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Isaac Bermúdez1,2, Jessika Camaño3,2, Ricardo Oyarzúa4,2, and Manuel Solano1,2
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Concepción, Chile. {ibermudez,msolano}@udec.cl
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Abstract

We consider the coupled Navier–Stokes/transport equations with nonlinear transmission conditions, which
constitute one of the most common models utilized to simulate a reverse osmosis effect in water desalination
processes when considering feed and permeate channels coupled through a semi-permeate membrane. The
variational formulation consists of a set of equations where the velocities, the concentrations, along with
tensors and vector fields introduced as auxiliary unknowns and two Lagrange multipliers are the main
unknowns of the system. The latter are introduced to deal with the trace of functions that do not have
enough regularity to be restricted to the boundary. In addition, the pressures can be recovered afterwards by
a postprocessing formula. As a consequence, we obtain a nonlinear Banach spaces-based mixed formulation,
which has a perturbed saddle point structure. We analyze the continuous and discrete solvability of this
problem by linearizing the perturbation and applying the classical Banach fixed point theorem along with the
Banach–Nečas–Babuška result. Regarding the discrete scheme, feasible choices of finite element subspaces
that can be used include Raviart–Thomas spaces for the auxiliary tensor and vector unknowns, piecewise
polynomials for the velocities and the concentrations, and continuous polynomial space of lowest order for
the traces, yielding stable discrete schemes. An optimal a priori error estimate is derived, and numerical
results illustrating both, the performance of the scheme confirming the theoretical rates of convergence, and
its applicability, are reported.

Key words: Navier–Stokes, transport, nonlinear interface, mixed finite element methods, a priori error analysis,
reverse osmosis, water desalination

Mathematics subject classifications (2020): 35J66, 65J15, 65N12, 65N15, 65N30, 47J26, 76D07.

1 Introduction

Membrane-based seawater desalination processes have received special attention during the last decade due to
their notable advantages, which include relatively low energy consumption compared to thermal-based tech-
niques like multi-stage flash [30], as well as their capability to use renewable or low-grade energy sources [2, 33].
In this regard, the reverse osmosis (RO) process takes a prominent position, being employed in 69% of indus-
trial desalination plants globally [17]. Its mathematical modeling is usually based on the Navier–Stokes and
convection-diffusion equations, although the Brinkman equations can also be considered in some scenarios. In
particular, for some detailed review of different mathematical models we refer to [26, 27, 32].

∗Supported by ANID-Chile through Anillo of Computational Mathematics for Desalination Processes (ACT210087);
FONDECYT projects 1231336 and 1240183; BASAL Project FB210005; and Beca Doctorado Nacional 21210582.
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In the reverse osmosis processes water flows at high pressure through a membrane module [30], which consists
of several channels separated by semi-permeate membranes. The domain of simulation is a representative
rectangular section of these channels. Most of the numerical methods developed in the literature consider
only a single desalination channel, due to the high computational cost of simulating several channels. They are
usually based on finite differences and finite volumes methods. Regarding the finite element method, most of the
simulations are performed using commercial softwares and, to the best of our knowledge, a proper mathematical
framework has not been developed. Recently in [10] a finite element method using the Nitsche technique on an
RO model was addressed, on which the resulting discrete model is easily implemented since the linearization of
the model depends only on the linearization of the flow.

One of the novelties of our work is the consideration of two channels coupled by a semi-permeate membrane
for which, as far as we know, no numerical method has been developed in the literature and, we propose
and analyze a mixed variational formulation for a RO model by coupling of the Navier–Stokes and transport
equations. In this regard, the consideration of nonlinear transmission conditions on the membrane represents
the major difficulty to address the problem, from theoretical and computational points of view, and constitutes
another novelty of our work. In the formulation, we introduce two Lagrange multipliers associated to the
concentration to deal with the trace of functions that do not have enough regularity to be restricted to the
boundary. In this way, the non-linearity at the interface is handled with these new unknowns. Subsequently,
an appropriate linearization allows us to overcome this difficulty. Another complexity in analyzing the problem
arises from the presence of convective terms in the equations, which can be approached in two ways. The
first method involves an augmentation procedure (see, e.g. [8, 9]), offering more flexibility in choosing finite
element subspaces, but increasing the complexity and computational cost significantly. Alternatively, one can
consider the approach of Banach space-based mixed finite element methods to solve perturbed saddle point
formulations. We point out that the motivation of employing the latter approach has the advantages of not
requiring an augmentation procedure (see, e.g. [6, 7, 13]) and the spaces where the unknowns are sought are
the natural ones that result from applying the Cauchy–Schwarz and Hölder inequalities to the terms obtained
from testing and integrating by parts the equations of the model. Consequently, simpler formulations closely
aligned with the original physical model are achieved.

The manuscript is organized as follows. In the rest of this section, we provide an overview of the standard
notation and functional spaces that will be utilized throughout the paper, introduce the model problem of
interest and define the unknowns to be considered in the variational formulation. Subsequently, in Section 2 we
identify the saddle point structure of the corresponding variational system. Section 3 analyzes the continuous
solvability and the equivalent fixed point setting, presenting the well-posedness result under the assumption of
sufficiently small data. In Section 4, we investigate the associated Galerkin scheme by utilizing a discrete version
of the fixed point strategy developed in Section 3 for the continuous case. Additionally, we derive the associated
a priori error estimate in the same section. Furthermore, in Section 5 we specify particular choices of discrete
subspaces that satisfy the hypotheses from Section 4 and show the theoretical behaviour of the errors. Next, in
Section 6, numerical examples illustrate the performance of the numerical scheme. We end with conclusions in
Section 7.

1.1 Preliminaries

Sobolev and Banach spaces. Given a Lipschitz-continuous domain O of R2 with boundary Γ, we adopt
standard notations for Lebesgue spaces LtpOq and Sobolev spaces Wl,tpOq, with l ě 0 and t P r1,`8q,
whose corresponding norms, either for the scalar- and vector-valued case, are denoted by } ¨ }0,t;O and } ¨

}l,t;O, respectively. Note that W0,tpOq “ LtpOq, and if t “ 2 we write HlpOq instead of Wl,2pOq, with the
corresponding norm and seminorm denoted by } ¨ }l,O and | ¨ |l,O, respectively. In addition, H1{2pΓq denotes
the space of traces of H1pOq and H´1{2pΓq its dual space, provided with the duality pairing x¨, ¨yΓ. Also, given
rΓ Ď Γ, H1{2prΓq denotes the restriction to rΓ of H1pOq-functions.

On the other hand, given any generic scalar functional space M, we let M and M be the corresponding
vector- and tensor-valued counterparts. Furthermore, as usual, I stands for the identity tensor in R2ˆ2, and
| ¨ | denotes the Euclidean norm in R2. On the other hand, given t P p1,`8q, we introduce the Banach space
Hpdivt;Oq :“

␣

v P L2pOq : divpvq P LtpOq
(

, endowed with the natural norm }v}divt;O :“ }v}0,O`}divpvq}0,t;O.
The space of matrix-valued functions whose rows belong to Hpdivt;Oq will be denoted by Hpdivt;Oq, endowed
with the norm }τ }divt;O. Here, we let div be the usual divergence operator div acting row-wise on each tensor.
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Additionally, for any tensor fields τ , we let the deviatoric tensor as τ d :“ τ ´
1

2
trpτ qI.

We recall some definitions and technical results concerning boundary conditions and extension operators
[16, 19, 24]. Let rΓ Ď Γ, denote by rΓc its complement and n the unit outward normal vector on Γ.

Restriction to rΓ of functionals in H´1{2pΓq. Let E0,rΓ : H1{2prΓq ÝÑ L2pΓq be the extension operator

defined as follows: given η P H1{2prΓq, by E0,rΓpηq “ η on rΓ, and E0,rΓpηq “ 0, otherwise. We define H
1{2
00 prΓq :“

!

η P H1{2prΓq : E0,rΓpηq P H1{2pΓq

)

, endowed with the norm }η}1{2,00,rΓ :“ }E0,rΓpηq}1{2,Γ, and denote by H
´1{2
00 prΓq

its dual space. Now, given µ P H´1{2pΓq, its restriction to rΓc, say µ|
rΓ, is defined as

xµ|
rΓ, ηy

rΓ :“ xµ,E0,rΓpηqyΓ @ η P H
1{2
00 prΓq, (1.1)

where x¨, ¨y
rΓ stands for the duality pairing of the spaces H

´1{2
00 prΓq and H

1{2
00 prΓq with respect to the L2prΓq inner

product. Then, it is clear that µ|
rΓ P H

´1{2
00 prΓq. On the other hand, the boundary condition µ “ 0 on rΓ means

xµ,E0,rΓpηqyΓ “ 0 @ η P H
1{2
00 prΓq. (1.2)

A continuous extension of H1{2prΓq-functions. According to [19, Section 2], the restriction of µ P H´1{2pΓq

to rΓ can be identified with an element of H´1{2prΓq, namely

xµ, ηy
rΓ :“ xµ,E

rΓpηqyΓ @ η P H1{2prΓq, (1.3)

where E
rΓ : H1{2prΓq ÝÑ H1{2pΓq is any bounded extension operator. In particular, given η P H1{2prΓq, we consider

the extension E
rΓpηq :“ z|Γ, where z P H1pOq is the unique solution to the boundary value problem

△z “ 0 in O, z “ η on rΓ, and ∇z ¨ n “ 0 on rΓc, (1.4)

satisfying }z}1,O ď C}η}1{2,rΓ, where C is a positive constant. The latter implies }E
rΓpηq}1{2,Γ ď C}η}1{2,rΓ.

Decomposition of H1{2pΓq-functions. Given ζ P H1{2pΓq, it is not difficult to prove (see, [19, Lemma 2.2])

that there exist unique elements ζ
rΓ P H1{2prΓq and ζ

rΓc P H
1{2
00 prΓcq such that ζ “ E

rΓpζ
rΓq `E0,rΓcpζ

rΓcq, and hence

xµ, ζyΓ :“ xµ,E
rΓpζ

rΓqyΓ ` xµ,E0,rΓcpζ
rΓcqyΓ @µ P H´1{2pΓq. (1.5)

Remark 1. We denote by E
rΓ and E0,rΓc the extension operators acting on vector-valued functions, and (1.5)

also holds in this case. They are defined as the element-wise application of the extension operator specified
above.

1.2 The model problem

In order to describe the geometry, we let Ωf and Ωp be two open bounded and simply connected polygonal
domains in R2 such that BΩf ∩ BΩp “ Σ ‰ ∅ and Ωf ∩ Ωp “ ∅, and set Ω :“ Ωf ∪ Σ ∪ Ωp. In turn,
for each ‹ P tf,pu, BΩ‹zΣ is divided in three parts: Γin,‹ (inlet), Γout,‹ (outlet) and Γw,‹ (wall), such that
BΩ‹zΣ “ Γin,‹ ∪ Γw,‹ ∪ Γout,‹ as depicted in Figure 1.1.The unit normal vector, n‹, is chosen pointing outward
from Ω‹, thus nf “ ´np on the interior points of Σ. We also consider a unit tangent vector mΣ on Σ as drawn
Figure 1.1. We are interested in the Navier–Stokes/transport coupled problem, which is formulated in what

follows in terms of the fluid velocity u‹, the fluid pressure p‹, and the salt concentration rϕ‹ occupying the region
Ω‹, for each ‹ P tf,pu. More precisely, the corresponding system of equations is given by

´ν△u‹ ` ρdivpu‹ b u‹q ` ∇p‹ “ 0 in Ω‹, divpu‹q “ 0 in Ω‹,
u‹ “ uin,‹ on Γin,‹, u‹ “ 0 on Γw,‹, pν∇u‹ ´ p‹Iqn‹ “ 0 on Γout,‹,

´κ△rϕ‹ ` u‹ ¨ ∇rϕ‹ “ 0 in Ω‹,
rϕ‹ “ rϕin,‹ on Γin,‹, κ∇rϕ‹ ¨ n‹ “ 0 on Γw,‹ ∪ Γout,‹,

(1.6)
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Figure 1.1: Sketch of the geometry.

where ν is the fluid dynamic viscosity, ρ is the fluid density and κ is the solute diffusivity through the solvent.
All these parameters are assumed to be positive constants. In addition, for each ‹ P tf,pu, uin,‹ P H1{2pΓin,‹q

is a given inlet velocity profile, and rϕin,‹ P R. The corresponding transmission conditions are given by

u‹ ¨ mΣ “ 0, uf ¨ nf “ ´up ¨ np, uf ¨ nf “ A∆P ´AiRT prϕf ´ rϕpq on Σ,

prϕfuf ´ κ∇rϕfq ¨ nf “ ´prϕpup ´ κ∇rϕpq ¨ np, prϕfuf ´ κ∇rϕfq ¨ nf “ Bprϕf ´ rϕpq on Σ.
(1.7)

Here, A, ∆P , i, R, T and B are physical parameters assumed to be positive constants. Specific values of the
parameters can be found in Table 6.2. In turn, denoting a0 :“ A∆P , a1 :“ AiRT and a2 :“ B, we realize that
they are also positive constants satisfying the following conditions:

2a1rϕin,f ` a2 ě a0 ` a1rϕin,p, and 2a1rϕin,p ` a0 ` a2 ě a1rϕin,f . (1.8)

Next, since we are interested in a mixed variational formulation, and in order to employ the integration by
parts formula typically required by this approach, motivated by the Neumann-type boundary conditions, we
introduce the auxiliary unknowns:

σ‹ :“ ν∇u‹ ´ p‹I and t‹ :“ κ∇ϕ‹ in Ω‹. (1.9)

In this way, noting that divpu‹ b u‹q “ p∇u‹qu‹, which makes use of the fact that divpu‹q “ 0 in Ω‹, we find
that the first equation of (1.6) can be rewritten as divpσ‹q “ ρp∇u‹qu‹, whereas the third row of (1.6) becomes
k divpt‹q “ u‹ ¨ t‹.

In turn, it is straightforward to see, taking matrix trace, that the first equation of (1.9) together with the
incompressibility condition divpu‹q “ 0, are equivalent to the pair

1

ν
σd

‹ “ ∇u‹ in Ω‹, and p‹ “ ´
1

2
trpσ‹q in Ω‹. (1.10)

On the other hand, considering the new variables, the transmission conditions (1.7) become

u‹ ¨ mΣ “ 0, uf ¨ nf “ ´up ¨ np, uf ¨ nf “ a0 ´ a1prϕf ´ rϕpq on Σ,

prϕfuf ´ tfq ¨ nf “ ´prϕpup ´ tpq ¨ np, prϕfuf ´ tfq ¨ nf “ a2prϕf ´ rϕpq on Σ.
(1.11)

Moreover, for the sake of the subsequent analysis, in order to obtain a homogeneous Dirichlet condition for
the concentration unknown, we consider the change of variable ϕ‹ :“ rϕ‹ ´ rϕin,‹ in Ω‹, and find that the third
equation of the first row of (1.11) can be rewritten as

uf ¨ nf “ ´a1pϕf ´ ϕpq ` ra0 on Σ, where ra0 “ a0 ´ a1prϕin,f ´ rϕin,pq, (1.12)

whereas the second row of (1.11), becomes

ptϕf ` rϕin,fuuf ´ tfq ¨ nf “ ´ptϕp ` rϕin,puup ´ tpq ¨ np on Σ,

ptϕf ` rϕin,fuuf ´ tfq ¨ nf “ a2pϕf ´ ϕp ` rϕin,f ´ rϕin,pq on Σ.
(1.13)
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In this way, replacing (1.12) back into (1.13) and utilizing the second equation of the first row of (1.11), some
algebraic manipulations allow us to arrive at the following system of equations:

1

ν
σd

‹ “ ∇u‹ in Ω‹, divpσ‹q “
ρ

ν
σd

‹ u‹ in Ω‹,

u‹ “ uin,‹ on Γin,‹, u‹ “ 0 on Γw,‹, σ‹n‹ “ 0 on Γout,‹,

t‹ “ κ∇ϕ‹ in Ω‹, κdivpt‹q “ u‹ ¨ t‹ in Ω‹,
ϕ‹ “ 0 on Γin,‹, and t‹ ¨ n‹ “ 0 on Γout,‹ ∪ Γw,‹,

(1.14)

with transmission conditions

u‹ ¨ mΣ “ 0, uf ¨ nf “ ´up ¨ np, uf ¨ nf “ ´a1pϕf ´ ϕpq ` ra0 on Σ,

tf ¨ nf “ ´a1pϕf ´ ϕpqϕf ´ pra1,f ´ ra0qϕf ` ra1,fϕp ` ra2,f on Σ, and

tp ¨ np “ a1pϕf ´ ϕpqϕp ´ pra0 ` ra1,pqϕp ` ra1,pϕf ´ ra2,p on Σ,

(1.15)

where ra0 “ a0 ´ a1prϕin,f ´ rϕin,pq, ra1,‹ “ a1rϕin,‹ ` a2 and ra2,‹ “ ra0rϕin,‹ ´ a2prϕin,f ´ rϕin,pq.

Note that the pressure has been eliminated from the system, but can be recovered by (1.10). Also, we
observe that, thanks to the above change of variable, condition (1.8) becomes:

ra1,f ´ ra0 ě 0 and ra1,p ` ra0 ě 0, (1.16)

which will be used later to guarantee the result in (3.20).

2 The mixed formulation

Given ‹ P tf,pu, we first set Γc
in,‹ :“ BΩ‹zΓin,‹ and Γc

out,‹ :“ BΩ‹zΓout,‹. We begin by testing the first equations
of the first and third rows of (1.14) against tensor- and vector-valued functions τ‹ and s‹, yielding

1

ν

ż

Ω‹

σd
‹ : τ‹ ´

ż

Ω‹

∇u‹ : τ‹ “ 0 and
1

κ

ż

Ω‹

t‹ ¨ s‹ ´

ż

Ω‹

∇ϕ‹ ¨ s‹ “ 0, (2.1)

respectively. It is clear that the first terms in (2.1) are well-defined if σ‹, τ‹ P L2pΩ‹q and t‹, s‹ P L2pΩ‹q.
In turn, multiplying the second equations of the first and third rows of (1.14) by a vector- and scalar-valued
functions v‹ and ψ‹, respectively, we notice that

ż

Ω‹

v‹ ¨ divpσ‹q ´
ρ

ν

ż

Ω‹

σd
‹u‹ ¨ v‹ “ 0 and

ż

Ω‹

divpt‹qψ‹ ´
1

κ

ż

Ω‹

u‹ ¨ t‹ψ‹ “ 0. (2.2)

Then, knowing that σ‹ and t‹ are L2-functions, using the Cauchy–Schwarz and Hölder inequalities, we find
that for all s, t P p1,`8q, such that 1

s ` 1
t “ 1, there hold

ˇ

ˇ

ˇ

ˇ

ż

Ω‹

σd
‹u‹ ¨ v‹

ˇ

ˇ

ˇ

ˇ

ď }σ‹}0;Ω‹
}u‹}0,2s;Ω‹

}v‹}0,2t;Ω‹
and

ˇ

ˇ

ˇ

ˇ

ż

Ω‹

u‹ ¨ t‹ψ‹

ˇ

ˇ

ˇ

ˇ

ď }u‹}0,2s;Ω‹
}t‹}0,Ω‹

}ψ‹}0,2t;Ω‹
,

which show that the second terms of the left-hand sides in the equations of (2.2) make sense for u‹ P L2spΩ‹q,
v‹ P L2tpΩ‹q and ψ‹ P L2tpΩ‹q. Thus, forcing their first terms to require that divpσ‹q P Lp2tq1

pΩ‹q, and
divpt‹q P Lp2tq1

pΩ‹q, where p2tq1 :“ 2t
2t´1 is the conjugate of 2t.

Now, we go back to the second equation of (2.1) to deal with the second term. After applying the integration
by parts formula and considering the test function s‹ in the same space of t‹, we realize that the volumetric
terms are well defined if divps‹q P Lp2tq1

pΩ‹q and ϕ‹ P L2tpΩ‹q. Since traces of L2tpΩ‹q-functions are not defined,

we introduce a Lagrange multiplier ξ‹ :“ ´ϕ‹|Γc
in,‹

P H
1{2
00 pΓc

in,‹q, and realize that the second equation of (2.1),
becomes

1

κ

ż

Ω‹

t‹ ¨ s‹ `

ż

Ω‹

ϕ‹divps‹q ` xs‹ ¨ n‹, ξ‹yΓc
in,‹

“ 0.
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Here, we have used the facts that ϕ‹ “ 0 on Γin,‹ and s‹ ¨n‹ is well defined if H1pΩ‹q is continuously embedded
in L2tpΩ‹q (see [13, Section 3.1] for details). The latter is guaranteed in two dimensions for 2t P r1,`8q.

Similarly, to apply the integration by parts formula to the first equation of (2.1) and obtain

1

ν

ż

Ω‹

σd
‹ : τ‹ `

ż

Ω‹

u‹ ¨ divpτ‹q “ xτ‹n‹, u‹yBΩ‹
, (2.3)

it suffices to assume that divpτ‹q P Lp2sq
1

pΩ‹q, and that H1pΩ‹q is continuously embedded in L2spΩ‹q, where
p2sq1 :“ 2s

2s´1 is the conjugate of 2s, so that τ‹n‹ is well defined. This is guaranteed in two dimensions for
2s P r1,`8q. It remains to properly handle the term xτ‹n‹, u‹yBΩ‹

since, a priori, the trace of u‹ is not in
H1{2pBΩ‹q. To that end, we will make use of the boundary and transmission conditions specified in (1.14) and
(1.15). More precisely, let ‹ P tf,pu and for the sake of convenience we define the following auxiliary functions

g‹ :“

$

&

%

0 on Γw,‹,
uin,‹ on Γin,‹,
ra0nf on Σ,

and gξ‹ :“

$

&

%

0 on Γw,‹,
0 on Γin,‹,
a1pξf ´ ξpqnf on Σ.

(2.4)

We observe that g‹ P H1{2pΓc
out,‹q if uin,‹ fulfills the following compatibility conditions:

uin,f “ 0 on Γin,f ∩ Γw,f , uin,p “ 0 on Γin,p ∩ Γw,p,

uin,f “ ra0nf on Γin,f ∩ Σ, uin,p “ ´ra0np on Γin,p ∩ Σ,
(2.5)

where, for x P Γin,‹ ∩ Σ, n‹pxq is taking as n‹pxq “ lim
εÝÑ0`

n‹px ´ εmΣq. Moreover gξ‹ is also in H1{2pΓc
out,‹q

since we recall that ξ‹ P H
1{2
00 pΓc

in,‹q. In this way, bearing in mind the boundary and transmission conditions

(1.14) and (1.15), and considering the test function τ‹ in the space HΓout
pdivp2sq1 ; Ω‹q :“

!

τ‹ P Hpdivp2sq1 ; Ω‹q :

τ‹n‹ “ 0 on Γout,‹

)

, where τ‹n‹ “ 0 on Γout,‹ is understood in the sense of (1.2), from (2.3) we find that

1

ν

ż

Ω‹

σd
‹ : τ‹ `

ż

Ω‹

u‹ ¨ divpτ‹q “ xτ‹n‹, g‹ ` gξ‹ yΓc
out,‹

@ τ‹ P HΓoutpdivp2sq1 ; Ω‹q.

If we would also like to seek σ‹ and τ‹ in the same function space, it follows immediately that s “ t “ 2 and
p2sq1 “ p2tq1 “ 4{3, which we will be considered from now on.

Remark 2. The compatibility conditions (2.5) are satisfied, for example, if we consider a domain Ω “ Ωf ∪
Ωp ∪ Σ, where

Ωf “ p0, Lq ˆ pd, 2dq, Ωp “ p0, Lq ˆ p0, dq, and Σ “ p0, Lq ˆ tdu,

with the following inlet velocities:

uin,f :“

¨

˝

6uin,f

´

1 ´
y
d

¯

`

y
d ´ 2

˘

ra0

´

y
d ´ 2

¯

˛

‚, y P rd, 2ds, and uin,p :“

˜

6uin,p
y
d

´

1 ´
y
d

¯

´ra0
y
d

¸

, y P r0, ds,

where uin,f and uin,p stand for the inlet mean feed and permeate fluid velocities, respectively. We observe
that, when the second component of any of the above velocities is zero, the first component is similar to that
of the Poiseuille flux, which is a parabolic profile with unit mean velocity. On the other hand, when the
second component of the inlet velocity does not vanish, the profile is similar to the Berman flow. The latter is
commonly used to model a constant permeate flux through a membrane as shown in [4, 5, 10, 26, 32] to name
a few references.

In turn, thanks to the last equation in (1.14), the last two equations of (1.15), and the fact that ξ‹ P

H
1{2
00 pΓc

in,‹q, we deduce that

xtf ¨ nf , ηfyΓc
in,f

“ a1

ż

Σ

pξp ´ ξfq ξf ηf `
`

ra1,f ´ ra0
˘

ż

Σ

ξf ηf ´ ra1,f

ż

Σ

ξpηf ` ra2,f

ż

Σ

ηf ,
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xtp ¨ np , ηpyΓc
in,p

“ ´ a1

ż

Σ

pξp ´ ξfq ξp ηp `
`

ra1,p ` ra0
˘

ż

Σ

ξp ηp ´ ra1,p

ż

Σ

ξfηp ´ ra2,p

ż

Σ

ηp

for all η‹ P H
1{2
00 pΓc

in,‹q, with ‹ P tf,pu. Consequently, introducing the spaces

H‹
S :“ HΓout

pdiv4{3; Ω‹q, H‹
T :“ Hpdiv4{3; Ω‹q, M‹

T :“ H
1{2
00 pΓc

in,‹q,

Q‹
S :“ L4pΩ‹q, X‹

T :“ L4pΩ‹q,

defining the global spaces

H :“ Hf
S ˆ Hp

S , H :“ Hf
T ˆ Hp

T, M :“ Mf
T ˆ Mp

T,

Q :“ Qf
S ˆ Qp

S , X :“ Xf
T ˆ Xp

T, Q :“ X ˆ M,

setting the notation

τ⃗ :“ pτf , τpq P H, s⃗ :“ psf , spq P H, η⃗ :“ pηf , ηpq P M,

w⃗ :“ pwf ,wpq P Q, ψ⃗ :“ pψf , ψpq P X, pψ⃗, η⃗q :“ pψf , ψp, ηf , ηpq P Q,

and equipping the above global spaces with the norms

}τ⃗ }H :“ }τf}div4{3;Ωf
` }τp}div4{3;Ωp @ τ⃗ :“ pτf , τpq P H,

}w⃗}Q :“ }wf}0,4;Ωf
` }wp}0,4;Ωp @ w⃗ :“ pwf ,wpq P Q,

}⃗s}H :“ }sf}div4{3;Ωf
` }sp}div4{3;Ωp @ s⃗ :“ psf , spq P H,

}ψ⃗}X :“ }ψf}0,4;Ωf
` }ψp}0,4;Ωp

@ ψ⃗ :“ pψf , ψpq P X,

}η⃗}M :“ }ηf}1{2,00,Γc
in,f

` }ηp}1{2,00,Γc
in,p

@ η⃗ :“ pηf , ηpq P M,

}pψ⃗, η⃗q}Q :“ }ψ⃗}X ` }η⃗}M @ pψ⃗, η⃗q :“ pψf , ψp, ηf , ηpq P Q,

we arrive at the following variational formulation of (1.14): Find
`

σ⃗, u⃗
˘

P H ˆ Q and
`

t⃗, pϕ⃗, ξ⃗q
˘

P H ˆ Q such
that

aSpσ⃗, τ⃗ q `bSpτ⃗ , u⃗q “ Fξ⃗pτ⃗ q,

bSpσ⃗, v⃗q ´OSpu⃗; σ⃗, v⃗q “ 0,

aTp⃗t, s⃗q `bTp⃗s, pϕ⃗, ξ⃗qq “ 0,

bTp⃗t, pψ⃗, η⃗qq ´dTppϕ⃗, ξ⃗q, pψ⃗, η⃗qq ´OTpu⃗; t⃗, ψ⃗q ´ CTpξ⃗; ξ⃗, η⃗q “ Fξ⃗pψ⃗, η⃗q,

(2.6)

for all pτ⃗ , v⃗q P H ˆ Q and p⃗s, pψ⃗, η⃗qq P H ˆ Q, where, aS : H ˆ H ÝÑ R, aT : H ˆ H ÝÑ R, bS : H ˆ Q ÝÑ R,
bT : H ˆ Q ÝÑ R, and dT : Q ˆ Q ÝÑ R, are the bilinear forms defined by

aSpσ⃗, τ⃗ q :“
1

ν

ÿ

‹Ptf,pu

ż

Ω‹

σd
‹ : τ d

‹ @ pσ⃗, τ⃗ q P H ˆ H, (2.7a)

aTp⃗t, s⃗q :“
1

κ

ÿ

‹Ptf,pu

ż

Ω‹

t‹ ¨ s‹ @ p⃗t, s⃗q P H ˆ H, (2.7b)

bSpτ⃗ , v⃗q :“
ÿ

‹Ptf,pu

ż

Ω‹

u‹ ¨ divpτ‹q @ pτ⃗ , v⃗q P H ˆ Q, (2.7c)

bTp⃗s, pψ⃗, η⃗qq :“
ÿ

‹Ptf,pu

"
ż

Ω‹

ψ‹divps‹q ` xs‹ ¨ n‹, η‹yΓc
in,‹

*

@ p⃗s, pψ⃗, η⃗qq P H ˆ Q, (2.7d)

dTppϕ⃗, ξ⃗q, pψ⃗, η⃗qq :“ pra1,f ´ ra0q

ż

Σ

ξfηf `
`

ra1,p ` ra0
˘

ż

Σ

ξp ηp @ ppϕ⃗, ξ⃗q, pψ⃗, η⃗qq P Q ˆ Q, (2.7e)

whereas for each pw⃗, χ⃗q P QˆM, OSpw⃗; ¨, ¨q : HˆQ ÝÑ R, OTpw⃗; ¨, ¨q : HˆX ÝÑ R, and CTpχ⃗; ¨, ¨q : MˆQ ÝÑ R
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are the bilinear forms given by

OSpw⃗; σ⃗, v⃗q :“
ρ

ν

ÿ

‹Ptf,pu

ż

Ω‹

σd
‹ w‹ ¨ v‹ @ pσ⃗, v⃗q P H ˆ Q,

OTpw⃗; t⃗, ψ⃗q :“
1

κ

ÿ

‹Ptf,pu

ż

Ω‹

w‹ ¨ t‹ψ‹ @ p⃗t, ψ⃗q P H ˆ X,

CTpχ⃗; ξ⃗, η⃗q :“ a1

ż

Σ

ξfpχp ´ χfqηf ´ a1

ż

Σ

ξppχp ´ χfqηp @ pξ⃗, η⃗q P M ˆ M.

(2.8)

Finally, Fχ⃗ P Q1 and Fχ⃗ P Q1 are the functionals defined by

Fχ⃗pτ⃗ q :“ xτf nf , gf ` gχf yΓc
out,f

` xτp np, gp ` gχpyΓc
out,p

@ τ⃗ P H,

Fχ⃗pψ⃗, η⃗q :“ ´ra1,f

ż

Σ

χpηf ´ ra1,p

ż

Σ

χfηp ` ra2,f

ż

Σ

ηf ´ ra2,p

ż

Σ

ηp @ pψ⃗, η⃗q P Q.
(2.9)

3 The continuous solvability analysis

We analyze the solvability of (2.6) by applying the results provided by [18, Theorem 2.34] and [14, Theorem
3.4], along with the Banach–Nečas–Babuška Theorem (cf. [18, Theorem 2.6]).

3.1 The fixed-point strategy

We begin by rewriting (2.6) as an equivalent fixed point equation. Indeed, we first let rJ : Q ˆ M ÝÑ H ˆ Q be
the operator defined for each w⃗ :“ pwf ,wpq and χ⃗ :“ pχf , χpq, with pw⃗, χ⃗q P Q ˆ M as

rJ pw⃗, χ⃗q “
`

rJ1pw⃗, χ⃗q, rJ2pw⃗, χ⃗q
˘

:“ pσ⃗, u⃗q, (3.1)

where pσ⃗, u⃗q P H ˆ Q is the unique solution (to be confirmed in Theorem 3.3) of the following problem:

aSpσ⃗, τ⃗ q `bSpτ⃗ , u⃗q “ Fχ⃗pτ⃗ q @ τ⃗ P H,
bSpσ⃗, v⃗q ´ OSpw⃗; σ⃗, v⃗q “ 0 @ v⃗ P Q.

(3.2)

In turn, we let pJ : Q ˆ M ÝÑ H ˆ Q be the operator given by

pJ pw⃗, χ⃗q “
`

pJ1pw⃗, χ⃗q, p pJ2pw⃗, χ⃗q, pJ3pw⃗, χ⃗qq
˘

:“ p⃗t, pϕ⃗, ξ⃗qq @ pw⃗, χ⃗q P Q ˆ M, (3.3)

where p⃗t, pϕ⃗, ξ⃗qq P H ˆ Q is the unique solution (to be confirmed in Theorem 3.5) of the following system of
equations:

aTp⃗t, s⃗q ` bTp⃗s, pϕ⃗, ξ⃗qq “ 0 @ s⃗ P H,

bTp⃗t, pψ⃗, η⃗qq ´ dTppϕ⃗, ξ⃗q, pψ⃗, η⃗qq ´ OTpw⃗; t⃗, ψ⃗q ´ CT

`

χ⃗; ξ⃗, η⃗
˘

“ Fχ⃗pψ⃗, η⃗q @ pψ⃗, η⃗q P Q.
(3.4)

Finally, defining the operator J : Q ˆ M ÝÑ Q ˆ M as

J pw⃗, χ⃗q “
`

rJ2pw⃗, χ⃗q, pJ3pw⃗, χ⃗q
˘

“ pu⃗, ξ⃗q @ pw⃗, χ⃗q P Q ˆ M, (3.5)

we observe that solving (2.6) is equivalent to seeking a fixed point of J , that is: Find pu⃗, ξ⃗q P Q ˆ M such that

J pu⃗, ξ⃗q “ pu⃗, ξ⃗q.

We now aim to prove that the operator J is well-defined. To do that we first state the boundedness of all
the variational forms involved (cf. (2.7), (2.8) and (2.9)). First, it is easy to see through a direct application of
Hölder’s inequality that

|aSpσ⃗, τ⃗ q| ď }aS}}σ⃗}H }τ⃗ }H @ σ⃗, τ⃗ P H,
|bSpτ⃗ , v⃗q| ď }bS}}τ⃗ }H }v⃗}Q @

`

τ⃗ , v⃗
˘

P H ˆ Q,

|aTp⃗t, s⃗q| ď }aT}}⃗t}H }⃗s}H @ t⃗, s⃗ P H,

(3.6)
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with }aS} :“ ν´1, }bS} :“ 1 and }aT} :“ κ´1. In turn, employing again the Cauchy–Schwarz and Hölder
inequalities, we find that for each w⃗ P Q, there hold

|OSpw⃗; ζ⃗, v⃗q| ď
ρ

ν
}w⃗}Q }ζ⃗}H }v⃗}Q @ pζ⃗, v⃗q P H ˆ Q, (3.7a)

|OTpw⃗; r⃗, ψ⃗q| ď
1

κ
}w⃗}Q }⃗r}H }ψ⃗}X @ p⃗r, ψ⃗q P H ˆ X. (3.7b)

On the other hand, the following bounds for bT and dT will be proved in Appendix A:

|bTp⃗s, pψ⃗, η⃗qq| ď }bT} }⃗s}H }pψ⃗, η⃗q}Q @
`

s⃗, pψ⃗, η⃗qq P H ˆ Q, (3.8a)

|dTppϕ⃗, ξ⃗q, pψ⃗, η⃗qq| ď }dT} }pϕ⃗, ξ⃗q}Q }pψ⃗, η⃗q}Q @ pϕ⃗, ξ⃗q, pψ⃗, η⃗q P Q, (3.8b)

where }bT} :“ max
␣

1, }if4}, }ip4}
(

, }dT} :“ pra1,f ` ra1,pqmax
␣

pcf2q2, pcp2q2
(

, i‹4 is the continuous injection from
H1pΩ‹q to L4pΩ‹q and c‹

2 the Sobolev constant defined in (A.1). In turn, denoting g⃗ :“ pgf ,gpq with g‹ as in
(2.4), in Appendix A we will show that given χ⃗ P M, we have

|Fχ⃗pτ⃗ q| ď CF

␣

}g⃗}1{2,Γc
out

` a1}χ⃗}M
(

}τ⃗ }H @ τ⃗ P H, (3.9)

where }g⃗}1{2,Γc
out

:“ }gf}1{2,Γc
out,f

` }gp}1{2,Γc
out,p

, CF :“ max
␣

1, }if4}, }ip4}
(

max
␣

Cf , CΣ,f , Cp, CΣ,p, 1
(

, and i‹4 is

the vector-valued version of i‹4. Finally, employing the same tools to bound dT, given χ⃗ P M, it readily follows
that

|CTpχ⃗; ξ⃗, η⃗q| ď ra1 }χ⃗}M }ξ⃗}M }η⃗}M @ pξ⃗, η⃗q P M ˆ M, and

|Fχ⃗pψ⃗, η⃗q| ď ra3 p1 ` }χ⃗}Mq}pψ⃗, η⃗q}Q @ pψ⃗, η⃗q P Q, with
(3.10)

ra1 :“ a1 max
␣

pcf3q2, pcp3q2
(

max
␣

cf3, c
p
3

(

and ra3 :“ max t|ra1,f |, |ra1,p|, |ra2,f |, |ra2,p|umax
␣

cf2c
p
2 , c

f
2, c

p
2

(

. (3.11)

Further details of the previous bounds and the involved constants can be found in Appendix A.

3.1.1 Well-definedness of the operator rJ

We will show that (3.2) is well-posed and therefore the operator rJ (cf. (3.1)) is well-defined. For that, given
‹ P tf,pu, we prove that aS and bS satisfy the corresponding hypotheses from [18, Theorem 2.34]. Let

KS “
␣

τ⃗ :“ pτf , τpq P H : divpτ‹q “ 0 in Ω‹

(

,

which corresponds to the kernel of the operator induced by the bilinear form bS (cf. (2.7c)). We proceed in a
similar way to [20, Section 2.2] to show that aS is KS-elliptic. To do that, it suffices to consider the decomposition

Hpdiv4{3; Ω‹q “ H0pdiv4{3; Ω‹q ‘ R I, where H0pdiv4{3; Ω‹q :“
!

τ‹ P Hpdiv4{3; Ω‹q :
ş

Ω‹
trpτ‹q “ 0

)

, and

recall two useful estimates. First, by suitably modifying the proof of [21, Lemma 2.3], it can be shown (see, e.g.
[6, Lemma 3.1]) that there exists a positive constant c1,‹, depending only on Ω‹, such that

c1,‹ }τ‹}0,Ω‹
ď }τ d

‹ }0,Ω‹
` }divpτ‹q}0,4{3;Ω‹

@ τ‹ P H0pdiv4{3; Ω‹q. (3.12)

Similarly, following the proof of [20, Lemma 2.2] (see also [21, Lemma 2.5]), one can show that there exists a
positive constant c2,‹, depending only on Γout,‹ and Ω‹, such that

c2,‹ }τ‹}div4{3;Ω‹
ď }τ‹,0}div4{3;Ω‹

@ τ‹ :“ τ‹,0 ` d‹I P HΓoutpdiv4{3; Ω‹q, (3.13)

with τ‹,0 P H0pdiv4{3; Ω‹q and d‹ P R.

Lemma 3.1. There exists αs ą 0 such that aSpτ⃗ , τ⃗ q ě αS }τ⃗ }2H @ τ⃗ P KS.

Proof. Given τ⃗ “ pτf , τpq P KS, applying (3.12) and (3.13), it is straightforward to see from the definition of aS

(cf. (2.7a)), that

aSpτ⃗ , τ⃗ q ě αs}τ⃗ }2H,

with constant αs “
1

2ν
mintc1,fc2,f , c1,pc2,pu2, depending only on Γout,‹ and Ω‹, with ‹ P tf,pu.
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We now establish the continuous inf-sup condition for the bilinear form bS, whose proof is an adaptation of
[6, Lemma 3.3] to our context.

Lemma 3.2. There exists a positive constant βS such that

sup
τ⃗PH
τ⃗‰0

bSpτ⃗ , v⃗q

}τ⃗ }H
ě βS }v⃗}Q @ v⃗ P Q. (3.14)

Proof. Given v⃗ “ pvf ,vpq P Q, we set rv‹ :“ |v‹|2v‹ with ‹ P tf,pu and let z‹ P H1pΩ‹q be the unique solution
to the boundary value problem

´△z‹ “ rv‹ in Ω‹, z‹ “ 0 on Γc
out,‹, and ∇z‹n‹ “ 0 on Γout,‹.

Thus, defining rτ‹ :“ ´∇z‹ P L2pΩ‹q, noticing that rτ‹ P H‹
S and proceeding similarly to the proof of [6, Lemma

3.3], it follows that

sup
τ⃗PH
τ⃗‰0

bSpτ⃗ , v⃗q

}τ⃗ }H
ě βS,‹}v‹}0,4;Ω‹

,

where βS,‹ “ pcp,‹}i‹4} ` 1q
´1

, cp,‹ is a Poincaré’s constant depending only on |Ω‹| and i‹4 is the continuous

injection of H1pΩ‹q into L4pΩ‹q. Thus, (3.14) is satisfied with βS “
1

2
min

␣

βS,f , βS,p

(

.

Letting now A : pH ˆ Qq ˆ pH ˆ Qq ÝÑ R be the bilinear form given by

A
`

pζ⃗, z⃗q, pτ⃗ , v⃗q
˘

:“ aSpζ⃗, τ⃗ q ` bSpτ⃗ , z⃗q ` bSpζ⃗, v⃗q @ pζ⃗, z⃗q, pτ⃗ , v⃗q P H ˆ Q,

we deduce that (3.2), can be stated, equivalently as: Find pσ⃗, u⃗q P H ˆ Q such that

Aw⃗

`

pσ⃗, u⃗q, pτ⃗ , v⃗q
˘

:“ A ppσ⃗, u⃗q, pτ⃗ , v⃗qq ´ OSpw⃗; σ⃗, v⃗q “ Fχ⃗pτ⃗ q @ pτ⃗ , v⃗q P H ˆ Q. (3.15)

Consequently, knowing from Lemmas 3.1 and 3.2 that aS and bS satisfy the hipotheses of [18, Theorem 2.34],
a direct application of this result yields the existence of a positive constant αA, depending on }aS}, αS, and βS,
such that

sup
pτ⃗,v⃗qPHˆQ

pτ⃗ ,v⃗q‰0

A
`

pζ⃗, z⃗q, pτ⃗ , v⃗q
˘

}pτ⃗ , v⃗q}HˆQ
ě αA }pζ⃗, z⃗q}HˆQ @ pζ⃗, z⃗q P H ˆ Q. (3.16)

Then, it follows from (3.7a), (3.15) and (3.16) that

sup
pτ⃗,v⃗qPHˆQ

pτ⃗ ,v⃗q‰0

Aw⃗

`

pζ⃗, z⃗q, pτ⃗ , v⃗q
˘

}pτ⃗ , v⃗q}HˆQ
ě

!

αA ´
ρ

ν
}w⃗}Q

)

}pζ⃗, z⃗q}HˆQ @ pζ⃗, z⃗q P H ˆ Q.

Hence, assuming that }w⃗}Q ď
ν αA

2 ρ
, we arrive at

sup
pτ⃗,v⃗qPHˆQ

pτ⃗ ,v⃗q‰0

Aw⃗

`

pζ⃗, z⃗q, pτ⃗ , v⃗q
˘

}pτ⃗ , v⃗q}HˆQ
ě

αA

2
}pζ⃗, z⃗q}HˆQ @ pζ⃗, z⃗q P H ˆ Q. (3.17)

Similarly, noting that A is symmetric, employing (3.7a) and (3.16), and assuming again that }w⃗}Q ď
ν αA

2 ρ
,

we obtain

sup
pζ⃗,⃗zqPHˆQ

pζ⃗ ,⃗zq‰0

Aw⃗

`

pζ⃗, z⃗q, pτ⃗ , v⃗q
˘

}pζ⃗, z⃗q}HˆQ

ě
αA

2
}pτ⃗ , v⃗q}HˆQ ą 0 @ pτ⃗ , v⃗q P H ˆ Q, pτ⃗ , v⃗q ‰ 0. (3.18)

Then, we are now in position to prove that the operator rJ (cf. (3.1)) is well-defined.
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Theorem 3.3. For each χ⃗ P M and w⃗ P Q such that }w⃗}Q ď
ν αA

2 ρ
, there exists a unique pσ⃗, u⃗q P H ˆ Q

solution to (3.2) pequivalently (3.15)q. Moreover, there holds

} rJ pw⃗, χ⃗q}HˆQ “ }pσ⃗, u⃗q}HˆQ ď
2CF

αA

!

}g⃗}1{2,Γc
out

` a1}χ⃗}M

)

. (3.19)

Proof. We first recall from (3.17) and (3.18), that Aw⃗ satisfies the hypotheses of the Banach–Nečas–Babuška
Theorem [18, Theorem 2.6], which allows us to conclude the well-posedness of (3.15). In turn, the estimate
(3.19) is a direct consequence of (3.17), (3.15) and (3.9).

3.1.2 Well-definedness of the operator pJ

We will prove now that (3.4) is well-posed, equivalently, that pJ is well-defined. Indeed, it is clear that aT and
dT are symmetric, and the former is positive semidefinite. In addition, thanks to (1.16), it follows that dT (cf.
(2.7e)), satisfies

dTppψ⃗, η⃗q, pψ⃗, η⃗qq “ pra1,f ´ ra0q}ηf}
2
0,Σ ` pra1,p ` ra0q}ηp}20,Σ ě 0 @ pψ⃗, η⃗q P Q, (3.20)

which confirm hypothesis i) of [14, Theorem 3.4]). On the other hand, given ‹ P tf,pu, we let KT be the kernel
of the operator induced by the bilinear form bT (cf. (2.7d)), that is

KT :“
!

s⃗ :“ psf , spq P H : divps‹q “ 0 in Ω‹ and s‹ ¨ n‹ “ 0 on Γc
in,‹

)

.

Then, it is straightforward to see from the definition of aT (cf. (2.7b)), that for each s⃗ :“ psf , spq P KT, there
holds

aTp⃗s, s⃗q ě
1

2κ
}⃗s}2H @ s⃗ P KT, (3.21)

which proves that aT is KT-elliptic with constant αT “
1

2κ
, and hence that aS verify the continuous inf-sup

condition required by the hypothesis ii) of [14, Theorem 3.4]. Now, we provide the corresponding inf-sup
condition of the bilinear form bT (cf. (2.7d)) and its proof is basically an adaptation of the version in [3,
Theorem 2.1].

Lemma 3.4. There exists a positive constant βT such that

sup
s⃗PH

s⃗‰0

bTp⃗s, pψ⃗, η⃗qq

}⃗s}H
ě βT }pψ⃗, η⃗q}Q @ pψ⃗, η⃗q P Q. (3.22)

Proof. Let pψ⃗, η⃗q P Q. Then, similarly as done in Lemma 3.2, we deduce that

sup
s⃗PH

s⃗‰0

bTp⃗s, pψ⃗, η⃗qq

}⃗s}H
ě rβT}ψ⃗}X, (3.23)

with rβT “
1

2
min

!

`

cp,f}i
f
4} ` 1

˘´1
, pcp,p}ip4} ` 1q

´1
)

, where i‹4 is the continuous injection of H1pΩ‹q into

L4pΩ‹q and cp,‹ is the Poincare’s constant, for each ‹ P tf,pu. On the other hand, given µ‹ P H
´1{2
00 pΓc

in,‹q, we

let pz‹ P H1pΩ‹q be the solution to

△pz‹ “ 0 in Ω‹, pz‹ “ 0 on Γin,‹, and ∇pz‹ ¨ n‹ “ µ‹ on Γc
in,‹,

and set ps‹ :“ ∇pz‹ P L2pΩ‹q. Noticing that ps‹ P H‹
T, proceeding analogously to the proof of [3, Theorem 2.1],

we conclude that there exists a constant pβT,‹ ą 0 such that

sup
s⃗PH

s⃗‰0

bTp⃗s, pψ⃗, η⃗qq

}⃗s}H
ě pβT,‹}η‹}1{2,00,Γc

in,‹
.

The above, along with (3.23), yields (3.22) with βT “
1

2
min

!

rβT,
1

2
min

␣

pβT,f , pβT,p

(

)

.
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Now, we let A : pH ˆ Qq ˆ pH ˆ Qq ÝÑ R be the bounded bilinear form defined by

A
`

p⃗r, pφ⃗, λ⃗qq, p⃗s, pψ⃗, η⃗qq
˘

:“ aT

`

r⃗, s⃗
˘

` bT

`

s⃗, pφ⃗, λ⃗q
˘

` bT

`

r⃗, pψ⃗, η⃗q
˘

´ dT

`

pφ⃗, λ⃗q, pψ⃗, η⃗q
˘

(3.24)

for all p⃗r, pφ⃗, λ⃗qq, p⃗s, pψ⃗, η⃗qq P H ˆ Q. Next, letting now Aw⃗,χ⃗ : pH ˆ Qq ˆ pH ˆ Qq ÝÑ R be the bilinear form
such that

Aw⃗,χ⃗

`

p⃗r, pφ⃗, λ⃗qq, p⃗s, pψ⃗, η⃗qq
˘

:“ A
`

p⃗r, pφ⃗, λ⃗qq, p⃗s, pψ⃗, η⃗qq
˘

´ OTpw⃗; r⃗, ψ⃗q ´ CTpχ⃗; λ⃗, η⃗q (3.25)

for all p⃗r, pφ⃗, λ⃗qq, p⃗s, pψ⃗, η⃗qq P H ˆ Q. We realize that (3.4) can be rewritten, equivalently, as: Find p⃗t, pϕ⃗, ξ⃗qq P

H ˆ Q such that

Aw⃗,χ⃗

`

p⃗t, pϕ⃗, ξ⃗qq, p⃗s, pψ⃗, η⃗qq
˘

“ Fχ⃗pψ⃗, η⃗q @ p⃗s, pψ⃗, η⃗qq P H ˆ Q. (3.26)

Then, thanks to (3.21), (3.20) and (3.22), the hypotheses of [14, Theorem 3.4] are satisfied, and hence the a
priori estimates given by [14, Theorem 3.4, eq. (3.51)] imply the existence of a positive constant αA, depending
on }aT}, αT, }dT}, and βT, such that

sup
p⃗s,pψ⃗,η⃗qqPHˆQ

p⃗s,pψ⃗,η⃗qq‰0

A
`

p⃗r, pφ⃗, λ⃗qq, p⃗s, pψ⃗, η⃗qq
˘

}p⃗s, pψ⃗, η⃗qq}HˆQ

ě αA }p⃗r, pφ⃗, λ⃗qq}HˆQ @ p⃗r, pφ⃗, λ⃗qq P H ˆ Q. (3.27)

Thus, from (3.25), (3.7b), (3.10) and (3.27), it follows that

sup
p⃗s,pψ⃗,η⃗qqPHˆQ

p⃗s,pψ⃗,η⃗qq‰0

Aw⃗,χ⃗

`

p⃗r, pφ⃗, λ⃗qq, p⃗s, pψ⃗, η⃗qq
˘

}p⃗s, pψ⃗, η⃗qq}HˆQ

ě

!

αA ´ ra1}χ⃗}M ´ κ´1}w⃗}Q

)

}p⃗r, pφ⃗, λ⃗qq}HˆQ

for all p⃗r, pφ⃗, λ⃗qq P H ˆ Q. Hence, under the assumption }pw⃗, χ⃗q}QˆM ď
καA

2p1 ` κra1q
, we arrive at

sup
p⃗s,pψ⃗,η⃗qqPHˆQ

p⃗s,pψ⃗,η⃗qq‰0

Aw⃗,χ⃗

`

p⃗r, pφ⃗, λ⃗qq, p⃗s, pψ⃗, η⃗qq
˘

}p⃗s, pψ⃗, η⃗qq}HˆQ

ě
αA

2
}p⃗r, pφ⃗, λ⃗qq}HˆQ @ p⃗r, pφ⃗, λ⃗qq P H ˆ Q. (3.28)

Similarly, using the fact that A is symmetric, employing the same boundedness estimates for OT (cf. (3.7b))

and CT (cf. (3.10)), and assuming again that }pw⃗, χ⃗q}QˆM ď
καA

2p1 ` κra1q
, we are able to prove the companion

inf-sup condition to (3.28), that is

sup
p⃗r,pφ⃗,λ⃗qqPHˆQ

p⃗r,pφ⃗,λ⃗qq‰0

Aw⃗,χ⃗

`

p⃗r, pφ⃗, λ⃗qq, p⃗s, pψ⃗, η⃗qq
˘

}p⃗r, pφ⃗, λ⃗qq}HˆQ

ě
αA

2
}p⃗s, pψ⃗, η⃗qq}HˆQ ą 0

for all p⃗s, pψ⃗, η⃗qq P H ˆ Q, p⃗s, pψ⃗, η⃗qq ‰ 0. As a consequence, we are in position to establish that pJ (cf. (3.3))
is well defined.

Theorem 3.5. For each pw⃗, χ⃗q P QˆQ such that }pw⃗, χ⃗q}QˆM ď
καA

2p1 ` κra1q
, there exists a unique p⃗t, pϕ⃗, ξ⃗qq “

pJ pw⃗, χ⃗q P H ˆ Q solution to (3.4) pequivalently (3.26)q. Moreover, there holds

} pJ pw⃗, χ⃗q}HˆQ “ }p⃗t, pϕ⃗, ξ⃗qq}HˆQ ď
2

αA
ra3
`

1 ` }χ⃗}M
˘

, (3.29)

where ra1 and ra3 have been defined in (3.11).

Proof. It follows from a straightforward application of [18, Theorem 2.6]. In particular, the a priori estimate
(3.29) follows from (3.28) and the fact that, according to (3.10), there holds }Fχ⃗} ď ra3

`

1 ` }χ⃗}M
˘

.
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3.2 Solvability analysis of the fixed-point scheme

Knowing from the previous sections that the operators rJ , pJ , and hence J are well-defined, we now focus on
the solvability of the fixed-point equation (3.5). To this end, in what follows we first derive sufficient conditions

on J to map a closed ball of QˆM into itself. Indeed, from now on setting δ :“ min
! ν αA

2 ρ
,

καA

2p1 ` κra1q

)

, we

let

Wpδq :“
!

pw⃗, χ⃗q P Q ˆ M : }pw⃗, χ⃗q}QˆM ď δ
)

. (3.30)

Lemma 3.6. If

CF

!

}g⃗}1{2,Γc
out

` a1δ
)

ď
αA

4
δ, and ra3p1 ` δq ď

αA

4
δ, (3.31)

then J
`

Wpδq
˘

Ď Wpδq.

Proof. Given pw⃗, χ⃗q P Wpδq, we first recall from (3.5) that J pw⃗, χ⃗q “
`

rJ2pw⃗, χ⃗q, pJ3pw⃗, χ⃗q
˘

. In this way,

the choice of δ along with assumption (3.31) allows to conclude from (3.19) and (3.29) that } rJ2pw⃗, χ⃗q}Q

and } pJ3pw⃗, χ⃗q}M are bounded each by δ{2, which implies that }J pw⃗, χ⃗q}QˆM ď δ, and hence J
`

Wpδq
˘

Ď

Wpδq.

We continue the analysis with the Lipschitz-continuity properties of rJ and pJ .

Lemma 3.7. There exist positive constants LS,1 and LS,2, depending only on ν, ρ, αA, a1, and CF such that

} rJ pw⃗, χ⃗q ´ rJ pw⃗0, χ⃗0q}HˆQ ď

!

LS,1

`

}g⃗}1{2,Γc
out

` a1δ
˘

` LS,2

)

}pw⃗, χ⃗q ´ pw⃗0, χ⃗0q}QˆM (3.32)

for all pw⃗, χ⃗q, pw⃗0, χ⃗0q P Wpδq.

Proof. Given pw⃗, χ⃗q, pw⃗0, χ⃗0q P Wpδq, we set rJ pw⃗, χ⃗q “ pσ⃗, u⃗q P HˆQ and rJ pw⃗0, χ⃗0q “ pσ⃗0, u⃗0q P HˆQ as
the unique solutions of the formulations (3.2) (equivalently (3.15)), that is

Aw⃗

`

pσ⃗, u⃗q, pτ⃗ , v⃗q
˘

“ Fχ⃗pτ⃗ q and Aw⃗0

`

pσ⃗0, u⃗0q, pτ⃗ , v⃗q
˘

“ Fχ⃗0
pτ⃗ q,

respectively, both for all pτ⃗ , v⃗q P H ˆ Q. Then, applying the global inf-sup condition (3.17) to pζ⃗, z⃗q :“
`

σ⃗ ´ σ⃗0, u⃗ ´ u⃗0

˘

, using the above identities, (3.15), (3.7a) and (2.9), we find that

αA

2
}
`

σ⃗ ´ σ⃗0, u⃗ ´ u⃗0

˘

}HˆQ ď sup
pτ⃗,v⃗qPHˆQ

pτ⃗ ,v⃗q‰0

Aw⃗

`

pσ⃗ ´ σ⃗0, u⃗ ´ u⃗0q, pτ⃗ , v⃗q
˘

}pτ⃗ , v⃗q}HˆQ

“ sup
pτ⃗,v⃗qPHˆQ

pτ⃗ ,v⃗q‰0

OSpw⃗ ´ w⃗0; σ⃗0, v⃗q `
`

Fχ⃗ ´ Fχ⃗0

˘

pτ⃗ q

}pτ⃗ , v⃗q}HˆQ
ď

ρ

ν
}w⃗ ´ w⃗0}Q}σ⃗0}H ` a1CF }χ⃗´ χ⃗0}M,

which, along with the fact that } rJ pw⃗, χ⃗q ´ rJ pw⃗0, χ⃗0q}HˆQ “ }pσ⃗, u⃗q ´ pσ⃗0, u⃗0q}HˆQ and (3.19), yields (3.32),

with LS,1 :“
4ρCF

να2
A

and LS,2 :“
2a1CF

αA
, thus completing the proof.

Lemma 3.8. There exists a positive constant LT, depending only on αA, ra1, ra3 and κ, such that

} pJ pw⃗, χ⃗q ´ pJ pw⃗0, χ⃗0q}HˆQ ď LT

`

1 ` δ
˘

}pw⃗, χ⃗q ´ pw⃗0, χ⃗0q}QˆM (3.33)

for all pw⃗, χ⃗q, pw⃗0, χ⃗0q P Wpδq.
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Proof. Given pw⃗, χ⃗q, pw⃗0, χ⃗0q P Wpδq, we let pJ pw⃗, χ⃗q “ p⃗t, pϕ⃗, ξ⃗qq P H ˆ Q and pJ pw⃗0, χ⃗0q “ p⃗t0, pϕ⃗0, ξ⃗0qq P

HˆQ as the unique solutions of (3.4), Then, subtracting both systems and rearranging the terms appropriately,
we find that

Aw⃗,χ⃗

`

p⃗t ´ t⃗0, pϕ⃗´ ϕ⃗0, ξ⃗ ´ ξ⃗0qq, p⃗s, pψ⃗, η⃗qq
˘

“ OTpw⃗ ´ w⃗0; t⃗0, ψ⃗q ` CT

`

χ⃗´ χ⃗0; ξ⃗0, η⃗
˘

`
`

Fχ⃗ ´ Fχ⃗0

˘

pψ⃗, η⃗q

for all p⃗s, pψ⃗, η⃗qq P H ˆ Q. In this way, applying the global inf-sup condition (3.28) to p⃗r, pφ⃗, λ⃗qq :“ p⃗t, pϕ⃗, ξ⃗qq ´

p⃗t0, pϕ⃗0, ξ⃗0qq, and then employing the foregoing identity along with (3.7b) and (3.10), we obtain

αA

2
}p⃗t, pϕ⃗, ξ⃗qq ´ p⃗t0, pϕ⃗0, ξ⃗0qq}HˆQ ď sup

p⃗s,pψ⃗,η⃗qqPHˆQ

p⃗s,pψ⃗,η⃗qq‰0

Aw⃗,χ⃗

`

p⃗t, pϕ⃗, ξ⃗qq ´ p⃗t0, pϕ⃗0, ξ⃗0qq, p⃗s, pψ⃗, η⃗qq
˘

}p⃗s, pψ⃗, η⃗qq}HˆQ

ď κ´1}w⃗ ´ w⃗0}Q }⃗t0}H ` ra1}χ⃗´ χ⃗0}M} }ξ⃗0}M ` ra3}χ⃗´ χ⃗0}M,

from which, using the bounds for }⃗t0}H “ } pJ1pw⃗, χ⃗q}H and }ξ⃗0}M “ } pJ3pw⃗0, χ⃗0q}M provided by (3.29), we

arrive at (3.33) with LT :“
2

αA
ra3 max

#

2

αA

`

κ´1 ` ra1
˘

, 1

+

.

Having proved Lemmas 3.7 and 3.8, we are able to establish now the Lipschitz-continuity of our fixed point
operator J in the closed ball Wpδq.

Lemma 3.9. Let LS,1, LS,2 and LT be the constants provided by Lemmas 3.7 and 3.8. There holds

}J pw⃗, χ⃗q ´ J pw⃗0, χ⃗0q}QˆM ď

!

LS,1

`

}g⃗}1{2,Γc
out

` a1δ
˘

` LS,2 ` LT

`

1 ` δ
˘

)

}pw⃗, χ⃗q ´ pw⃗0, χ⃗0q}QˆM

for all pw⃗, χ⃗q, pw⃗0, χ⃗0q P Wpδq.

Proof. It follows from the definition of J (cf. (3.5)) and the estimates (3.32) and (3.33).

Owing to the above analysis, we now establish the main result of this section.

Theorem 3.10. Let us assume that the given data are sufficiently small to satisfy (3.31), and

LS,1

`

}g⃗}1{2,Γc
out

` a1δ
˘

` LS,2 ` LT

`

1 ` δ
˘

ă 1. (3.34)

The problem (2.6) has a unique solution pσ⃗, u⃗q P H ˆ Q and
`

t⃗, pϕ⃗, ξ⃗q
˘

P H ˆ Q with pu⃗, ξ⃗q P Wpδq. Moreover,
there hold

}pσ⃗, u⃗q}HˆQ ď
2CF

αA

!

}g⃗}1{2,Γc
out

` a1δ
)

, and (3.35)

}p⃗t, pϕ⃗, ξ⃗qq}HˆQ ď
2

αA
ra3
`

1 ` δ
˘

. (3.36)

Proof. We first recall that the choice of δ and the assumptions of Lemma 3.6 guarantee that J maps Wpδq

into itself. Then, bearing in mind the Lipschitz-continuity of J : Wpδq Ñ Wpδq given by Lemma 3.9 and the
hypotheses (3.34), a straightforward application of the classical Banach fixed-point Theorem yields the existence

of a unique fixed point pu⃗, ξ⃗q P Wpδq of this operator, and hence a unique solution of (2.6). In addition, the a
priori estimates provided by (3.19) and (3.29), yield (3.35) and (3.36), which completes the proof.

4 The Galerkin scheme

In order to approximate the solution of our mixed variational formulation (2.6), we now introduce the associated
Galerkin scheme, analyze its solvability by applying a discrete version of the fixed-point approach adopted in
the previous section, and derive the corresponding a priori error estimate.
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4.1 Preliminaries

Let T f
h and T p

h be the respective triangulations of the domains Ωf and Ωp formed by shape-regular triangles of
diameter hK and denote by hf and hp their corresponding meshsizes. Assume that they match on Σ so that
Th:= T f

h ∪ T p
h is a conforming triangulation of Ω :“ Ωf ∪ Σ ∪ Ωp. Hereafter, h :“ maxthf , hpu. Now, for each

‹ P tf,pu, letting rHσ‹

h Ď Hpdiv4{3; Ω‹q, selecting a set of arbitrary discrete spaces, namely

Hσ‹

h :“ rHσ‹

h ∩HΓoutpdiv4{3; Ω‹q, Ht‹

h Ď Hpdiv4{3; Ω‹q, Mξ‹

h Ď H
1{2
00 pΓc

in,‹q,

Qu‹

h Ď L4pΩ‹q, Xϕ‹

h Ď L4pΩ‹q,
(4.1)

defining the global spaces

Hh :“ Hσf

h ˆ Hσp

h , Hh :“ Htf
h ˆ H

tp
h , Mh :“ Mξf

h ˆ M
ξp
h ,

Qh :“ Quf

h ˆ Q
up

h , Xh :“ Xϕf

h ˆ X
ϕp

h , Qh :“ Xh ˆ Mh,

and setting the notation

τ⃗h :“ pτ f
h, τ

p
h q P Hh, s⃗h :“ psfh, s

p
hq P Hh, ξ⃗h :“ pξfh, ξ

p
hq P Mh,

w⃗h :“ pwf
h,w

p
hq P Qh, ψ⃗h :“ pψf

h, ψ
p
hq P Xh, pϕ⃗h, ξ⃗hq :“ pϕfh, ϕ

p
h, ξ

f
h, ξ

p
hq P Qh,

the Galerkin scheme associated to (2.6) reads: Find
`

σ⃗h, u⃗h
˘

P Hh ˆQh and
`

t⃗h, pϕ⃗h, ξ⃗hq
˘

P Hh ˆQh such that

aSpσ⃗h, τ⃗hq `bSpτ⃗h, u⃗hq “ Fξ⃗hpτ⃗hq,

bSpσ⃗h, v⃗hq ´OSpu⃗h; σ⃗h, v⃗hq “ 0,

aTp⃗th, s⃗hq `bTp⃗sh, pϕ⃗h, ξ⃗hqq “ 0,

bTp⃗th, pψ⃗h, η⃗hqq ´dTppϕ⃗h, ξ⃗hq, pψ⃗h, η⃗hqq ´OTpu⃗h; t⃗h, ψ⃗hq ´ CTpξ⃗h; ξ⃗h, η⃗hq “ Fξ⃗hpψ⃗h, η⃗hq,

(4.2)

for all pτ⃗h, v⃗hq P Hh ˆ Qh and p⃗sh, pψ⃗h, η⃗hqq P Hh ˆ Qh.

Then, we adopt the discrete version of the strategy employed in Section 3.1 to analyze the solvability of
(4.2). To this end, we let rJh : Qh ˆ Mh ÝÑ Hh ˆ Qh be the discrete operator defined by

rJhpw⃗h, χ⃗hq “
`

rJ1,hpw⃗h, χ⃗hq, rJ2,hpw⃗h, χ⃗hq
˘

:“ pσ⃗h, u⃗hq

for all pw⃗h, χ⃗hq P Qh ˆ Mh, where pσ⃗h, u⃗hq P Hh ˆ Qh is the unique solution (to be confirmed in Theorem 4.1)
of the following problem:

aSpσ⃗h, τ⃗hq ` bSpτ⃗h, u⃗hq “ Fχ⃗hpτ⃗hq,

bSpσ⃗h, v⃗hq ´OSpw⃗h; σ⃗h, v⃗hq “ 0,
(4.3)

for all pτ⃗h, v⃗hq P Hh ˆ Qh. In addition, we also let pJh : Qh ˆ Mh ÝÑ Hh ˆ Qh be the discrete operator given by

pJhpw⃗h, χ⃗hq “
`

pJ1,hpw⃗h, χ⃗hq, p pJ2,hpw⃗h, χ⃗hq, pJ3,hpw⃗h, χ⃗hqq
˘

:“ p⃗th, pϕ⃗h, ξ⃗hqq

for all pw⃗h, χ⃗hq P Qh ˆ Mh, where p⃗th, pϕ⃗h, ξ⃗hqq P Hh ˆ Qh is the unique solution (to be confirmed in Theorem
4.2) of the following system of equations:

aTp⃗th, s⃗hq ` bTp⃗sh, pϕ⃗h, ξ⃗hqq “ 0,

bTp⃗th, pψ⃗h, η⃗hqq ´ dTppϕ⃗h, ξ⃗hq, pψ⃗h, η⃗hqq ´ OTpw⃗h; t⃗h, ψ⃗hq ´ CT

`

χ⃗h; ξ⃗h, η⃗h
˘

“Fχ⃗hpψ⃗h, η⃗hq,
(4.4)

for all p⃗sh, pψ⃗h, η⃗hqq P Qh ˆ Hh.

Finally, we define the operator Jh : Qh ˆ Mh ÝÑ Qh ˆ Mh as

Jhpw⃗h, χ⃗hq “
`

rJ2,hpw⃗h, χ⃗hq, pJ3,hpw⃗h, χ⃗hq
˘

“ pu⃗h, ξ⃗hq @ pw⃗h, χ⃗hq P Qh ˆ Mh, (4.5)

and notice that solving (4.2) is equivalent to seeking a unique fixed point of Jh, that is pu⃗h, ξ⃗hq P QhˆMh such

that Jhpu⃗h, ξ⃗hq “ pu⃗h, ξ⃗hq.
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4.2 Well-definedness of the operators rJh and pJh

In this section we proceed analogously to Sections 3.1.1 and 3.1.2 and establish the well-posedness of the discrete
systems (4.3) and (4.4), equivalently that the discrete operators rJh and pJh are well-defined. To this end, given
‹ P tf,pu, we introduce certain hypotheses on the finite element subspaces defined above, and the discrete
kernels associated with the bilinear forms bS, and bT, respectively, that is

KS,h :“
!

τ⃗h P Hh :

ż

Ω‹

v‹
h ¨ divpτ ‹

hq “ 0 @v‹
h P Qu‹

h

)

,

KT,h :“
!

s⃗h P Hh :

ż

Ω‹

ψ‹
hdivps‹

hq “ 0 @ψ‹
h P Xϕ‹

h and xs‹
h ¨ n‹, η

‹
hyΓc

in,‹
“ 0 @ η‹

h P Mξ‹

h

)

.

More precisely, from now on we assume that

(H.1) rHσ‹

h contains the multiplies of the identity tensor I,
(H.2) divpHσ‹

h q Ď Qu‹

h ,

(H.3) there exists a positive constant βS,d, independent of h, such that

sup
τ⃗hPHh
τ⃗h‰0

bSpτ⃗h, v⃗hq

}τ⃗h}H
ě βS,d }v⃗h}Q @ v⃗h P Qh, (4.6)

(H.4) divpHt‹

h q Ď Xϕ‹

h ,

(H.5) there exists a positive constant βT,d, independent of h, such that

sup
s⃗hPHh
s⃗h‰0

bTp⃗sh, pψ⃗h, η⃗hqq

}⃗sh}H
ě βT,d }pψ⃗h, η⃗hq}Q @ pψ⃗h, η⃗hq P Qh. (4.7)

Then, bearing in mind the assumption (H.2), we find that KS,h :“
!

τ⃗h P Hh : divpτ ‹
hq “ 0 in Ω‹

)

.

In this regard, it is worth noting that the KS-ellipticity of the bilinear form aS, as shown in Lemma 3.1,
relies solely on the divergence-free property of the tensors in KS along with the estimate (3.13). Therefore, by

selecting our discrete space Hσ‹

h :“ rHσ‹

h ∩HΓout
pdiv4{3; Ω‹q, it follows that aS is also KS,h-elliptic with the same

positive constant αS, that is

aSpτ⃗h, τ⃗hq ě αs }τ⃗h}2H @ τ⃗h P KS,h. (4.8)

In this way, (H.3) and (4.8), guarantee, thanks to [18, Proposition 2.42], the discrete global inf-sup condition
for A (cf. (3.16)) with a positive constant αA,d, depending only on αS, βS,d, and }aS}, and hence independent
of h, that is

sup
pτ⃗h,v⃗hqPHhˆQh

pτ⃗h,v⃗hq‰0

A
`

pζ⃗h, z⃗hq, pτ⃗h, v⃗hq
˘

}pτ⃗h, v⃗hq}HˆQ
ě αA,d }pζ⃗h, z⃗hq}HˆQ @ pζ⃗h, z⃗hq P Hh ˆ Qh, (4.9)

so that, for each w⃗h P Qh such that }w⃗h}Q ď
ν αA,d

2 ρ
, there holds

sup
pτ⃗h,v⃗hqPHhˆQh

pτ⃗h,v⃗hq‰0

Aw⃗h

`

pζ⃗h, z⃗hq, pτ⃗h, v⃗hq
˘

}pτ⃗h, v⃗hq}HˆQ
ě

αA,d

2
}pζ⃗h, z⃗hq}HˆQ @ pζ⃗h, z⃗hq P Hh ˆ Qh. (4.10)

Consequently, we are now in position to establish the discrete analogue of Theorem 3.3.

Theorem 4.1. For each w⃗h P Qh, and χ⃗h P Mh such that }w⃗h}Q ď
ν αA,d

2 ρ
, there exists a unique pσ⃗h, u⃗hq P

Hh ˆ Qh solution to (4.3), equivalently

Aw⃗h

`

pσ⃗h, u⃗hq, pτ⃗h, v⃗hq
˘

“ Fχ⃗hpτ⃗hq @ pτ⃗h, v⃗hq P Hh ˆ Qh. (4.11)
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Moreover, there holds

} rJhpw⃗h, χ⃗hq}HˆQ “ }pσ⃗h, u⃗hq}HˆQ ď
2CF

αA,d

!

}g⃗}1{2,Γc
out

` a1}χ⃗h}M

)

. (4.12)

Proof. Let pw⃗h, χ⃗hq P Qh ˆ Mh, such that }w⃗h}Q ď
ν αA,d

2 ρ
. Analogously to the continuous case, we find that

Aw⃗h (cf. (4.10)) satisfies the hypotheses of the discrete Banach–Nečas–Babuška theorem [18, Theorem 2.22],
and then we conclude the existence of a unique pσ⃗h, u⃗hq P Hh ˆQh solution to (4.11). In addition, the a priori
error estimates (4.12) is consequence of (4.11), (4.10) and the boundedness of Fχ⃗h (cf. (3.9)).

Similarly, thanks to (H.4), it is easy to see that KT,h can be characterized as

KT,h :“
!

s⃗h :“ psfh, s
p
hq P Hh : divps‹

hq “ 0 in Ω‹ and xs‹
h ¨ n‹, η

‹
hyΓc

in,‹
“ 0 @ η‹

h P Mξ‹

h

)

,

and hence aTp⃗sh, s⃗hq ě 1
2κ }⃗sh}2H for all s⃗h P KT,h. In turn, knowing from the continuous analysis that dT

is positive semi-definite in Q (cf. (3.20)), this property is also true in Qh. Hence, bearing in mind (H.5), a
straightforward application of [14, Theorem 3.5] implies the discrete global inf-sup condition for A (cf. (3.24))
with a positive constant αA,d, depending on }aT}, αT, }dT}, and βT,d, and thus the same property is shared by

Aw⃗h,χ⃗h (cf. (3.25)) for each pw⃗h, χ⃗hq P Qh ˆ Mh such that }pw⃗h, χ⃗hq}QˆM ď
καA,d

2p1 ` κra1q
, that is

sup
p⃗sh,pψ⃗h,η⃗hqqPHhˆQh

p⃗sh,pψ⃗h,η⃗hqq‰0

Aw⃗h,χ⃗h

`

p⃗rh, pφ⃗h, λ⃗hqq, p⃗sh, pψ⃗h, η⃗hqq
˘

}p⃗sh, pψ⃗h, η⃗hqq}HˆQ

ě
αA,d

2
}p⃗rh, pφ⃗h, λ⃗hqq}HˆQ (4.13)

for all p⃗rh, pφ⃗h, λ⃗hqq P Hh ˆ Qh.

In this way, we are now in a position to establish the discrete analogue of Theorem 3.5.

Theorem 4.2. For each pw⃗h, χ⃗hq P Qh ˆ Mh such that }pw⃗h, χ⃗hq}QˆM ď
καA,d

2p1 ` κra1q
, there exists a unique

p⃗th, pϕ⃗h, ξ⃗hqq “ pJhpw⃗h, χ⃗hq P Hh ˆ Qh solution to (4.4). Moreover, there holds

} pJhpw⃗h, χ⃗hq}HˆQ “ }p⃗th, pϕ⃗h, ξ⃗hqq}HˆQ ď
2

αA,d
ra3
`

1 ` }χ⃗h}M
˘

. (4.14)

Proof. It reduces to a direct application of [18, Theorem 2.22]. In particular, the a priori estimate (4.14) follows
from (4.13) and the fact that, according to (3.10), there holds }Fχ⃗h} ď ra3

`

1 ` }χ⃗h}M
˘

.

4.3 Discrete solvability analysis

We now address the solvability of the fixed-point equation (4.5). For that, we set δd :“ min

"

ναA,d

2 ρ
,

καA,d

2p1 ` κra1q

*

,

and define

Wpδdq :“
!

pw⃗h, χ⃗hq P Qh ˆ Mh : }pw⃗h, χ⃗hq}QˆM ď δd

)

, (4.15)

to provide sufficient conditions under which Jh maps Wpδdq into itself. More precisely, we have the following
result.

Lemma 4.3. If

CF

!

}g⃗}1{2,Γc
out

` a1δd

)

ď
αA,d

4
δd, and ra3

`

1 ` δd
˘

ď
αA,d

4
δd, (4.16)

then Jh
`

Wpδdq
˘

Ď Wpδdq.

Proof. It follows analogously to the proof of Lemma 3.6, but now using the well-posedness and associated a
priori estimates of rJh and pJh provided by Theorems 4.1 and 4.2, respectively.
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Next, we establish the Lipschitz-continuity properties of rJh and pJh.

Lemma 4.4. There exist positive constants L1
S,d and L2

S,d depending only on ν, ρ, αA,d, a1, and CF such that

} rJhpw⃗h, χ⃗hq ´ rJhpw⃗0,h, χ⃗0,hq}HˆQ ď

!

L1
S,d

`

}g⃗}1{2,Γc
out

` a1δd
˘

` L2
S,d

)

}pw⃗h, χ⃗hq ´ pw⃗0,h, χ⃗0,hq}QˆM

for all pw⃗h, χ⃗hq, pw⃗0,h, χ⃗0,hq P Wpδdq.

Proof. It follows analogously to the proof of Lemma 3.7, using now the discrete inf-sup condition satisfied by

Aw⃗h (cf. (4.10)) with constant
αA,d

2
.

Lemma 4.5. There exists a positive constant LT,d, depending only on αA,d, ra1, ra3 and κ, such that

} pJhpw⃗h, χ⃗hq ´ pJhpw⃗0,h, χ⃗0,hq}HˆQ ď LT,d

`

1 ` δd
˘

}pw⃗h, χ⃗hq ´ pw⃗0,h, χ⃗0,hq}QˆM

for all pw⃗h, χ⃗hq, pw⃗0,h, χ⃗0,hq P Wpδdq.

Proof. It follows very closely to the arguments from the proof of Lemma 3.8, employing now the discrete inf-sup

condition satisfied by Aw⃗h,χ⃗h (cf. (4.13)) with constant
αA,d

2
.

As a consequence, we are able to establish the Lipschitz-continuity of the operator Jh.

Lemma 4.6. Let L1
S,d, L

2
S,d and LT,d be the constants provided by Lemmas 4.4 and 4.5. There holds

}Jhpw⃗h, χ⃗hq ´ Jhpw⃗0,h, χ⃗0,hq}QˆM

ď

!

L1
S,d

`

}g⃗}1{2,Γc
out

` a1δd
˘

` L2
S,d ` LT,d

`

1 ` δd
˘

)

}pw⃗h, χ⃗hq ´ pw⃗0,h, χ⃗0,hq}QˆM

(4.17)

for all pw⃗h, χ⃗hq, pw⃗0,h, χ⃗0,hq P Wpδdq.

Proof. Given pw⃗h, χ⃗hq, pw⃗0,h, χ⃗0,hq P Wpδdq, it suffices to employ the definition of Jh (cf. (4.5)), and the upper
bounds of Lemmas 4.4 and 4.5.

According to the above, the main result of this section is establish as follows.

Theorem 4.7. If the given data are sufficiently small to satisfy (4.16), then the problem (4.2) has at least one

solution pσ⃗h, u⃗hq P Hh ˆ Qh and p⃗th, pϕ⃗h, ξ⃗hqq P Hh ˆ Qh with pu⃗h, ξ⃗hq P Wpδdq. Moreover, under the further
assumption

L1
S,d

`

}g⃗}1{2,Γc
out

` a1δd
˘

` L2
S,d ` LT,d

`

1 ` δd
˘

ă 1, (4.18)

this solution is unique. In addition, in both cases there hold

}
`

σ⃗h, u⃗hq}HˆQ ď
2CF

αA,d

!

}g⃗}1{2,Γc
out

` a1δd

)

, and (4.19)

}p⃗th, pϕ⃗h, ξ⃗hqq}HˆQ ď
2

αA,d
ra3

`

1 ` δd
˘

. (4.20)

Proof. We first notice that the assumptions of Lemma 4.3 guarantee that Jh maps Wpδdq into itself. Then,
the continuity of Jh : Wpδdq Ñ Wpδdq (cf. (4.17)) and a straightforward application of the Brouwer Theorem

(cf. [12, Theorem 9.9-2]) implies the existence of at least one solution pu⃗h, ξ⃗hq P Wpδdq to (4.2). Next, the
uniqueness of solution is a consequence of the Banach fixed-point Theorem and assumption (4.18). Finally,
thanks to the a priori estimates (4.12) and (4.14), we obtain (4.19) and (4.20).
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4.4 A priori error analysis

We consider finite element subspaces satisfying the assumptions specified in Section 4.2, and derive the Céa
estimate for the Galerkin error E :“ ES ` ET, where

ES :“ }pσ⃗, u⃗q ´ pσ⃗h, u⃗hq}HˆQ and ET :“ }p⃗t, pϕ⃗, ξ⃗qq ´ p⃗th, pϕ⃗h, ξ⃗hqq}HˆQ,

and pσ⃗, u⃗q P H ˆ Q, p⃗t, pϕ⃗, ξ⃗qq P H ˆ Q and pσ⃗h, u⃗hq P Hh ˆ Qh, p⃗th, pϕ⃗h, ξ⃗hqq P Hh ˆ Qh are the unique

solutions to (2.6) and (4.2), respectively, with pu⃗, ξ⃗q P Wpδq (cf. (3.30)) and pu⃗h, ξ⃗hq P Wpδdq (cf. (4.15)). In
what follows, given a subspace Zh of an arbitrary Banach space

`

Z, } ¨ }Z
˘

, we set

dist
`

z, Zh
˘

:“ inf
zhPZh

}z ´ zh}Z @ z P Z.

Now, using (3.15) and (3.26), we observe that (2.6) and (4.2) can be rewritten as the following pairs of continuous
formulations and their associated discrete counterparts

A
`

pσ⃗, u⃗q, pτ⃗ , v⃗q
˘

“ OSpu⃗; σ⃗, v⃗q ` Fξ⃗pτ⃗ q, A
`

pσ⃗h, u⃗hq, pτ⃗h, v⃗hq
˘

“ OSpu⃗h; σ⃗h, v⃗hq ` Fξ⃗hpτ⃗hq (4.21)

for all pτ⃗ , v⃗q P H ˆ Q and pτ⃗h, v⃗hq P Hh ˆ Qh, and

A
`

p⃗t, pϕ⃗, ξ⃗qq, p⃗s, pψ⃗, η⃗qq
˘

“ OTpu⃗; t⃗, ψ⃗q ` CTpξ⃗; ξ⃗, η⃗q ` Fξ⃗pψ⃗, η⃗q,

A
`

p⃗th, pϕ⃗h, ξ⃗hqq, p⃗sh, pψ⃗h, η⃗hqq
˘

“ OTpu⃗h; t⃗h, ψ⃗hq ` CTpξ⃗h; ξ⃗h, η⃗hq ` Fξ⃗hpψ⃗h, η⃗hq
(4.22)

for all p⃗s, pψ⃗, η⃗qq P H ˆ Q and p⃗sh, pψ⃗h, η⃗hqq P Hh ˆ Qh.

Then, from (4.21), it is easy to see that for each pτ⃗h, v⃗hq P Hh ˆ Qh, there holds

A ppσ⃗, u⃗q ´ pσ⃗h, u⃗hq, pτ⃗h, v⃗hqq “ OSpu⃗; σ⃗, v⃗hq ´ OSpu⃗h; σ⃗h, v⃗hq `
`

Fξ⃗ ´ Fξ⃗h

˘

pτ⃗hq,

whence, subtracting and adding σ⃗h in the second component of the first term, invoking the boundedness
properties of OS (cf. (3.7a)), Fξ⃗ ´ Fξ⃗h (cf. (3.9)), and the a priori estimates (cf. (3.35) and (4.19)) for }u⃗}Q

and }σ⃗h}H, respectively, we obtain for each pτ⃗h, v⃗hq P Hh ˆ Qh

A ppσ⃗, u⃗q ´ pσ⃗h, u⃗hq, pτ⃗h, v⃗hqq

ď

!ρ

ν
}u⃗}Q}σ⃗ ´ σ⃗h}H `

ρ

ν
}σ⃗}H}u⃗ ´ u⃗h}Q ` a1CF}ξ⃗ ´ ξ⃗h}M

)

}pτ⃗h, v⃗hq}HˆQ.
(4.23)

Now, the triangle inequality gives for each pζ⃗h, z⃗hq P Hh ˆ Qh

ES ď }pσ⃗, u⃗q ´ pζ⃗h, z⃗hq}HˆQ ` }pζ⃗h, z⃗hq ´ pσ⃗h, u⃗hq}HˆQ, (4.24)

and then, applying (4.9), subtracting and adding pσ⃗, u⃗q in the first component of A, and using the boundedness
of A with constant }A}, which depends on }aS}, and }bS} (cf. (3.6)), we find that

αA,d}pζ⃗h, z⃗hq ´ pσ⃗h, u⃗hq}HˆQ ď sup
pτ⃗h,v⃗hqPHhˆQh

pτ⃗h,v⃗hq‰0

A
`

pζ⃗h, z⃗hq ´ pσ⃗h, u⃗hq, pτ⃗h, v⃗hq
˘

}pτ⃗h, v⃗hq}HˆQ

ď }A}}pσ⃗, u⃗q ´ pζ⃗h, z⃗hq}HˆQ ` sup
pτ⃗h,v⃗hqPHhˆQh

pτ⃗h,v⃗hq‰0

A
`

pσ⃗, u⃗q ´ pσ⃗h, u⃗hq, pτ⃗h, v⃗hq
˘

}pτ⃗h, v⃗hq}HˆQ
.

In this way, inserting (4.23) into the supremum and replacing the resulting estimate in (4.24), and the fact that

pζ⃗h, z⃗hq is arbitrary, we conclude that there exists a positive constant CST depending only on ρ, ν, αA,d, and
hence independent of h, such that

ES ďCST

!

dist
`

pσ⃗, u⃗q,Hh ˆ Qh

˘

` }u⃗}Q}σ⃗ ´ σ⃗h}H ` }σ⃗}H}u⃗ ´ u⃗h}Q ` a1CF}ξ⃗ ´ ξ⃗h}M

)

. (4.25)
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Similarly, for each p⃗sh, pψ⃗h, η⃗hqq P Hh ˆ Qh, from (4.22), we deduce that

A
`

p⃗t, pϕ⃗, ξ⃗qq ´ p⃗th, pϕ⃗h, ξ⃗hqq, p⃗sh, pψ⃗h, η⃗hqq
˘

“ OTpu⃗; t⃗, ψ⃗hq ` CTpξ⃗; ξ⃗, η⃗hq ´ OTpu⃗h; t⃗h, ψ⃗hq ´ CTpξ⃗h; ξ⃗h, η⃗hq `
`

Fξ⃗ ´ Fξ⃗h
˘

pψ⃗h, η⃗hq,

from which, subtracting and adding t⃗h and ξ⃗h in the second component of the first and second terms, respectively,
invoking the boundedness properties of OT, CT, and Fξ⃗ ´Fξ⃗h , the a priori estimates (cf. (3.36) and (4.19)), we
proceed exactly as in the previous case for ES, and realize that there exists a positive constant CTT, depending
only on }A}, αA,d, ra1 and κ, and hence independent of h, such that

ET ďCTT

!

dist
`

p⃗t, ϕ⃗, ξ⃗q,Hh ˆ Qh
˘

` }⃗th}H}u⃗ ´ u⃗h}Q ` }⃗t ´ th}H}u⃗}Q

`
`

}ξ}M ` }ξh}M ` ra3
˘

}ξ⃗ ´ ξ⃗h}M

)

.

(4.26)

Consequently, we are in position to establish the announced Céa estimate.

Theorem 4.8. In addition to the hipotheses of Theorems 3.10 and 4.7, assume that

2CF

αA

!

}g⃗}1{2,Γc
out

` a1δ
)

`
2

αA,d
ra3p1 ` δdq ď

1

2CST

, and

2CF

αA

!

}g⃗}1{2,Γc
out

` a1δ
)

`
4

pαA
ra3p1 ` pδq ` ra3 ` a1CF ď

1

2CTT

,

(4.27)

where pαA :“ min
␣

αA, αA,d
(

, and pδ :“ max
␣

δ, δd
(

. There exists a positive constant Ce, independent of h, such
that

}pσ⃗, u⃗q ´ pσ⃗h, u⃗hq}HˆQ ` }p⃗t, pϕ⃗, ξ⃗qq ´ p⃗th, pϕ⃗h, ξ⃗hqq}HˆQ

ď 2Ce

!

dist
`

pσ⃗, u⃗q,Hh ˆ Qh

˘

` dist
`

p⃗t, pϕ⃗, ξ⃗qq,Hh ˆ Qh
˘

)

.
(4.28)

Proof. By combining (4.25) and (4.26), it suffices to use the bounds given by Theorems 3.10 and 4.7 along with
(4.27), which yield (4.28).

We end this section by remarking that (1.10) suggests the following postprocessed approximation for the
pressure p‹

p‹
h “ ´

1

n
trpσ‹

hq in Ω‹, (4.29)

so that, it is easy to show that

}p‹ ´ p‹
h}0,Ω‹

ď
1

?
n

}σ‹ ´ σ‹
h}0,Ω‹

. (4.30)

Thus, combining (4.28) and (4.30), we conclude the existence of pCe ě 0, independent of h, such that

}pσ⃗, u⃗q´pσ⃗h, u⃗hq}HˆQ ` }p⃗t, pϕ⃗, ξ⃗qq ´ p⃗th, pϕ⃗h, ξ⃗hqq}HˆQ `
ÿ

‹Ptf,pu

}p‹ ´ p‹
h}0,Ω‹

ď pCe

!

dist
`

pσ⃗, u⃗q,Hh ˆ Qh

˘

` distpp⃗t, pϕ⃗, ξ⃗qq,Hh ˆ Qhq

)

.

(4.31)

5 Specific finite element subspaces

In what follows, given K P T ‹
h , with ‹ P tf,pu, we let P0pKq be the space of polinomials of degree 0 defined on

K, whose vector version is denoted by P0pKq :“ rP0pKqs2. Next, we define the corresponding local Raviart–
Thomas spaces of order 0 as (see [21, Chapter 3] for further details) RT0pKq :“ P0pKq ‘ P0pKqx, where
x :“ px1, x2qt is a generic vector in R2. Then, we introduce, respectively, the following finite element spaces for
the variables t‹, σ‹, ϕ‹ and u‹:

Ht‹

h :“
!

s‹
h P Hpdiv; Ω‹q : s‹

h|K P RT0pKq @K P T ‹
h

)

, Hσ‹

h :“ HΓout
pdiv4{3; Ω‹q ∩ rH‹

h, with
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rH‹
h :“

!

τ ‹
h P Hpdiv; Ω‹q : τ ‹

h,i|K P RT0pKq, @ i P t1, 2u, @K P T ‹
h

)

,

Xϕ‹

h :“
!

ψ‹
h P L2pΩ‹q : ψ‹

h|K P P0pKq @K P T ‹
h

)

, and

Qu‹

h :“
!

v‹
h P L2pΩ‹q : v‹

h|K P P0pKq @K P T ‹
h

)

,

where τ ‹
h,i denotes the ith-row of τ ‹

h . It remains to introduce the finite element space for the variable ξ‹. To
that aim, we proceed similarly to [23] and denote by Γc

in,‹,h the partition of Γc
in,‹ inherited from T ‹

h . Let us
assume, without loss of generality, that the number of edges of Γc

in,‹,h is even. Then, we let Γc
in,‹,2h be the

partition of Γc
in,‹ arising by joining pairs of adjacent edges of Γc

in,‹,h. If the number of edges of Γc
in,‹,h is odd,

we simply reduce it to the even case by adding one node to the discretization of the boundary Γc
in,‹ and locally

modify the triangulation to keep the mesh conformity and regularity. In this way, denoting by x0 and xN the
extreme points of Γ

c

in,‹, we define the following finite element space:

Mξ‹

h :“
␣

η‹
h P CpΓc

in,‹q : η‹
h|e P P1peq @ edge e P Γc

in,‹,2h, η‹
hpx0q “ η‹

hpxN q “ 0
(

.

We stress here that the above particular subspaces satisfy the inclusions (4.1). We now verify that these
subspaces satisfy the hypotheses (H.1)-(H.5).

First, it is easy to show (see, [6, Section 4.2] for details) that rH‹
h satisfy (H.1) and (H.2). Next, in order to

check (H.3), we require the following result.

Lemma 5.1. Assume that there exists a polygonal convex domain pB‹ such that Ω‹ Ď pB‹ and Γout,‹ Ď B pB‹.
There exists a positive constant β‹

S,d, independent of h, such that

sup
τ‹
h

PHσ‹
h

τ‹
h‰0

ż

Ω‹

v‹
h ¨ divpτ ‹

hq

}τ ‹
h}div4{3;Ω‹

ě β‹
S,d}v‹

h}0,4;Ω‹
@v‹

h P Qu‹

h .

Proof. We proceed similarly to the proof of [6, Lemma 4.3], employing the arguments utilized in [11, Lemma
4.1].

In this way, since for each ‹ P tf,pu we have

sup
τ⃗hPHh
τ⃗h‰0

bSpτ⃗h, v⃗hq

}τ⃗h}H
ě sup

τ‹
h

PHσ‹
h

τ‹
h‰0

ż

Ω‹

v‹
h ¨ divpτ ‹

hq

}τ ‹
h}div4{3;Ω‹

ě β‹
S,d}v‹

h}0,4;Ω‹
@v‹

h P Qu‹

h , (5.1)

it is straightforward to see that Hh and Qh, satisfy (H.3) (cf. (4.6)) with a positive constant βS,d, independent
of h.

On the other hand, we observe that (H.4) holds according to [21, Lemma 3.7]. It only remains to verify
(H.5). To that aim, we follow the simplest approach suggested in [24]. More precisely, for each ‹ P tf,pu, we
recall (cf. [24, Lemma 5.2]) that there exists a positive constant β‹, independent of h, such that

sup
s‹
h

PH
t‹
h

s‹
h‰0

ż

Ω‹

ψ‹
hdivps‹

hq ` xs‹
h ¨ n‹, η

‹
hyΓc

in,‹

}s‹
h}div;Ω‹

ě β‹
!

}ψ‹
h}0;Ω‹

` }η‹
h}1{2,00,Γc

in,‹

)

(5.2)

for all pψ‹
h, η

‹
hq P Xϕ‹

h ˆMξ‹

h . Then, proceeding similarly to [22, Section 4.4.1], we use the fact that there exists a
positive constant cpΩ‹q, depending only on |Ω‹|, such that }s‹}div4{3;Ω‹

ď cpΩ‹q }s‹}div;Ω‹
for all s‹ P Hpdiv; Ω‹q,

along with (5.2), to deduce that

sup
s‹
h

PH
t‹
h

s‹
h‰0

ż

Ω‹

ψ‹
hdivps‹

hq ` xs‹
h ¨ n‹, η

‹
hyΓc

in,‹

}s‹
h}div4{3;Ω‹

ě
β‹

cpΩ‹q
}η‹
h}1{2,00,Γc

in,‹
@ pψ‹

h, η
‹
hq P Xϕ‹

h ˆ Mξ‹

h . (5.3)

In addition, we have the following result.
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Lemma 5.2. Assume that there exists a polygonal convex domain rB‹ such that Ω‹ Ď rB‹ and Γc
in,‹ Ď B rB‹.

Then there exists a positive constant rβ‹
T,d, independent of h, such that

sup
s‹
h

PRT0pT ‹
h

q

s‹
h‰0

ż

Ω‹

ψ‹
hdivps‹

hq ` xs‹
h ¨ n‹, η

‹
hyΓc

in,‹

}s‹
h}div4{3;Ω‹

ě rβ‹
T,d }ψ‹

h}0,4;Ω‹
@ pψ‹

h, η
‹
hq P Xϕ‹

h ˆ Mξ‹

h . (5.4)

Proof. Similarly as in Lemma 5.1, the result follows directly from [11, Lemma 4.1].

Hence, a straightforward linear combination of (5.3) and (5.4) implies that

sup
s‹
h

PH
t‹
h

s‹
h‰0

ż

Ω‹

ψ‹
hdivps‹

hq ` xs‹
h ¨ n‹, η

‹
hyΓc

in,‹

}s‹
h}div4{3;Ω‹

ě pβ‹
T,d

!

}ψ‹
h}0,4;Ω‹

` }η‹
h}1{2,00,Γc

in,‹

)

@ pψ‹
h, η

‹
hq P Xϕ‹

h ˆ Mξ‹

h ,

where pβ‹
T,d is a positive constant depending only on β‹, rβ‹

T,d and cpΩ‹q.

Finally, proceeding in the same way as we did in (5.1), we deduce that Hh and Qh, satisfy (H.5) (cf. (4.7))
with a positive constant βT,d, independent of h.

We end this section by providing the rates of convergence of the Galerkin scheme (4.2) with the specific
finite element subspaces introduced in Section 5. More precisely, we can state the following main theorem.

Theorem 5.3. Let us consider the hypothesis of Theorem 4.8. In addition, let p‹ and p‹
h be the exact and ap-

proximate pressures defined by (1.10) and (4.29), respectively. Assume that σ‹ P H1pΩ‹q ∩ HΓoutpdiv4{3; Ω‹q,

divpσ‹q P W1,4{3pΩ‹q, t‹ P H1pΩ‹q, divpt‹q P W1,4{3pΩ‹q, u‹ P W1,4pΩ‹q, ϕ‹ P W1,4pΩ‹q and ξ‹ P

H
3{2
00 pΓc

in,‹q. Then, there exists a constant C ą 0, independent of h, such that

}pσ⃗, u⃗q ´ pσ⃗h, u⃗hq}HˆQ ` }p⃗t, pϕ⃗, ξ⃗qq ´ p⃗th, pϕ⃗h, ξ⃗hqq}HˆQ `
ÿ

‹Ptf,pu

}p‹ ´ p‹
h}0,Ω‹

ď C
ÿ

‹Ptf,pu

h
!

}σ‹}1,Ω‹
` }divpσ‹q}1,4{3;Ω‹

` }u‹}1,4;Ω ` }t‹}1,Ω‹
` }divpt‹q}1,4{3;Ω‹

` }ϕ‹}1,4;Ω‹

` }ξ‹}3{2,00,Γc
in,‹

)

.

Proof. The proof follows from the corresponding Céa estimate (4.31), the approximation properties of the
subspaces involved. In particular, for Hσ‹

h and Ht‹

h we refer, respectively, to [6, eq. (4.7)] and [7, eq. (3.8)],

which in turn are consequences of [18, Lemma B.67, Lemma 1.101] and [21, Section 3.4.4]. For Qu‹

h and Xϕ‹

h

we refer to [18, Proposition 1.135, Section 1.6.3], whereas for Mξ‹

h we refer to [23, Section 5.4, (AP3)].

6 Computational results

To illustrate the performance of the method, we present two computational simulations. The first one consists
of a manufactured solution to verify numerically the rates of convergence anticipated by Theorem 5.3. The
second one is a realistic situation in a reverse osmosis processes, with no analitical solution available. The
implementation is done in FreeFem++ (cf. [25]). In both, the iterative method comes straightforward from the
uncoupling strategy presented in Section 4.1 and we use the following stopping criteria. Let us denote by coeff
the vector that contains all the degrees of freedom associates to σ⃗h, u⃗h, t⃗h, ϕ⃗h and ξ⃗h. Given a tolerance tol,
we stop the fixed point iteration when the relative error between two consecutive iterations (m and m ` 1),
satisfies

}coeffm`1
´ coeffm

}l2

}coeffm`1
}l2

ď tol. (6.1)
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Here, }¨}l2 stands for the usual Euclidean norm in Rdof and dof denoting the total number of degrees of freedom.
Subsequently, errors are defined as follows:

epσ‹q “ }σ‹ ´ σ‹
h}div4{3;Ω‹

, epu‹q “ }u‹ ´ u‹
h}0,4;Ω‹

, epp‹q “ }p‹ ´ p‹
h}0,Ω‹

,

ept‹q “ }t‹ ´ t‹
h}div4{3;Ω‹

, epϕ‹q “ }ϕ‹ ´ ϕ‹
h}0,4;Ω‹

, epξ‹q “ }ξ‹ ´ ξ‹
h}1{2,00,Γc

in,‹
,

where we recall, thanks to Sobolev interpolation results (cf. [1, Chapter 5], [28, Appendix B]) that

}ξ‹ ´ ξ‹
h}1{2,00,Γc

in,‹
ď C}ξ‹ ´ ξ‹

h}
1{2
0,Γc

in,‹
}ξ‹ ´ ξ‹

h}
1{2
1,Γc

in,‹
.

This relation suggests that the norm in H
1{2
00 pΓc

in,‹q can be estimated by the norms in L2pΓc
in,‹q and H1pΓc

in,‹q.
In turn, the experimental order of convergence, is set as

rp˚q “
logpep˚q{e1p˚qq

logph{h1q
@ ˚ P

␣

σ‹,u‹, p‹, t‹, ϕ‹, ξ‹

(

,

where e and e1 denote the errors computed on two consecutive meshes of sizes h and h1. In addition, we
refer to the number of iterations as iter. Next, in our two examples, we consider the computational domain
Ω “ Ωf ∪ Ωp ∪ Σ, where Ωf “ p0, Lq ˆ pd, 2dq, Ωp “ p0, Lq ˆ p0, dq, and Σ “ p0, Lq ˆ tdu.

Example 1: A manufactured smooth solution. In our first numerical test, we consider the computational
domain Ω with L “ 1 and d “ 0.5, and set the parameters ν “ 2, ρ “ 0.1, κ “ 1.6, a0 “ 10´8, a1 “ 0.01 and
a2 “ 2.5 ˆ 10´6. In addition, we define the manufactured solution:

p‹ “ cospπxq exp pyq, u‹ “

ˆ

sinpπxq cospπyq

´ cospπxq sinpπyq

˙

, ϕ‹ “ cospπxq sinpπyq,

We notice that the only external sources of the physical model (1.14) are due to the velocity profile and
concentration at the inlet. So, in order to be able to use the above manufactured solution, we introduce
artificial volumetric, boundary and interface sources that make this solution to satisfy the equations. Table 6
shows the history of convergence for a sequence of quasi-uniform mesh refinements. The experiment confirm
the theoretical rate of convergence Ophq, provided by Theorem 5.3. In addition, as initial guess to start the
iteration, we consider zero velocity and concentration. The number of iterations required to reach the stopping
criterion (6.1) with a tolerance of 1e´ 6, was less than or equal to 4.

Example 2: Coupled channels. We set L “ 15mm, d “ 0.74mm. The inlet velocity profiles are consider
as in Remark 2, and the physical parameters specified in Section 1.2 are in Table 6.2. In Figure 6.1 we display
the computed velocity magnitudes, pressure and salt concentration fields, which were built using the fully-mixed
RT0 ´ P0 and RT0 ´ P0 ´ P1 schemes on a mesh with h “ 0.02 and 348, 140 triangular elements (actually
representing 2,616,096 dof). In addition, as initial guess to start the iteration, we consider zero velocity and
concentration. The number of iterations required to reach the stopping criterion (6.1) with a tolerance of 1e´6,
was equal to 12. We see that the parabolic profile remains in both channels (top panel). The velocity magnitude
in the feed channel decreases along the axial axis, while the opposite occurs in the permeate channel. This is
expected because water flows from the feed channel to the permeate across the membrane. Also, a pressure
loss is observed along the entire channels (center panel), which, for laminar flows, is related to the friction
between the fluid and the channel walls, as well as to the accumulation of salt near the membrane [31]. This
accumulation is typical in reverse osmosis processes, as shown in the bottom panel.

7 Conclusions

We have developed and analyzed a mixed finite element method for the coupled Navier–Stokes and transport
equations with nonlinear transmission conditions. We proved well-posedness of both, the continuous and discrete
formulations, specified finite element subspaces and show the convergence properties of the proposed numerical
scheme. To the best of our knowledge, this is the first contribution that provides the mathematical framework
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RT0 ´ P0 and RT0 ´ P0 ´ P1 approximation

dof epσfq rpσfq epufq rpufq eppfq rppfq eptfq rptfq
1161 1.62e` 00 ˚ 9.43e´ 02 ˚ 2.06e´ 01 ˚ 5.16e´ 01 ˚

4527 7.74e´ 01 0.99 4.59e´ 02 0.96 9.30e´ 02 1.07 2.50e´ 01 0.97
17559 3.86e´ 01 1.17 2.30e´ 02 1.17 4.60e´ 02 1.19 1.27e´ 01 1.14
68913 1.94e´ 01 1.06 1.16e´ 02 1.05 2.29e´ 02 1.08 6.35e´ 02 1.07
280476 9.55e´ 02 1.05 5.74e´ 03 1.04 1.13e´ 02 1.04 3.14e´ 02 1.04
1106742 4.79e´ 02 1.08 2.89e´ 03 1.08 5.64e´ 03 1.10 1.58e´ 02 1.08

h epϕfq rpϕfq epξfq rpξfq epσpq rpσpq epupq rpupq

0.1863 7.46e´ 02 ˚ 2.51e´ 01 ˚ 1.63e` 00 ˚ 9.60e´ 02 ˚

0.0884 3.50e´ 02 1.01 1.13e´ 01 1.08 7.79e´ 01 1.19 4.65e´ 02 1.17
0.0488 1.77e´ 02 1.15 5.62e´ 02 1.17 3.80e´ 01 0.96 2.31e´ 02 0.93
0.0255 8.79e´ 03 1.07 2.86e´ 02 1.04 1.90e´ 01 1.10 1.16e´ 02 1.08
0.0130 4.33e´ 03 1.05 1.41e´ 02 1.05 9.36e´ 02 1.09 5.72e´ 03 1.09
0.0069 2.18e´ 03 1.08 7.13e´ 03 1.07 4.71e´ 02 1.22 2.88e´ 03 1.21

iter epppq rpppq eptpq rptpq epϕpq rpϕpq epξpq rpξpq

4 3.07e´ 01 ˚ 5.12e´ 01 ˚ 7.10e´ 02 ˚ 2.15e´ 01 ˚

3 1.26e´ 01 1.43 2.53e´ 01 1.13 3.52e´ 02 1.13 9.55e´ 02 1.31
3 5.65e´ 02 1.07 1.27e´ 01 0.92 1.74e´ 02 0.94 4.62e´ 02 0.97
3 2.76e´ 02 1.13 6.34e´ 02 1.09 8.76e´ 03 1.08 2.30e´ 02 1.10
3 1.35e´ 02 1.10 3.14e´ 02 1.08 4.31e´ 03 1.09 1.14e´ 02 1.08
3 6.80e´ 03 1.22 1.58e´ 02 1.22 2.18e´ 03 1.21 5.72e´ 03 1.23

Table 6.1: Example 1, number of degrees of freedom, meshsizes, iterations, errors, and rates of convergence for
the RT0 ´ P0 ´ RT0 ´ P0 ´ P1 approximations of the Navier–Stokes/transport model, and convergence of the
P0´approximation of the postprocessed pressures field.

Parameter Meaning Value Units

T System temperature 298 K
R Ideal gas constant 8.314 Jmol´1K´1

i Number of ions from salt solution 2 ´

uin,f/uin,p Inlet mean feed/permeate fluid velocity 0.01/0.001 ms´1

rϕin,f/rϕin,p Inlet feed/permeate salt molar concentration 600/6 molm´3

∆P Hydrostatic transmembrane pressure 5575875 Pa
ρ Feed/permeate fluid density 1027.2 kgm´3

κ Feed/permeate diffusivity of salt in water 1.611 ˆ 10´9 m2s´1

ν Feed/permeate fluid dynamic viscosity 8.9 ˆ 10´4 kgm´1s´1

A Membrane water permeability 2.5 ˆ 10´12 ms´1 Pa´1

B Membrane salt permeability 2.5 ˆ 10´8 ms´1

Table 6.2: Physical parameters [4, 10, 29].

to handle nonlinear transmission conditions in domains with mixed boundary conditions. The method proposed
here is the main background for modeling other types of configurations. In fact, in different physical models
utilized to simulate a reverse osmosis effect in water desalination processes, the coupled Navier–Stokes/transport
equations are used in two situations, one where explicit spacers (small obstacles) are located inside the channel
and another where the channel does not include spacers (usually called empty channel). The latter is what
we have addressed here. However, the former can be easily extended with minor modifications to our work.
Moreover, the framework developed in this paper can also be employed to analyze models that couple Brinkman–
Forchheimer/tranport equations instead of the Navier-Stokes/tranport equations. This type of models are also
present in reverse osmosis for desalination processes where the effect of spacers is implicit. This circumvents the
high computational cost of including the spacers and instead handles them as an homogeneous porous medium
in the entire domain. This perspective can also be addressed by making minor modifications to the work done
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0.26 14.993.75 7.00 11.25

0.03 1.640.40 0.80 1.20

0.0000 0.00290.00075 0.00150 0.00225

0.00000 0.000310.00007 0.00015 0.00023

6.0e-07 7.9e-076.6e-7 7.2e-7

5.1e-09 6.0e-095.7e-95.4e-9

Figure 6.1: Example 2, approximations with dof “ 2, 616, 096 for the velocity magnitudes of the fluid, pressure
fields and concentration levels in the whole domain.

here. Finally, we point out that this work provides the theoretical foundations of the numerical simulations that
we have performed in [4] for different models.

A Appendix

A.1. Boundedness of bT. We proceed similarly to [7, Section 4.1]. Given ‹ P tf,pu, we let s‹ P H‹
S and

η‹ P M‹
T. Thus, by (1.1) we have

xs‹ ¨ n‹, η‹yΓc
in,‹

“ xs‹ ¨ n‹, E0,Γc
in,‹

pη‹qyBΩ‹
“

ż

Ω‹

s‹ ¨ ∇rγ´1
0 pE0,Γc

in,‹
pη‹qq `

ż

Ω‹

rγ´1
0 pE0,Γc

in,‹
pη‹qqdivps‹q,

where rγ´1
0 : H1{2pBΩ‹q ÝÑ rH1

0pΩ‹qsK is the right inverse of the trace operator γ0 : H1pΩ‹q ÝÑ H1{2pBΩ‹q (see,
[21, Section 1.3.4]). Thus, applying Hölder’s inequality, we obtain

|xs‹ ¨ n‹, η‹yΓc
in,‹

| ď }s‹}0,Ω‹
}∇rγ´1

0 pE0,Γc
in,‹

pη‹qq}0,Ω‹
` }rγ´1

0 pE0,Γc
in,‹

pη‹qq}0,4;Ω‹
}divps‹q}0,4{3;Ω‹

.

Next, thanks to the continuous injection i‹4 : H1pΩ‹q ÝÑ L4pΩ‹q, we have that }rγ´1
0 pE0,Γc

in,‹
pη‹qq}0,4;Ω‹

ď

}i‹4} }rγ´1
0 pE0,Γc

in,‹
pη‹qq}1,Ω‹

. Moreover, since E0,Γc
in,‹

pη‹q belongs to H1{2pBΩ‹q, we get (cf. [21, Lemma 1.3])

}rγ´1
0 pE0,Γc

in,‹
pη‹qq}0,4;Ω‹

ď }i‹4}}E0,Γc
in,‹

pη‹q}1{2,BΩ‹
“ }i‹4}}η‹}1{2,00,Γc

in,‹
,

whence, |xs‹ ¨ n‹, η‹yΓc
in,‹

| ď max
␣

1, }i‹4}
(

}s‹}div4{3;Ω‹
}η‹}1{2,00,Γc

in,‹
.

As a consequence of the latter and Hölder’s inequality, we deduce (3.8a).
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A.2. Boundedness of dT. We recall from [18, Theorem B.46] (see also [15, Theorem 6.10]) that H1{2pBΩ‹q

is continuously embedded in LtpBΩ‹q for any t P r1,`8q. In other words, for any ζ‹ P H1{2pBΩ‹q, there exists a
positive constant c‹

t , depending only on BΩ‹, such that }ζ‹}0;t,BΩ‹
ď c‹

t }ζ‹}1{2,BΩ‹
, @ t P r1,`8q. In this way,

given η‹ P H
1{2
00 pΓc

in,‹q it follows that

}η‹}0,t;Γc
in,‹

“ }E0,Γc
in,‹

pη‹q}0,t;BΩ‹
ď c‹

t }E0,Γc
in,‹

pη‹q}1{2,BΩ‹
“ c‹

t }η‹}1{2,00,Γc
in,‹
. (A.1)

Thus, by the Cauchy–Schwarz inequality and (A.1), we obtain (3.8b).

A.3. Boundedness of Fχ⃗. Given χ⃗ “ pχf , χpq P M, we stress that to bound the functional Fχ⃗, one cannot
proceed in a direct way as when applying the Cauchy–Schwarz or Hölder inequalities since the dual parity
defining the functional Fχ⃗ involves the data g‹ and gχ‹ (cf. (2.4)), which are defined by parts on the boundary
Γc
out,‹ and belong to H1{2pΓc

out,‹q, for ‹ P tf,pu. Therefore, we will make use of the results of Section 1.1 to
properly bound each one of these data providing details for ‹ “ f since ‹ “ p is analogous. For that, we write

xτf nf , gf ` gχf yΓc
out,f

“ xτf nf , gfyΓc
out,f

` xτf nf , g
χ
f yΓc

out,f
, (A.2)

For the first term on the right-hand side of (A.2), one can define the extension EΓc
out,f

pgfq :“ zf |BΩf
, where

zf P H1pΩfq is the unique solution to (1.4), with gf , nf , Γ
c
out,f and Γout,f instead of η, n, rΓ and rΓc, respectively.

Moreover, there exists a constant Cf ą 0, such that

}EΓc
out,f

pgfq}1{2,BΩf
ď Cf }gf}1{2,Γc

out,f
. (A.3)

Next, we recall from the last part of Section 1.1 that since EΓc
out,f

pgfq P H1{2pBΩfq, there exist unique elements

ζΓc
out,f

P H1{2pΓc
out,fq and ζΓout,f

P H
1{2
00 pΓout,fq such that

xτfnf ,EΓc
out,f

pgfqyBΩf
:“ xτfnf ,EΓc

out,f
pζΓc

out,f
qyBΩf

` xτfnf ,E0,Γout,f
pζΓout,f

qyBΩf
,

EΓc
out,f

pgfq|Γc
out,f

“ ζΓc
out,f

and EΓc
out,f

pgfq|Γout,f
“ ζΓout,f

. Moreover, by uniqueness we have that ζΓc
out,f

“ gf .

This means that (cf. (1.3))

xτfnf ,EΓc
out,f

pgfqyBΩf
“ xτfnf ,gfyΓc

out,f
@ τf P HΓoutpdiv4{3; Ωfq. (A.4)

As a consequence, employing the identity (A.4) and same arguments for bounding bT, but now with the
continuous injection if4 : H1pΩfq ÝÑ L4pΩfq (see, [13, Section 3.1]) and (A.3), we obtain

|xτf nf , gfyΓc
out,f

| ď max
␣

1, }if4}
(

Cf}τf}div4{3;Ωf
}gf}1{2,Γc

out,f
. (A.5)

It remains to deal with the second term on the right-hand side of (A.2). Therefore, in what follows, we make
use of a convenient extension operator to define an appropriated Gf,χ⃗ P H1{2pBΩfq such that its restriction

to Γc
out,f coincides precisely with gχf . Since χp P H

1{2
00 pΓc

in,pq, that is E0,Γc
in,p

pχpq P H1{2pBΩpq we note that

E0,Γc
in,p

pχpq|Σ “ χp P H1{2pΣq and χp “ 0 on Γin,p. Thus, one could define EΣ,fpχpq :“ zf |BΩf
, where

zf P H1pΩfq is the unique solution to the boundary value problem

△zf “ 0 in Ωf , zf “ χp on Σ, zf “ 0 on Γin,f and ∇zf ¨ nf “ 0 on Γw,f ∪ Γout,f ,

and show that there exists a constant CΣ,f ą 0, such that }EΣ,fpχpq}1{2,BΩf
ď CΣ,f}χp}1{2,Σ. On the other hand,

from the fact that

}χp}1{2,Σ “ }E0,Γc
in,p

pχpq|Σ}1{2,Σ ď }E0,Γc
in,p

pχpq}1{2,BΩp
“ }χp}1{2,00,Γc

in,p
,

we get
}EΣ,fpχpq}1{2,BΩf

ď CΣ,f}χp}1{2,00,Γc
in,p
. (A.6)

Now, we define
Gf,χ :“ pE0,Γc

in,f
pχfq ´ EΣ,fpχpqqQf nf P H1{2pBΩfq,
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where Qf can be any function in C8pΩfq, such that Qf “ a1 an Σ, Qf “ 0 on Γw,f and }Qf}0,8;Ωf
ď a1. For

example, we can considerQfpx, yq “
a1
d

pd´yq, where Ωf “ p0, Lqˆp0, dq, Σ “ p0, Lqˆt0u and Γw,f “ p0, Lqˆtdu.

In turn, noticing that Gf,χ |Γc
out,f

“ gχf P H1{2pΓc
out,fq, and proceeding similarly as we did for (A.4), it is easy to

see that
xτfnf ,Gf,χ yBΩf

“ xτfnf ,g
χ
f yΓc

out,f
@ τf P HΓout

pdiv4{3; Ωfq.

Thus, knowing that }E0,Γc
in,f

pχfq}1{2,BΩf
“ }χf}1{2,00,Γc

in,f
, and employing (A.6), as well as applying similar

arguments to those used in (A.5), we find that

|xτf nf , g
χ
f yΓc

out,f
| ď a1 max

␣

1, }if4}
(

max tCΣ,f , 1u }τf}div4{3;Ωf
}χ⃗}M. (A.7)

The analogous conclusion is obtained by setting ‹ “ p, in order to write

xτp np, gp ` gχpyΓc
out,p

“ xτp np, gpyΓc
out,p

` xτp np, g
χ
pyΓc

out,p
,

and obtain

|xτp np, gpyΓc
out,p

| ď max
␣

1, }ip4}
(

Cp}τp}div4{3;Ωp
}gp}1{2,Γc

out,p
, and (A.8)

|xτp np, g
χ
pyΓc

out,p
| ď a1 max

␣

1, }ip4}
(

max tCΣ,p, 1u }τp}div4{3;Ωp}χ⃗}M. (A.9)

As a consequence, employing the bounds (A.5), (A.7), (A.8) and (A.9), we obtain (3.9).
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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