1,h

ah
(
σh − (τh − τ̃h), ζh

)
= Fh(ζh)− ah(τh − τ̃h, ζh) + a(σ, ζh) + b1(ζh, u)− F (ζh)

= a(σ − τh, ζh) + (a− ah)(τh, ζh) + ah(τ̃h, ζh)

+ b1(ζh, u− vh) + (b1 − b1,h)(ζh, vh) − (F − Fh)(ζh) ,

(2.12)

where we have subtracted and added an arbitrary vh ∈ M1,h in the second component of b1(ζh, u).
We remark here that there is no reason to assume in general that K1,h is contained in K1, but if this
were the case, then b1(ζh, u) would vanish, there would be no need to consider the aforementioned
vh ∈ M1,h, and the final estimate (2.1) would not include its third row. We will go back to this
remark later on. Also, note that while b1,h(ζh, vh) is certainly null, we maintain it in the writing of
the foregoing equation in order to emphasize that (b1− b1,h)(ζh, vh) is a consistency term. In this way,
replacing (2.12) back into (2.11), and performing the corresponding bounding procedures, we arrive
at

∥σh − (τh − τ̃h)∥ ≤ ∥A∥
αd

∥σ − τh∥+
1

αd
∥(a− ah)(τh, ·)∥K′

1,h
+

∥Ah∥
αd

∥τ̃h∥

+
∥B1∥
αd

∥u− vh∥+
1

αd
∥(b1 − b1,h)(·, vh)∥K′

1,h
+

1

αd
∥F − Fh∥K′

1,h
.

(2.13)
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Therefore, as a consequence of the triangle inequality and (2.13) we get

∥σh − τh∥ ≤ ∥A∥
αd

∥σ − τh∥+
1

αd
∥(a− ah)(τh, ·)∥K′

1,h
+

(
1 +

∥Ah∥
αd

)
∥τ̃h∥

+
∥B1∥
αd

∥u− vh∥+
1

αd
∥(b1 − b1,h)(·, vh)∥K′

1,h
+

1

αd
∥F − Fh∥K′

1,h
,

(2.14)

which, along with the estimate (2.10), leads to (2.1) and concludes the proof.

Lemma 2.2. Assume the hypotheses of Theorems 1.1 and 1.2, and let (σ, u) ∈ X2×M1 and (σh, uh) ∈
X2,h ×M1,h be the unique solutions of (1.1) and (1.5), respectively. Then, denoting

Cd :=

(
1 +

∥Ah∥
αd

)
1

β1,d
, (2.15)

for each (τh, vh) ∈ X2,h ×M1,h there holds

∥uh − vh∥ ≤ Cd

(
∥A∥+ ∥Ah∥ ∥B2∥

β2,d

)
∥σ − τh∥

+ Cd

(
∥Ah∥
β2,d

∥(b2 − b2,h)(τh, ·)∥M ′
2,h

+ ∥(a− ah)(τh, ·)∥X′
1,h

)
+ Cd

(
∥B1∥ ∥u− vh∥ + ∥(b1 − b1,h)(·, vh)∥X′

1,h

)
+ Cd

(
∥F − Fh∥X′

1,h
+

∥Ah∥
β2,d

∥G−Gh∥M ′
2,h

)
,

(2.16)

where the consistency terms in (2.16) are defined as in the statement of Lemma 2.1 (cf. (2.2) - (2.6)),
except that in (2.3) - (2.5) K1,h is replaced by X1,h.

Proof. We first observe from the inf-sup condition for b1,h (cf. ii) in Theorem 1.2) that

β1,d ∥uh − vh∥ ≤ sup
ζh∈X1,h

ζh ̸=0

b1,h(ζh, uh − vh)

∥ζh∥
. (2.17)

Then, according to the first equations of (1.5) and (1.1), we obtain

b1,h(ζh, uh − vh) = Fh(ζh)− ah(σh, ζh)− b1,h(ζh, vh)

=
(
Fh − F

)
(ζh) + a(σ, ζh) + b1(ζh, u)− ah(σh, ζh)− b1,h(ζh, vh) ,

from which, subtracting and adding τh ∈ X2,h (resp. vh ∈ M1,h) in the first component of a(σ, ζh)
(resp. second component of b1(ζh, u)), we get

b1,h(ζh, uh − vh) =
(
Fh − F

)
(ζh) + a(σ − τh, ζh) + (a− ah)(τh, ζh)

− ah(σh − τh, ζh) + b1(ζh, u− vh) + (b1 − b1,h)(ζh, vh) .
(2.18)
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Thus, replacing (2.18) back into (2.17), and proceeding similarly to the proof of Lemma 2.1, we readily
deduce that

∥uh − vh∥ ≤ ∥A∥
β1,d

∥σ − τh∥ +
1

β1,d
∥(a− ah)(τh, ·)∥X′

1,h
+

∥Ah∥
β1,d

∥σh − τh∥

+
∥B1∥
β1,d

∥u− vh∥ +
1

β1,d
∥(b1 − b1,h)(·, vh)∥X′

1,h
+

1

β1,d
∥F − Fh∥X′

1,h
.

(2.19)

Finally, employing (2.1) (cf. Lemma 2.1) in the foregoing inequality, performing minor algebraic
manipulations, and bounding ∥(a − ah)(τh, ·)∥K′

1,h
, ∥(b1 − b1,h)(·, vh)∥K′

1,h
, and ∥F − Fh∥K′

1,h
, by the

terms ∥(a− ah)(τh, ·)∥X′
1,h

, ∥(b1 − b1,h)(·, vh)∥X′
1,h

, and ∥F − Fh∥X′
1,h

, respectively, we arrive at (2.16)

and conclude the proof.

We are now in position to state the main result of this section.

Theorem 2.1. Assume the hypotheses of Theorems 1.1 and 1.2, and let (σ, u) ∈ X2 × M1 and
(σh, uh) ∈ X2,h ×M1,h be the unique solutions of (1.1) and (1.5), respectively. Then, there holds

∥σ − σh∥ ≤ inf
τh∈X2,h

{(
1 +

∥A∥
αd

+

(
1 +

∥Ah∥
αd

)
∥B2∥
β2,d

)
∥σ − τh∥

+

(
1 +

∥Ah∥
αd

)
1

β2,d
∥(b2 − b2,h)(τh, ·)∥M ′

2,h
+

1

αd
∥(a− ah)(τh, ·)∥K′

1,h

}
+ inf

vh∈M1,h

{
∥B1∥
αd

∥u− vh∥+
1

αd
∥(b1 − b1,h)(·, vh)∥K′

1,h

}
+

1

αd
∥F − Fh∥K′

1,h
+

(
1 +

∥Ah∥
αd

)
1

β2,d
∥G−Gh∥M ′

2,h
,

(2.20)

and, with the constant Cd from (2.15),

∥u− uh∥ ≤ Cd inf
τh∈X2,h

{(
∥A∥+ ∥Ah∥ ∥B2∥

β2,d

)
∥σ − τh∥

+
∥Ah∥
β2,d

∥(b2 − b2,h)(τh, ·)∥M ′
2,h

+ ∥(a− ah)(τh, ·)∥X′
1,h

}
+ inf

vh∈M1,h

{(
1 + Cd ∥B1∥

)
∥u− vh∥ + Cd ∥(b1 − b1,h)(·, vh)∥X′

1,h

}
+ Cd

(
∥F − Fh∥X′

1,h
+

∥Ah∥
β2,d

∥G−Gh∥M ′
2,h

)
,

(2.21)

Proof. Applying the triangle inequality we have

∥σ − σh∥ ≤ ∥σ − τh∥ + ∥σh − τh∥ ∀ τh ∈ X2,h ,

and
∥u− uh∥ ≤ ∥u− vh∥ + ∥uh − vh∥ ∀ vh ∈ M1,h ,

which, along with the estimates for ∥σh−τh∥ and ∥uh−vh∥ provided by (2.1) and (2.16), respectively,
and after taking infimum with respect to both τh ∈ X2,h and vh ∈ M1,h, leads to (2.20) and (2.21).
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As announced within the proof of Lemma 2.1, we now stress that when K1,h ⊆ K1, the Strang
estimate (2.20) reduces to

∥σ − σh∥ ≤ inf
τh∈X2,h

{(
1 +

∥A∥
αd

+

(
1 +

∥Ah∥
αd

)
∥B2∥
β2,d

)
∥σ − τh∥

+

(
1 +

∥Ah∥
αd

)
1

β2,d
∥(b2 − b2,h)(τh, ·)∥M ′

2,h
+

1

αd
∥(a− ah)(τh, ·)∥K′

1,h

}
+

1

αd
∥F − Fh∥K′

1,h
+

(
1 +

∥Ah∥
αd

)
1

β2,d
∥G−Gh∥M ′

2,h
,

(2.22)

whereas (2.21) remains unaltered.

On the other hand, a significant simplification arises when ah(σ, ζh), b1,h(ζh, u), and b2,h(σ,wh) are
computable for all (ζh, wh) ∈ X1,h ×M2,h. Indeed, in this case it is possible to show that, instead of
(2.10), (2.13), and (2.19), there hold, respectively

∥τ̃h∥ ≤
∥B2,h∥
β2,d

∥σ − τh∥ +
1

β2,d
∥(b2 − b2,h)(σ, ·)∥M ′

2,h
+

1

β2,d
∥G−Gh∥M ′

2,h
, (2.23)

∥σh − (τh − τ̃h)∥ ≤ ∥Ah∥
αd

∥σ − τh∥+
1

αd
∥(a− ah)(σ, ·)∥K′

1,h
+

∥Ah∥
αd

∥τ̃h∥

+
∥B1,h∥
αd

∥u− vh∥+
1

αd
∥(b1 − b1,h)(·, u)∥K′

1,h
+

1

αd
∥F − Fh∥K′

1,h
,

(2.24)

and

∥uh − vh∥ ≤ ∥Ah∥
β1,d

∥σ − τh∥ +
1

β1,d
∥(a− ah)(σ, ·)∥X′

1,h
+

∥Ah∥
β1,d

∥σh − τh∥

+
∥B1,h∥
β1,d

∥u− vh∥ +
1

β1,d
∥(b1 − b1,h)(·, u)∥X′

1,h
+

1

β1,d
∥F − Fh∥X′

1,h
.

(2.25)

As a consequence of the foregoing estimates we obtain the following result, in which the new con-
sistency terms appear separately from the respective infima, and hence can be handled independently
from them.

Theorem 2.2. Assume the hypotheses of Theorems 1.1 and 1.2, and let (σ, u) ∈ X2 × M1 and
(σh, uh) ∈ X2,h ×M1,h be the unique solutions of (1.1) and (1.5), respectively. In addition, assume
that ah(σ, ζh), b1,h(ζh, u), and b2,h(σ,wh) are computable for all (ζh, wh) ∈ X1,h ×M2,h. Then, there
holds

∥σ − σh∥ ≤
(
1 +

∥Ah∥
αd

)(
1 +

∥B2,h∥
β2,d

)
dist

(
σ,X2,h

)
+

∥B1,h∥
αd

dist(u,M1,h) +
1

αd
∥(b1 − b1,h)(·, u)∥K′

1,h

+

(
1 +

∥Ah∥
αd

)
1

β2,d
∥(b2 − b2,h)(σ, ·)∥M ′

2,h
+

1

αd
∥(a− ah)(σ, ·)∥K′

1,h

+
1

αd
∥F − Fh∥K′

1,h
+

(
1 +

∥Ah∥
αd

)
1

β2,d
∥G−Gh∥M ′

2,h
,

(2.26)
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and

∥u− uh∥ ≤ Cd ∥Ah∥
(
1 +

∥B2,h∥
β2,d

)
dist

(
σ,X2,h

)
+

(
1 + Cd ∥B1,h∥

)
dist

(
u,M1,h

)
+ Cd ∥(b1 − b1,h)(·, u)∥X′

1,h

+ Cd

(
∥Ah∥
β2,d

∥(b2 − b2,h)(σ, ·)∥M ′
2,h

+ ∥(a− ah)(σ, ·)∥X′
1,h

)
+ Cd

(
∥F − Fh∥X′

1,h
+

∥Ah∥
β2,d

∥G−Gh∥M ′
2,h

)
.

(2.27)

Proof. It follows analogously to the proof of Theorem 2.1, by utilizing now the estimates for ∥σh− τh∥
and ∥uh − vh∥ arising from (2.23), (2.24), and (2.25).
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2024-05 Isaac Bermudez, Jaime Manŕıquez, Manuel Solano: A hybridizable discon-
tinuous Galerkin method for Stokes/Darcy coupling in dissimilar meshes

2024-06 Thomas Führer, Diego Paredes: Robust hybrid finite element methods for reaction-
dominated diffusion problems

2024-07 Raimund Bürger, Enrique D. Fernández Nieto, Jorge Moya: A multilayer
shallow water model for tsunamis and coastal forest interaction

2024-08 Fernando Betancourt, Raimund Bürger, Stefan Diehl, Maŕıa Carmen
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