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Dedicated to Prof. R. Rodŕıguez, on the occasion of his 70th birthday

Tomás P. Barrios1,3, Edwin Behrens2,3, Rommel Bustinza4,5, and José M. Cascón6
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Abstract

The aim of this work is the development of an a posteriori error analysis for the Brinkman problem
with non-homogeneous mixed boundary conditions. In order to clarify the analysis, we first study, for
simplicity, the model problem with null mixed boundary conditions. Then, we derive a suitable augmented
variational formulation, based on the pseudo-stress and the velocity unknowns. This process involves the
elimination of the pressure, which can be recovered once the system is solved. Applying known arguments,
we can prove the unique solvability of the referred formulation, as well as of the corresponding Galerkin
scheme. Moreover, we can establish the convergence of the method, when consider row-wise Raviart-
Thomas elements to approximate the pseudo-stress in H(div; Ω), and continuous piecewise polynomials
for the velocity. Then, we proceed to deduce an a posteriori error estimator, which results to be reliable
and local efficient. To obtain this, we basically take into account the ellipticity of the bilinear form that
defines our scheme. Since we do not require any type of Helmholtz decomposition of functions living in
H(div; Ω), the analysis is valid for 2D and 3D. The novelty of the current work relies on how we deal with
the case we have non homogeneous mixed boundary conditions. The strategy is to perform first a suitable
lifting for the Neumann and Dirichlet data, respectively, in order to homogenize them, and apply the
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procedure introduced at the beginning. Then, we also can establish the well posedness of the augmented
variational formulation, at continuous and discrete levels, as well as the convergence of the method and
the derivation of an a posteriori error estimator. We point out that in this case, the corresponding
estimator consists of two residual terms, and two oscillation terms related to the boundary data, which
are not present when the boundary data are piecewise polynomials. In that situation, the a posteriori
error estimator results to be reliable, and locally efficient. We include some numerical experiments, which
are in agreement with the theoretical results we have obtained here.

Mathematics Subject Classifications (1991): 65N15, 65N30, 65N50

Key words: A posteriori error estimates, augmented mixed formulation.

1 Introduction

When one deals with a fluid, confined in a region, that shares viscous and porous media, it is usual to
consider the so called linear Brinkman problem. This lets us to study the fluid’s behavior, from Darcy to
Stokes regime, by introducing a zeroth order term for the velocity in the corresponding momentum equation.
This kind of equation can be also derived after discretization in time the non-steady Stokes problem. In
this framework, it is known as the generalized Stokes problem.

These facts have motivated the design of several numerical methods for solving these equations (see for
e.g. [3, 4, 16, 18, 29, 31] and the references therin), with applications in oil recovery, filtering porous layers,
subsurface water treatment, etc. In all these papers, the corresponding variational formulation is based on
the natural unknowns: velocity and pressure.

In what follows, we focus our attention on solving the generalized Stokes problem with non-homogeneous
Dirichlet condition, by designing mixed finite element schemes, based on the introduction of suitable addi-
tional unknowns. For example, in [15] the authors propose a two-fold saddle point formulation in terms of
the pseudostress and the gradient of the velocity as additional unknowns. Years later, the same problem
is treated in [10], by proposing and studying a variational formulation in pseudostress and velocity only,
following the ideas given in [17]. The corresponding a posteriori error analysis has been described in [8],
establishing the reliability and local efficiency of the estimator. This is proved with the help of a suitable
quasi-Helmholtz decomposition of functions belonging to H(div).

With the purpose of circumventing the inf-sup condition, which usually enforces a restriction on the
choice of the approximation spaces, the mixed formulation is augmented with kind of least-squares terms.
This leads to the well known Augmented Mixed Finite Element Methods, which gives us more freedom to
choose the discrete spaces. Moreover, this procedure in general is supported by the fact that the velocity
unknown, seeking in L2 in the non-augmented mixed variational formulation, belongs indeed to H1. Then,
in [10] the authors take into account this and propose an augmented variational formulation based on
pseudostress-velocity, but with the velocity belonging to the functional space H1.

On the other hand, in [33] the authors propose a mixed variational formulation for the generalized Stokes
problem, in velocity, vorticity and pressure, considering only pure Dirichlet or pure Neumann boundary
conditions. Inspired in this work, in [1] the authors develop an augmented variational formulation based on
these three fields, for the Brinkman problem with homogeneous data for the vorticity and normal component
of the velocity in some part of the boundary of the domain, and null pressure and given tangential component
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of the velocity on the other part of that boundary. The corresponding analysis includes the derivation of an a
posteriori error estimate, which results to be reliable and locally efficient, with respect to the natural norms.
Additionally, in [2] the authors present a non-augmented mixed variational formulation for the Brinkman
problem, but measuring the vorticity in a norm that depends on the viscosity constant.

In this article, we are interested in the linear Brinkman problem, formulated in pseudostress-velocity,
and subject to mixed boundary conditions. We can mention that in [26], the authors deal with this kind of
problem. After eliminating the pressure and the velocity, they derive a non-augmented mixed variational
formulation, based on pseudostress and the trace of velocity on Neumann boundary. This formulation results
to be well-posed, at continuous as well as discrete levels. However, the proof of the convergence of the method
is just available for 2D, since it needs a suitable independent mesh of the Neumann boundary and to the best
of our knowledge, there is no criterion for building this independent mesh for higher dimensions. At least
this could be very expensive to perform for the 3D case. Our proposal consists of a homogenization of the
Neumann datum first, which allows us not to introduce any independent mesh of the Neumann boundary.
As a result, the convergence of the method is established in 2D and 3D.

The outline of the paper is organized as follows. In Section 2, we introduce the model problem, and discuss
the well-posedness of the mixed variational formulation in pseudostress-velocity, at continuous and discrete
levels. Next, we propose an augmented formulation in Section 3, considering for simplicity homogeneous
mixed boundary conditions. As a remark, we describe what happens in a more general case. In Section 4,
some numerical examples are included, whose results are in agreement with the theory we have developed.
Finally, we give some conclusions and final comments in Section 6.

We end this section with some notations to be used throughout the paper. Given a Hilbert space W , we
denote by Wn and Wn×n the space of vectors and square tensors of order n with entries in W , respectively,
where n ∈ {2, 3}. Given ρ := (ρij) , ζ := (ζij) ∈ Rn×n, we set ρt := (ρji), tr(ρ) :=

∑n
j=1 ρjj , and

ρ : ζ :=
∑n

i,j=1 ρijζij . Moreover, we introduce the deviator of ρ by ρd := ρ − 1
ntr(ρ) I, with I ∈ Rn×n

being the identity tensor.

2 The model problem and its mixed form

Let Ω ⊂ Rn be a bounded and simply connected domain with a Lipschitz-continuous boundary Γ := ∂Ω,
which is decomposed in two disjoint parts: ΓD and ΓN , with |ΓD|, |ΓN | > 0. In order to clarify the
presentation, we first consider the case with both boundary conditions homogeneous. Later we focus on
studying the most general case, taking into account the analysis that will be studied in this section. Then,
given the external forces f ∈ [L2(Ω)]n, f̃ ∈ L2(Ω), we look for the velocity u and the pressure p of a fluid
in Ω, such that

αu − ν∆u + ∇ p = f in Ω ,

div(u) = f̃ in Ω , (1)

u = 0 on ΓD ,(
− ν∇u + p I

)
n = 0 on ΓN ,
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where α is a positive parameter, while ν > 0 corresponds to the kinematic viscosity of the fluid. Hereafter,
n denotes the unit outward normal to Γ.

We introduce now the pseudo-stress σ := ν∇u − p I, which allows us to deduce p = ν
n f̃ −

1
ntr(σ).

As a consequence, we can eliminate p from (1), leading to the following first order system in (σ,u):

1

ν
σd − ∇u = − 1

n
f̃ I in Ω ,

αu − div(σ) = f in Ω ,

u = 0 on ΓD ,

σn = 0 on ΓN .

(2)

Next, we consider the mixed variational formulation: Find (σ,u) ∈ HN(div; Ω)× [L2(Ω)]n such that
1

ν

∫
Ω
σd : τ d +

∫
Ω
u · div(τ ) = − 1

n

∫
Ω
f̃ tr(τ ) ∀ τ ∈ HN(div; Ω) ,∫

Ω
v · div(σ) − α

∫
Ω
u · v = −

∫
Ω
f · v ∀v ∈ [L2(Ω)]n ,

(3)

where HN(div; Ω) := {τ ∈ H(div; Ω) : τ n = 0 on ΓN}.

Remark 1 Thanks to Theorem 4.3.2 in [12], we can ensure the unique solvability of (3). By choosing
appropriate stable pair of discrete subspaces of HN(div; Ω) and [L2(Ω)]n, we can invoke Theorem 5.5.2 in
[12], and establish that the corresponding discrete scheme to (3) has also a unique solution.

Remark 2 Adapting the ideas given in [7], we can obtain a reliable and efficient a posteriori error estimator.
For establishing the local efficiency property, we invoke a quasi Helmholtz decomposition of functions living
in HN(div; Ω), whose stability property is ensured only in 2D. In order to circumvent this difficulty, in the
next section we proceed to stabilize the scheme.

Remark 3 The theory of distributions allows us to show that (3) implies that the velocity u belongs to
[H1(Ω)]n. This motivates us to apply a stabilization technique, by summing suitable terms of least squares
type to the variational formulation (3). The resulting augmented scheme is described in next section.

3 An augmented formulation

At this point, we define the space [H1
ΓD

(Ω)]n := {v ∈ [H1(Ω)]n; v = 0 on ΓD} and we denote H :=

H(div; Ω)× [H1(Ω)]n. We provide H with the usual norm

||(τ ,v)||H := (||τ ||2div;Ω + ||v||21,Ω)1/2 ∀ (τ ,v) ∈H .

Now, following the ideas given in Section 3 in [5], it is not difficult to derive the augmented variational
formulation, at continuous level: Find (σ,u) ∈H0 := HN(div; Ω)× [H1

ΓD
(Ω)]n, such that

As((σ,u), (τ ,v)) = Fs(τ ,v) ∀ (τ ,v) ∈H0 , (4)
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where the bilinear form As : H ×H → R and the linear functional Fs : H → R, are given by

As((θ, z), (τ ,v)) :=
1

ν

∫
Ω
θd : τ d +

∫
Ω
z · div(τ ) −

∫
Ω
v · div(θ) + α

∫
Ω
z · v

+ κ0

∫
Ω

(div(θ) − α z) · (div(τ ) + α v) + κ1

∫
Ω

(
∇z − 1

ν
θd
)

:

(
∇v +

1

ν
τ d
)
,

Fs(τ ,v) := − 1

n

∫
Ω
f̃ I : τ +

∫
Ω
f · v − κ0

∫
Ω
f · (div(τ ) + α v)

+
κ1

n

∫
Ω
f̃ I :

(
∇v +

1

ν
τ d
)
.

We remark that the positive parameters κ0, κ1 are at our disposal, to ensure the unique solvability of (4).
In the current situation, we choose them in order to establish the ellipticity of As on H0. Keeping that in
mind, we can obtain, after some algebraic manipulations, that for any (τ ,v) ∈ H there holds

As((τ ,v), (τ ,v)) = ν−1 (1 − κ1 ν
−1) ||τ d||20,Ω + κ0 ||div(τ )||20,Ω + α (1− ακ0) ||v||20,Ω + κ1 |v|21,Ω . (5)

As κ0, κ1 > 0, we just require that 1 − κ1 ν
−1 > 0 and 1 − ακ0 > 0, for ensuring that each of the four

terms on the right hand side of (5) is positive. On the other hand, we point out that any τ ∈ HN(div; Ω),
can be rewritten as τ = τ0 + λ I, where τ0 ∈ H0(div; Ω) := {ρ ∈ H(div; Ω) :

∫
Ω tr(ρ) = 0}, and

λ ∈ R is chosen such that τ n = 0 on ΓN . Now, in order to give a self-contained manuscript, we recall the
following technical result, whose proof can be found in [25] (cf. Lemma 2.2).

Lemma 4 There exists C2 > 0, depending only on Ω and ΓN , such that

∀ τ ∈ HN (div; Ω) : C2 ||τ ||div;Ω ≤ ||τ0||div;Ω . (6)

Boundedness and coercivity of As on H0 are established in next result.

Lemma 5 For any κ0 ∈ (0, α−1) and κ1 ∈ (0, ν), there exists Cb > 0, Cell > 0, depending on α and ν,
such that

|As((θ, z), (τ ,v))| ≤ Cb(α, ν) ||(θ, z)||H ||(τ ,v)||H ∀ (θ, z), (τ ,v) ∈H , (7)

As((τ ,v), (τ ,v)) ≥ Cell(α, ν) ||(τ ,v)||2H ∀ (τ ,v) ∈ H0 , (8)

where

Cb(α, ν) := max{ν−1(1− κ1ν
−1) + κ0, 1− ακ0, α(1− ακ0) + κ1, κ1ν

−1} ,
Cell(α, ν) := min{1, C2} min{ν−1(1− κ1ν

−1), κ0, α(1− ακ0), κ1} .

Proof. It relies on Cauchy-Schwarz inequality and some algebraic manipulations. To establish the ellipticity
of As on H0 we need, in addition, to invoke Lemma 4. We omit further details. �

Similarly, the following lemma ensures that Fs ∈H ′0.
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Lemma 6 Under the same assumptions as in Lemma 5, there exists CF > 0, depending on α and ν, such
that

|Fs(τ ,v)| ≤ CF(α, ν) (||f̃ ||0,Ω + ||f ||0,Ω) ||(τ ,v)||H ∀ (τ ,v) ∈ H , (9)

where

CF(α, ν) := max{1, C1} max{ν−1(1− κ1ν
−1), κ1ν

−1, 1− ακ0, κ0, κ1, 1} .

By Lax-Milgram theorem, it is proved that the augmented variational formulation (4) has a unique solution
(σ,u) ∈ H0, and there exists a positive constant C∗, depending on α and ν, such that

‖(σ,u)‖H ≤ C∗

(
||f̃ ||0,Ω + ‖f‖0,Ω

)
, (10)

with C∗ :=
CF(α, ν)

Cell(α, ν)
.

On the other hand, for the discretization, we assume that Ω is a polyhedral / polygonal region and let
{Th}h>0 be a regular family of triangulations of Ω such that Ω = ∪{T : T ∈ Th }. Given a tetrahedra
/ triangle T ∈ Th, we denote by hT its diameter and define the mesh size h := max{hT : T ∈ Th }. In
addition, given an integer ` ≥ 0 and a subset S of Rn, we denote by P`(S) the space of polynomials in n
variables defined in S of total degree at most `, and for each T ∈ Th, we define the local Raviart-Thomas
space of order `, as RT `(T ) := [P`(T )]n ⊕ P`(T )x ⊆ [P`+1(T )]n, for all x ∈ T . On the other hand, we
set Fh as the skeleton of Th, i.e. the list of all the faces (counted once) induced by the triangulation Th. We
can decomposed Fh = FI

h ∪ F∂h , with FI
h := {F ∈ Fh : F ⊂ Ω} and F∂h := {F ∈ Fh : F ⊂ ∂Ω}. We

have also that F∂h := FD
h ∪ FN

h , with FD
h := {F ∈ F∂h : F ⊂ ΓD} and FN

h , := {F ∈ F∂h : F ⊂ ΓN}. As a
consequence, given a triangulation Th of Ω, its skeleton can be characterized as Fh = FI

h ∪ FD
h ∪ FN

h .
From now on, in order to define the discrete variational formulation associated to problem (4), we first

introduce the finite element subspaces:

Hσ
h :=

{
τh ∈ H(div; Ω) : τh|T ∈ [RT `(T )t]n , ∀T ∈ Th

}
,

Hσ
N,h :=

{
τh ∈ Hσ

h : τhn = 0 on FN
h

}
,

Hu
h :=

{
vh ∈ [C(Ω)]n : vh|T ∈ [P`+1(T )]n ∀T ∈ Th

}
,

Hu
0,h :=

{
vh ∈ Hu

h : vh = 0 on FD
h

}
.

Then, we propose the finite element subspace H0,h := Hσ
N,h × Hu

0,h ⊂ H0. As a result, we derive the
conforming discrete variational formulation: Find (σh,uh) ∈ H0,h such that

As((σh,uh), (τh,vh)) = Fs(τh,vh) ∀ (τh,vh) ∈ H0,h . (11)

We remark that the Galerkin scheme (11) is well-posed and a Céa’s estimate can be obtained. In addition,
the corresponding rate of convergence of the Galerkin scheme (11) for this particular choice of finite element
subspaces, is presented in the next theorem.
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Theorem 7 Let (σ,u) ∈ H0 and (σh,uh) ∈ H0,h be the unique solutions to problems (4) and (11),
respectively. In addition, assume that σ ∈ [Hr(Ω)]n×n, div(σ) ∈ [Hr(Ω)]n and u ∈ [Hr+1(Ω)]n for some
r ∈ (0, `+ 1]. Then, there exists C̃∗ > 0, independent of h, but depending on C∗ (introduced in (10)), such
that there holds

‖(σ,u)− (σh,uh)‖H ≤ C̃∗ h
r ( ‖σ‖r,Ω + ‖div(σ)‖r,Ω + ‖u‖r+1,Ω ) .

Proof. It is a consequence of Céa’s estimate, and the corresponding approximation properties. We omit
further details. �

4 An a posteriori error estimator

In the framework of a posteriori error analysis for the Brinkman model, we would like to comment on some
previous works in this direction, which lead us to propose the new alternative described in this article.
Specifically, we refer to [9] and [8]. In [9] an a posteriori error analysis based on the Ritz projection of the
error is presented. There, in order to localize the H1/2(Γ)-norm, the authors introduce an auxiliary discrete
function and deduce an a posteriori error estimator that is reliable and locally quasi-efficient (see Theorem
3 in [9]). On the other hand, in [8] using a quasi Helmholtz decomposition, an estimator error estimator
is obtained, which is reliable and local efficiency, circumventing the need of any auxiliary discrete function.
Unfortunately, this decomposition is not available for 3D with mixed boundary conditions, which is one of
the reason for presenting this alternative analysis.

The aim here is the derivation of a reliable and locally efficient, residual a posteriori error estimator.
First, we take into account the ellipticity of As on H0, and establish that

Cell ||(σ − σh,u− uh)||H ≤ sup
(τ ,v)∈H0\{0}

As((σ − σh,u− uh), (τ ,v))

||(τ ,v)||H
. (12)

We emphasize that the right hand side of the inequality (12) corresponds to the norm of the Ritz projection
of the error (for more details see Subsection 4.2 in [5]).

Our next goal is to bound the supremum in (12). To this end, we require the following result.

Lemma 8 For any (τ ,v) ∈H0, there holds

As((σ − σh,u− uh), (τ ,v)) = R1(τ ) + R2(v) , (13)

where

R1(τ ) := (1− ν−1 κ1)

∫
Ω

(
∇uh −

1

ν
σd
h −

1

n
f̃ I

)
: τ

− κ0

∫
Ω

(f + div(σh) − αuh) · div(τ ) ∀ τ ∈ HN(div; Ω) , (14)

R2(v) := (1− ακ0)

∫
Ω

(f + div(σh) − αuh) · v

+ κ1

∫
Ω

(
∇uh −

1

ν
σd
h −

1

n
f̃ I

)
: ∇v ∀v ∈ [H1

ΓD
(Ω)]n . (15)
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Proof. First, given (τ ,v) ∈H0, we invoke (4) to have

As((σ − σh,u− uh), (τ ,v)) = Fs(τ ,v) − As((σh,uh), (τ ,v)) .

The rest of the proof relies on the definition of Fs and As, and some algebraic manipulations. We omit
further details. �

As an immediate consequence of Lemma 8, we deduce an a posteriori error estimator, which is given in
the next theorem.

Theorem 9 There exists Crel > 0, depending on α and ν, such that

||(σ − σh,u− uh)||H ≤ Crel η , (16)

with η :=

∑
T∈Th

η2
T

1/2

, where for any T ∈ Th

η2
T := max{1− ακ0, κ0}2 ||f + div(σh) − αuh||20,T

+ max{1− ν−1 κ1, κ1}2
∥∥∥∥∇uh − 1

ν
σd
h −

1

n
f̃ I

∥∥∥∥2

0,T

. (17)

For proving the local efficiency of our estimator, we first introduce, for any T ∈ Th

||(τ ,v)||HT
:=
(
||τ ||2H(div;T ) + ||v||21,T

)1/2
∀ (τ ,v) ∈H .

Theorem 10 There exists Ceff > 0, depending on α and ν, such that for any T ∈ Th

ηT ≤ Ceff ||(σ − σh,u− uh)||HT
.

Remark 11 For (κ0, κ1) := ( 1
2α ,

ν
2 ), we deduce{

C∗ = C̃∗ = O(α2) , Crel = Ceff = O(α) α ≥ ν ≥ 1 ,

C∗ = C̃∗ = O(max{α, ν−1}2) , Crel = Ceff = O(max{α, ν−1}) α > 1 > ν .

5 An a posteriori error analysis for Brinkman model with inhomoge-
neous boundary data

In this section, we extend the analysis described in Sections 2 and 3 to a quite more general model problem
(1), with nonhomogeneous boundary data. In order to do that, we consider the same geometry and notations

as provided in Section 2. Next, we introduce the spaces [H
1/2
00 (ΓD)]n := {v|ΓD

: v ∈ [H1
ΓN

(Ω)]n} and

[H
1/2
00 (ΓN )]n := {v|ΓN

: v ∈ [H1
ΓD

(Ω)]n}. By [H
−1/2
00 (ΓN )]n we denote the dual space of [H

1/2
00 (ΓN )]n, with

respect to L2(ΓN )-inner product. Its norm will be represented by || · ||−1/2,00,ΓN
.
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Now, given uD ∈ [H
1/2
00 (ΓD)]n, g ∈ [H

−1/2
00 (ΓN )]n, f ∈ [L2(Ω)]n, and f̃ ∈ L2(Ω), we seek for the velocity

u and the pressure p of a fluid in Ω, such that

αu − ν∆u + ∇ p = f in Ω ,

div(u) = f̃ in Ω , (18)

u = uD on ΓD ,(
− ν∇u + p I

)
n = g on ΓN ,

The strategy relies on performing a homogenization of the Neumann datum, in the same spirit as
described in [7] and [6]. First, we introduce the pseudo-stress σ̃ := ν∇u − p I, which allows us to deduce
p = ν

n f̃ −
1
ntr(σ̃). As a consequence, we can eliminate p from (18), leading to the following first order

system: 

1

ν
σ̃d − ∇u = − 1

n
f̃ I in Ω ,

αu − div(σ̃) = f in Ω ,

u = uD on ΓD ,

σ̃ n = −g on ΓN .

(19)

Next, we set σ̃g := −∇z, with z ∈ [H1
ΓD

(Ω)]n being the unique weak solution of the auxiliary problem

−∆z = 0 in Ω , z = 0 on ΓD , ∂nz = g on ΓN . (20)

As a result, we notice that σ̃g ∈ H(div; Ω), is divergence-free, and satisfies σ̃g n = −g on ΓN . Moreover,
there exists C1 > 0, such that ||σ̃g||H(div;Ω) ≤ C1 ||g||−1/2,00,ΓN

. Introducing σ := σ̃ − σ̃g, (19) can be
rewritten in terms of (σ,u) as

1

ν
σd − ∇u = − 1

n
f̃ I − 1

ν
σ̃d
g in Ω ,

αu − div(σ) = f in Ω ,

u = uD on ΓD ,

σn = 0 on ΓN .

(21)

Proceeding as in Section 2, we deduce the mixed variational formulation: Find (σ,u) ∈ HN(div; Ω) ×
[L2(Ω)]n such that

1

ν

∫
Ω
σd : τ d +

∫
Ω
u · div(τ ) = 〈τn,uD〉ΓD

− 1

n

∫
Ω
f̃ tr(τ ) − 1

ν

∫
Ω
σ̃d
g : τ ∀ τ ∈ HN(div; Ω) ,∫

Ω
v · div(σ) − α

∫
Ω
u · v = −

∫
Ω
f · v ∀v ∈ [L2(Ω)]n .

(22)

We note that the difference with (3) lies only on the right side of (22). Therefore, as pointed out in Remark
1, the existence and uniqueness of solution of (22) as well as of its corresponding conforming discrete
scheme, are guaranteed thanks to Theorems 4.3.2 and 5.5.2 in [12], respectively. We can also establish the
convergence of the method in this situation. Of course, as in Remark 3, we can prove that u ∈ [H1(Ω)]n.
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5.1 An a priori error analysis of the augmented formulation

As in Section 3, we consider the augmented formulation: Find (σ,u) ∈ HN := HN(div; Ω) × [H1(Ω)]n,
such that

As((σ,u), (τ ,v)) = F̃s(τ ,v) ∀ (τ ,v) ∈HN , (23)

where the bilinear form As : H×H → R is defined as in Section 3, while the linear functional F̃s : H → R,
is given by

F̃s(τ ,v) := 〈τn,uD〉ΓD
−
∫

Ω

(
1

ν
σ̃d
g +

1

n
f̃ I

)
: τ +

∫
Ω
f · v − κ0

∫
Ω
f · (div(τ ) + α v)

+ κ1

∫
Ω

(
1

ν
σ̃d
g +

1

n
f̃ I

)
:

(
∇v +

1

ν
τ d
)
.

In what follows, we assume that κ0 ∈ (0, α−1) and κ1 ∈ (0, ν). Then, thanks to Lemma 5, As is bounded
and strongly elliptic on HN . In addition, there exists CF̃ > 0, depending on α and ν, such that

|F̃s(τ, v)| ≤ CF̃(α, ν)
(
||uD||1/2,00,ΓD

+ ||g||−1/2,00,ΓN
+ ||f̃ ||0,Ω + ||f ||0,Ω

)
||(τ ,v)||H ∀ (τ ,v) ∈ H ,

(24)

with

CF̃(α, ν) := max{1, C1} max{ν−1(1− κ1ν
−1), κ1ν

−1, 1− ακ0, κ0, κ1, 1} .

By Lax-Milgram theorem, it is proved that the augmented variational formulation (23) has a unique
solution (σ,u) ∈ HN , and there exists a positive constant Ĉ∗, depending on α and ν, such that

‖(σ,u)‖H ≤ Ĉ∗

(
||f̃ ||0,Ω + ‖f‖0,Ω + ||uD||1/2,00,ΓD

+ ||g||−1/2,00,ΓN

)
, (25)

with Ĉ∗ :=
CF̃(α, ν)

Cell(α, ν)
. The classic discrete conforming variational formulation read as: Find (σh,uh) ∈

HN,h := Hσ
N,h ×Hu

h such that

As((σh,uh), (τh,vh)) = F̃s(τh,vh) ∀ (τh,vh) ∈ HN,h . (26)

We remark that the Galerkin scheme (26) is well-posed and a Céa’s estimate can be obtained. In addition,
the corresponding rate of convergence of the Galerkin scheme (26) for this particular choice of finite element
subspaces, is presented in the next theorem.

Theorem 12 Let (σ,u) ∈ HN and (σh,uh) ∈ HN,h be the unique solutions to problems (23) and (26),
respectively. In addition, assume that σ ∈ [Hr(Ω)]n×n, div(σ) ∈ [Hr(Ω)]n and u ∈ [Hr+1(Ω)]n for some
r ∈ (0, `+ 1]. Then, there exists C̄∗ > 0, independent of h, but depending on Ĉ∗ (introduced in (25)), such
that there holds

‖(σ,u)− (σh,uh)‖H ≤ C̄∗ h
r ( ‖σ‖r,Ω + ‖div(σ)‖r,Ω + ‖u‖r+1,Ω ) .

10



Proof. It is a consequence of Céa’s estimate, and the corresponding approximation properties. We omit
further details. �

Remark 13 We note that this discrete scheme entails difficulties inherent to boundary condition treatments.
For example, the way to treat the Dirichlet datum involves the introduction of the nodes on this part of the
boundary as unknowns into the system, that is, where the solution is known. In addition, the treatment of
the Neumann datum involves higher computational cost (more details in remark below). One way to avoid
these problems is discussed in the next subsection.

Remark 14 At first glance, we propose σ̃h := σh − ∇zh, with zh ∈ Hu
h being the solution of discrete

primal formulation associated to (20). Then, assuming that z ∈ [H1
ΓD

(Ω) ∩ Hs+1(Ω)]n, for some s ∈
(0, `+ 1], and invoking Theorem 12, there exists C > 0, independent of h, but depending on α and ν, such
that

‖(σ̃,u)− (σ̃h,uh)‖H ≤ C {hr ( ‖σ‖r,Ω + ‖div(σ)‖r,Ω + ‖u‖r+1,Ω ) + hs ||z||s+1,Ω} .

At this point, we point out that in general ∇zh does not belong to Hσ
N,h, and requires to compute first

zh ∈ Hu
h , in order to compute it. Clearly, from a computational point of view, this could be expensive,

which motivates us to present an alternative procedure.

5.2 An a posteriori error analysis of the augmented formulation

To circumvent the difficulties associated with the treatment of non-homogeneous boundary conditions, we
take into account [11] for the Neumann type, which suggest approximate the data as follow: we set gh :=
π`h(g) on FN

h , with π`h(g) representing the L2-orthogonal projection of g onto P`(FN
h), component-wise. In

addition, for the Dirichlet type we denote by uD,h the quasi-interpolated of the function uD of degree
one (obtained first by considering the Clement type operator and then modify it to take into account the
boundary condition as in [27], Section 5-2, see also [21, 32]). Now, we define mh as the piecewise linear
continuous function such that mh(x) = 0 for each node x ∈ Ω ∪ ΓN and mh = uD,h on ΓD. Clearly,
mh ∈ [H1

ΓN
(Ω)]n. Next, we consider the problem:

ρ̃ = ν∇w̃ − q I in Ω ,

α w̃ − div(ρ̃) = f in Ω ,

div(w̃) = f̃ in Ω ,

w̃ = uD,h on ΓD ,

ρ̃ ν = −gh on ΓN ,

(27)

which, by virtue of what has been described at the beginning of the section, it can be established that has
a unique solution (ρ̃, w̃, q). In addition, we notice that q = ν

n f̃ −
1
ntr(ρ̃).

This allows us to establish the existence and uniqueness of (ρ̃, w̃) ∈ H and (ρ̃h, w̃h) ∈ Hh, solution of
the analog problems (23) and (26), respectively. It is not difficult to check that

||(σ̃ − ρ̃h,u− w̃h)||H ≤ ||(σ̃ − ρ̃,u− w̃)||H + ||(ρ̃− ρ̃h, w̃ − w̃h)||H . (28)

11



Now, we set T N
h := {T ∈ Th : |E(T ) ∩FN

h | > 0}, T D
h := {T ∈ Th : |E(T ) ∩FD

h | > 0}, and we assume that

g ∈ [L2(ΓN )]n and uD ∈ [H1(ΓD)]n ∩ [H
1/2
00 (ΓD)]n. Then, proceeding similarly as in [11], we can ensure

that there exists C > 0, independent of h, but depending on C̄∗, such that

||(σ̃ − ρ̃,u−w)||H ≤ C

∑
T∈T N

h

osc(g, T )2 +
∑
T∈T D

h

osc(uD, T )2

1/2

, (29)

where for each T ∈ T N
h

osc(g, T )2 :=
∑

F ∈E(T )∩FN
h

hF ||g − π`h(g)||20,F . (30)

Concerning Dirichlet datum, in 2D case, under the assumption that uD ∈ [H1(ΓD)]2, it is possible to define
uD,h as the linear Lagrange interpolation of the function uD, i.e., we have uD,h(x) = uD(x) for each node
x ∈ ΓD. We notice that the function uD − uD,h vanishes at the nodes of Th lying on ΓD, allowing us to

estimate its [H
1/2
00 (ΓD)]2-norm in terms of L2-local norms on the edges of ΓD. More precisely, according to

Theorem 1 in [19], there holds

‖uD − uD,h‖2
[H

1/2
00 (ΓD)]2

≤ C

log[1 + Ch(Γ)]
m∑
j=1

hj

∥∥∥∥∂uD∂t − ∂uD,h
∂t

∥∥∥∥2

[L2(Γj)]2

 ,

where hj = |Γj |, j = 1, . . . ,m, Ch(Γ) := max
{
hi
hj

: Γi is a neighbor of Γj , i, j ∈ {1, ...,m}
}

, and {Γ1, . . . ,Γm}
is the partition of ΓD induced by Th. We remind that given an edge e induced by Th, and lying on Γ, we
set t as the tangential vector associated to e. In addition, ∂uD

∂t represents the tangential derivative of uD

along e. Similar meaning is given to
∂uD,h

∂t . This result allows us to establish

osc(uD, T )2 :=
∑

F ∈E(T )∩FD
h

hF

∥∥∥∥∂uD∂t − ∂uD,h
∂t

∥∥∥∥2

[L2(F )]2
. (31)

For the 3D case, the Sobolev interpolation theorem implies

‖uD − uD,h‖2
[H

1/2
00 (ΓD)]3

≤ C‖uD − uD,h‖[L2(ΓD)]3‖uD − uD,h‖[H1(ΓD)]3 (32)

which allows us to deduce

osc(uD, T )2 := hD
∑

F ∈E(T )∩FD
h

‖uD − uD,h‖2[H1(F )]3 , (33)

where hD := max{hF : F ∈ FD
h}.
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Now, invoking the Raviart-Thomas local lifting operator on the normal trace (cf. Proposition 2.4 in [22]),
we can build ρ̃gh ∈ H(div; Ω)∩[RT `(Th)]n, such that ρ̃gh ν = −gh on ΓN . Then, we consider ρ̂ := ρ̃ − ρ̃gh
in Ω and ŵ := w̃ −mh in Ω. This helps us to rewrite (27) as:

α ŵ − div(ρ̂) = f̂ in Ω ,
1
ν ρ̂

d − ∇ŵ = ∇mh − 1
ν ρ̃

d
gh
− 1

n f̃ I in Ω ,

ŵ = 0 on ΓD ,

ρ̂ ν = 0 on ΓN ,

(34)

where f̂ := f + div(ρ̃gh) − αmh. We emphasize that (ρ̂, ŵ) ∈ H0 and (ρ̂h, ŵh) ∈ H0,h satisfy

∀ (τ ,v) ∈ H0 : As((ρ̂, ŵ), (τ ,v)) = F̂s(τ ,v) , (35)

∀ (τ ,v) ∈ H0,h : As((ρ̂h, ŵh), (τ ,v)) = F̂s(τ ,v) , (36)

respectively, with F̂s : H → R being the linear functional, given for any (τ ,v) ∈ H, by

F̂s(τ ,v) :=

∫
Ω
f̂ · v −

∫
Ω

(
1

n
f̃ I +

1

ν
ρ̃dgh − ∇mh

)
: τ

− κ0

∫
Ω
f̂ · (α v + div(τ )) + κ1

∫
Ω

(
1

n
f̃ I +

1

ν
ρ̃dgh − ∇mh

)
:

(
∇v +

1

ν
τ d
)
.

Now, taking into account the ellipticity of As on H0, we can establish that

Cell ||(ρ̂− ρ̂h, ŵ − ŵh)||H ≤ sup
(τ ,v)∈H0\{0}

As((ρ̂− ρ̂h, ŵ − ŵh), (τ ,v))

||(τ ,v)||H
. (37)

Our next aim, is to bound the supremum in (37). To this end, we require the following result.

Lemma 15 For any (τ ,v) ∈H0, there holds

As((ρ̂− ρ̂h, ŵ − ŵh), (τ ,v)) = R1(τ ) + R2(v) , (38)

where

R1(τ ) := −
∫

Ω

(
∇(ŵh + mh) − 1

ν
(ρ̂h + ρ̃gh)d − 1

n
f̃ I

)
: τ

− ν−1 κ1

∫
Ω

(
∇(ŵh + mh) − 1

ν
(ρ̂h + ρ̃gh)d − 1

n
f̃ I

)
: τ d

− κ0

∫
Ω

(f̂ + div(ρ̂h) − α ŵh) · div(τ ) ∀ τ ∈ HN(div; Ω) , (39)

R2(v) := (1− ακ0)

∫
Ω

(f̂ + div(ρ̂h) − α ŵh) · v

− κ1

∫
Ω

(
∇(ŵh + mh) − 1

ν
(ρ̂h + ρ̃gh)d − 1

n
f̃ I

)
: ∇v ∀v ∈ [H1

ΓD
(Ω)]n . (40)
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Proof. First, given (τ ,v) ∈H0, we invoke (35) to have

As((ρ̂− ρ̂h, ŵ − ŵh), (τ ,v)) = F̂s(τ ,v) − As((ρ̂h, ŵh), (τ ,v)) .

The rest of the proof relies on the definition of F̂s and As, and some algebraic manipulations. We omit
further details. �

As an immediate consequence of Lemma 15, we deduce an a posteriori error estimator, which is given
in the next theorem.

Theorem 16 There exists Crel > 0, depending on α and ν, such that

||(ρ̂− ρ̂h, ŵ − ŵh)||H ≤ Crel η , (41)

with η :=

∑
T∈Th

η2
T

1/2

, where for any T ∈ Th

η2
T := max{1− ακ0, κ0}2 ||f̂ + div(ρ̂h) − α ŵh||20,T

+ max{1, ν−1 κ1, κ1}2
∥∥∥∥∇(ŵh + mh) − 1

ν
(ρ̂h + ρ̃gh)d − 1

n
f̃ I

∥∥∥∥2

0,T

. (42)

Remark 17 Since ρ̃ = ρ̂ + ρ̃gh and w̃ = ŵ + mh , we introduce ρ̃h := ρ̂h + ρ̃gh and w̃h = ŵh + mh

as its approximations. Then, we have

||(ρ̃− ρ̃h, w̃ − w̃h)||H = ||(ρ̂− ρ̂h, ŵ − ŵh)||H ≤ Crel η .

Theorem 18 There exists Ceff > 0, depending on α and ν, such that for any T ∈ Th

ηT ≤ Ceff ||(ρ̃− ρ̃h, w̃ − w̃h)||HT
.

Remark 19 Invoking a suitable triangle inequality, we can establish that

η ≤ C̄eff

||(σ̃ − ρ̃h,u−wh)||2H +
∑
T∈T N

h

osc(g, T )2 +
∑
T∈T D

h

osc(uD, T )2

1/2

.

Remark 20 For (κ0, κ1) := ( 1
2α ,

ν
2 ), we deduce{

C∗ = C̃∗ = O(α2) , Crel = Ceff = O(α) α ≥ ν ≥ 1 ,

C∗ = C̃∗ = O(max{α, ν−1}2) , Crel = Ceff = O(max{α, ν−1}) α > 1 > ν .
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6 Numerical experiments

Numerical experiments illustrating the performance of the augmented schemes (36) and the properties of
the a posteriori error estimators η are reported in this section. We present three examples, by simplicity,
all of them in 2D. The aim of the first one is to confirm the a priori error estimate (see Theorem 12 and
Remark 14), and to verify the efficiency and reliability of the a posteriori error estimator derived in Section
4. We also analyze the influence of relatively small values of the viscosity ν, and for moderate large values of
α, in the numerical method. The second and third examples allow us to show the effectivity of the adaptive
method. In what follows, in all examples we fixed the parameters as (κ0, κ1) := ( 1

2α ,
ν
2 ) and we consider

the finite element subspaces of lowest order of approximation (i.e. for ` = 0).
The adaptive refinement algorithm we consider can be found in [35], and reads as follows:

Algorithm 1: Adaptive Refinement Algorithm

Result: Improvement of quality of approximation
Input: tolerance tol, initial / coarse mesh T 0

h ;
Step 1: Solve the Galerkin scheme for the current mesh T 0

h . Then compute {ηT }T∈T 0
h

.

while η > tol do
Mark each element T ′ ∈ Th such that

ηT ′ ≥ 1

2
max{ηT : T ∈ Th} .

Refine marked elements and remove hanging nodes if corresponds;
This generates an adapted mesh Th;
T 0
h ← Th and go to Step 1.

end

In what follows, N denotes the total number of degrees of freedom (dof) for the corresponding discrete
scheme. We define the error for each unknown, e(σ) := ‖σ − σh‖H(div;Ω), e(u) := ‖u − uh‖[H1(Ω)]2 . In

addition, we include the computation of the error for pressure when it is approximated by ph = ν
n f̃ −

1
ntr(σh). This is defined by e(p) := ‖p− ph‖[L2(Ω)]2 . The total error is given by E :=

(
e(σ)2 + e(u)2

)1/2
.

The efficiency and effectivity indexes, with respect to the error indicator η, are defined as E/η and η/E,
respectively.

6.1 A smooth example

Let Ω =]0, 1[2, we considere mixed boundary condition with ΓD := 0 × (0, 1) ∪ (0, 1) × 0. ΓN := ∂Ω \ ΓD
and we choose the data so that the exact solution of problem (18) is:

u(x, y) = (x2 + 2x2(1− x)2y(1− y)(1− 2y), y2 − 2x(1− x)(1− 2x)y2(1− y)2)

p = exp
(
−10

(
(x− 1/2)2 + (y − 1/2)2

))
,

We solved the problem over a sequence of uniform meshes (i.e., in each step the elements of the mesh
are bisected twice). In Figure 1 we show the total error versus the DOFs for α = 1 and different values of ν,
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whereas in Figure 2 we display the total error versus DOF for ν = 1 and different values of α. We observe
that optimal convergence rates are attained in all cases. In Figure 3 we exhibit the corresponding effectivity
indexes for the numerical solutions obtained for the different values of ν (left ) and for different values of
α (right). We observe in all cases, the effectivity indexes remain bounded, which is in accordance with the
theory.
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Figure 1: Example 1: From top-left to bottom-right, Individual, Total errors and a posteriori error estimator
for α = 1 and ν ∈ {1, 10−1, 10−2, 10−3}, obtained with uniform refinement for Example 1.

6.2 A non smooth benchmark solution

In this example, we are inspired by [35] (cf. page 113) and define Ω = {|x| + |y| < 1} ∩ {x < 0 or y > 0},
which clearly is a non-convex Lipschitz domain. We assume ΓD = ∂Ω, then ΓN = ∅. The data of this
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Figure 2: Example 1: From top-left to bottom-right, Individual, Total errors and estimator for α ∈
{1, 101, 102, 103}, obtained with uniform refinement (UR) for Example 1 with ν = 1.
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Figure 3: Example 1: Effectivity indexes vs. DOFs. Left: fixed α = 1 and different values of ν. Righ: fixed
ν = 1 and different values of α.

problem is given such that the exact solution, in polar coordinates, is

u(r, θ) :=

(
rλ[(1 + λ) sin(θ)ψ(θ) + cos(θ)ψ′(θ)]

rλ[−(1 + λ) cos(θ)ψ(θ) + sin(θ)ψ′(θ)]

)
, and

p(r, θ) :=− rλ−1

1− λ
[(1 + λ)2 ψ′(θ) + ψ′′′(θ)] ,

with

ψ(θ) :=
1

1 + λ
sin((1 + λ)θ) cos(λω) − cos((1 + λ)θ)

− 1

1− λ
sin((1− λ)θ) cos(λω) + cos((1− λ)θ) ,

λ := 0.54448373678246 , ω :=
3

2
π .

Moreover, in this case the exact solution (u, p) lives in [H1+λ(Ω)]2 ×Hλ(Ω). The history of convergence of
the method is displayed in Figure 4 (Left), considering sequences of uniform and adaptive refined meshes
generated according to the proposed Algorithm 1. We notice that due to the low regularity of the exact
solution, the total error, when applying uniform refinement, behaves as O(hλ). On the other hand, when
performing the adaptive refinement Algorithm 1, based on our a posteriori error estimator η, the quality
of approximation is improved, recovering the optimal rate of convergence as if the solution were smooth.
In addition, this adaptive procedure is able to identify the singularity of u and p at origin. This is shown
in Figure 5, which contains some of the adapted meshes obtained in this process. Concerning the index
of efficiency, we observe that their values are bounded, when considering uniformly refined meshes and the
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Figure 4: Example 2: Left: Total errors and Estimators vs. DOFs (Uniform and Adaptive refinements).
Right: efficiency indexes.

sequence of meshes obtained by applying the adaptive refinement algorithm, as is displayed in Figure 4
(Right). These let us to state that our a posteriori error estimator η, is reliable and locally efficient, in
agreement with our theoretical findings.

6.3 A flow of a fluid in a porous media with obstacles

As it is known, the Brinkman equation can be used to describe the flow of a viscous fluid in a porous medium.
This motivates us to simulate the flow of a fluid in a porous medium with obstacles. As the domain Ω, we
consider a tube with three holes, which represent the obstacles. The tube is given by T = [0, 8]× [0, 1]. On
the other hand, we introduce three obstacles O1, O2 and O3, that are defined as the circles of ratio 1/3 and
center at the points (15/6,1/2), (23/6,1/2) and (31/6,1/2), respectively. Then, we set Ω := T \(O1∪O2∪O3),
ΓN = {8}× [0, 1], ΓD = ∂Ω \ΓN . For simplicity, we choose α = 1.0 , ν = 1.0, and the data f̃ = 0, f = 0 in
Ω, while the Dirichlet boundary condition is set as uD(x, y) = (20y(1− y), 0)t on {0} × [0, 1] and uD = 0
on ΓD \{0} × [0, 1]. On Neumann boundary, we impose the so-called do-nothing boundary condition, that
is, g = 0 on ΓN .

Based on the a posteriori error estimator η, in Figure 6 we display the behavior of η for uniform and
adaptive refinements. There we can notice the optimal order. In addition, in Figures 7 and 8, we show the
velocity and pressure for an intermediate and final iteration. Finally, some adapted meshes are shown in
Figure 9, where we can observe that the estimator recognizes the places where the error is more dominant.

7 Concluding remarks

In this paper, we have been able to obtain a reliable and (quasi) local efficient a posteriori error estimator for
the Brinkman problem with non trivial mixed boundary conditions. To this aim, we consider an augmented
Galerkin variational formulation based on the pseudo-stress and velocity unknowns. This allows us to
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Figure 5: Example 2: Intermediate meshes, from iterations 3, 7 and 13.
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Figure 6: Example 3: Estimators vs. DOFs (Uniform and Adaptive refinements).

have more freedom to choose the approximation spaces. We point out that the resulting a posteriori error
estimator is obtained after performing an homogenization procedure to the Dirichlet and Neumann boundary
data, which let us to ensure the well posedness of the variational formulation. In fact, the homogenization
of Dirichlet datum helps us not to increase the size of the linear system induced by the discrete scheme.
This means that it is not necessary to take the degrees of freedom associated to the Dirichlet boundary
as unknowns, since we already know how the solution behaves on it. In other words, the analysis of the
Brinkman problem with non null mixed boundary conditions relies on the analysis of the same model
problem, but with homogeneous mixed boundary conditions and a corrected source term. This is the aim
of introducing suitable lifting mechanisms for the Dirichlet and Neumann data. On the other hand, this
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Figure 7: Example 3: Vector field of the velocity and pressure (Intermediate mesh from iteration 3).

Figure 8: Example 3: Streamlines of the velocity and pressure (final iteration).
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Figure 9: Example 3: Initial and Intermediate adapted meshes (Iterations 4 and 7).

strategy lets us to ensure that the resulting a posteriori error analysis is valid in 2D and in 3D. As a
result, our estimator consists of just two residual terms, and eventually two oscillation terms, related to the
Dirichlet and Neumann data. This means that the estimator has, from a computational point of view, low
cost. We notice that the results of numerical simulations presented in this work, are in agreement with our
theoretical findings (cf. Theorem 16, Remark 17 and Theorem 18).
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[2] V. Anaya, D. Mora, R. Oyarzúa, R. Ruiz-Baier, A priori and a posteriori error analysis of a mixed
scheme for the Brinkman problem. Numerische Mathematik, vol. 133, 4, pp. 781-817, (2016).

[3] N.S. Bakhvalov, Solution of the Stokes nonstationary problems by the fictitious domain method. Russian
Journal of Numerical Analysis and Mathematical Modelling, vol. 10, pp. 163-172, (1995).

[4] G.R. Barrenchea and F. Valentin, An unusual stabilized finite element method for a generalized Stokes
problem. Numerische Mathematik, vol. 92, 4, pp. 653-677, (2002).

[5] T. P. Barrios, E. M. Behrens and R. Bustinza, A stabilised mixed method applied to Stokes system with
nonhomogeneous source terms: The stationary case. International Journal for Numerical Methods in
Fluids, vol. 92, pp. 509–527, (2020).

[6] T. P. Barrios, E. M. Behrens and R. Bustinza, An a posteriori error estimate for a dual mixed method
applied to Stokes system with non null source terms. Advances in Computational Mathematics, vol. 47,
5, article: 77, (2021).

[7] T.P. Barrios, R. Bustinza and C. Campos, A note on a posteriori error estimates for dual mixed
methods with mixed boundary conditions. Numerical Methods for Partial Differential Equations, vol.
39, 3897–3918, (2023).
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