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Abstract

We consider a Banach spaces-based mixed variational formulation that has been recently proposed
for the nonlinear problem given by the stationary convective Brinkman–Forchheimer equations,
and develop a reliable and efficient residual-based a posteriori error estimator for the 2D and 3D
versions of the associated mixed finite element scheme. For the reliability analysis, we utilize the
global inf-sup condition of the problem, combined with appropriate small data assumptions, a stable
Helmholtz decomposition in nonstandard Banach spaces, and the local approximation properties
of the Raviart–Thomas and Clément interpolants. In turn, inverse inequalities, the localization
technique based on bubble functions in local Lp-spaces, and known results from previous works,
are the main tools yielding the efficiency estimate. Finally, several numerical results confirming the
theoretical properties of the estimator and illustrating the performance of the associated adaptive
algorithm are reported. In particular, the case of flow through a 2D porous medium with fracture
networks is considered.
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1 Introduction

We recently introduced in [7] a Banach spaces-based mixed finite element method for the problem
of fluid flow through highly porous media at higher Reynolds numbers, described by the stationary
convective Brinkman–Forchheimer (CBF) equations in Rd, d ∈ {2, 3}. There, besides the velocity, the
pseudostress tensor is introduced as a further unknown of the system, thus yielding a mixed variational
formulation consisting of a nonlinear perturbation of, in turn, a perturbed saddle point problem in a
Banach spaces framework. In this way, and unlike the techniques previously developed for this model
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in [6], no augmentation procedure needs to be incorporated into the formulation or into the solvability
analysis. The resulting non-augmented scheme is then equivalently written as a fixed-point equation,
allowing the application of recently established solvability results for perturbed saddle-point problems
in Banach spaces, along with the well-known Banach–Nečas–Babuška and Banach theorems, to prove
the well-posedness of the continuous and discrete systems. The finite element discretization involves
Raviart–Thomas elements of order k ≥ 0 for the pseudostress tensor and discontinuous piecewise
polynomial elements of degree ≤ k for the velocity. Stability, convergence, and optimal a priori error
estimates were also derived in [7].

It is well known that adaptive algorithms based on a posteriori error estimates are well suited to
recover the loss of convergence orders in most standard Galerkin procedures, such as finite element and
mixed finite element methods. This is particularly true when these methods are applied to nonlinear
problems in the presence of singularities or high gradients in the exact solutions. In particular, this
powerful tool has been applied to quasi-Newtonian fluid flows obeying the power law, which includes
the CBF model. In this direction, we refer to [19], [20], [29], [9], and [6], for various contributions
addressing this issue. Particularly, in [19] an a posteriori error estimator defined via a non-linear
projection of the residuals of the variational equations for a three-field model of a generalized Stokes
problem was proposed and analyzed. In turn, a new a posteriori error estimator for a mixed finite
element approximation of non-Newtonian fluid flow problems was developed in [20]. This mixed for-
mulation, like finite volume methods, possesses local conservation properties, namely conservation of
momentum and mass. Later on, a posteriori error analyses for the aforementioned Brinkman–Darcy–
Forchheimer model in velocity-pressure formulation were developed in [29]. Specifically, two types of
error indicators related to the discretization and linearization of the problem were established. Fur-
thermore, the first contribution to deriving an a posteriori error analysis of the primal-mixed finite
element method for the Navier–Stokes/Darcy–Forchheimer coupled problem was proposed and ana-
lyzed in [9]. Specifically, [9] extended the usual techniques employed within the Hilbertian framework
to Banach spaces by deriving a reliable and efficient a posteriori error estimator for the mixed finite el-
ement method introduced in [5]. This work includes corresponding local estimates and new Helmholtz
decompositions for reliability, as well as inverse inequalities and local estimates of bubble functions for
efficiency. Meanwhile, [6] presents the first a posteriori error analysis for an augmented mixed finite
element method applied to the stationary CBF equations within a Hilbert framework. Additionally, [3]
is noted for its a posteriori error analysis of a momentum-conservative Banach space-based mixed finite
element method for the Navier–Stokes problem. In this work, standard arguments based on duality
techniques, a suitable Helmholtz decomposition in Banach frameworks, and classical approximation
properties are combined with corresponding small data assumptions to establish the reliability of the
estimators. Similar techniques are applied in [13] and [22] to develop reliable and efficient residual-
based a posteriori error estimators in 2D and 3D for non-augmented Banach spaces-based mixed finite
element methods for the stationary Boussinesq and Oberbeck-Boussinesq systems. Finally, we refer
to [10] and [8] for recent a posteriori error analyses of partially augmented and Banach spaces-based
mixed formulations for the coupled Brinkman–Forchheimer and double-diffusion equations.

According to the above discussion, and to complement the study started in [7] for the CBF equations,
in the present paper we employ and adapt the a posteriori error analysis techniques developed in [9],
[3], [13], and [22] for Banach spaces-based mixed formulations to the current CBF model. We develop
a reliable and efficient residual-based a posteriori error estimator in 2D and 3D for the mixed finite
element method from [7]. More precisely, we derive a global quantity Θ that is expressed in terms of
calculable local indicators ΘT defined on each element T of a given triangulation T . This information
can then be used to localize sources of error and construct an algorithm to efficiently adapt the mesh.
In this way, the estimator Θ is said to be efficient (resp. reliable) if there exists a positive constant
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Ceff (resp. Crel), independent of the mesh sizes, such that

Ceff Θ + h.o.t. ≤ ‖error‖ ≤ Crel Θ + h.o.t. ,

where h.o.t. is a generic expression denoting one or several terms of higher order. We remark
that up to the authors’ knowledge, the present work provides the first a posteriori error analyses of
non-augmented Banach spaces-based mixed finite element methods for the stationary CBF equations.

This paper is organized as follows. The remainder of this section introduces some standard notations
and functional spaces. In Section 2, we recall from [7] the model problem and its continuous and
discrete mixed variational formulations. Next, in Section 3, we derive in full detail a reliable and
efficient residual-based a posteriori error estimator for both 2D and 3D settings. Several numerical
results illustrating the reliability and efficiency of the a posteriori error estimator, as well as the good
performance of the associated adaptive algorithm and the recovery of optimal rates of convergence,
are reported in Section 4. Finally, further properties to be utilized for the derivation of the reliability
and efficiency estimates are provided in Appendices A and B, respectively.

1.1 Preliminary notations

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain with polyhedral boundary Γ, and let n be the outward
unit normal vector on Γ. Standard notation will be adopted for Lebesgue spaces Lp(Ω) and Sobolev
spaces Ws,p(Ω), with s ∈ R and p > 1, whose corresponding norms, either for the scalar, vectorial,
or tensorial case, are written as ‖ · ‖0,p;Ω and ‖ · ‖s,p;Ω, respectively. In addition, given a non-negative
integer m, Wm,2(Ω) is also denoted by Hm(Ω), and the notations of its norm and seminorm are
simplified to ‖ · ‖m,Ω and | · |m,Ω, respectively. By M and M we mean the corresponding vectorial and
tensorial counterparts of the generic scalar functional space M, whereas M′ represents its dual space,

whose norm is defined by ‖f‖M′ := sup
06=v∈M

|f(v)|
‖v‖M

. In particular, we set R := Rd and R := Rd×d. In

turn, for any vector fields v = (vi)i=1,d and w = (wi)i=1,d, we define the gradient, divergence, and

tensor product operators, as ∇v :=

(
∂vi
∂xj

)
i,j=1,d

, div(v) :=

d∑
j=1

∂vj
∂xj

, and v ⊗ w := (viwj)i,j=1,d .

Also, for any tensor fields τ = (τij)i,j=1,d and ζ = (ζij)i,j=1,d, we let div(τ ) be the usual divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,

and the deviatoric tensor, respectively, as τ t := (τji)i,j=1,d , tr(τ ) :=

d∑
i=1

τii , τ : ζ :=
d∑

i,j=1

τij ζij ,

and τ d := τ − 1

d
tr(τ ) I , where I is the identity matrix in R. In what follows, when no confusion

arises, | · | denotes the Euclidean norm in R or R. Furthermore, H1/2(Γ) is the space of traces of
functions of H1(Ω) and H−1/2(Γ) is its dual, whereas 〈·, ·〉Γ stands for the corresponding product of
duality between H−1/2(Γ) and H1/2(Γ).

2 The model problem and its mixed variational formulation

In this section we recall from [7] the model problem, its mixed variational formulation, the associated
Galerkin scheme, and the main results concerning the corresponding solvability analysis.
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2.1 The stationary convective Brinkman–Forchheimer equations

In what follows we consider the model analyzed in [7] (see also [14, 32, 28, 31, 6]), which is given by
the stationary convective Brinkman–Forchheimer equations. More precisely, given a body force f , we
focus on finding a velocity field u, and a pressure field p, such that

− ν∆u + (∇u)u + Du + F |u|ρ−2u +∇p = f in Ω ,

div(u) = 0 in Ω ,

u = uD on Γ ,∫
Ω
p = 0 ,

(2.1)

where ν > 0 is the Brinkman coefficient (or the effective viscosity), D > 0 is the Darcy coefficient,
F > 0 is the Forchheimer coefficient, and ρ is a given number in [3, 4]. Owing to the incompressibility
of the fluid, the datum uD ∈ H1/2(Γ) must satisfy the compatibility condition∫

Γ
uD · n = 0 . (2.2)

Next, in order to derive a mixed formulation for (2.1), in which the Dirichlet boundary condition
for the velocity becomes a natural one, we now proceed as in [4] (see similar approaches in [12, 2, 6]),
and introduce as a further unknown the nonlinear pseudostress tensor σ, which is defined by

σ := ν∇u− (u⊗ u)− p I . (2.3)

In this way, applying the matrix trace to the tensor σ, and utilizing the incompressibility condition
div(u) = 0 in Ω, one arrives at

p = −1

d
tr(σ + u⊗ u) . (2.4)

Hence, replacing back (2.4) into (2.3), we find that (2.1) can be rewritten, equivalently, as follows:
Find (σ,u) in suitable spaces to be indicated below such that

1

ν
σd +

1

ν
(u⊗ u)d = ∇u in Ω ,

Du + F |u|ρ−2u− div(σ) = f in Ω ,

u = uD on Γ ,∫
Ω

tr(σ + u⊗ u) = 0 .

(2.5)

Note that (2.4) and the last equation of (2.5) establish that
∫

Ω p = 0, which is required for purposes
of uniqueness of the pressure.

2.2 The mixed variational formulation

We first recall from [7, Section 2.2] the following tensorial functional space

H(div4/3; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ L4/3(Ω)

}
,

endowed with the norm ‖τ‖div4/3;Ω := ‖τ‖0,Ω + ‖div(τ )‖0,4/3;Ω, and observe that the following de-
composition holds:

H(div4/3; Ω) = H0(div4/3; Ω)⊕ R I , (2.6)
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where

H0(div4/3; Ω) :=
{
τ ∈ H(div4/3; Ω) :

∫
Ω

tr(τ ) = 0
}
.

Hence, proceeding as in [7, eq. (2.14)], that is, multiplying the first two equations in (2.5) by suitable
test functions, integrating by parts, using (2.2) and the Dirichlet boundary condition, we find that
the mixed variational formulation of (2.5) reduces to: Find (σ,u) ∈ H0(div4/3; Ω)× L4(Ω) such that

a(σ, τ ) + b(τ ,u) +
1

ν

∫
Ω

(u⊗ u)d : τ = 〈τn,uD〉Γ ∀ τ ∈ H0(div4/3; Ω) ,

b(σ,v)− c(u,v)− F

∫
Ω
|u|ρ−2u · v = −

∫
Ω

f · v ∀v ∈ L4(Ω) ,

(2.7)

where, the bilinear forms a : H0(div4/3; Ω)×H0(div4/3; Ω)→ R, b : H0(div4/3; Ω)× L4(Ω)→ R, and
c : L4(Ω)× L4(Ω)→ R, are defined as

a(ζ, τ ) :=
1

ν

∫
Ω
ζd : τ d , b(τ ,v) :=

∫
Ω

v · div(τ ) , and c(z,v) := D

∫
Ω

z · v , (2.8)

for all (ζ, z), (τ ,v) ∈ H0(div4/3; Ω) × L4(Ω). Equivalently, defining the space X := H0(div4/3; Ω) ×
L4(Ω) equipped with the product norm

‖(τ ,v)‖X := ‖τ‖div4/3;Ω + ‖v‖0,4;Ω ∀ (τ ,v) ∈ X ,

and introducing, for each w ∈ L4(Ω), the bilinear form Aw : X×X→ R defined by

Aw((ζ, z), (τ ,v)) := A((ζ, z), (τ ,v)) + Bw((ζ, z), (τ ,v)) , (2.9)

with

A((ζ, z), (τ ,v)) := a(ζ, τ ) + b(τ , z) + b(ζ,v)− c(z,v) , and (2.10)

Bw((ζ, z), (τ ,v)) :=
1

ν

∫
Ω

(w ⊗ z)d : τ − F

∫
Ω
|w|ρ−2z · v , (2.11)

for all (ζ, z), (τ ,v) ∈ X, we deduce that (2.7) can be re-stated as (cf. [7, eq. (2.19)]): Find (σ,u) ∈ X
such that

Au((σ,u), (τ ,v)) = F(τ ,v) ∀ (τ ,v) ∈ X , (2.12)

where F ∈ X′ is defined by

F(τ ,v) := 〈τn,uD〉Γ −
∫

Ω
f · v ∀ (τ ,v) ∈ X . (2.13)

The well-posednees of (2.12) (equivalently of (2.7)), which makes use of a fixed-point estrategy
along with a recent result for perturbed saddle-point formulations in Banach spaces (cf. [16, Theorem
3.4]) and the Banach–Nečas–Babuška theorem, is established by [7, Theorem 1]. More precisely, given
r ∈ (0, r0], with r0 := min{r1, r2} and

r1 :=
ν γ

4
and r2 :=

(
γ

4 F |Ω|(4−ρ)/4

)1/(ρ−2)

, (2.14)

with γ the positive constant, independent of h, establishing a global inf-sup condition of the bilinear
form A (cf. (2.10) and [7, eq. (3.10)]), and under a smallness assumptions on the data, namely
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those detailed in [7, eqs. (3.18) and (3.26)], it is proved that a suitable operator mapping the ball

Wr :=
{

w ∈ L4(Ω) : ‖w‖0,4;Ω ≤ r
}

into itself, has a unique fixed-point u in it, which yields the

unique solution (σ,u) ∈ X of (2.12), with u ∈Wr. In addition, according to [7, eq. (3.16)] and using
the fact that u ∈ Wr, we observe that the bilinear form Au (cf. (2.9)) satisfies the following global
inf-sup condition

sup
0 6=(τ ,v)∈X

Au((ζ, z), (τ ,v))

‖(τ ,v)‖X
≥ γ

2
‖(ζ, z)‖X ∀ (ζ, z) ∈ X . (2.15)

2.3 The Galerkin scheme

We denote by h := max
{
hT : T ∈ Th

}
the size of a regular triangulation Th of Ω made up of triangles

T (when d = 2) or tetrahedra T (when d = 3) of diameter hT . In addition, given an integer ` ≥ 0 and
a subset S of R, we denote by P`(S) the space of polynomials of total degree at most ` defined on S.
Hence, for each integer k ≥ 0 and for each T ∈ Th, we define the local Raviart–Thomas space of order
k as

RTk(T ) := Pk(T ) ⊕ P̃k(T ) x ,

where x := (x1, . . . , xd)
t is a generic vector of R, P̃k(T ) is the space of polynomials of total degree

equal to k defined on T , and, according to the convention in Section 1, we set Pk(T ) := [Pk(T )]d.
Then, denoting by τ h,i the i-th row of a tensor τ h, we recall from [7, Section 4.3] the finite element
subspaces on Ω:

H̃σ
h :=

{
τ h ∈ H(div4/3; Ω) : τ h,i|T ∈ RTk(T ) ∀ i ∈

{
1, . . . , d

}
, ∀T ∈ Th

}
,

Hu
h :=

{
vh ∈ L4(Ω) : vh|T ∈ Pk(T ) ∀T ∈ Th

}
.

Thus, letting
Hσ
h := H̃σ

h ∩H0(div4/3; Ω) ,

the Galerkin scheme associated with (2.7) reads: Find (σh,uh) ∈ Hσ
h ×Hu

h such that

a(σh, τ h) + b(τ h,uh) +
1

ν

∫
Ω

(uh ⊗ uh)d : τ h = 〈τ hn,uD〉Γ ∀ τ h ∈ Hσ
h ,

b(σh,vh)− c(uh,vh)− F

∫
Ω
|uh|ρ−2uh · vh = −

∫
Ω

f · vh ∀vh ∈ Hu
h .

(2.16)

Similarly, setting Xh := Hσ
h × Hu

h , the Galerkin scheme associated with (2.12), which is certainly
equivalent to (2.16), becomes: Find (σh,uh) ∈ Xh such that

Auh
((σh,uh), (τ h,vh)) = F(τ h,vh) ∀ (τ h,vh) ∈ Xh . (2.17)

The solvability analysis and a priori error bounds for (2.17) (equivalently of (2.16)) are established
in [7, Theorems 2 and 4], respectively. Indeed, similarly as remarked at the end of Section 2.2, and
under the discrete analogues of the assumptions [7, eqs. (3.18) and (3.26)], which are detailed in [7,
eqs. (4.13) and (4.15)], given r̃ ∈ (0, r̃0], with r̃0 := min{r̃1, r̃2} and

r̃1 :=
ν γd

4
and r̃2 :=

(
γd

4 F |Ω|(4−ρ)/4

)1/(ρ−2)

, (2.18)

with γd the positive constant, independent of h, establishing a global discrete inf-sup condition for the
bilinear form A (cf. (2.10) and [7, eq. (4.8)]), it is proved that a suitable discrete operator mapping
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the ball Wr̃ :=
{

wh ∈ Hu
h : ‖wh‖0,4;Ω ≤ r̃

}
into itself, has a unique fixed-point uh in it, which

yields the unique (σh,uh) ∈ Xh of (2.17), with uh ∈ Wr̃. In particular, we recall for later use the
following a priori estimate

‖(σh,uh)‖X ≤
2CF

γd

{
‖f‖0,4/3;Ω + ‖uD‖1/2,Γ

}
, (2.19)

where CF := max{1, ‖i4‖} and ‖i4‖ is the norm of the continuous injection i4 of H1(Ω) into L4(Ω)
(cf. (2.13) and [7, eq. (3.4)]).

3 A posteriori error analysis

In this section we derive a reliable an efficient residual based a posteriori error estimator for the
Galerkin scheme (2.16) (equivalently (2.17)). To this end, from now on we employ the notations and
results from Appendix A. Recalling that (σh,uh) ∈ Xh is the unique solution of the discrete problem
(2.17), we define the global a posteriori error estimator Θ by

Θ :=

∑
T∈Th

Θ4
1,T


1/4

+

∑
T∈Th

Θ2
2,T


1/2

+

∑
T∈Th

Θ
4/3
3,T


3/4

, (3.1)

where, for each T ∈ Th, the local error indicators Θ4
1,T , Θ2

2,T , and Θ
4/3
3,T are defined as

Θ4
1,T := h4

T

∥∥∥∥∇uh −
1

ν

(
σh + (uh ⊗ uh)

)d∥∥∥∥4

0,4;T

+
∑

e∈Eh,T (Γ)

he ‖uD − uh‖40,4;e , (3.2)

Θ2
2,T := h2

T

∥∥∥∥curl

(
1

ν

(
σh + (uh ⊗ uh)

)d)∥∥∥∥2

0,T

+
∑

e∈Eh,T (Ω)

he

∥∥∥∥[[δ∗(1

ν

(
σh + (uh ⊗ uh)

)d)]]∥∥∥∥2

0,e

+
∑

e∈Eh,T (Γ)

he

∥∥∥∥δ∗(∇uD −
1

ν

(
σh + (uh ⊗ uh)

)d)∥∥∥∥2

0,e

,

(3.3)

and
Θ

4/3
3,T :=

∥∥f + div(σh)− Duh − F |uh|ρ−2uh
∥∥4/3

0,4/3;T
, (3.4)

where the jump and tangential component operators [[ ]] and δ∗ are defined in (A.1) and (A.2),
respectively. Notice that the last term of Θ2

2,T requires δ∗(∇uD)|e ∈ L2(e) for all e ∈ Eh(Γ), which is

guaranteed below by simply assuming that uD ∈ H1(Γ). Nevertheless, aiming to be more precise, one
just needs that ∇uD|Γ ∈ L2(Γ) for which it would actually suffice to assume that ∇uD|Γ coincides
with the trace of the gradient of a function in Ht(Ω), for some t > 3/2. In any case, we stress that
the Dirichlet data of the numerical results reported below in Section 4 do verify the firstly mentioned
assumption on uD.

The main goal of the present section is to establish, under suitable assumptions, the existence
of positive constants Ceff and Crel, independent of the meshsizes and the continuous and discrete
solutions, such that

Ceff Θ + h.o.t ≤ ‖(σ,u)− (σh,uh)‖X ≤ Crel Θ , (3.5)
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where h.o.t. is a generic expression denoting one or several terms of higher order. The upper and
lower bounds in (3.5), which are known as the reliability and efficiency of Θ, are derived below in
Sections 3.1 and 3.2, respectively.

3.1 Reliability of the a posteriori error estimator

The main result of this section is stated in the following theorem. To this end, we first let

r0 := min{r1, r2, r̃2} and γ̂ := min{γ, γd} , (3.6)

where, r1, r2 and r̃2 are defined in (2.14) and (2.18), respectively, whereas γ̂ is the same constant in
[7, eq. (5.1)] employed to derive the a priori error estimate stated in [7, Theorem 3]. In addition, we
recall from [25, Lemma 5.3] that for each m ≥ 2 there exists a constant C(m) > 0 such that∣∣|z|m−2z− |y|m−2y

∣∣ ≤ C(m)
(
|z|+ |y|

)m−2|z− y| ∀ z, y ∈ R . (3.7)

Then, given arbitrary w1, w2 ∈ L4(Ω), we apply (3.7) to the setting m = ρ− 1 ∈ [2, 3], z = (|w1|,0),
and y = (|w2|,0), with 0 ∈ Rd−1, denote cρ := C(ρ− 1), and conclude that there holds∣∣|w1|ρ−2 − |w2|ρ−2

∣∣ =
∣∣|w1|ρ−3(|w1|,0)− |w2|ρ−3(|w2|,0)

∣∣
≤ cρ

(
|w1|+ |w2|

)ρ−3 |w1 −w2| .
(3.8)

The aforementioned result is stated now.

Theorem 3.1 Assume that the data f and uD satisfy

(1 + 2 cρ)
CF

γ̂ r0

{
‖f‖0,4/3;Ω + ‖uD‖1/2,Γ

}
≤ 1

2
. (3.9)

Then, there exists a constant Crel > 0, independent of h, such that

‖(σ,u)− (σh,uh)‖X ≤ Crel Θ . (3.10)

We begin the proof of Theorem 3.1 with a preliminary lemma.

Lemma 3.2 Assume that the data f and uD satisfy (3.9). Then, there exists a positive constant C,
independent of h, such that

‖(σ,u)− (σh,uh)‖X ≤ C sup
06=(τ ,v)∈X

|R(τ ,v)|
‖(τ ,v)‖X

, (3.11)

where R : X→ R is the residual functional given by

R(τ ,v) := F(τ ,v)−Auh
((σh,uh), (τ ,v)) ∀ (τ ,v) ∈ X . (3.12)

Proof. First, applying the inf-sup condition (2.15) to the error (ζ, z) = (σ − σh,u− uh), adding and
substracting Buh

((σh,uh), (τ ,v)), and using (2.12), we deduce that

γ

2
‖(σ − σh,u− uh)‖X ≤ sup

06=(τ ,v)∈X

|R(τ ,v)|
‖(τ ,v)‖X

+ sup
0 6=(τ ,v)∈X

∣∣∣(Bu −Buh

)
((σh,uh), (τ ,v))

∣∣∣
‖(τ ,v)‖X

. (3.13)
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Then, proceeding similarly as for the derivation of [7, eq. (3.24)], that is, using (3.8) and the continuity
bounds [7, eqs. (3.22) and (3.23)], we find that(

Bu −Buh

)
((σh,uh), (τ ,v)) =

1

ν

∫
Ω

((u− uh)⊗ uh)d : τ − F

∫
Ω

(|u|ρ−2 − |uh|ρ−2)uh · v

≤
(

1

ν
+ F cρ |Ω|(4−ρ)/4

(
‖u‖0,4;Ω + ‖uh‖0,4;Ω

)ρ−3
)
‖u− uh‖0,4;Ω ‖uh‖0,4;Ω ‖(τ ,v)‖X .

(3.14)

Next, replacing (3.14) back into (3.13), using the subadditivity inequality for ρ − 3 ∈ [0, 1], and
bounding ‖u‖0,4;Ω +‖uh‖0,4;Ω by r2 + r̃2, which follows from the fact that u ∈Wr and uh ∈Wr̃, with
r ∈ (0, r0], r0 := min{r1, r2}, r̃ ∈ (0, r̃0], and r̃0 := min{r̃1, r̃2} (cf. (2.14), (2.18)), we arrive at

‖(σ − σh,u− uh)‖X ≤
2

γ
sup

0 6=(τ ,v)∈X

|R(τ ,v)|
‖(τ ,v)‖X

+

(
1

γd r1
+

(
1

γd r2
+

1

γ r̃2

)
cρ

)
γd
2
‖uh‖0,4;Ω‖u− uh‖0,4;Ω .

Finally, using the fact that 1/r1, 1/r2, 1/r̃2 and 1/γ, 1/γd are bounded by 1/r0 and 1/γ̂, respectively,
with r0 and γ̂ defined as in (3.6), bounding ‖uh‖0,4;Ω as in (2.19), and performing simple algebraic
manipulations, we get

‖(σ − σh,u− uh)‖X ≤
2

γ
sup

06=(τ ,v)∈X

|R(τ ,v)|
‖(τ ,v)‖X

+ (1 + 2 cρ)
CF

γ̂ r0

{
‖f‖0,4/3;Ω + ‖uD‖1/2,Γ

}
‖u− uh‖0,4;Ω .

(3.15)

Thus, employing (3.9) in (3.15), we obtain (3.11) with C = 4/γ and end the proof. �

We now aim to bound the supremum in (3.11). Indeed, in virtue of the definitions of the forms
Aw,Bw (cf. (2.8), (2.9), (2.10), (2.11)) and the functionals F,R (cf. (2.13), (3.12)), we find that, for
any (τ ,v) ∈ H0(div4/3; Ω)× L4(Ω), there holds

R(τ ,v) = R1(τ ) + R2(v) ,

where

R1(τ ) = 〈τn,uD〉Γ −
∫

Ω
uh · div(τ )− 1

ν

∫
Ω

(
σh + (uh ⊗ uh)

)d
: τ (3.16)

and

R2(v) = −
∫

Ω

(
f + div(σh)− Duh − F |uh|ρ−2uh

)
· v . (3.17)

Then, the supremum in (3.11) can be bounded in terms of R1 and R2 as follows

‖(σ − σh,u− uh)‖X ≤ C
{
‖R1‖H0(div4/3;Ω)′ + ‖R2‖L4(Ω)′

}
, (3.18)

and hence our next purpose is to derive suitable upper bounds for the two terms on the right-hand
side of (3.18). We begin by establishing the corresponding estimate for R2 (cf. (3.17)), which follow
from a straightforward application of the Hölder inequality.

Lemma 3.3 There holds

‖R2‖L4(Ω)′ ≤

∑
T∈Th

∥∥f + div(σh)− Duh − F |uh|ρ−2uh
∥∥4/3

0,4/3;T


3/4

.
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We now turn to the derivation of the corresponding estimate for ‖R1‖H0(div4/3;Ω)′ . To that end, we

first deduce from the definition of R1 (cf. (3.16)) and the first equation of the Galerkin scheme (2.16)
(cf. (2.17)) that R1(τ h) = 0 for all τ h ∈ Hσ

h , whence in the computation of

‖R1‖H0(div4/3;Ω)′ := sup
0 6=τ∈H0(div4/3;Ω)

R1(τ )

‖τ‖div4/3;Ω
, (3.19)

we can replace each term R1(τ ) by R1(τ − τ h), with a suitable τ h ∈ Hσ
h depending on the given

τ ∈ H0(div4/3; Ω). Indeed, we first consider the Helmholtz decomposition provided by Lemma A.2
part (b) (respectively (a) for the 2D setting), with p = 4/3, which says that for each τ ∈ H0(div4/3; Ω)

there exist ζ ∈W1,4/3(Ω) and ξ ∈ H1(Ω), such that

τ = ζ + curl(ξ) in Ω and ‖ζ‖1,4/3;Ω + ‖ξ‖1,Ω ≤ C4/3 ‖τ‖div4/3;Ω , (3.20)

with a positive constant C4/3 independent of τ . Then, setting

τ h := Πk
h(ζ) + curl(Ih(ξ)) + c I , (3.21)

where Πk
h and Ih are the tensor versions of the Raviart-Thomas and Clément interpolation operators

(cf. Appendix A), respectively, and the constant c is chosen so that tr(τ h) has a null mean value, we
readily see that τ h, which can be seen as a discrete Helmholtz decomposition of τ , belongs to Hσ

h . In
this way, using again the first equation of the Galerkin scheme (2.16) and the compatibility condition
(2.2) we deduce that R1(c I) = 0, so that denoting

ζ̂ := ζ −Πk
h(ζ) and ξ̂ := ξ − Ih(ξ) ,

it follows from (3.20) and (3.21), that

R1(τ ) = R1(τ − τ h) = R1(ζ̂) +R1(curl(ξ̂)) , (3.22)

where, according to the definition of R1 (cf. (3.16)), we find that

R1

(
ζ̂
)

=
〈
ζ̂n,uD

〉
Γ
−
∫

Ω
uh · div(ζ̂)− 1

ν

∫
Ω

(
σh + (uh ⊗ uh)

)d
: ζ̂ (3.23)

and

R1

(
curl(ξ̂)

)
=
〈
curl(ξ̂)n,uD

〉
Γ
− 1

ν

∫
Ω

(
σh + (uh ⊗ uh)

)d
: curl(ξ̂) . (3.24)

The following lemma establishes the residual upper bound for ‖R1‖H0(div4/3;Ω)′ .

Lemma 3.4 Assume that uD ∈ H1(Γ). Then, there exists a positive constant C, independent of h,
such that

‖R1‖H0(div4/3;Ω)′ ≤ C


∑
T∈Th

Θ4
1,T

1/4

+

∑
T∈Th

Θ2
2,T

1/2
 , (3.25)

where Θ1,T and Θ2,T are defined in (3.2) and (3.3), respectively.

Proof. We proceed as in [8, Lemma 3.6] (see also [22, Lemma 3.7]). In fact, according to (3.22), we
begin by estimating R1(ζ̂). Let us first observe that, for each e ∈ Eh, the identity (A.6) and the fact
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that uh|e ∈ Pk(e), yield

∫
e
ζ̂n · uh = 0. Hence, locally integrating by parts the second term in (3.23),

we readily obtain

R1(ζ̂) =
∑

e∈Eh(Γ)

∫
e

(uD − uh) · ζ̂n +

∫
Ω

(
∇uh −

1

ν

(
σh + (uh ⊗ uh)

)d)
: ζ̂ .

Thus, applying the Hölder inequality along with the approximation properties of Πk
h (cf. (A.10)–(A.11)

in Lemma A.1) with p = 4/3 and ` = 0, and the stability estimate (3.20), we find that

∣∣R1(ζ̂)
∣∣ ≤ Ĉ1

{ ∑
T∈Th

h4
T

∥∥∥∥∇uh −
1

ν

(
σh + (uh ⊗ uh)

)d∥∥∥∥4

0,4;T

+
∑

e∈Eh(Γ)

he ‖uD − uh‖40,4;e

}1/4

‖τ‖div4/3;Ω .

(3.26)

Next, we estimate R1(curl(ξ̂)) (cf. (3.24)). In fact, regarding its first term, a suitable integration by
parts formula on the boundary Γ, obtained from [24, Chapter I, eq. (2.17) and Theorem 2.11] (see
also [17, Lemma 3.5, eq. (3.35) for 2D case]), yields〈

curl(ξ̂)n,uD

〉
Γ

= −
〈
∇uD × n, ξ̂

〉
Γ

= −
〈
δ∗ (∇uD) , ξ̂

〉
Γ
. (3.27)

In turn, locally integrating by parts the second term of R1(curl(ξ̂)), we get

1

ν

∫
Ω

(
σh + (uh ⊗ uh)

)d
: curl(ξ̂) =

∑
T∈Th

∫
T

curl

(
1

ν

(
σh + (uh ⊗ uh)

)d) · ξ̂
−

∑
e∈Eh(Ω)

∫
e

[[
δ∗

(
1

ν

(
σh + (uh ⊗ uh)

)d)]] · ξ̂ − ∑
e∈Eh(Γ)

∫
e
δ∗

(
1

ν

(
σh + (uh ⊗ uh)

)d) · ξ̂ ,
which together with (3.27), the Cauchy–Schwarz inequality, the approximation properties of Ih (cf.
Lemma A.3), and again the stability estimate (3.20), implies

∣∣R1(curl(ξ̂))
∣∣ ≤ Ĉ2

{ ∑
T∈Th

h2
T

∥∥∥∥curl

(
1

ν

(
σh + (uh ⊗ uh)

)d)∥∥∥∥2

0,T

+
∑

e∈Eh(Ω)

he

∥∥∥∥[[δ∗(1

ν

(
σh + (uh ⊗ uh)

)d)]]∥∥∥∥2

0,e

+
∑

e∈Eh(Γ)

he

∥∥∥∥δ∗(∇uD −
1

ν

(
σh + (uh ⊗ uh)

)d)∥∥∥∥2

0,e

}1/2

‖τ‖div4/3;Ω .

(3.28)

Finally, it is easy to see that (3.19), (3.22), (3.26), (3.28), and the definitions of the local estimators
Θ1,T ,Θ2,T (cf. (3.2), (3.3)) give (3.25), which ends the proof. �

We end this section by stressing that the reliability estimate (3.10) (cf. Theorem 3.1) follows by
bounding the terms ‖R1‖H0(div4/3;Ω)′ and ‖R2‖L4(Ω)′ in (3.18) by the corresponding upper bounds

derived in Lemmas 3.3 and 3.4, and considering the definition of the global estimator Θ (cf. (3.1)).
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3.2 Efficiency of the a posteriori error estimator

We now aim to establish the efficiency estimate of Θ (cf. (3.1)). For this purpose, we will make
extensive use of the notations and results from Appendix B, and the original system of equations
given by (2.5), which is recovered from the mixed continuous formulation (2.12) (cf. (2.7)) by choosing
suitable test functions and integrating by parts backwardly the corresponding equations. The following
theorem is the main result of this section.

Theorem 3.5 Assume, for simplicity, that uD is piecewise polynomial. Then, there exists a positive
constant Ceff, independent of h, such that

Ceff Θ + h.o.t. ≤ ‖(σ,u)− (σh,uh)‖X , (3.29)

where h.o.t. stands for one or several terms of higher order.

Throughout this section we assume, without loss of generality, that f and uD, are all piecewise
polynomials. Otherwise, if f and uD are sufficiently smooth, one proceeds similarly to [11, Section
6.2], so that higher order terms given by the errors arising from suitable polynomial approximation of
these functions appear in (3.29), which explains the eventual h.o.t. in this inequality.

We begin deriving the efficiency estimate (3.29) with the following result for the term defining Θ3,T

(cf. (3.4)).

Lemma 3.6 There exists a positive constant C1, independent of h, such that∥∥f + div(σh)− Duh − F |uh|ρ−2uh
∥∥4/3

0,4/3;T

≤ C1

{
‖σ − σh‖

4/3
div4/3;T + ‖u− uh‖

4/3
0,4;T +

∥∥|u|ρ−2u− |uh|ρ−2uh
∥∥4/3

0,4/3;T

}
∀T ∈ Th .

Proof. It suffices to recall that Du + F |u|ρ−2u − div(σ) = f in Ω (cf. (2.5)) and apply triangle
inequality. We omit further details. �

Now we proceed by deriving the estimates for the terms defining Θ1,T (cf. (3.2)).

Lemma 3.7 There exists a positive constant C2, independent of h, such that

h4
T

∥∥∥∥∇uh −
1

ν

(
σh + (uh ⊗ uh)

)d∥∥∥∥4

0,4;T

≤ C2

{
h2
T ‖σ − σh‖40,T + ‖u− uh‖40,4;T + h2

T ‖u⊗ u− uh ⊗ uh‖40,T
}
∀T ∈ Th .

(3.30)

Proof. We proceed as in the proof of [9, Lemma 5.15]. In fact, given T ∈ Th, we begin by applying
the tensor version of the left-hand side inequality of (B.2) (cf. Lemma B.1), with p = 4 and q = 4/3,

to the local polinomial χT := ∇uh −
1

ν

(
σh + (uh ⊗ uh)

)d ∈ Pk(T ), which gives

c1 ‖χT ‖0,4;T ≤ sup
0 6=τ∈Pk(T )

∫
T
χT : (ψTτ )

‖τ‖0,4/3;T
. (3.31)
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Then, using the identity ∇u =
1

ν
(σ + (u⊗ u))d in Ω (cf.(2.5)), and integrating by parts along with

(B.1), we find that∫
T
χT : (ψTτ ) =

∫
T

{
∇(uh − u) +

1

ν

(
(σ − σh) + (u⊗ u− uh ⊗ uh)

)d}
: ψTτ

=

∫
T

(u− uh) · div(ψTτ ) +

∫
T

1

ν

(
(σ − σh) + (u⊗ u− uh ⊗ uh)

)d
: ψTτ ,

from which, employing the Hölder and Cauchy-Schwarz inequalities, noting that

‖div(ψTτ )‖0,4/3;T ≤ ‖∇(ψTτ )‖0,4/3;T

and then applying the right-hand side inequality of (B.3), along with the fact that 0 ≤ ψT ≤ 1, we
obtain ∫

T
χT : (ψTτ ) ≤ c3 h

−1
T ‖u− uh‖0,4;T ‖τ‖0,4/3;T

+
1

ν

(
‖σ − σh‖0,T + ‖u⊗ u− uh ⊗ uh‖0,T

)
‖τ‖0,T .

(3.32)

In turn, according to the local inverse inequality (B.4) (cf. Lemma B.2) with d = 2, ` = m = 0, r = 2,
and s = 4/3, there holds

‖τ‖0,T ≤ c h
−1/2
T ‖τ‖0,4/3;T ,

and thus (3.32) becomes∫
T
χT : (ψTτ ) ≤ C

{
h−1
T ‖u− uh‖0,4;T + h−1/2

(
‖σ − σh‖0,T + ‖u⊗ u− uh ⊗ uh‖0,T

)}
‖τ‖0,4/3;T ,

which replaced back into (3.31), and multiplying the resulting inequality by hT , we get

hT

∥∥∥∥∇uh −
1

ν

(
σh + (uh ⊗ uh)

)d∥∥∥∥
0,4;T

≤ C
{
‖u− uh‖0,4;T + h

1/2
T ‖σ − σh‖0,T + h

1/2
T ‖u⊗ u− uh ⊗ uh‖0,T

}
,

so that taking the foregoing inequality to the power 4 the required bound is obtained. �

The remaining local efficiency estimate for Θ1,T (cf. (3.2)) is established as follows.

Lemma 3.8 Assume that uD is piecewise polynomial. Then, there exists a positive constant C3 > 0,
independent of h, such that

he ‖uD − uh‖40,4;e ≤ C3

{
h2
Te ‖σ − σh‖

4
0,Te + ‖u− uh‖40,4;Te + h2

Te ‖u⊗ u− uh ⊗ uh‖40,Te
}
,

for all e ∈ Eh(Γ), and where Te is the triangle/tetrahedron of Th having e as an edge/face.

Proof. It follows from a slight adaptation of [22, Lemma 3.16], we include the proof for the sake
of completeness. In fact, given e ∈ Eh(Γ), we first observe that the local inverse inequality (B.4)
with d = 1, ` = m = 0, r = 4, and s = 2, and the fact that u = uD on Γ, yields ‖uD − uh‖0,4;e ≤
c h
−1/4
e ‖u−uh‖0,e. Hence, taking the above to the power 4, applying the vector version of the discrete
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trace inequality (B.5) (cf. Lemma B.3) with p = 2, recalling that
1

ν

(
σ + (u ⊗ u)

)d
= ∇u in Ω,

employing the triangle inequality and some algebraic computations, we find that

he ‖uD − uh‖40,4;e ≤ C

{
h−1
Te
‖u− uh‖20,Te + hTe

∥∥∥∥1

ν

(
σ + (u⊗ u)

)d −∇uh

∥∥∥∥2

0,Te

}2

≤ C

{
h−2
Te
‖u− uh‖40,Te + h2

Te ‖σ − σh‖
4
0,Te

+h2
Te ‖u⊗ u− uh ⊗ uh‖40,Te + h2

Te

∥∥∥∥∇uh −
1

ν

(
σ + (u⊗ u)

)d∥∥∥∥4

0,Te

}
.

(3.33)

Next, and owing to Cauchy–Schwarz’s inequality and the fact that |Te| ∼= hdTe , with d ∈ {2, 3}, we
have that

‖w‖40,Te ≤ |Te| ‖w‖
4
0,4;Te ≤ c hdTe ‖w‖

4
0,4;Te ≤ c h2

Te ‖w‖
4
0,4;Te ∀w ∈ L4(Te)

and it follows from (3.33) that

he ‖uD − uh‖40,4;e ≤ C

{
‖u− uh‖40,4;Te + h2

Te ‖σ − σh‖
4
0,Te

+h2
Te ‖u⊗ u− uh ⊗ uh‖40,Te + h4

Te

∥∥∥∥∇uh −
1

ν

(
σ + (u⊗ u)

)d∥∥∥∥4

0,4;Te

}
.

Finally, as a consequence of (3.30) (cf. Lemma 3.7) we can bound the last term in the foregoing
inequality, and this step concludes the proof. �

The corresponding bounds for the terms defining Θ2,T (cf. (3.3)) are stated in the following lemma.

Lemma 3.9 There exist C4 > 0 and C5 > 0, independent of h, such that

h2
T

∥∥∥∥curl

(
1

ν

(
σh + (uh ⊗ uh)

)d)∥∥∥∥2

0,T

≤ C4

{
‖σ − σh‖20,T + ‖u⊗ u− uh ⊗ uh‖20,T

}
(3.34)

for all T ∈ Th and

he

∥∥∥∥[[δ∗(1

ν

(
σh + (uh ⊗ uh)

)d)]]∥∥∥∥2

0,e

≤ C5

{
‖σ − σh‖20,ωe

+ ‖u⊗ u− uh ⊗ uh‖20,ωe

}
(3.35)

for all e ∈ Eh(Ω), where ωe denotes the union of the two elements of Th sharing the edge/face e.
Additionally, if uD is piecewise polynomial, there exists C6 > 0, independent of h, such that

he

∥∥∥∥δ∗(∇uD −
1

ν

(
σh + (uh ⊗ uh)

)d)∥∥∥∥2

0,e

≤ C6

{
‖σ − σh‖20,Te + ‖u⊗ u− uh ⊗ uh‖20,Te

}
(3.36)

for all e ∈ Eh(Γ), where Te is the element to which the boundary edge/face e belongs.

Proof. First, noting that curl

(
1

ν

(
σ + (u⊗ u)

)d)
= curl (∇u) = 0 in Ω, we find that (3.34)–(3.35)

follows from a slight adaptation of [23, Lemma 4.11], whereas for the proof of (3.36) we refer the
reader to [23, Lemma 4.15]. �
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In order to complete the global efficiency given by (3.29) (cf. Theorem 3.5), we now need to estimate

the terms
∥∥|u|ρ−2u− |uh|ρ−2uh

∥∥4/3

0,4/3;T
and ‖u ⊗ u − uh ⊗ uh‖j0,T , with j ∈ {2, 4}, appearing in the

upper bounds provided by Lemmas 3.6 and 3.7–3.9, respectively. To this end, we first make use of
(3.7) with m = ρ, the Hölder inequality with p = 3/2 and q = 3 satisfying 1/p+ 1/q = 1, and simple
algebraic manipulations, to obtain∥∥|u|ρ−2u− |uh|ρ−2uh

∥∥4/3

0,4/3;T
≤ ĉρ

(
‖u‖4(ρ−2)/3

0,2(ρ−2);T + ‖uh‖
4(ρ−2)/3
0,2(ρ−2);T

)
‖u− uh‖

4/3
0,4;T ,

with ĉρ depending on ρ. Then, applying Hölder inequality and some algebraic computations, we find
that ∑

T∈Th

∥∥|u|ρ−2u− |uh|ρ−2uh
∥∥4/3

0,4/3;T

≤ ĉρ

∑
T∈Th

(
‖u‖4(ρ−2)/3

0,2(ρ−2);T + ‖uh‖
4(ρ−2)/3
0,2(ρ−2);T

)3/2


2/3∑

T∈Th

‖u− uh‖40,4;T


1/3

≤ 3
√

2 ĉρ

(
‖u‖4(ρ−2)/3

0,2(ρ−2);Ω + ‖uh‖
4(ρ−2)/3
0,2(ρ−2);Ω

)
‖u− uh‖

4/3
0,4;Ω .

(3.37)

In this way, using the Sobolev embedding of L4(Ω) into L2(ρ−2)(Ω), with 2(ρ − 2) ∈ [2, 4], and the
fact that u ∈Wr and uh ∈Wr̃, we deduce from (3.37) that there exists a constant C > 0, depending
only on r, r̃ and other constants, and hence independent of h, such that∑

T∈Th

∥∥|u|ρ−2u− |uh|ρ−2uh
∥∥4/3

0,4/3;T
≤ C ‖u− uh‖

4/3
0,4;Ω . (3.38)

Similarly, adding and subtracting u⊗uh (it also works with uh⊗u), and applying Cauch–Schwarz’s
inequality, we deduce that

‖u⊗ u− uh ⊗ uh‖0,T ≤
(
‖u‖0,4;T + ‖uh‖0,4;T

)
‖u− uh‖0,4;T ,

so that proceeding analogously to (3.37) and using again the fact that u ∈Wr and uh ∈Wr̃, we are
able to show that there exists a positive constant C̃, independent of h, such that∑

T∈Th

‖u⊗ u− uh ⊗ uh‖40,T ≤ C̃ ‖u− uh‖40,4;Ω . (3.39)

The case of (3.39) with exponent j = 2 is analogous. Consequently, it is not difficult to see that (3.29)
follows from the definition of Θ (cf. (3.1)–(3.4)), Lemmas 3.6, 3.7, 3.8, and 3.9, and the estimates
(3.38) and (3.39).

4 Numerical results

This section serves to illustrate the performance and accuracy of the mixed finite element scheme
(2.16) (cf. (2.17)) along with the reliability and efficiency properties of the a posteriori error estimator
Θ (cf. (3.1)) derived in Section 3. In what follows, we refer to the corresponding sets of finite element
subspaces generated by k = 0 and k = 1, as simply RT0 − P0 and RT1 − P1, respectively. The
implementation is based on a FreeFem++ code [26]. Regarding the implementation of the Newton
iterative method associated to (2.16) (see [7, eq. (6.1) in Section 6] for details), the iterations are
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terminated once the relative error of the entire coefficient vectors between two consecutive iterates,
say coeffm and coeffm+1, is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖DoF
‖coeffm+1‖DoF

≤ tol,

where ‖ · ‖DoF stands for the usual Euclidean norm in RDoF, with DoF denoting the total number of
degrees of freedom defining the finite element subspaces Hσ

h and Hu
h stated in Section 2.3, and tol is

a fixed tolerance chosen as tol=1E-06.

The global error and the effectivity index associated to the global estimator Θ (cf. (3.1)) are
denoted, respectively, by

e(σ,u) := e(σ) + e(u) and eff(Θ) :=
e(σ,u)

Θ
,

where
e(σ) := ‖σ − σh‖div4/3;Ω and e(u) := ‖u− uh‖0,4;Ω .

We emphasize that other variables of physical interest such as the pressure, velocity gradient, vorticity
and shear stress tensor can be computed using the postprocessing formulae detailed in [7, Section 5].
However, for the sake of simplicity, we only present some plots in Examples 2–4 for the pressure and
velocity gradient (cf. (2.4) and [7, eq. (5.8)]), using the formulae

ph := −1

d
tr(σh + uh ⊗ uh) +

1

d |Ω|

∫
Ω

tr(uh ⊗ uh) and Gh :=
1

ν

(
σd
h + (uh ⊗ uh)d

)
.

Moreover, using the fact that DoF−1/d ∼= h, the respective experimental rates of convergence are
computed as

r(�) := − d log(e(�)/e′(�))
log(DoF/DoF′)

for each � ∈
{
σ,u, (σ,u)

}
,

where DoF and DoF′ denote the total degrees of freedom associated to two consecutive triangulations
with errors e and e′, respectively.

The examples to be considered in this section are described next. In all of them, for sake of
simplicity, we take ν = 1. In turn, in the first three examples we consider the parameters F = 10
and D = 1. In addition, the null mean value of tr(σh) over Ω is fixed via a real Lagrange multiplier
strategy.

Example 1 is used to corroborate the reliability and efficiency of the a posteriori error estimator
Θ, whereas Examples 2, 3 and 4 are utilized to illustrate the behavior of the associated adaptive
algorithm in 2D and 3D domains with and without manufactured solution, respectively, which applies
the following procedure from [30]:

(1) Start with a coarse mesh Th.

(2) Solve the Newton iterative method associated to (2.16) for the current mesh Th.

(3) Compute the local indicator ΘT for each T ∈ Th, where

ΘT := Θ1,T + Θ2,T + Θ3,T , (cf. (3.2), (3.3), (3.4))

(4) Check the stopping criterion and decide whether to finish or go to next step.
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RT0 −P0 scheme with quasi-uniform refinement
DoF h it e(σ) r(σ) e(u) r(u) e(σ,u) r(σ,u) Θ eff(Θ)

196 0.373 4 4.43E-00 – 2.49E-01 – 4.68E-00 – 9.34E-00 0.501
792 0.196 4 1.94E-00 1.179 1.09E-01 1.185 2.05E-00 1.179 4.34E-00 0.473

3084 0.098 4 9.72E-01 1.020 5.45E-02 1.017 1.03E-00 1.020 2.22E-00 0.463
12208 0.048 4 4.74E-01 1.042 2.63E-02 1.059 5.01E-01 1.043 1.11E-00 0.452
48626 0.028 4 2.40E-01 0.989 1.34E-02 0.978 2.53E-01 0.988 5.55E-01 0.455

196242 0.014 4 1.19E-01 1.008 6.63E-03 1.007 1.25E-01 1.008 2.76E-01 0.454

RT1 −P1 scheme with quasi-uniform refinement
DoF h it e(σ) r(σ) e(u) r(u) e(σ,u) r(σ,u) Θ eff(Θ)

608 0.373 4 5.31E-01 – 2.66E-02 – 5.57E-01 – 1.73E-00 0.323
2496 0.196 4 1.23E-01 2.073 6.68E-03 1.959 1.29E-01 2.068 3.88E-01 0.334
9792 0.098 4 3.12E-02 2.003 1.67E-03 2.026 3.29E-02 2.004 9.84E-02 0.334

38912 0.048 4 7.90E-03 1.993 4.32E-04 1.962 8.33E-03 1.991 2.44E-02 0.342
155296 0.028 4 1.99E-03 1.995 1.08E-04 1.999 2.09E-03 1.995 6.19E-03 0.338
627360 0.014 4 4.83E-04 2.025 2.63E-05 2.027 5.10E-04 2.025 1.51E-03 0.337

Table 4.1: [Example 1] Number of degrees of freedom, meshsizes, Newton iteration count, errors, rates
of convergence, global estimator, and effectivity index for the RTk −Pk mixed approximations, with
k ∈ {0, 1}, for the convective Brinkman–Forchheimer model with ρ = 3.

(5) Use the automatic meshing algorithm adaptmesh from [27, Section 9.1.9] to refine each T ′ ∈ Th
satisfying:

ΘT ′ ≥ Cadm
1

#T

∑
T∈Th

ΘT , for some Cadm ∈ (0, 1), (4.1)

where #T denotes the number of triangles of the mesh Th.

(6) Define resulting mesh as current mesh Th, and go to step (2).

In particular, in Examples 2 and 4 below we take Cadm = 0.8 (cf. (4.1)), whereas for Example 3 we
choose Cadm = 0.85.

Example 1: Accuracy assessment with a smooth solution in a square domain.

In the first example, we concentrate on the accuracy of the mixed method (2.16). The domain is the
square Ω := (0, 1)2. We choose the inertial power ρ = 3, and adjust the data f and uD such that a
manufactured solution of (2.5) is given by the smooth functions

u(x) :=

(
sin(π x1) cos(π x2)
− cos(π x1) sin(π x2)

)
and p(x) := cos(π x1) sin

(π
2
x2

)
.

The errors and associated rates of convergence are reported in Table 4.1, which are in accordance
with the theoretical bounds established in [7, Theorem 4]. In addition, we also compute the global a
posteriori error indicator Θ (cf. (3.1)), and measure its reliability and efficiency with the effectivity
index. Notice that the estimator remain always bounded.
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Figure 4.1: [Example 2] Log-log plot of e(σ,u) vs. DoF for quasi-uniform/adaptive refinements for
k = 0 and k = 1 (left and right plots, respectively).

Example 2: Adaptivity in a 2D four-to-one contraction domain.

The second example is aimed at testing the features of adaptive mesh refinement after the a posteriori
error estimator Θ (cf. (3.1)). We consider a 2D four-to-one contraction domain Ω := (0, 2) × (0, 1) \
(1, 2) × (0.25, 1) and parameter ρ = 3.5. The data f and uD are chosen so that the exact solution is
given by

u(x) :=

(
− cos(πx1) sin(πx2)
sin(πx1) cos(πx2)

)
and p(x) :=

10 (x2 − 0.25)

(x1 − 1.02)2 + (x2 − 0.27)2
− p0 ,

where p0 ∈ R is a constant chosen in such a way
∫

Ω p = 0. Notice that the pressure exhibit high
gradients near the vertex (1, 0.25).

Tables 4.2 and 4.3 along with Figure 4.1, summarizes the convergence history of the method applied
to a sequence of quasi-uniformly and adaptively refined triangulation of the domain. Suboptimal rates
are observed in the first case, whereas adaptive refinement according to the a posteriori error indicator
Θ yields optimal convergence and stable effectivity indexes. Notice how the adaptive algorithms
improves the efficiency of the method by delivering quality solutions at a lower computational cost, to
the point that it is possible to get a better one (in terms of e(σ,u)) with approximately only the 3%
of the degrees of freedom of the last quasi-uniform mesh for the mixed scheme in both cases k = 0 and
k = 1. Furthermore, the initial mesh and approximate solutions built using the adaptive RT1 − P1

scheme (via Θ) with 351, 102 degrees of freedom and 21, 879 triangles, are shown in Figure 4.2. We
observe there that the pressure exhibits high gradients in the contraction region. In turn, examples of
some adapted meshes for k = 0 and k = 1 are collected in Figure 4.3. We notice a clear clustering of
elements near the corner region of the contraction of the 2D four-to-one domain as we expected.

Example 3: Adaptivity in a 3D L-shape domain.

Here, we replicate the Example 2 in a three-dimensional setting but now considering the 3D L-shape
domain Ω := (−0.5, 0.5)× (0, 0.5)× (−0.5, 0.5) \ (0, 0.5)3, the parameter ρ = 4, and the manufactured
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RT0 −P0 scheme with quasi-uniform refinement
DoF h it e(σ) r(σ) e(u) r(u) e(σ,u) r(σ,u) Θ eff(Θ)

244 0.373 5 2.05E+02 – 1.03E-00 – 2.06E+02 – 2.33E+02 0.882
968 0.206 4 1.60E+02 0.356 5.37E-01 0.938 1.61E+02 0.359 1.79E+02 0.897

3816 0.103 4 1.57E+02 0.030 4.34E-01 0.310 1.57E+02 0.030 1.71E+02 0.920
15062 0.049 4 9.28E+01 0.766 1.42E-01 1.633 9.30E+01 0.767 1.03E+02 0.899
59734 0.026 4 5.17E+01 0.850 5.20E-02 1.455 5.17E+01 0.851 5.87E+01 0.882

238498 0.013 4 2.60E+01 0.991 1.46E-02 1.838 2.60E+01 0.992 3.00E+01 0.869

RT0 −P0 scheme with adaptive refinement via Θ
DoF it e(σ) r(σ) e(u) r(u) e(σ,u) r(σ,u) Θ eff(Θ)

244 5 2.05E+02 – 1.03E-00 – 2.06E+02 – 2.33E+02 0.882
480 4 1.60E+02 0.732 4.70E-01 2.306 1.60E+02 0.738 1.74E+02 0.920
848 4 1.05E+02 1.489 2.26E-01 2.572 1.05E+02 1.492 1.17E+02 0.894

1350 4 5.64E+01 2.657 2.07E-01 0.373 5.66E+01 2.651 6.63E+01 0.855
2592 4 3.70E+01 1.290 1.43E-01 1.144 3.72E+01 1.290 4.43E+01 0.840
4386 4 2.85E+01 0.998 1.13E-01 0.880 2.86E+01 0.997 3.42E+01 0.837
7784 4 2.18E+01 0.942 7.95E-02 1.233 2.18E+01 0.943 2.61E+01 0.838

13816 4 1.59E+01 1.095 5.88E-02 1.053 1.59E+01 1.095 1.92E+01 0.830
25198 4 1.21E+01 0.895 4.21E-02 1.109 1.22E+01 0.895 1.46E+01 0.835
45852 4 8.98E-00 1.008 2.91E-02 1.238 9.01E-00 1.009 1.08E+01 0.834
85656 4 6.63E-00 0.970 2.08E-02 1.079 6.65E-00 0.970 7.97E-00 0.835

157064 4 4.94E-00 0.971 1.45E-02 1.177 4.96E-00 0.972 5.93E-00 0.836

Table 4.2: [Example 2, k = 0] Comparison of the RT0 −P0 mixed approximation with quasi-uniform
and adaptive refinements for the convective Brinkman–Forchheimer model with ρ = 3.5.

RT1 −P1 scheme with quasi-uniform refinement
DoF h it e(σ) r(σ) e(u) r(u) e(σ,u) r(σ,u) Θ eff(Θ)

752 0.373 4 1.49E+02 – 7.21E-01 – 1.50E+02 – 2.04E+02 0.736
3040 0.206 4 9.76E+01 0.608 2.14E-01 1.742 9.78E+01 0.612 1.24E+02 0.789

12096 0.103 4 9.06E+01 0.108 1.15E-01 0.903 9.07E+01 0.109 1.10E+02 0.829
47968 0.049 4 3.30E+01 1.469 2.57E-02 2.172 3.30E+01 1.469 4.18E+01 0.788

190688 0.026 4 1.11E+01 1.575 4.28E-03 2.595 1.11E+01 1.575 1.39E+01 0.800
762272 0.013 4 3.01E-00 1.888 6.91E-04 2.633 3.01E-00 1.888 3.76E-00 0.799

RT1 −P1 scheme with adaptive refinement via Θ
DoF it e(σ) r(σ) e(u) r(u) e(σ,u) r(σ,u) Θ eff(Θ)

752 4 1.49E+02 – 7.21E-01 – 1.50E+02 – 2.04E+02 0.736
1500 4 9.94E+01 1.177 1.38E-01 4.794 9.95E+01 1.187 1.23E-02 0.809
2618 4 3.63E+01 3.613 3.16E-02 5.291 3.64E+01 3.615 4.49E+01 0.811
4384 4 9.13E-00 5.361 2.95E-02 0.260 9.16E-00 5.352 1.25E+01 0.734

10446 4 3.91E-00 1.950 1.49E-02 1.576 3.93E-00 1.948 5.20E-00 0.759
22888 4 1.78E-00 2.005 5.67E-03 2.464 1.79E-00 2.006 2.38E-00 0.751
55878 4 7.40E-01 1.972 2.04E-03 2.291 7.42E-01 1.973 9.72E-01 0.763

133520 4 3.21E-01 1.919 7.70E-04 2.236 3.21E-01 1.920 4.25E-01 0.756
351102 4 1.27E-01 1.918 3.19E-04 1.823 1.27E-01 1.918 1.64E-01 0.774

Table 4.3: [Example 2, k = 1] Comparison of the RT1 −P1 mixed approximation with quasi-uniform
and adaptive refinements for the convective Brinkman–Forchheimer model with ρ = 3.5.

19



Figure 4.2: [Example 2] Initial mesh, computed magnitude of the velocity, and pressure field.

Figure 4.3: [Example 2] Three snapshots of adapted meshes according to the indicator Θ for k = 0
and k = 1 (top and bottom plots, respectively).

exact solutions given by

u(x) :=

 sin(πx1) cos(πx2) cos(πx3)
−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

 and p(x) :=
10x3

(x1 − 0.02)2 + (x3 − 0.02)2
− p0 ,

where p0 ∈ R is a constant chosen in such a way
∫

Ω p = 0. Similarly, Table 4.4 along with the Figure 4.4
confirm a disturbed convergence under quasi-uniform refinement and optimal convergence rates when
using adaptive refinement guided by the a posteriori error estimator Θ. In turn, the initial mesh and
approximate solutions built using the adaptive RT0 − P0 scheme (via Θ) with 1, 275, 474 degrees of
freedom and 139, 230 tetrahedra, are shown in Figure 4.5, whereas snapshots of three meshes via Θ
are shown in Figure 4.6 observing a clear clustering of elements around the contraction region.

Example 4: Flow through a 2D porous media with fracture network.

Inspired by [7, Example 3 in Section 6] and [6, Example 4 in Section 6], we finally focus on a flow
through a porous medium with a fracture network considering strong jump discontinuities of the
parameters F and D accross the two regions. We consider the square domain Ω = (−1, 1)2 with
an internal fracture network denoted as Ωf (see the first plot of Figure 4.7 below), and boundary
Γ, whose left, right, upper and lower parts are given by Γleft = {−1} × (−1, 1), Γright = {1} ×
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RT0 −P0 scheme with quasi-uniform refinement
DoF h it e(σ) r(σ) e(u) r(u) e(σ,u) r(σ,u) Θ eff(Θ)

1464 0.354 5 1.16E+02 – 8.78E-01 – 1.17E+02 – 1.20E+02 0.977
11040 0.177 5 1.06E+02 0.143 6.08E-01 0.546 1.06E+02 0.145 1.03E+02 1.032
57624 0.101 4 9.40E+01 0.213 4.17E-01 0.683 9.45E+01 0.215 9.00E+01 1.049

285984 0.059 4 7.10E+01 0.527 2.30E-01 1.117 7.12E+01 0.529 6.75E+01 1.055
1518804 0.034 4 4.63E+01 0.767 1.11E-01 1.305 4.64E+01 0.769 4.40E+01 1.055

RT0 −P0 scheme with adaptive refinement via Θ
DoF it e(σ) r(σ) e(u) r(u) e(σ,u) r(σ,u) Θ eff(Θ)

1464 5 1.16E+02 – 8.78E-01 – 1.17E+02 – 1.20E+02 0.977
5943 5 1.09E+02 0.136 6.62E-01 0.603 1.10E+02 0.139 1.07E+02 1.032

42579 4 9.11E+01 0.277 3.66E-01 0.903 9.15E+01 0.280 8.88E+01 1.030
148755 4 6.13E+01 0.949 1.81E-01 1.686 6.15E+01 0.951 5.84E+01 1.053

1275474 4 2.38E+01 1.322 4.02E-02 2.102 2.38E+01 1.324 2.26E+01 1.053

Table 4.4: [Example 3] Comparison of the RT0 − P0 mixed approximation with quasi-uniform and
adaptive refinements for the convective Brinkman–Forchheimer model with ρ = 4.

(−1, 1), Γtop = (−1, 1) × {1}, and Γbottom = (−1, 1) × {−1}, respectively. Note that the boundary
of the internal fracture network is defined as a union of segments. The initial mesh file is available
in https://github.com/scaucao/Fracture network-mesh. We consider the convective Brinkman–
Forchheimer equations (2.5) in the whole domain Ω, with inertial power ρ = 3 but with different values
of the parameters F and D for the interior and the exterior of the fracture, namely

F =

{
10 in Ωf

1 in Ω \ Ωf
and D =

{
1 in Ωf

1000 in Ω \ Ωf
. (4.2)

The parameter choice corresponds to increased inertial effect (F = 10) in the fracture and a high
permeability (D = 1), compared to reduced inertial effect (F = 1) in the porous medium and low
permeability (D = 1000). In turn, the body force term is f = 0 and the boundaries conditions are

σ n =

{
(−0.5(x2 − 1), 0)t on Γleft ,

(0, −0.5(x1 − 1))t on Γbottom ,
σ n = (0, 0)t on Γright ∪ Γtop , (4.3)

which drives the flow in a diagonal direction from the left-bottom corner to the right-top corner of the
square domain Ω. In Figure 4.7, we display the initial mesh, the computed magnitude of the velocity,
velocity gradient tensor, and pseudostress tensor, which were built using the RT1 − P1 scheme on a
mesh with 72, 774 triangle elements (actually representing 1, 165, 408 DoF) obtained via Θ (cf. (3.1)).
Similarly to [7, Example 3 in Section 6], we observe that the velocity in the fractures is higher than
the velocity in the porous medium, due to the smaller thickness of the fractures and the parameter
settings in (4.2). Also, the velocity is higher in branches of the network where the fluid enters from the
left-bottom corner and decreases toward the right-top corner of the domain. In addition, we observe
a sharp velocity gradient across the interfaces between the fractures and the porous medium. The
pseudostress is consistent with the boundary conditions (4.3) and it is more diffused since it includes
the pressure field. This example illustrates the ability of the method to provide accurate resolution and
numerically stable results for heterogeneous inclusions with high aspect ratio and complex geometry, as
presented in the network of thin fractures. These results are in agreement with those reported in [7] but
now taking into account that the mesh employed was obtained through an adaptive refinement process
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Figure 4.4: [Example 3] Log-log plot of e(σ,u) vs. DoF for quasi-uniform/adaptive refinements for
k = 0.

Figure 4.5: [Example 3] Initial mesh, computed magnitude of the velocity, and pressure field.

guided by the a posteriori error indicator Θ. In turn, snapshots of some adapted meshes generated
using Θ are depicted in Figure 4.8. We can observe a suitable refinement around the interface that
couples the porous medium with the fracture network, as well as in the regions where the velocity
is higher. This suggests that the indicator Θ is able to detect the strong jump discontinuities of the
model parameters along the interface between the fracture and the porous media, as expected, while
simultaneously localizing the regions where the solutions are higher.

A Preliminaries for reliability

We start by introducing a few useful notations for describing local information on elements and edges
or faces depending on wether d = 2 or d = 3, respectively. Let Eh be the set of edges or faces of Th,
whose corresponding diameters are denoted by he, and define

Eh(Ω) := {e ⊆ Eh : e ⊆ Ω} and Eh(Γ) := {e ⊆ Eh : e ⊆ Γ} .
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Figure 4.6: [Example 3] Three snapshots of adapted meshes according to the indicator Θ for k = 0.

Figure 4.7: [Example 4] Initial mesh, computed magnitude of the velocity, velocity gradient tensor,
and pseudostress tensor.

For each T ∈ Th, we let Eh,T be the set of edges or faces of T , and denote

Eh,T (Ω) := {e ⊆ ∂T : e ⊆ Eh(Ω)} and Eh,T (Γ) := {e ⊆ ∂T : e ⊆ Eh(Γ)} .

We also define the unit normal vector ne on each edge or face by

ne := (n1, . . . , nd)
t ∀ e ∈ Eh .

Hence, when d = 2 we can define the tangential vector se by

se := (−n2, n1)t ∀ e ∈ Eh .

However, when no confusion arises, we will simply write n and s instead of ne and se, respectively.

The usual jump operator [[·]] across internal edges or faces is defined for piecewise continuous tensor,
vector, or scalar-valued functions ζ, by

[[ζ]] =
(
ζ|T+

)
|e −

(
ζ|T−

)
|e with e = ∂T+ ∩ ∂T− , (A.1)
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Figure 4.8: [Example 4] Four snapshots of adapted meshes according to the indicator Θ for k = 1.

where T+ and T− are the elements of Th having e as a common edge or face. Finally, for sufficiently
smooth vector v := (v1, . . . , vd)

t and tensor fields τ := (τij)i,j=1,d, we let

δ∗(τ ) =


τ s , for d = 2,(τ t

1 × n)t

(τ t
2 × n)t

(τ t
3 × n)t

 , for d = 3,
curl(v) :=

−
∂v1

∂x2

∂v1

∂x1

−∂v2

∂x2

∂v2

∂x1

 for d = 2 , (A.2)

curl(v) :=


∂v2

∂x1
− ∂v1

∂x2
, for d = 2 ,

∇× v , for d = 3 ,

curl(τ ) =



(
curl(τ t

1)
curl(τ t

2)

)
, for d = 2,curl(τ t

1)t

curl(τ t
2)t

curl(τ t
3)t

 , for d = 3,

(A.3)

where τ i is the i-th row of τ and the derivatives involved are taken in the distributional sense.

Let us now recall the main properties of the Raviart–Thomas and Clément interpolation operators
(cf. [18], [15]). We begin by defining for each p ≥ 2 d

d+2 the spaces

Hp :=
{
τ ∈ H(divp; Ω) : τ |T ∈W1,p(T ) ∀T ∈ Th

}
, (A.4)

and
Ĥσ
h :=

{
τ ∈ H(divp; Ω) : τ |T ∈ RTk(T ) ∀T ∈ Th

}
. (A.5)

In addition, we let Πk
h : Hp → Ĥσ

h be the Raviart–Thomas interpolation operator, which is character-
ized for each τ ∈ Hp by the identities (see, e.g. [18, Section 1.2.7])∫

e
(Πk

h(τ ) · n) ξ =

∫
e
(τ · n) ξ ∀ ξ ∈ Pk(e), ∀ edge or face e of Th , (A.6)

when k ≥ 0, and ∫
T

Πk
h(τ ) ·ψ =

∫
T
τ ·ψ ∀ψ ∈ Pk−1(T ), ∀T ∈ Th ,

when k ≥ 1. In turn, given q > 1 such that 1/p+ 1/q = 1, we let

Hu
h :=

{
v ∈ Lq(Ω) : v|T ∈ Pk(T ) ∀T ∈ Th

}
, (A.7)
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and recall from [18, Lemma 1.41] that there holds

div
(
Πk
h(τ )

)
= Pkh

(
div(τ )

)
∀ τ ∈ Hp , (A.8)

where Pkh : Lp(Ω) → Hu
h is the usual orthogonal projector with respect to the L2(Ω)-inner product,

which satisfies the following error estimate (see [18, Proposition 1.135]): there exists a positive constant
C0, independent of h, such that for 0 ≤ ` ≤ k + 1 and 1 ≤ p ≤ ∞ there holds

‖w − Pkh(w)‖0,p;Ω ≤ C0 h
` ‖w‖`,p;Ω ∀w ∈W`,p(Ω) . (A.9)

We stress that Pkh(w)|T = PkT (w|T ) ∀w ∈ Lp(Ω), where PkT : Lp(T ) → Pk(T ) is the corresponding
local orthogonal projector. In addition, denoting by Hu

h the vector version of Hu
h (cf. (A.7)), we let

Pk
h : Lp(Ω)→ Hu

h be the vector version of Pkh .

Next, we collect some approximation properties of Πk
h.

Lemma A.1 Given p > 1, there exist positive constants C1, C2, independent of h, such that for
0 ≤ ` ≤ k and for each T ∈ Th there holds

‖τ −Πk
h(τ )‖0,p;T ≤ C1 h

`+1
T |τ |`+1,p;T ∀ τ ∈W`+1,p(T ) , (A.10)

and
‖τ · n−Πk

h(τ ) · n‖0,p;e ≤ C2 h
1−1/p
e |τ |1,p;T ∀ τ ∈W1,p(T ), ∀ e ∈ Eh(T ) . (A.11)

Proof. For the estimate (A.10) we refer to [22, Lemma 3.1], whereas the proof of (A.11) can be found
in [3, Lemma 4.2]. �

Furthermore, denoting by Hp and Ĥσ
h the tensor versions of Hp (cf. (A.4)) and Ĥσ

h (cf. (A.5)),

respectively, we let Πk
h : Hp → Ĥσ

h be the operator Πk
h acting row-wise. Then, according to the

decomposition (2.6), for each τ ∈ Hp there holds

Πk
h(τ ) = Πk

h,0(τ ) +  I, with  :=
1

d |Ω|

∫
Ω

tr(Πk
h(τ )) ∈ R

and Πk
h,0(τ ) := Πk

h(τ )−  I ∈ Hσ
h .

Other approximation properties of Πk
h and Πk

h, in particular those involving the div and div operators,
and using (A.8) and (A.9), and their tensorial versions with Πk

h and Pk
h, can also be derived.

We now recall from [3, Lemma 4.4] a stable Helmholtz decomposition for the nonstandard Banach
space H(divp; Ω), whose particular case given by p = 4/3 is considered in the present paper. More
precisely, we have the following result.

Lemma A.2 Let 1 < p ≤ 2 when d = 2 and 6/5 ≤ p ≤ 2 when d = 3. Then, for each τ ∈ H(divp; Ω),
there exist

(a) ζ ∈W1,p(Ω) and ξ ∈ H1(Ω) such that τ = ζ + curl(ξ) in Ω when d = 2 ,

(b) ζ ∈W1,p(Ω) and ξ ∈ H1(Ω) such that τ = ζ + curl(ξ) in Ω when d = 3 .

In addition, in both cases there holds

‖ζ‖1,p;Ω + ‖ξ‖1,Ω ≤ Cp ‖τ‖divp;Ω ,

where Cp is a positive constant independent of all the foregoing variables.
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On the other hand, defining Xh :=
{
vh ∈ C(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th

}
and denoting

by Xh its tensor version, we let Ih : H1(Ω) → Xh and Ih : H1(Ω) → Xh be the usual Clément
interpolation operator and its tensor version, respectively. Some local properties of Ih, and hence of
Ih, are established in the following lemma (cf. [15]):

Lemma A.3 There exist positive constants C1 and C2, such that

‖v − Ih(v)‖0,T ≤ C1 hT ‖v‖1,∆(T ) ∀T ∈ Th ,

and
‖v − Ih(v)‖0,e ≤ C2 h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh ,

where ∆(T ) := ∪
{
T ′ ∈ Th : T ′ ∩ T 6= ∅

}
and ∆(e) := ∪

{
T ′ ∈ Th : T ′ ∩ e 6= ∅

}
.

B Preliminaries for efficiency

For the efficiency analysis of Θ (cf. (3.1)), we proceed as in [23], [9], [3] and [22], and apply the
localization technique based on bubble functions, along with inverse and discrete trace inequalities.
For the former, given T ∈ Th, we let T be the usual element-bubble function (cf. [30, eqs. (1.5) and
(1.6)]), which satisfies

ψT ∈ P3(T ), supp(ψT ) ⊆ T, ψT = 0 on ∂T and 0 ≤ ψT ≤ 1 in T . (B.1)

The specific properties of ψT to be employed in what follows, are collected in the following lemma,
for whose proof we refer to [30, Lemma 3.3 and Remark 3.2].

Lemma B.1 Let k be a non-negative integer, and let p, q ∈ (1,+∞) conjugate to each other, that is
such that 1/p+ 1/q = 1, and T ∈ Th. Then, there exist positive constants c1, c2, and c3, independent
of h and T , but depending on the shape-regularity of the triangulations (minimum angle condition)
and k, such that for each u ∈ Pk(T ) there hold

c1‖u‖0,p;T ≤ sup
06=v∈Pk(T )

∫
T
uψT v

‖v‖0,q;T
≤ ‖u‖0,p;T (B.2)

and
c2 h

−1
T ‖ψTu‖0,q;T ≤ ‖∇(ψTu)‖0,q;T ≤ c3 h

−1
T ‖ψTu‖0,q;T . (B.3)

In turn, the aforementioned inverse inequality is stated as follows (cf. [24, Lemma 1.138]).

Lemma B.2 Let k, `, and m be non-negative integers such that m ≤ `, and let r, s ∈ [1,+∞], and
T ∈ Th. Then, there exists c > 0, independent of h, T , r, and s, but depending on k, `, m, and the
shape regularity of the triangulations, such that

‖v‖`,r;T ≤ c h
m−`+d(1/r−1/s)
T ‖v‖m,s;T ∀ v ∈ Pk(T ) . (B.4)

Finally, proceeding as in [1, Theorem 3.10], that is employing the usual scaling estimates with
respect to a fixed reference element T̂ , and applying the trace inequality in W1,p(T̂ ), for a given
p ∈ (1,+∞), one is able to establish the following discrete trace inequality.

Lemma B.3 Let p ∈ (1,+∞). Then, there exits c > 0, depending only on the shape regularity of the
triangulations, such that for each T ∈ Th and e ∈ E(T ), there holds

‖v‖p0,p;e ≤ c
{
h−1
T ‖v‖

p
0,p;T + hp−1

T |v|p1,p;T
}
∀ v ∈W1,p(T ) . (B.5)
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