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Isaac Bermúdez1,2, Vı́ctor Burgos1,2, Jessika Camaño3,2, Fernando Gajardo4, Ricardo
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Abstract

We consider a mathematical model for addressing coupled fluid flow problems arising from reverse os-
mosis modeling in water desalination processes. It consists of the coupled Navier Stokes/transport and
Brinkman–Forchheimer/transport equations, with nonlinear conditions across a semi-permeate membrane.
The cases of a single desalination channel and coupled feed/permeate channels are covered. To solve these
partial differential equations, we employ a new mixed finite element method able to capture several variables
of interest such as the salt concentration level, pressure drop and fluid velocity. Through diverse numerical
simulations and a variety of configurations, we illustrate the capability of the method to accurately capture
the behaviour of saline water when passing through membrane-based reverse osmosis desalination channels.

Key words: Brinkman–Forchheimer, Navier–Stokes, transport, mixed finite element methods, nonlinear trans-
mission conditions, reverse osmosis, water desalination

1 Introduction

According to [14], the total volume of freshwater stocks is around the 2.5% (35 million km3) of the total stock of
water in the hydrosphere. Moreover, a large fraction of the freshwater (24 million km3, or 68.7%) is in the form
of ice and permanent snow cover in the Antarctic and Arctic regions. The rising apprehension regarding the
future accessibility of freshwater resources has led to a surge in the establishment of seawater desalination plants.
Furthermore, the development of membrane-based desalination methods has received special attention in recent
years as a prominent solution to address the global challenge of water scarcity, due to their notable advantages,
which include relatively low energy consumption compared to thermal-based techniques like multi-stage flash
[27], as well as their capability to use renewable or low-grade energy sources [2, 29]. In this regard, reverse
osmosis (RO) takes a prominent position, being employed in 69% of industrial desalination plants globally [11].
As the most energy-efficient desalination process, the membrane technology associated with RO is currently the
subject of extensive research.

The main purpose of RO is removing all colloidal matter and dissolved particles larger than 0.1-1.0 nm in
size from a liquid solution [27]. The conventional process includes three major stages. The initial phase, known
as pre-treatment, focuses on the removal of coarse solids such as algae and smaller solid particles like fine sand
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(see Figure 1 in [27]). Once seawater has undergone this pre-treatment, the main RO stage begins. At this
point, pre-treated water flows at high pressure through the feed channel, allowing the water to pass through
the pores of the semi-permeable membrane housed in a membrane module (see Figure 2 in [27]). Finally,
the post-treatment stage is conducted to achieve mineral enrichment by introducing ions, such as magnesium
and calcium, to the permeate water. This three-stage process ensures effective water purification through RO
technology.

However, a major challenge in these separation processes is concentration polarization, which induces fouling
(the undesired accumulation of materials) and reduces flux at the membrane. This phenomenon occurs because
solutes are rejected at the membrane wall while convective transport delivers solutes to the membrane surface
faster than diffusive transport can return them to the bulk streamflow. As a result, the solute concentration
significantly increases at the membrane surface. To address this issue, spacers are introduced to keep the
membrane layers separated and enhance mass transfer, thereby reducing concentration polarization at the wall
[26]. Research on spacer filament distribution and design structure has notably increased over the past decade,
aiming to identify optimal configurations based on specific requirements. Notable contributions in this field
include works by [1, 8, 17, 18, 22, 28], among others. In this context, and to contribute to a better understanding
of the processes underlying RO technology, we propose new numerical discretizations to accurately simulate
three scenarios. The first scenario includes explicit spacers (small obstacles) located inside the desalination
channels. The second scenario features a channel without spacers (from now on referred as empty channel).
The third scenario emulates the effect of spacers implicitly by distributing their effect in the entire region and
modeling the domain of simulation as a porous medium. For the first scenario, we employ the coupled Navier-
Stokes/transport equations for simulation, while the Brinkman–Forchheimer/transport equations model is used
for the third scenario.

Regarding the proposed numerical scheme, motivated by the Neumann type conditions at the outlet specified
in (2.2), we adopt the well-established mixed finite element method. This approach involves rewriting the set
of partial differential equations as a first-order system by introducing additional unknowns. The resulting
equations are then discretized using well-known polynomial spaces, such as the Raviart-Thomas element space
(see [12]). The mixed finite element method offers several advantages. It allows for the direct approximation
of additional variables of interest, such as the salt concentration gradient and the gradient of the velocity of
the fluid, without the need for numerical differentiation. Moreover, it enables the exact conservation of crucial
properties such as momentum and mass (see [6, 7]).

Since we adopt a mixed finite element approach, due to technical reasons discussed in [3] (see also [13]), it is
necessary to include a Lagrange multiplier to address the salt concentration constraint where the membrane is
located. The non-linearity at the interface is then handled with this further unknown, and a suitable linearization
is necessary to carry out the fixed-point iteration of the global problem. This paper gives a detailed explanation
of the numerical models to be considered, as well as their discrete formulations and their respective matrix
block structures. In addition, we performed several numerical simulations for different scenarios in order to
show the applicability of the method. In particular, we will first consider simulations in a single channel, which
are commonly reported in the literature. In addition, we will numerically study the case of two coupled feed
and permeate channels, that to the best of our knowledge no benchmarks are available in the literature.

The manuscript is structured as follows. In Section 2 we introduce the model problem of interest in a
single channel and define the unknowns to be considered in the variational formulation. Subsequently, in the
same section we set the saddle point structure of the discrete variational system and its corresponding matrix
block structure. Additionally, the mixed finite element discretization in two coupled domains is explained and
its resolution strategy by means of a fixed point algorithm is carried out. Next, numerical simulations that
illustrate the applicability of the methods and a detailed discussion are reported in Section 3. Finally, we
conclude the study providing final remarks in Section 4.

We end this section by introducing some notations to be employed in the forthcoming sections. For any
vector fields v “ pv1, v2qt and w “ pw1, w2qt we set the gradient and divergence operators, as

∇v :“

ˆ

Bvi
Bxj

˙

i,j“1,2

, and divpvq :“
2

ÿ

j“1

Bvj
Bxj

.

In addition, for any tensor fields τ “ pτijqi,j“1,2 and ζ “ pζijqi,j“1,2, we let divpτ q be the divergence operator
div acting along the rows of τ , and define the transpose, the trace, the tensor inner product, and the deviatoric
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Figure 2.1: Sketch of a single channel with explicit spacer (left) and implicit spacers (right).

tensor, respectively, as

τ t :“ pτjiqi,j“1,2, trpτ q :“
2

ÿ

i“1

τii, τ : ζ :“
2

ÿ

i,j“1

τijζij , and τ d :“ τ ´
1

2
trpτ qI, (1.1)

where I is the identity tensor in R2ˆ2. Finally, given any generic scalar functional space M, we let M and M
be the corresponding vector and tensor-valued counterparts.

2 Theoretical description

2.1 A single channel

Brinkman–Forchheimer/transport equations. Let Ω be a bounded polygonal domain in R2 with bound-
ary BΩ as shown in Figure 2.1 and assume that the boundary is decomposed into an inlet Γin, an outlet Γout,
and two portions describing the membrane, denoted by Σ, i.e., BΩ “ Γin Y Γout Y Σ. In addition, we denote
by n the unit outward normal vector on BΩ and by mΣ the tangent vector on Σ. The mathematical model
describing the behavior of saline water in a RO module consists of a coupled set of partial differential equations
where the Brinkman–Forchheimer equations, used to describe the fluid dynamics, are coupled with a transport
equation employed to model the concentration of salt within the channel Ω. More precisely, we consider the
following coupled system of equations

´ν△
pu

ε
` ρdiv

´

pu

ε
b

pu

ε

¯

` ∇p “ ´pDpu ´ pF|pu|pu, div
´

pu

ε

¯

“ 0 in Ω,

´κ△ϕ`
pu

ε
¨ ∇ϕ “ 0 in Ω,

(2.1)

where pu is the fluid velocity, p the fluid pressure and ϕ the salt concentration occupying the domain Ω. The
given data are the fluid dynamic viscosity ν, the fluid density ρ, the solute diffusivity through the solvent κ
and the porosity of the medium ε. All these parameters are assumed to be positive constants. In turn, pD and
pF are the Darcy and Forchheimer coefficients, respectively, assumed to be either positive constants or equal to
zero. The case where pD ą 0 and pF ą 0 will be used to describe the situation with implicit spacers. Conversely,
when pD and pF are zero, the system (2.1) reduces to the Navier–Stokes/transport problem, which will be used to
describe the case with explicit spacers. For the sake of simplicity, in what follows, we introduce the changes of
variables u :“ pu{ϵ, D :“ εpD and F :“ ε2 pF.

We complement these equations with suitable boundary conditions on each part of the boundary as described
as follows.

Inlet and outlet boundaries. In the inlet boundary Γin, we consider a given velocity profile uin and constant
concentration ϕin. In the outlet of the channel, denoted by Γout, we consider a do-nothing boundary condition
and zero diffusion of salt. That is

u “ uin, ϕ “ ϕin on Γin and pν∇u ´ pIqn “ 0, κ∇ϕ ¨ n “ 0 on Γout. (2.2)

Remark 1. As noticed in [21, Section 1] (see also [22, Section 2.2]), the open boundary condition (second
equation in (2.2)), is usually considered thinking of truncating a bigger physical domain (e.g., outflow profile
for flow in a bifurcated channel), allowing the fluid to flow naturally.
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Imperfect membrane boundary conditions. At membrane surface, velocity and salt concentration are
coupled through the following relations (see [8])

u ¨ mΣ “ 0, u ¨ n “ c0 ´ c1 ϕ , pϕu ´ κ∇ϕq ¨ n “ c2ϕ on Σ,

where c0 :“ A∆P , c1 :“ AiRT and c2 :“ B are positive constants specified later on in Table 3.1. Notice that,
a simple algebraic manipulation allows us to rewrite this condition as follows:

u ¨ mΣ “ 0, u ¨ n “ c0 ´ c1ϕ , κ∇ϕ ¨ n ` c1ϕ
2 ` c3ϕ “ 0 on Σ, (2.3)

where c3 “ c2 ´ c0.

We conclude this section by outlining the considerations to be taken into account when using either explicit
or implicit spacers.

Explicit spacers. Explicit spacers are obstacles placed inside the channel with the aim of enhancing the
permeate flux. These obstacles are assumed to have a circular shape with boundary Γs (see Figure 2.1).

As previously mentioned, when introducing explicit spacers in the channel, pD and pF are set to zero, reducing
the set of equations (2.1) to a Navier–Stokes/transport coupled problem. Additionally, on Γs, the following
boundary conditions must be considered (see [8]):

κ∇ϕ ¨ n “ 0 on Γs and u “ 0 on Γs. (2.4)

Implicit spacers. In the second scenario, the spacers are treated implicitly. In this case, we consider Γs “ ∅
and the effect of the spacers is emulated by making the fluid to flow through a porous media. This means we solve

the Darcy–Forchheimer equation, where pD :“
ν

pK
and pF :“

1.75 ρ ε
a

150 ε3 pK
are the Darcy and Forchheimer coefficients

[23, 24], and pK and ε, are the porous medium permeability and the porosity of the medium, respectively. In
turn, we keep in mind that spacers are treated implicitly. That is, if we want to emulate the effect of Nsp spacers
of diameter ds, the porosity of the medium can be calculated as [19, eq. (1)]

ε “
Atot ´ Asp

Atot
“

Atot ´ Nspπp0.25qd2s
Atot

, (2.5)

where Atot and Asp stand for the total area of the domain and the area occupied for the spacers, respectively.
Next, the permeability is determined using the Kozeny–Carman equation [25, Section 2]

pK “ Φ2 d
2
s

180

ε3

p1 ´ εq2
, (2.6)

where Φ is the sphericity of the particle forming the porous media.

Remark 2. Numerical simulations considering a model of implicit spacers require less computational effort
compared to the case of explicit spacers, because the latter configuration need a finer mesh near the spacers.
However, the price to pay is that the implicit spacers model cannot detect the local effect of the spacers, since
their influence is being averaged along the channel. In fact, the porous medium emulating the effect of the
spacers, only takes into account the number of spacers but not their distribution in the channel. We will go
back to this point in the numerical simulation section.

2.1.1 Mixed finite element discretization.

We propose a mixed finite element discretization to approximate the solution of the coupled system (2.1)–(2.3).
To that end, and as previously mentioned in Section 1, we introduce further unknowns and rewrite the system
of equations as a first-order set of equations. In fact, we let σ :“ ν∇u´pI and t :“ κ∇ϕ and proceed similarly
to [9] to rewrite (2.1) equivalently as follows

1

ν
σd “ ∇u, divpσq ´

ρ

ν
σd u ´ Du ´ F|u|u “ 0, t “ κ∇ϕ and κdivptq “ u ¨ t. (2.7)

4



We observe that employing the incompressibility condition divpuq “ 0 in Ω, we have eliminated the pressure
from the system (see [13] for more details), which however can be recovered by means of the postprocessing
formula

p “ ´
1

2
trpσq.

In turn, using these new variables σ and t, we rewrite (2.2) as

u “ uin on Γin, σn “ 0 on Γout, ϕ “ ϕin on Γin and t ¨ n “ 0 on Γout. (2.8)

Finally, due to technical reasons discussed in [3] and [13], we let Γc
in :“ BΩzΓin and introduce the additional

variable ξ :“ ´ϕ|Γc
in
, known as Lagrange multiplier in the context of mixed finite element methods. Then,

rewrite (2.3) as
u ¨ mΣ “ 0, u ¨ n “ c0 ` c1ξ , t ¨ n ` c1ξ

2 ´ c3ξ “ 0 on Σ. (2.9)

Now, we let tThuhą0 be a family of shape regular partition of the domain Ω formed by triangles K of
diameter hK , and denote by h :“ maxthK : K P Thu its corresponding meshsize. On each K we define the local
Raviart-Thomas element of order 0 as (see [12] for further details)

RT0pKq :“

"

v : K Ñ R2 : vpx1, x2q :“

ˆ

a
b

˙

` c

ˆ

x1
x2

˙

, a, b, c P R
*

,

and denote by P0pKq the spaces of polynomials of degree 0 in K. Then, we introduce, respectively, the following
finite element spaces for the variables t, σ, ϕ and u:

Hh :“
!

s : Ω Ñ R2 : s|K P RT0pKq @K P Th
)

,

Hh :“
!

τ “ pτijq : Ω Ñ R2ˆ2 : pτi,1, τi,2qt P Hh, i P t1, 2u and τn “ 0 on Γout

)

,

Xh :“ tψ : Ω Ñ R : ψ|K P P0pKq @K P Thu,

Qh :“ tv “ pv1, v2qt : Ω Ñ R2 : vi P Xh, i P t1, 2uu.

(2.10)

It remains to introduce the finite element space to approximate the Lagrange multiplier ξ. To that end, we
proceed similarly to [13] and denote by Γc

in,h the partition of Γc
in inherited from Th. Let us assume, without loss

of generality, that the number of edges of Γc
in,h is even. Then, we let Γc

in,2h be the partition of Γc
in arising by

joining pairs of adjacent edges of Γc
in,h. If the number of edges of Γc

in,h is odd, we simply reduce it to the even
case by adding one node to the discretization of the interface and locally modify the triangulation to keep the
mesh conformity and regularity. According to the above, we define the following finite element space for the
unknown ξ:

Mh :“
!

ηh P CpΓc
inq : ηh|e P P1peq @ edge e P Γc

in,2h

)

,

where P1peq is the space of linear polynomials defined on an edge e of Γc
in,2h. In this way, having introduced the

finite element spaces for each unknown, the discrete nonlinear system of equations to approximate the solution
of (2.7)–(2.9), reads: Find σh P Hh, uh P Qh, th P Hh, ϕh P Xh and ξh P Mh, such that

1

ν

ż

Ω

σd
h : τh `

ż

Ω

uh ¨ divτh “

ż

Γc
out

pτhnq ¨ uD, ξh @τh P Hh, (2.11)

ż

Ω

vh ¨ divσh ´ D

ż

Ω

uh ¨ vh ´ F

ż

Ω

|uh|uh ¨ vh ´
ρ

ν

ż

Ω

σd
huh ¨ vh “ 0 @vh P Qh, (2.12)

1

κ

ż

Ω

th ¨ sh `

ż

Ω

ϕhdivsh `

ż

Γc
in

psh ¨ nqξh “ 0 @sh P Hh, (2.13)

ż

Ω

ψhdivth ´
1

κ

ż

Ω

uh ¨ thψh “ 0 @ψh P Xh, (2.14)

ż

Γc
in

pth ¨ nqηh ´ c3

ż

Σ

ξhηh ` c1

ż

Σ

ξ2h ηh “ 0 @ηh P Mh, (2.15)
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where for each χh P Mh, uD, χh
is defined as:

uD, χh
“

"

uin on Γin,
pc1χh ` c0qn on Σ.

(2.16)

We observe that equations (2.11), (2.12), (2.13) and (2.14) correspond to the discretization of the first, second,
third and fourth equations of (2.7), respectively, whereas (2.15) is the discrete version of the third equation of
(2.9).

Remark 3. When introducing explicit spacers in the channel, the boundary conditions set in (2.4), which are
rewritten as

t ¨ n “ 0 on Γs and u “ 0 on Γs, (2.17)

suggest to slightly modify the third term of (2.13), the first term of (2.15) and the boundary datum uD, χh
by

ż

Γc
in∪Γs

psh ¨ nqξh,

ż

Γc
in∪Γs

pth ¨ nqηh and uD, χh
“

$

&

%

0 on Γs,
uin on Γin,
pc1χh ` c0qn on Σ,

respectively.

2.1.2 Solving strategy.

The nonlinear numerical scheme (2.11)–(2.15) will be solved by a fixed point iteration. To explain clearly this
strategy, and for the sake of presentation, we will express the set of equations in a block structure. We begin by
noticing that the discrete system can be rewritten more compactly as follows: Find σh P Hh, uh P Qh, th P Hh,
ϕh P Xh, ξh P Mh, such that

aSpσh, τhq ` bSpτh,uhq “ Fpξh; τhq @ τh P Hh,

bSpσh,vhq ´ dSpuh;uh,vhq ´OSpuh;σh,vhq “ 0 @vh P Qh,

aTpth, shq ` bT,1psh, ϕhq `bT,2psh, ξhq “ 0 @ sh P Hh,

bT,1pth, ψhq ´OTpuh; th, ψhq “ 0 @ψh P Xh,

bT,2pth, ηhq ´dTpξh, ηhq ` CTpξh; ξh, ηhq “ 0 @ ηh P Mh.

(2.18)

where aSp¨, ¨q, bSp¨, ¨q, aTp¨, ¨q, bT,1p¨, ¨q, bT,2p¨, ¨q and dTp¨, ¨q are the bilinear forms defined as

aSpσh, τhq :“
1

ν

ż

Ω

σd
h : τ d

h , bSpτh,vhq :“

ż

Ω

uh ¨ divpτhq, aTpth, shq :“
1

κ

ż

Ω

th ¨ sh,

bT,1psh, ψhq :“

ż

Ω

ψhdivpshq, bT,2psh, ηhq :“

ż

Γc
in

psh ¨ nq ηh, dTpξh, ηhq :“ c3

ż

Σ

ξhηh;
(2.19)

and, for each χh P Mh, Fpχh; ¨q and CTpχh; ¨, ¨q are given by

Fpχh; τhq :“

ż

Γc
out

pτhnquD, χh
, CTpχh; ξh, ηhq :“ c1

ż

Σ

χh ξh ηh. (2.20)

For each wh P Qh, OSpwh; ¨, ¨q, OTpwh; ¨, ¨q and dSpwh; ¨, ¨q are defined by

OSpwh;σh,vhq :“
ρ

ν

ż

Ω

σd
hwh ¨ vh, OTpwh; th, ψhq :“

1

κ

ż

Ω

wh ¨ thψh,

dSpwh;uh,vhq :“ D

ż

Ω

uh ¨ vh ` F

ż

Ω

|wh|uh ¨ vh.

(2.21)

In what follows, in abuse of notation, we denote by σh, uh, th, ϕh, and ξh the degrees of freedom associated
to the unknowns of (2.18). In turn, aS, aT, bS, bT,1, bT,2, dT, OSpwhq, OTpwhq, dSpwhq and CTpχhq will
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denote the corresponding finite element matrices associated to the bilinear forms in (2.19)-(2.21), and Fpχhq

will denote the vector associated to Fpχh; ¨q defined in (2.20). Then from (2.18) we obtain the following system

ˆ

ASpuhq 0
0 ATpuh, ξhq

˙

¨

˚

˚

˚

˚

˝

σh

uh

th
ϕh
ξh

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˝

Fpξhq

0
0
0

˛

‹

‹

‚

, (2.22)

where

ASpuhq :“

ˆ

aS bS

pbSqt ´ OSpuhq ´dSpuhq

˙

(2.23)

and

ATpuh, ξhq :“

¨

˝

aT bT,1 bT,2

pbT,1qt ´ OTpuhq 0 0
pbT,2qt 0 ´dT ` CTpξhq

˛

‚. (2.24)

Now we turn to explain the iterative scheme to solve (2.22). To that end, we let ξ0h and u0
h be initial guesses.

Then, for each n ě 1, first we solve the linear system: Find pσn
h ,u

n
hq, such that

ASpun´1
h q

ˆ

σn
h

un
h

˙

“

ˆ

Fpξn´1
h q

0

˙

,

and after computing σn
h and un

h, we solve the linear system: Find ptnh, ϕ
n
h, ξ

n
h q, such that

ATpun
h, ξ

n´1
h q

¨

˝

tnh
ϕnh
ξnh

˛

‚“

ˆ

0
0

˙

.

The iterative algorithm stops when certain criteria (see Section 3) is satisfied.

2.2 Coupled feed and permeate channels

We consider a model for two coupled channels where water with salt concentration flows through the feed
channel Ωf and passes through a membrane Σ to the permeate channel Ωp. In order to describe the geometry,
we let Ωf and Ωp be two bounded polygonal domains in R2 such that BΩf ∩ BΩp “ Σ ‰ ∅ and Ωf ∩ Ωp “ ∅,
and set Ω :“ Ωf ∪ Σ ∪ Ωp. In turn, for each ‹ P tf,pu we denote Γ‹ :“ BΩ‹zΣ “ Γin,‹ ∪ Γw,‹ ∪ Γout,‹,
where Γw,‹ denotes the top p‹ “ fq and bottom p‹ “ pq boundaries of the channel (see Figure 2.2), and by n‹

we denote the unit normal vector, which is chosen pointing outwards from Ω‹, thus nf “ ´np on Σ. We also
consider a unit tangent vector mΣ on Σ as in Figure 2.2. On each channel Ω‹, with ‹ P tf,pu, the fluid and salt
concentration satisfy the equations stated in Section 2.1, and the boundary conditions at the inlet and outlet are
the ones specified in equations (2.2). More precisely, after introducing the further variables σ‹ :“ ν‹∇u‹ ´ p‹I
and t‹ :“ κ‹∇ϕ‹ in Ω‹ (‹ P tf,pu), we consider the first-order set of equations:

1

ν
σd

‹ “ ∇u‹, divpσ‹q ´
ρ

ν
σd

‹ u‹ ´ Du‹ ´ F|u‹|u‹ “ 0,

t‹ “ κ∇ϕ‹ and κdivpt‹q “ u‹ ¨ t‹,
(2.25)

and on Γin,‹ and Γout,‹, we consider the boundary conditions

u‹ “ uin,‹ on Γin,‹, σ‹n‹ “ 0 on Γout‹
,

ϕ‹ “ ϕin,‹ on Γin,‹ and t‹ ¨ n‹ “ 0 on Γout,‹.
(2.26)

Both channels are coupled through a membrane Σ by means of the transmission conditions :

u‹ ¨ mΣ “ 0, uf ¨ nf “ ´up ¨ np, uf ¨ nf “ c0 ´ c1pϕf ´ ϕpq on Σ,

tf ¨ nf ` c1pϕf ´ ϕpqϕf ` c3,fϕf “ c2ϕp, tp ¨ np ` c1pϕp ´ ϕfqϕp ` c3,pϕp “ c2ϕf on Σ,
(2.27)

where c3,f “ c2 ´ c0 and c3,p “ c2 ` c0. In turn, since the membrane is defined only as BΩf ∩ BΩp “ Σ, we
consider the following wall-boundary conditions

u‹ “ 0 on Γw,‹, and t‹ ¨ n‹ “ 0 on Γw,‹. (2.28)

7



Γin,f

Γin,p

Γw,f

Γw,p

Γout,f

Γout,p

nf

np

Ωf

Σ

np

mΣ

nf

Ωp
Γs,p

Γs,f Γin,f

Γin,p

Γw,f

Γw,p

Γout,f

Γout,p

nf

np

np

mΣ

Ωf

Ωp

nf

Σ

Figure 2.2: Sketch of the coupled feed and permeate channels. Explicit spacers (left) and implicit spacers
(right).

2.2.1 Mixed finite element discretization and solving strategy.

Let T f
h and T p

h be the respective triangulations of the domains Ωf and Ωp formed by shape-regular triangles of
diameter hK and denote by hf and hp their corresponding meshsizes. Assume that they match on Σ so that
Th:= T f

h ∪ T p
h is a triangulation of Ω. Hereafter, h :“ maxthf , hpu. Since this two channel model is originated

by coupling two single channels, from (2.22) we can deduce that the block structure of the non linear system of
equations is the following:

¨

˚

˚

˝

Af
Spuf,hq 0 0 0
0 Ap

Spup,hq 0 0
0 0 Af

Tpuf,h, ξh,f ´ ξh,pq 0
0 0 0 Ap

Tpup,h, ξh,p ´ ξh,fq

˛

‹

‹

‚

¨

˚

˚

˝

Xf

Xp

Yf

Yp

˛

‹

‹

‚

“

¨

˚

˚

˝

Gfpξf,h ´ ξp,hq

Gppξf,h ´ ξp,hq

Gfpξp,hq

Gppξf,hq

˛

‹

‹

‚

,

where for ‹ P tf,pu, A‹
Spu‹,hq and A‹

Tpu‹,h, χhq are defined exactly as in (2.23) and (2.24), respectively, con-
sidering in this case that the integrals and functions in the bilinear forms that induce these matrices (cf.
(2.19)–(2.21)), take values in Ω‹. In addition, for each ‹ P tf,pu:

X‹ :“ pσ‹,h,u‹,hqt P H‹
h ˆ Q‹

h and Y‹ :“ pt‹,h, ϕ‹,h, ξ‹,hqt P H‹
h ˆ X‹

h ˆ M‹
h,

where H‹
h, Q

‹
h, H

‹
h, X

‹
h and M‹

h are the discrete spaces introduced in (2.10) adapted to Ω‹. Also, G‹ and G‹

are given by

Gfpξp,hq :“ p0,F fpξp,hqqt, Gppξf,hq :“ p0,Fppξf,hqqt and G‹pξf,h ´ ξp,hq :“ pF‹
cpξf,h ´ ξp,hq,0qt.

Here, F‹
cpξf,h ´ ξp,hq is the vector associated to the functional that involves the Dirichlet boundary condition,

defined as F‹
cpξf,h ´ ξp,h; τ‹,hq :“

ż

Γc
out,‹

pτ‹,hn‹q ¨ uD, ξf,h´ξp,h
, where

u‹
D, ξf,h´ξp,h

“ u‹|Γc
out,‹

“

$

&

%

0 on Γw,‹,
uin,‹ on Γin,‹,
c1pξf,h ´ ξp,h ` c0qnf on Σ,

(2.29)

with ‹ P tf,pu. Moreover, F fpξp,hq and Fppξf,hq are the vectors associated to the functionals that arise from
coupling terms in (2.27), given by

F fpξp,h; ηf,hq :“ ´c2

ż

Σ

ξp,h ηf,h and Fppξf,h; ηp,hq :“ ´c2

ż

Σ

ξf,h ηp,h, (2.30)

respectively. Finally, the resulting fixed point algorithm is similar to that of Section 2.1.2. Indeed, given ξn´1
‹,h

and un´1
‹,h , we look for Xn

‹ :“ pσn
‹,h,u

n
‹,hqt, with ‹ P tf,pu, such that

ˆ

Af
Spun´1

f,h q 0

0 Ap
Spun´1

p,h q

˙ ˆ

Xn
f

Xn
p

˙

“

ˆ

Gfpξnf,h ´ ξnp,hq

Gppξnf,h ´ ξnp,hq

˙

.
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Then, after Xn
‹ :“ pσn

‹,h,u
n
‹,hqt is computed, we find for Yn

‹ :“ ptn‹,h, ϕ
n
‹,h, ξ

n
h,‹qt, with ‹ P tf,pu, such that

ˆ

Af
Tpun

f,h, ξ
n´1
h,f ´ ξn´1

h,p q 0

0 Ap
Tpun

p,h, ξ
n´1
h,p ´ ξn´1

h,f q

˙ ˆ

Yn
f

Yn
p

˙

“

ˆ

Gfpξn´1
p,h q

Gppξn´1
f,h q

˙

.

3 Numerical simulations

We now turn to the computational results to illustrate a variety of examples related to the RO process in
both single and coupled channel systems, and considering explicit and implicit spacers. The computational
implementation is based on a FreeFem++ code (cf. [15]) and the use of the direct linear solvers UMFPACK
(cf. [10]). The iterative method comes straightforward from the uncoupling strategy presented in Sections 2.1.2
and 2.2.1 and the iterations are terminated once the relative error of the entire coefficient vectors between two
consecutive iterates is sufficiently small, that is

}coeffm`1
´ coeffm

}l2

}coeffm`1
}l2

ď tol ,

where } ¨ }l2 stands for the usual Euclidean norm in Rdof, with dof denoting the total number of degrees of
freedom defining the finite element subspaces Hh, Qh, Hh, Xh, and Mh, when considering a single channel,
and H‹

h, Q
‹
h, H

‹
h, X

‹
h and M‹

h, with ‹ P tf,pu for the case of two channels. In this way, the global physical
parameters specified in Section 2.1 are taken in Table 3.1 [8, 28].

Parameter Meaning Value Units

T System temperature 298 K
R Ideal gas constant 8.314 Jmol´1K´1

i Number of ions from salt solution 2 ´

∆P Hydrostatic transmembrane pressure
∆P1 :“ 4053000

Pa
∆P2 :“ 5575875

ρ Feed/permeate fluid density 1027.2 kgm´3

κ Feed/permeate diffusivity of salt in water 1.611 ˆ 10´9 m2s´1

ν Feed/permeate fluid dynamic viscosity 8.9 ˆ 10´4 kgm´1s´1

A Membrane water permeability 2.5 ˆ 10´12 ms´1 Pa´1

B Membrane salt permeability 2.5 ˆ 10´8 ms´1

Table 3.1: global physical parameters

3.1 A single feed channel.

We consider the computational domain Ω “ p0, Lq ˆ p0, dq, where L “ 15mm and d “ 0.74mm. In turn, the
inlet velocity profile is set as follows

uin :“
´

6uin
y

d

´

1 ´
y

d

¯

, 2pc0 ´ c1ϕinq
y

d
´ pc0 ´ c1ϕinq

¯t

, y P r0, ds, (3.1)

where uin,f stands for the inlet mean feed fluid velocity.

Simulation 1. A feed channel with no salt concentration. We consider a channel without explicit spac-
ers and the numerical method is tested against classic analytical models of momentum transport in membrane
modules, that is, those of Poiseuille and Berman flow models, by comparison of the pressure drop, denoted
by ∆p :“ pp0, d{2q ´ ppx, d{2q. This validation implies the simulation of a uniform permeation of pure solvent
(ϕf “ 0), and then the pressure drop is obtained by solving the equations of motion with the following boundary
conditions

u ¨ n “ c0 (for Berman flow) on Σ and u ¨ n “ 0 (for Poiseuille flow) on Σ.
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Figure 3.1: Comparison of exact vs. approximate pressure drop (left) and axial velocity (right) for a single
channel. Simulation conditions: uin “ 0.2m{s, ∆P “ ∆P2 and clean water, for Poiseuille (impermeable) and
Berman (permeable) flows.

We recall that for the Poiseuille flow the boundary condition on the membrane means that A “ 0 (impermeable
walls). In the case of Berman flow model, we have the following exact pressure drop equation

∆ppx, d{2q :“
´1

2
ρu2in

¯´ 24

Re
´

648

35

Ren
Re

¯´

1 ´
2Renx

Re d

¯´2x

d

¯

, (3.2)

where Re :“
2 ρ duin

ν
is the cross flow Reynolds number, and Ren :“

ρ d pu ¨ nq

2 ν
is the Reynolds number at the

channel walls. We note that the reduced pressure drop for the Poiseuille flow is obtained using the fact that
Ren “ 0, that is

∆ppx, d{2q :“
´1

2
ρfu

2
in

¯´ 24

Re

¯´2x

d

¯

. (3.3)

We simulate the case where uin “ 0.2m{s and ∆P “ ∆P2. Figure 3.1 (left) shows the analytical pressure drop
predicted by the equation (3.2), compared with the discrete pressure drop, denoted by ∆phpx, d{2q. We observe
that our mixed finite element model accurately captures the axial pressure drops for both, the permeable and
impermeable walls. In addtion, in Figure 3.1 (right) we plot the axial velocity along the segment starting at
p0, 0q and ending at pL, dq. We observe that the numerical approximation agrees with the exact solution given
by (3.1). We would like to remark that even though the analytical solution obtained by Berman [4], does not
consider the boundary condition (2.2) at the outlet, it is commonly used to validate the numerical simulations
[8, 28]. Since the channel is sufficiently long, the effect of the outlet boundary condition in the behaviour of the
solution will be negligible away from the outlet.

Simulation 2. A feed channel with salt concentration with explicit and implicit spacers. We
now employ our numerical method to compare the behaviour of the system considering three different cases:
(S.1) channel without spacers, (S.2) with explicit submerged spacers and (S.3) implicit spacers. For a single
channel with a constant inlet salt concentration of ϕin “ 600 mol

m3 , varying the inlet mean feed fluid velocities
uin P t0.1m{s, 0.2m{su, and ∆P P t∆P1,∆P2u, we perform a total of twelve scenarios. Also, for the cases (S.2)
and (S.3), we consider a number of spacers Nsp “ 3 of diameter ds “ 0.36mm. In particular, the spacers for (S.2)
centered at pL{4, d{2q, pL{2, d{2q and p3L{4, d{2q. In addition for (S.3), taking into account that the sphericity
of the particles is Φ “ 1, we find that the porosity of the medium and the porous medium permeability become
ε “ 0.97249 and pK “ 8.74987 ˆ 10´7m2, respectively. Consequently, the resulting Darcy and Forchheimer
coefficients are pD “ 1.01716 ˆ 103 kg

sm3 and pF “ 1.59112 ˆ 105 kg
m4 , respectively. Darcy’s coefficient gives a

linear relationship between the pressure drop and the velocity of the fluid, its value depends on physicochemical
parameters such as the permeability and viscosity of the medium. For values of the Darcy number (Da “ pK{d2)
above 10´3 (in our case Da “ 1.59q, an additional term is needed to account for nonlinear effects between
pressure drop and velocity [20]. These are attributed to the insurgence of inertial effects within the laminar
flow regime. For these nonlinear relationship we use the Forchheimer term, which is proportional to the fluid
density and to the second power of the flow rate [5].

As is usual in this type of simulations, and with the end of avoiding potential errors due to improper meshing,
we employ our mixed method scheme combined to a high resolution mesh near the interface. This approach
has been demonstrated to be crucial for achieving optimal results [16, 28].
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Discussion. Representative velocity profiles (left), concentration fields (middle), and pressure drops (right)
are shown in Figure 3.2. In an empty RO feed channel (case (S.1)), the parabolic velocity profile is preserved
along the entire region. Similar results are observed for the porous cases (S.3), but as expected, the value of
the axial velocity profile is slightly smaller than the one of case (S.1). In fact, for an empty channel there is not
any material affecting the fluid flow allowing higher velocities in comparison with a porous channel where the
fluid passes through spaces between small obstacles. On the other hand, as shown in the center panel of Figure
3.2 (case (S.2)), a submerged spacer produces an increment in the fluid velocity in the region surrounding the
spacer. As a consequence, we observe abrupt changes in the pressure drop for the submerged configuration
(case (S.2) in Figure 3.2) in the whole transversal section near the spacer, which is commonly attributed to
be momentum losses due to the changes in the flow direction. Here, we also observe a pressure drop in the
case (S.3) because the effect of the spacers is been distributed as a porous medium. On the other hand, we
note that the empty channel produces a thicker salt concentration layer compared to the others, this is because
the submerged spacers have a local thinning effect on the salt layer. In turn, the same effect is produced
by the porous channel but in a distributed way. To see this effect more clearly in Figure 3.3 we display the
concentration along the vertical line at x “ 7.7mm, y P r0, 0.1smm, for the three cases. We recall that a circular
spacer of diameter ds “ 0.36mm and centered at the point p7.5mm, 0.37mmq is placed in the channel. Then,
the segment x “ 7.7mm is located immediately 0.02mm at the right of the circular obstacle with the goal of
observing the effect of the spacer in the concentration. As expected, the concentration of salt is higher near the
membrane. We also notice that the values of the concentration and thickness of the salt layer decrease when the
inlet velocity increases while maintaining a fixed hydrostatic transmembrane pressure, which in turn leads to a
higher permeate velocity (see Figures 3.4 and 3.5). In turn, the concentration increases when the hydrostatic
transmembrane pressure increases. On the other hand, the concentration in the empty channel (case (S.1)) is
higher compared to cases (S.2) and (S.3). In other words, the presence of explicit or implicit spacers lowers the
salt concentration near the membrane. Moreover, the concentration in case (S.3) is higher that in case (S.2)
due to the local effect of the spacer, as we can observe in the bottom panels of Figures 3.4 and 3.5. Here, for the
case (S.2), we observe three local minima when the distance from the inlet is approximately 3.75mm, 7.5mm
and 11.25mm, respectively. This values correspond to the horizontal component the center of each circular
spacers.

-21.4 274.564.0 127.9 191.8 6.0e-07 6.4e-076.1e-7 6.2e-7 6.3e-7 -0.006 0.1260.030 0.060 0.090

Figure 3.2: Zoom in the region r5, 10smm ˆ r0, 0.74smm. From left to right: axial velocity profiles (left),
concentration fields (middle), and pressure drops (right). From top to bottom, cases (S.1), (S.2) and (S.3).
Simulation conditions: uin “ 0.1m{s, ∆P “ ∆P1.

Now, looking at the plots in Figures 3.4 and 3.5, we observe that for each case ((S.1), (S.2) or (S.3)), the
hydrostatic transmembrane pressure ∆P “ ∆P1 (top-left panel) and ∆P “ ∆P2 (top-right panel), has no
influence on the pressure drop. Nevertheless, its increment produces a higher permeate velocity flow, as we
can see in the middle panels, yielding an inlet permeation velocity of 2.69 ˆ 10´6m{s and 6.50 ˆ 10´6m{s, for
∆P1 and ∆P2, respectively. If the transmembrane pressure were even higher we could observe a subtle decrease
in the pressure drop, since there would be more permeate flow and less velocity gradients near the bottleneck
formed at the spacers. However, the permeate velocity is 6 orders of magnitude lower than the inlet flow, so it
is not possible to evidence this phenomenon. For the same reason we can say that the transmembrane pressure
does not have a major impact on the hydrodynamics of the channel [8]. In turn, the increment of ∆P has as a
consequence in a higher salt concentration (bottom panels) on the membrane.

Next, we focus on analyzing comparatively the three proposed configurations. We observe in the empty
channel (S.1) that the salt concentration (bottom panels) at the membrane is monotonically increasing with
respect to the distance from the inlet, which means a higher salt concentration as the fluid passes through the
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Figure 3.3: Salt concentration along the vertical line at x “ 7.7mm, y P r0, 0.1smm for the three cases (S.1),
(S.2) and (S.3). Simulation conditions: uin equal to 0.1m{s (top panels) and 0.2m{s (bottom panels); and ∆P
equal to ∆P1 (left panels) and ∆P2 (right panels).

membrane. This implies a lower permeate velocity (center panels). In this way, the spacers in the feed channel
play a key roll since they generally enhance mixing, reduce (rejected) solute concentration and increase in
permeate production (total permeate flow per unit length 9V {W , to be defined below) compared to the absence
of spacers, as demonstrated in previous works [1, 18, 28]. Within the limits of the current study, for the single
channel with two permeable walls, we consider the particular case of submerged spacers (case (S.2)), since it
has been shown to exhibit the highest permeate production compared to cavity and zig-zag spacers [8]. If
we compare the cases (S.1) and (S.2) in Figures 3.4 and 3.5, we observe that not only the values of the salt
concentration in (S.2) are lower than those of (S.1) throughout the regions influenced by the spacers, but also
the former are lower than the latter in the regions between the spacers, under the same operating conditions.
In addition, we know that the concentration has a direct effect on the permeate velocity (see second equation
in (2.3)). This fact, is also confirmed in our simulations (middle and bottom panels of Figures 3.4 and 3.5),
where the behaviour of the permeate velocity and concentration is opposite.

On the other hand, as we mentioned before, case (S.3) consists of emulating the spacer-filled channel as a
porous medium, where its porosity is calculated by distributing in the entire channel the effect of the spacer.
As a consequence, the model will no detect the local effect. Instead, as we can see in Figures 3.4 and 3.5, the
black lines show a global behaviour of the variables. In addition, as we mentioned before, an increment in the
inlet mass flow while maintaining a fixed hydrostatic transmembrane pressure, reduces the concentration at the
membrane, leading to a higher permeate velocity and larger pressure losses (higher energy cost). In fact, the
pressure drop is an unavoidable phenomenon along the entire channel, being the empty channel case (S.1) the
one with the lowest pressure drop, whereas the case (S.2) exhibits a larger pressure drop, due to the presence
of submerged spacers.

Now, to measure the impact of each case on permeate production, we compute the total volumetric flow per
unit width. The channel in Figure 2.1, is actually a cross section of the region r0, Ls ˆ r0, ds ˆ r0,W s, for a
positive width W . Then, we utilize the following definition of the volumetric flow from the flux:

9V

W
“

ż

Σ

|uhpsq ¨ n|ds, (3.4)

where 9V is the total volumetric flow of the permeate from the membrane walls and we recall that uhpsq ¨ n is
the approximation of the permeate flux at a distance s from the inlet, obtained by our numerical scheme. In
the simulations W is taken to be equal to L.
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Figure 3.4: Relative pressure drop (top panels), permeate velocity (middle) and concentration level (bottom
panels) at the membrane y “ 0mm without spacers (S.1), with submerged explicit spacers (S.2), and implicit
spacers (S.3). Simulation conditions: uin “ 0.1m{s; and ∆P equal to ∆P1 (left panels) and ∆P2 (right panels).

We report the values of 9V {W obtained in different scenarios in Table 3.2. The results show differences up
to 2.5 times comparing the lowest (uin “ 0.1m{s, ∆P “ ∆P1, case (S.1)) and the highest (uin “ 0.2m{s,
∆P “ ∆P2, case (S.3)) permeate production values. In turn, Table 3.3 shows the increment (ÝÑ) rate of the
values of the permeate production 9V {W reported in Table 3.2. For example, the third row and second column
reads as follows: A simulation considering uin “ 0.1m{s and case (S.2) produces an increment of 139.56% when
varying ∆P from ∆P1 by ∆P2. It is worth noting that the largest differences in the permeate production are
due to the increment in the hydrostatic transmembrane pressure for all configurations, as we observe in the
second and third row of Table 3.3. However, it is important to bear in mind that this leads to an increment in
the concentration on the membrane. As a Consequence, we would need to increase the inlet velocity to remove
the salt near the membrane, but this leads to a higher pressure drop (energy loss), as we have observed in
Figures 3.4 and 3.5. In other words in order to determine the optimal values of all the parameters, we need
to employ a constrained optimization algorithm and further numerical investigations will be carried out in a
future work.

Finally, we compare how well the porous medium model (case (S.3)) emulate the case of submerged explicit
spacers (S.2). In Table 3.3 (last column, fifth to eight rows), we observe that the case (S.3), in a very rough
sense, differs from (S.2) only between 0.16% and 0.26% of the total permeate flow. This means, as we know,
that considering implicit spacers allow us to predict a global behaviour with lower computational cost compared
to the case of explicit spacers.
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Figure 3.5: Same as Figure 3.4 but considering uin “ 0.2m{s.

∆P “ ∆P1 ∆P “ ∆P2

case uin (m{s) 9V {W pm2{sq uin (m{s) 9V {W pm2{sq

(S.1)
0.1 6.92222 ˆ 10´8 0.1 1.65829 ˆ 10´7

0.2 7.14278 ˆ 10´8 0.2 1.71444 ˆ 10´7

(S.2)
0.1 7.04797 ˆ 10´8 0.1 1.69034 ˆ 10´7

0.2 7.26112 ˆ 10´8 0.2 1.74439 ˆ 10´7

(S.3)
0.1 7.05906 ˆ 10´8 0.1 1.69470 ˆ 10´7

0.2 7.27309 ˆ 10´8 0.2 1.74816 ˆ 10´7

Table 3.2: Total permeate flow per unit length 9V {W in a single channel for different values of uin and ∆P , of
the three cases (S.1), (S.2) and (S.3).

3.2 Coupled feed and permeate channel.

We also consider L “ 15mm and d “ 0.74mm, and the computational domain Ω “ Ωf ∪ Ωp ∪ Σ, where
Ωf “ p0, Lq ˆ pd, 2dq, Ωp “ p0, Lq ˆ p0, dq, and Σ “ p0, Lq ˆ tdu. Here, we consider the inlet velocity profiles
of the feed and permeate channels as

uin,f :“
´

6uin,f

´

1 ´
y

d

¯ ´y

d
´ 2

¯

, pc0 ´ c1pϕin,f ´ ϕin,pqq

´y

d
´ 2

¯¯t

, y P rd, 2ds,

uin,p :“
´

6uin,p
y

d

´

1 ´
y

d

¯

,´pc0 ´ c1pϕin,f ´ ϕin,pqq
y

d

¯t

, y P r0, ds,

(3.5)

respectively, where uin,f and uin,p stand for the inlet mean feed and permeate fluid velocities, respectively.
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∆P1´(S.1): 0.1m{s
3.19%

ÝÝÝÝÑ 0.2m{s ∆P1´(S.2): 0.1m{s
3.02%

ÝÝÝÝÑ 0.2m{s ∆P1´ (S.3): 0.1m{s
3.03%

ÝÝÝÝÑ 0.2m{s

∆P2´(S.1): 0.1m{s
3.39%

ÝÝÝÝÑ 0.2m{s ∆P2´(S.2): 0.1m{s
3.20%

ÝÝÝÝÑ 0.2m{s ∆P2´(S.3): 0.1m{s
3.15%

ÝÝÝÝÑ 0.2m{s

0.1m{s´(S.1): ∆P1
139.56%

ÝÝÝÝÝÑ ∆P2 0.1m{s´(S.2): ∆P1
139.83%

ÝÝÝÝÝÑ ∆P2 0.1m{s´(S.3): ∆P1
140.07%

ÝÝÝÝÝÑ ∆P2

0.2m{s´(S.1): ∆P1
140.02%

ÝÝÝÝÝÑ ∆P2 0.2m{s´(S.2): ∆P1
140.24%

ÝÝÝÝÝÑ ∆P2 0.2m{s´(S.3): ∆P1
140.36%

ÝÝÝÝÝÑ ∆P2

0.1m{s´ ∆P1: (S.1)
1.82%

ÝÝÝÝÑ (S.2) 0.1m{s´ ∆P1: (S.1)
1.98%

ÝÝÝÝÑ (S.3) 0.1m{s´ ∆P1: (S.2)
0.16%

ÝÝÝÝÑ (S.3)

0.2m{s´ ∆P1: (S.1)
1.66%

ÝÝÝÝÑ (S.2) 0.2m{s´ ∆P1: (S.1)
1.82%

ÝÝÝÝÑ (S.3) 0.2m{s´ ∆P1: (S.2)
0.16%

ÝÝÝÝÑ (S.3)

0.1m{s´ ∆P2: (S.1)
1.93%

ÝÝÝÝÑ (S.2) 0.1m{s´ ∆P2: (S.1)
2.20%

ÝÝÝÝÑ (S.3) 0.1m{s´ ∆P2: (S.2)
0.26%

ÝÝÝÝÑ (S.3)

0.2m{s´ ∆P2: (S.1)
1.75%

ÝÝÝÝÑ (S.2) 0.2m{s´ ∆P2: (S.1)
1.97%

ÝÝÝÝÑ (S.3) 0.2m{s´ ∆P2: (S.2)
0.22%

ÝÝÝÝÑ (S.3)

Table 3.3: Increment rate in the value of 9V {W reported in Table 3.2, with respect to the variation of the velocity
(first and second rows), hydrostatic transmembrane pressure (third and fourth rows) and configurations (fifth
to eight rows).

Simulation 3. Coupled feed and permeate channel with salt concentration with explicit and
implicit spacers. We now investigate the behaviour of the system that consists of a feed channel coupled
to the permeate channel where the interface is the membrane. We consider five different cases: (C.1) channels
without spacers, (C.2) with submerged spacers, (C.3) with zig-zag distributed spacers, (C.4) with cavity spacers,
and (C.5) implicit spacers. We set a constant inlet salt concentration of ϕin,f “ 600 mol

m3 and ϕin,p “ 6 mol
m3 , for

the feed and permeate channels, respectively. For this analysis, we focus exclusively on the scenario where
∆P “ ∆P2, motivated by the fact that higher values of the hydrostatic transmembrane pressure produces a
higher permeate production. The inlet mean feed and permeate fluid velocities are set as 0.1m{s and 0.01m{s,
respectively. Furthermore, we maintain three spacers for each channel of diameter 0.36mm with centers located
according to Table 3.4.
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Table 3.4: Coordinates of the center of the circular spacers located inside the feed and permeate channels.

Discussion. Velocity profiles in both, feed and permeate channels, for all cases are depicted in Figure 3.6.
The axial velocity in cases (C.1) and (C.5) exhibits similar behaviours to those obtained for a single channel
(cases (S.1) and (S.3), respectively). On the other hand, we notice that the obstacles produce increment in the
velocities for the three explicit spacer configurations. This effect is due to the fluid being forced to flow through
a reduced cross-section of the channel. For instance, in an empty feed channel with inlet mean feed velocity
of 0.1m{s, the maximum velocity achieved is 0.15m{s. In contrast, the maximum velocity using submerged
spacers (case (C.2)), is 0.275m{s, whereas for both zig-zag (case (C.3)) and cavity (case (C.4)) spacers, the
velocity is 0.265m{s. In turn, in an empty permeate channel with inlet mean permeate velocity of 0.01m{s,
the maximum velocity is 0.015m{s, whereas the maximum velocities for the three configurations with explicit
spacers are around 0.0289m{s. In addition, when we compare the effect of the obstacles in the feed channel
with those of the permeate channel, we observe that the high feed velocities (red regions in Figure 3.6) do not
significantly decay along the channel for the zig-zag and cavity spacers. However, in the case (C.2) there is an
increment of the velocity near the membrane and the wall, but this occurs close to the spacers, decreasing the
velocity away from them. Also, as shown in Figure 3.7, the submerged obstacles produce the highest pressure
drop compared to the other configurations. In addition, we observe similar pressure drops when we use the
zig-zag or cavity configurations. Now, an unavoidable effect due to the use of spacer-filled channels, is the
formation of recirculation zones. This is a particular issue for spacers placed on the surface of the membrane,
where it is desirable to have a concentration to be as low as possible [28]. For submerged spacers (C.2), the
recirculation is located in the centre of the channel behind the spacers (Figure 3.6, second panel), and away from
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 0.0 28.814.4 7.2 21.6

Figure 3.6: Axial velocities in the region r3, 12smm ˆ r0, 1.48smm. From top to bottom: cases (C.1), (C.2),
(C.3), (C.4) and (C.5). Simulation conditions: uin,f “ 0.1m{s, uin,p “ 0.01m{s, ∆P “ ∆P2.

the membrane. In contrast, the recirculation effect for the other two cases not only covers a larger region, but
also occurs close to the membrane, as it is immediately evident from Figure 3.6 (third and fourth panels). Here,
cavity spacer configuration produces a larger recirculation zones compared to the zig-zag spacers configuration.
This leads to strong concentration in the regions close to the spacers that attached to the membrane, as depicted
in the third and fourth panels of Figure 3.8. In turn, the middle spacer in case (C.3) has a positive effect in
lowering the values of the concentration near the membrane. It is evident that the fluid permeating through
the membrane has a lower concentration than the inlet permeate concentration as we observe in the bottom
channels of Figure 3.8. This difference since the former is 99% less than the latter. In Figure 3.9 we show the
behaviour of the concentration in the feed channel immediately to the left and to the right of the middle spacer
along the vertical lines at x “ 7.3mm and x “ 7.7mm, y P r0.74, 1.15smm, for the five cases. We observe that
(C.4) is the case that shows the highest concentration near the membrane. Moreover, an abrupt increment is
observable when we compare the region at the left (left panel) of the spacer with the one of the right (right
panel).

In Figure 3.10, we display the values of the variables of interest at the membrane from the side of the
feed channel. The concentration/permeate velocity in cases (C.3) and (C.4) shows the highest/lowest local
maxima/minima of all proposed configurations in the places where the spacers are attached to the membrane.
This validates the fact that the concentration has a direct effect on the permeate velocity (third equation of the
first row in (2.27)). On the other hand, we observe in the top-left panel, that case (C.2) has the highest pressure
drop, whereas case (C.3) has a similar behaviour in pressure drop to that of case (C.4). This behaviour is also
similar for the pressure at the membrane (left panel) in the permeate channel, as shown in Figure 3.11, where we
plot the pressure and concentration at the membrane from the permeate channel. However, the concentration
on the membrane in the permeate channel (right panel) has a larger reduction for configurations (C.3) and
(C.4). This is caused by the effect of the spacers attached to the membrane.
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0.000 0.002 0.004 0.007 0.009

Figure 3.7: Pressure drop in the region r3, 12smm ˆ r0, 1.48smm. From top to bottom: cases (C.1), (C.2),
(C.3), (C.4) and (C.5). Simulation conditions: uin,f “ 0.1m{s, uin,p “ 0.01m{s, ∆P “ ∆P2.

We now compute the total permeate flow per unit length 9V {W (cf. (3.4)) for the coupled channels config-
urations. In contrast to the single channel configurations, in this case the total permeate flow per unit length
depends on both, the feed and permeate concentrations on the membrane, according to the third equation of
the first row in (2.27). We show in Table 3.5 the permeate production for the all coupled configurations. In the
particular cases when we use explicit spacers, we observe that the largest permeate production is due to the
submerged spacers configuration, while the cavity spacer configuration is the lowest. To see this more clearly,
in Table 3.6, we show the increment (ÝÑ) rates of the values of the total permeate flow per unit length 9V {W
reported in Table 3.5, where having submerged spacers produces 1.87% of increment in 9V {W compared to the
empty channel configuration. In this table, we also want to compare how well implicit spacers emulates the
different cases of explicit spacers. We observe that case (C.5) always has a larger permeate flux than case (C.1).
This implies that the use of implicit spacers tends to emulate those cases where explicit spacers also reduce
the salt concentration compared to case (C.1). From the latter, we note that the porous case emulates more
accurately the case (C.2), since differs by only 0.86%.

(C.1) (C.2) (C.3) (C.4) (C.5)

9V {W pm2{sq 8.37876 ˆ 10´8 8.53812 ˆ 10´8 8.36789 ˆ 10´8 8.27399 ˆ 10´8 8.46516 ˆ 10´8

Table 3.5: Total permeate flow per unit length 9V {W in coupled channels for uin,f “ 0.1m{s, uin,p “ 0.01m{s
and ∆P “ ∆P2, of the five cases (C.1), (C.2), (C.3), (C.4) and (C.5).
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4.4e-09 6.0e-095.6e-94.8e-9 5.2e-9

5.9e-07 8.7e-076.6e-7 7.3e-7 8.0e-7

Figure 3.8: Salt concentration in the region r3, 12smm ˆ r0, 1.48smm. From top to bottom: cases (C.1),
(C.2), (C.3), (C.4) and (C.5). Simulation conditions: uin,f “ 0.1m{s, uin,p “ 0.01m{s, ∆P “ ∆P2.
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Figure 3.9: Salt concentration along the vertical lines at x “ 7.3mm (left panel) and x “ 7.7mm (right panel),
y P r0.74, 1.15smm for the five cases (C.1), (C.2), (C.3), (C.4) and (C.5). Simulation conditions: uin,f “ 0.1m{s,
uin,p “ 0.01m{s, ∆P “ ∆P2.

(C.1)
1.87%

ÝÝÝÝÑ (C.2) (C.4)
1.27%

ÝÝÝÝÑ (C.1) (C.5)
0.86%

ÝÝÝÝÑ (C.2) (C.4)
2.26%

ÝÝÝÝÑ (C.5)

(C.3)
0.13%

ÝÝÝÝÑ (C.1) (C.1)
1.02%

ÝÝÝÝÑ (C.5) (C.3)
1.14%

ÝÝÝÝÑ (C.5)

Table 3.6: Increment rate in the value of 9V {W reported in Table 3.5, with respect to the variation of configu-
rations.
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Figure 3.10: Feed channel. Relative pressure drop (top-left panel), permeate velocity (top-right panel) and
concentration level (bottom panel) at the membrane (y “ 0.74mm) for all cases (C.1)-(C.5). Simulation
conditions: uin,f “ 0.1m{s, uin,p “ 0.01m{s, ∆P “ ∆P2.
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Figure 3.11: Permeate channel. Relative pressure drop (left panel) and concentration level (right panel) at the
membrane (y “ 0.74mm) for all cases (C.1)-(C.5). Simulation conditions: uin,f “ 0.1m{s, uin,p “ 0.01m{s,
∆P “ ∆P2.

4 Conclusions

A new numerical model based on two-dimensional mixed finite element method has been used to study the
fluid flow patterns, concentration of salt, pressure losses and permeate flow in desalination channels in the
context of RO. The simulations are performed in a Reynolds number range for laminar flow less than 170,
typical of sea water membrane module operation. They are based on two different perspectives, the first
using the Navier–Stokes coupled to transport equations for the case of empty channels, and also for different
configurations of explicit spacers. The second perspective circumvents the high computational cost of including
the spacers and instead handles them as a homogeneous porous medium in the entire domain by means of the
Brinkman–Forchheimer equation, also coupled to transport equation. The former perspective, shows similar
results in terms of relevant values such as permeate flux, pressure behaviour and velocity, compared to previous
works. The latter alternative has shown significant potential to provide comparative results to those cases where
explicit spacers also reduce the salt concentration compared to case of empty channels. In our simulations, the
case with explicit submerged spacers is emulated more closely, showing that the deviation is only 0.86%. To
the best of our knowledge, this is the first work that considers the two channel coupled configurations, and our
simulations can be used as a benchmark. Furthermore, our work suggests that under same parameters, different
positions of the spacers in the channel configuration lead to different fluid patterns, which in turn generate a
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local increment or reduction in the concentration of salt. Also, a higher local concentration on the membrane,
leads in a lower permeate velocity. On the other hand, the models studied in this paper, constitutes a stepping
stone to simulate fouling at membranes. Further work is needed for the evaluation of fouling, where transient
state is necessary to account for. This is part of an ongoing research.
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