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Abstract

We consider the coupled Navier-Stokes/transport equations with nonlinear transmission conditions, which
constitute one of the most common models utilized to simulate a reverse osmosis effect in water desalination
processes when considering feed and permeate channels coupled through a semi-permeate membrane. The
variational formulation consists of a set of equations where the velocities, the concentrations, along with
tensors and vector fields introduced as auxiliary unknowns and two Lagrange multipliers are the main
unknowns of the system. The latter are introduced to deal with the trace of functions that do not have
enough regularity to be restricted to the boundary. In addition, the pressures can be recovered afterwards by
a postprocessing formula. As a consequence, we obtain a nonlinear Banach spaces-based mixed formulation,
which has a perturbed saddle point structure. We analyze the continuous and discrete solvability of this
problem by linearizing the perturbation and applying the classical Banach fixed point theorem along with the
Banach—Necas—Babuska result. Regarding the discrete scheme, feasible choices of finite element subspaces
that can be used include Raviart—Thomas spaces for the auxiliary tensor and vector unknowns, piecewise
polynomials for the velocities and the concentrations, and continuous polynomial space of lowest order for
the traces, yielding stable discrete schemes. An optimal a priori error estimate is derived, and numerical
results illustrating both, the performance of the scheme confirming the theoretical rates of convergence, and
its applicability, are reported.

Key words: Navier—Stokes, transport, nonlinear interface, mixed finite element methods, a priori error analysis,
reverse osmosis, water desalination
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1 Introduction

Membrane-based seawater desalination processes have received special attention during the last decade due to
their notable advantages, which include relatively low energy consumption compared to thermal-based tech-
niques like multi-stage flash [30], as well as their capability to use renewable or low-grade energy sources [2, 33].
In this regard, the reverse osmosis (RO) process takes a prominent position, being employed in 69% of indus-
trial desalination plants globally [17]. Its mathematical modeling is usually based on the Navier—Stokes and
convection-diffusion equations, although the Brinkman equations can also be considered in some scenarios. In
particular, for some detailed review of different mathematical models we refer to [26, 27, 32].

*Supported by ANID-Chile through ANILLO OF COMPUTATIONAL MATHEMATICS FOR DESALINATION PROCESSES (ACT210087);
FONDECYT projects 1231336 and 1240183; BASAL Project FB210005; and Beca Doctorado Nacional 21210582.



In the reverse osmosis processes water flows at high pressure through a membrane module [30], which consists
of several channels separated by semi-permeate membranes. The domain of simulation is a representative
rectangular section of these channels. Most of the numerical methods developed in the literature consider
only a single desalination channel, due to the high computational cost of simulating several channels. They are
usually based on finite differences and finite volumes methods. Regarding the finite element method, most of the
simulations are performed using commercial softwares and, to the best of our knowledge, a proper mathematical
framework has not been developed. Recently in [10] a finite element method using the Nitsche technique on an
RO model was addressed, on which the resulting discrete model is easily implemented since the linearization of
the model depends only on the linearization of the flow.

One of the novelties of our work is the consideration of two channels coupled by a semi-permeate membrane
for which, as far as we know, no numerical method has been developed in the literature and, we propose
and analyze a mixed variational formulation for a RO model by coupling of the Navier—Stokes and transport
equations. In this regard, the consideration of nonlinear transmission conditions on the membrane represents
the major difficulty to address the problem, from theoretical and computational points of view, and constitutes
another novelty of our work. In the formulation, we introduce two Lagrange multipliers associated to the
concentration to deal with the trace of functions that do not have enough regularity to be restricted to the
boundary. In this way, the non-linearity at the interface is handled with these new unknowns. Subsequently,
an appropriate linearization allows us to overcome this difficulty. Another complexity in analyzing the problem
arises from the presence of convective terms in the equations, which can be approached in two ways. The
first method involves an augmentation procedure (see, e.g. [8, 9]), offering more flexibility in choosing finite
element subspaces, but increasing the complexity and computational cost significantly. Alternatively, one can
consider the approach of Banach space-based mixed finite element methods to solve perturbed saddle point
formulations. We point out that the motivation of employing the latter approach has the advantages of not
requiring an augmentation procedure (see, e.g. [6, 7, 13]) and the spaces where the unknowns are sought are
the natural ones that result from applying the Cauchy—Schwarz and Holder inequalities to the terms obtained
from testing and integrating by parts the equations of the model. Consequently, simpler formulations closely
aligned with the original physical model are achieved.

The manuscript is organized as follows. In the rest of this section, we provide an overview of the standard
notation and functional spaces that will be utilized throughout the paper, introduce the model problem of
interest and define the unknowns to be considered in the variational formulation. Subsequently, in Section 2 we
identify the saddle point structure of the corresponding variational system. Section 3 analyzes the continuous
solvability and the equivalent fixed point setting, presenting the well-posedness result under the assumption of
sufficiently small data. In Section 4, we investigate the associated Galerkin scheme by utilizing a discrete version
of the fixed point strategy developed in Section 3 for the continuous case. Additionally, we derive the associated
a priori error estimate in the same section. Furthermore, in Section 5 we specify particular choices of discrete
subspaces that satisfy the hypotheses from Section 4 and show the theoretical behaviour of the errors. Next, in
Section 6, numerical examples illustrate the performance of the numerical scheme. We end with conclusions in
Section 7.

1.1 Preliminaries

Sobolev and Banach spaces. Given a Lipschitz-continuous domain O of R? with boundary I', we adopt
standard notations for Lebesgue spaces L!(O) and Sobolev spaces W5 (O), with [ > 0 and t € [1,+),

whose corresponding norms, either for the scalar- and vector-valued case, are denoted by | - |00 and || -
1.t:0, Tespectively. Note that WO(O) = LY(O), and if t = 2 we write H!(O) instead of W/2(0), with the
corresponding norm and seminorm denoted by | - ;.0 and |- |0, respectively. In addition, HY/?(T') denotes

the space of traces of H'(O) and H™'/2(T") its dual space, provided with the duality pairing (-, ->r. Also, given

[' T, HY2(T') denotes the restriction to I' of H!(O)-functions.

On the other hand, given any generic scalar functional space M, we let M and M be the corresponding
vector- and tensor-valued counterparts. Furthermore, as usual, I stands for the identity tensor in R2*2, and
| - | denotes the Euclidean norm in R?. On the other hand, given t € (1, +0), we introduce the Banach space
H(divy; 0) := {v € L*(0) : div(v) € L'(0)}, endowed with the natural norm |v|aiv,;0 := [vl]o,0 +[div(v)]o,s0-
The space of matrix-valued functions whose rows belong to H(divs; O) will be denoted by H(divy; O), endowed
with the norm ||7|4iv,;0. Here, we let div be the usual divergence operator div acting row-wise on each tensor.




Additionally, for any tensor fields 7, we let the deviatoric tensor as 74 := 7 — §tr(7')]l.

We recall some definitions and_technical results concerning boundary conditions and extension operators
[16, 19, 24]. Let T' = T, denote by I'° its complement and n the unit outward normal vector on T

Restriction to I' of functionals in H-Y2(T). Let Eyy - HY/2(I') — L2(I") be the extension operator
defined as follows: given n € HY2(T"), by Ey#(n) =n on I, and E, #(n) = 0, otherwise. We define H(l)éZ( I :=
{77 e HY/2(T) : E,#(n) e HV2(T )}, endowed with the norm |n], 5 oo ¢ := [Ey #(n)]1/2,r, and denote by H 1/2(I’)

its dual space. Now, given p € H=1/2(T'), its restriction to I'°, say p, is defined as

{plgamdp o= (o By p(M)r - ¥ € Hy (D), (1.1)

where (-, ) stands for the duality pairing of the spaces Hoo/ (T') and H[l)é (T') with respect to the L2( ) inner
product. Then, it is clear that u|x € Hyg 1/2 (I'). On the other hand, the boundary condition = 0 on I' means

(. By (m)r =0 Ve Hyl* (D). (1.2)

A continuous extension of HY/2(I')-functions. According to [19, Section 2], the restriction of x € HY/2(T')
to I' can be identified with an element of H='/2(T'), namely

(o =, Bp(n)yr - Ve HYA(D), (1.3)

where Ef : HY/? (I') — HY2(T") is any bounded extension operator. In particular, given 7 € HY/2(T'), we consider
the extension Ex(n) := z|r, where z € H'(O) is the unique solution to the boundary value problem

Az=0 in O, z=mn on f, and Vz:n =0 on f‘c, (1.4)

satisfying |z]1,0 < C||17H1/2 &, where C'is a positive constant. The latter implies |Ex(n)[1/2,r < C||17H1/2 &

Decomposition of H'/?(I')-functions. Given ¢ € HY/2(T"), it is not difficult to prove (see, [19, Lemma 2.2])
that there exist unique elements (x € HY/2(T") and (i € Hééz(f‘c) such that ¢ = Ex(Cg) + B g (Cpe), and hence

s Or =y Br(Gor + s By e (Gre)yr - Ve HTVA(D). (1.5)

Remark 1. We denote by Ep and E 3. the extension operators acting on vector-valued functions, and (1.5)
also holds in this case. They are defined as the element-wise application of the extension operator specified
above.

1.2 The model problem

In order to describe the geometry, we let €2y and 2, be two open bounded and simply connected polygonal
domains in R? such that 0Q¢ N dQ, = X # 0 and O N Q, = 0, and set Q := Q U X U Q. In turn,
for each » € {f,p}, IU\T is d1v1ded in three parts: T, . (inlet), Tou» (outlet) and T'y . (wall), such that
oL\E = Iin« U 'y« U 'gyt,« as depicted in Figure 1.1.The unit normal vector, n,, is chosen pointing outward
from 2, thus ny = —n;, on the interior points of 3. We also consider a unit tangent vector myx on ¥ as drawn
Figure 1.1. We are interested in the Navier—Stokes/transport coupled problem, which is formulated in what
follows in terms of the fluid velocity u,, the fluid pressure p,, and the salt concentration (E* occupying the region
Q,, for each = € {f, p}. More precisely, the corresponding system of equations is given by

—vAu, + pdiviu, ®u,) +Vp, =0 in Q,, div(u,) =0 in Q,,
Uy = UWin,« ON Fin,*a u, =0 on Pw,*v (Vvu* _p*]I)n* =0 on Fout,*v
—K Agg* +u, - Vgg* =0 in €,
Gu = ¢in,* on Fin,*a kV¢.-n,=0 on Fw,* U Fout,*?

(1.6)
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Figure 1.1: Sketch of the geometry.

where v is the fluid dynamic viscosity, p is the fluid density and x is the solute diffusivity through the solvent.
All these parameters are assumed to be positive constants. In addition, for each » € {f,p}, win . € HI/Q(Fin,*)

is a given inlet velocity profile, and qwbim* € R. The corresponding transmission conditions are given by

u,-my =0, u-ng=—u, -n, u- -ng=AAP— AiRT(QNSf - (EP) on X,
(prus — K Vey) ng = —(gpup — K V) -mp,  (drug — £ Vey) -ng = B(dr —dp) on X,
Here, A, AP, i, R, T and B are physical parameters assumed to be positive constants. Specific values of the

parameters can be found in Table 6.2. In turn, denoting ag := AAP, a; := AiRT and ay := B, we realize that
they are also positive constants satisfying the following conditions:

(1.7)

201¢ing + a2 = ag + a1Pinp, and 2a1¢inp + ag + a2 = a1Pin f- (1.8)

Next, since we are interested in a mixed variational formulation, and in order to employ the integration by
parts formula typically required by this approach, motivated by the Neumann-type boundary conditions, we
introduce the auxiliary unknowns:

o.:=vVu, —pJ and t,:=xkVe¢, in Q. (1.9)

In this way, noting that div(u. ® u.) = (Vu.)u., which makes use of the fact that div(u,) = 0 in Q,, we find
that the first equation of (1.6) can be rewritten as div(eo,) = p(Vu.)u,, whereas the third row of (1.6) becomes
kdiv(ty) = u, - t,.

In turn, it is straightforward to see, taking matrix trace, that the first equation of (1.9) together with the
incompressibility condition div(u,) = 0, are equivalent to the pair

1 1
~of=Vu, in Q. and p = —jti(ey) in Q. (1.10)

On the other hand, considering the new variables, the transmission conditions (1.7) become

U my = 0, wuy ‘D = —Up-np, Upnp = G — al(ng - (;NSP)N on X, (1.11)
(prur —t¢) -np = —(ppu, —t,) -ny,  (drur —t¢) -np = az(¢r — ¢p) on .

Moreover, for the sake of the subsequent analysis, in order to obtain a homogeneous Dirichlet condition for
the concentration unknown, we consider the change of variable ¢. := ¢, — ¢in « in £, and find that the third
equation of the first row of (1.11) can be rewritten as

ur -ng = —a1(dr — ¢p) +Gp on X, where dy = ap — a1 (ain’f - (Ein,p), (1.12)
whereas the second row of (1.11), becomes
({¢f + dinsfue — tg) ¢ = —({Pp + Pinplup —tp) 'mp on X,

$ e (1.13)
({0 + binius —t¢) -ng = az(dr — ¢p + ding — dinp) on .



In this way, replacing (1.12) back into (1.13) and utilizing the second equation of the first row of (1.11), some
algebraic manipulations allow us to arrive at the following system of equations:

1 . . P .
~o¢=Vu, in Q,, div(e.) ="-c%u, in Q,,
v v

U, = Uin,« on Fin,*? u, =0 on Fw,h omn,=0 on Fout,*a (1 14)
te =6Ve, in O, rkdiv(ty) =u.-t. in Q,
=0 on Di,., and t., -n,=0 on Iy Uy,

with transmission conditions

u,-my =0, uw-nf=—up,-n, U -nf=—a(p—¢,) +ayg on X,
—a1(¢f — ¢p)¢f — (a:l,f — a0)¢f + 617f¢p + 62; on X, and (1.15)
tp np = a1(dr — ¢p)op — (Ao + d1,p)Pp + A1 p¢r — A2, on X,

ts - ny

where ’C\l:() = ao — CLl((rzsin,f - ¢in,p)7 a11,* = a1¢in,* +ay and 52,* = aOgbin,f: - a2(¢in,f - ¢in,p)-

Note that the pressure has been eliminated from the system, but can be recovered by (1.10). Also, we
observe that, thanks to the above change of variable, condition (1.8) becomes:

&Lf —?]:0 =0 and ’dl’p +a0 = 0, (116)

which will be used later to guarantee the result in (3.20).

2 The mixed formulation

Given « € {f, p}, we first set I'{, , 1= 0Qu\I'in,» and I'g; , := 0% \out,«. We begin by testing the first equations
of the first and third rows of (1.14) against tensor- and vector-valued functions 7, and s,, yielding
1 d 1
- Oy i Th — Vu,:7.=0 and — | t.-s.— Vo, -s. =0, (2.1)
vJa, Q kJa. Qu

respectively. It is clear that the first terms in (2.1) are well-defined if o,, 7, € L?(Q,) and t.,s. € L?(Q.).
In turn, multiplying the second equations of the first and third rows of (1.14) by a vector- and scalar-valued
functions v, and ,, respectively, we notice that

1
J v, -div(o,) — BJ olu, v, =0 and f div(t.)w. — fj u, -t = 0. (2.2)
Q* * Q* *

v K

Then, knowing that o, and t, are L?-functions, using the Cauchy-Schwarz and Hélder inequalities, we find
that for all s,t € (1, +0), such that % + % = 1, there hold

J olu, - v,
*

which show that the second terms of the left-hand sides in the equations of (2.2) make sense for u, € L?*(Q,),
v, € L?(Q,) and v, € L?(Q,). Thus, forcing their first terms to require that div(e,) € L)' (Q,), and

div(t,) € L&Y' (Q,), where (2t) := 52 is the conjugate of 2t.

< o < u.

l0:0, [0 0,250, [ Ve 0,250 [+ ll0.2, [« 0,260, 5

lo,2t:0, and U u, - bt
Qy

Now, we go back to the second equation of (2.1) to deal with the second term. After applying the integration
by parts formula and considering the test function s, in the same space of t,, we realize that the volumetric
terms are well defined if div(s,) € LY (€2,) and ¢, € L¥(f2,). Since traces of L?(,)-functions are not defined,

we introduce a Lagrange multiplier &, := —¢,|re € H(l)(/)z(l"fn’*), and realize that the second equation of (2.1),
becomes ‘

1
ff te se+ f dudiv(s,) + (84 - n*’£*>1“fn . =0
Qs Q, ’

K



Here, we have used the facts that ¢, = 0 on I'y, . and s, - n, is well defined if H!(£2,) is continuously embedded
in L2(€2,) (see [13, Section 3.1] for details). The latter is guaranteed in two dimensions for 2t € [1, +o0).

Similarly, to apply the integration by parts formula to the first equation of (2.1) and obtain

1
7J O'S DT +j Uy - diV(T*) = <T*Il*, u*>(’}ﬂ*7 (23)

v

*

it suffices to assume that div(7,) € L(29'(Q,), and that H!(£,) is continuously embedded in L25(£2,), where
(28) := szl is the conjugate of 2s, so that T,n, is well defined. This is guaranteed in two dimensions for
2s € [1,400). It remains to properly handle the term {T.n,, u.)sq, since, a priori, the trace of u, is not in
HY2(0Q,). To that end, we will make use of the boundary and transmission conditions specified in (1.14) and

(1.15). More precisely, let * € {f,p} and for the sake of convenience we define the following auxiliary functions

0 on | R 0 on | R
gy 1= Uin on Tin «, and gb:= 0 on Tin «, (2.4)
dong on 3, a1 (& — &p)ng on .
We observe that g, € HY2(I'S,, ,) if uiy,. fulfills the following compatibility conditions:
Uin,f = 0 on fin,f N fw7f7 Uinp = 0 on fim,p N fW,p7 (2 5)
Wi = GoNf on Ti¢ N3, Ui, = —dohyp on Ty, N,
where, for @ € Ti,, N %, n,(x) is taking as n,(z) = lim n,(x — emy). Moreover g$ is also in HY2(TS, )

e—0+

since we recall that &, € H(l)(/)2 (T¢, ). In this way, bearing in mind the boundary and transmission conditions

in,*

(1.14) and (1.15), and considering the test function 7, in the space Hr,, (div(zs); ) := {‘r,, € H(div a4 Q2u) :

7.0, =0 on Fout,*}, where Ton, = 0 on 'y« is understood in the sense of (1.2), from (2.3) we find that

1
= J o7 + J u, -div(r,) = (r.n,, g, +g$ ore., V7w e Hr,, (divig; Q).
* Q* '

v

If we would also like to seek o, and T, in the same function space, it follows immediately that s = ¢ = 2 and
(28)" = (2t)" = 4/3, which we will be considered from now on.

Remark 2. The compatibility conditions (2.5) are satisfied, for example, if we consider a domain Q = Qf U
Qp, U3, where

QO = (0,L) x (d,2d), Q, = (0,L) x (0,d), and % = (0,L) x {d},

with the following inlet velocities:

Guin ¢ 1 — 7) ¥_92 ) 3(1 _ g)
Uiy f = E 1) (5 =2) , yeld,2d], and i, := (6um’pd a1, yelo,d,
a

—GnY

where uin s and Uiy stand for the inlet mean feed and permeate fluid velocities, respectively. We observe
that, when the second component of any of the above velocities is zero, the first component is similar to that
of the Poiseuille flux, which is a parabolic profile with unit mean velocity. On the other hand, when the
second component of the inlet velocity does not vanish, the profile is similar to the Berman flow. The latter is
commonly used to model a constant permeate flux through a membrane as shown in [4, 5, 10, 26, 32] to name
a few references.

In turn, thanks to the last equation in (1.14), the last two equations of (1.15), and the fact that &, €
HééQ(I‘.C ), we deduce that

in,*

(b¢-mg, mejre, = a1 J

b))

(& — &) & me + (re — o) L §eme — Ay L EpMe + da g L e,



(tp - mp, 77p>1“,°n . T Jz(fp — &) &pmp + (alyp + 50) J EpMp — alpr &enp — aZpJ Tlp
b)) b b))

for all 7, € Hl/ 2(FC ), with x € {f, p}. Consequently, introducing the spaces

mn,*

H; = Hrout (diV4/3; Q*)7 H;‘ = H(diV4/3; Q*)v M; : 1/2(an *)7
Qs = LY(), X3 = LY(),

defining the global spaces

H := HL x HE, H:= H. x HP, M := ML x MP,
Q:=Ql x Qe X=X x XP, Q:=X x M,

setting the notation

7= (11, 7p) € H, §:= (sf,sp) € H, 7= (ne,mp) € M,
W= (Wfawp) € Qv 1/1 = (wfa'l/}p) € Xa (1/%77) = (wfvavnfanp) € Q7
and equipping the above global spaces with the norms
|7 ]w := |7t Qiva g0 + [Tl divas0, V7= (1, 7) € H,
IWlq = [welo,40 VW= (wp,wp) € Q,
ISTe = [stllaivygs0c + ISplaivase, V§:= (st,8p) € H,
I¥)x = |veloan + I1¥ploan, Vb= (Y5, 1) € X,
Il == lmel1/2,00 It 175 /11/2,00,r¢, ) Vi = (e, mp) € M,

—

| Dl = 1$]x + [ V (¥, 1) == (Y8, Yy, 1, ) € Q,

=

we arrive at the following variational formulation of (1.14): Find (&,d) € H x Q and ( t, (o, )) € H x Q such
that

(6:"—;) - Os(ﬁ7&7‘7) =0, (2 6)
. g: ) +bT<§#<@ ). o =0 '

for all (7,v) € H x Q and (8, (¢,7)) € H x Q, where, ag : HxH - R, a; : Hx H - R, b : H x Q — R,
b HxQ—->R,and d;: Q % Q—»R are the bilinear forms defined by

1
ag(é, T) = > Z J od: 1 V(¢,7) e H x H, (2.7a)
*e{f,p}
- 1 -
ar(t, §) =~ > f . Sa V(t,§) e H x H, (2.7b)
*e{f,p}
by(7,¥) = ). f u, - div(r,) V(7,V)eH x Q, (2.7¢)
*e{f,p} 2
bT(ga (J) ﬁ)) = Z { ’l][},,le(S*) + <S* n., 77*>1“m *} v (gﬂ (1;’ ﬁ)) € H x Qa (27d)
*e{f,p}

dx((6.6), (4.7) := (@ns — o) Lsfnf+(a1,p+&o) Lipnp V(G i eQxQ (270

whereas for each (W, Y) € Q x M, Og(w;-,-) :HxQ - R, Of(W;-,-) : Hx X - R, and C(x;-,") : MxQ—-R



are the bilinear forms given by

0.(%;6,%) = 2 > f olw, v, V(&,V) e H x Q,
Y e(tp) U
o - 1 RN
O, (W;t,) == ) W, -t YV (t, ) e H x X, (2.8)
¥ eftpy 0

Co(CEM = an j &(xn — X — an J €olo — Xl Y (E7) €M x M.

Finally, Fg € Q" and Fy € Q' are the functionals defined by

Fy(7T) :=<(mene, g +giore,,, + (Tpop, 8 +83)rs,, VT e H,
L N N R N . (2.9)
Fy(, 1) = —a1,fj Xpllt — al,pf Xtnp + ag,ff ng — az,pf o V(1) eqQ.
> ¥ > ¥

3 The continuous solvability analysis

We analyze the solvability of (2.6) by applying the results provided by [18, Theorem 2.34] and [14, Theorem
3.4], along with the Banach-Necas-Babuska Theorem (cf. [18, Theorem 2.6]).

3.1 The fixed-point strategy

We begin by rewriting (2.6) as an equivalent fixed point equation. Indeed, we first let T QxM-—-Hx Q be
the operator defined for each w := (w¢, wy,) and X := (xr, Xp), with (W, ¥) € Q x M as

TW.%) = (N1(W.X), Jo(W. X)) = (&, 1), (3.1)
where (&,1) € H x Q is the unique solution (to be confirmed in Theorem 3.3) of the following problem:
ag(6,7) +bg(F,d) = F(7) V7eH, (3.2)
bs (&, V) —O4(w;&,v) =0 VveQ.
In turn, we let j :Q x M — H x Q be the operator given by
T(W.%) = (D). (.0, Ts(%.0) := (£.(6.6) ¥ (%.0) e QxM, (3:3)

=

where (t,(¢,€)) € H x Q is the unique solution (to be confirmed in Theorem 3.5) of the following system of
equations:

ar(t,8) + b.(5, (4, 3) =0 SeH, 5.4)
be(t, (4, 7) = de((6,6), (0,7) — Ox(W; t,0) — C2 (Vi 7) = Fe(, ) V(4,7) e Q. '
Finally, defining the operator 7 : Q x M — Q x M as
T(#,X) = ((W,X),J5(W%,X)) = (0,) V(W,¥)eQxM, (3.5)

—

we observe that solving (2.6) is equivalent to seeking a fixed point of J, that is: Find (4, ) € Q x M such that
J(4,€) = (4,).
We now aim to prove that the operator J is well-defined. To do that we first state the boundedness of all

the variational forms involved (cf. (2.7), (2.8) and (2.9)). First, it is easy to see through a direct application of
Hoélder’s inequality that

las(6, 7)| < Jas|l| & |7 V&, 7eH,
bs(7, V)| < [bs[ Tl [ViQ v (7, )E xQ, (3.6)
ax(t,8)| < ac||t]m [8]u Vt,Se



with |ag|| := v71, |bs]| := 1 and ||a,| := x~!. In turn, employing again the Cauchy-Schwarz and Hélder

inequalities, we find that for each w € Q, there hold

0. E9)| < LIwlalélalvle  V(E¥)eHxQ, (3.72)
|04 (W; ¥, 4)| < % IWlq [Flaldlx ¥ (F¢) e HxX. (3.7b)
On the other hand, the following bounds for b, and d will be proved in Appendix A:
b (S, (8, 7)] < [ b |8 | () ¥ (5, (4, 7) e Hx Q (3.82)
14 ((6,8), @) < e (@, D)l (& Dl V(S,E), (7)€ Q, (3.8b)
where |[by| = max {1, [if[, [}]|}, |dc]| := (@1 + @1 p) max {(ch)?, (c5)?}, 4} is the continuous injection from

H'(Q,) to L*(Q.) and ¢} the Sobolev constant defined in (A.1). In turn, denoting g := (g, g,) with g, as in
(2.4), in Appendix A we will show that given ¥ € M, we have

[F2(F)| < Cr{l€lrjare, +arlX|u} Tl V7eH, (3.9)

out

where [g]1/2.rc, 1= lgt]1/2, Chuns + lgplli2re,,,» OF = max {1, li4), |i5]} max {C;,Cs s, Cy, Cs p, 1}, and i} is
the vector-valued version of i}. Finally, employing the same tools to bound dr, given ¥ € M, it readily follows
that

out

1C(G €M) < @ W 1] |7 V(& ) eMxM, and 3.10)
\Fe(@, )] < a1+ X))@, Dlq V(7)€ Q, with

8 1= aymax {(c5)? (c})?} max {c§, &} and @y :=max {|dy ¢, |d1p|, |do,c|, |do,p|} max {cheh, ch, B} (3.11)

Further details of the previous bounds and the involved constants can be found in Appendix A.

3.1.1 Well-definedness of the operator j

We will show that (3.2) is well-posed and therefore the operator J (cf. (3.1)) is well-defined. For that, given
* € {f,p}, we prove that a5 and by satisfy the corresponding hypotheses from [18, Theorem 2.34]. Let

Ke = {#:= (r, p) e H: div(r,) = 0in .},

which corresponds to the kernel of the operator induced by the bilinear form bg (cf. (2.7c)). We proceed in a
similar way to [20, Section 2.2] to show that ag is Ks-elliptic. To do that, it suffices to consider the decomposition

H(divy/s; Q) = Ho(divys; Q) @ RI, where Ho(divy/s; Q) = {7'* € H(divy/s; Q) : SQ* tr(7y) = O}, and

recall two useful estimates. First, by suitably modifying the proof of [21, Lemma 2.3], it can be shown (see, e.g.
[6, Lemma 3.1]) that there exists a positive constant ¢; ., depending only on Q,, such that

< |70, + [div(T) V71, € Ho(divys; ). (3.12)

C1,%

Similarly, following the proof of [20, Lemma 2.2] (see also [21, Lemma 2.5]), one can show that there exists a
positive constant c ., depending only on 'y » and 2., such that

210 V1, := Te,0 + d, I e Hpnut (diV4/3; Q*), (313)

2, [T ldivasi0. <
with 7, o € Ho(divy/3; ) and d, € R.

Lemma 3.1. There exists as > 0 such that ag(7,7) > as||T|f VT € Ks.

Proof. Given T = (7¢, ) € Ks, applying (3.12) and (3.13), it is straightforward to see from the definition of ag
(cf. (2.7a)), that

35(7_"7 ‘F) = O‘SHFH]%H’

1
with constant ag = o min{e; feo g, c17p627p}2, depending only on Iy . and Q,, with x € {f, p}. O
v



We now establish the continuous inf-sup condition for the bilinear form bg, whose proof is an adaptation of
[6, Lemma 3.3] to our context.

Lemma 3.2. There exists a positive constant Bs such that

by (7, V . R
sups“&) > Blvlq  V¥eQ. (3.14)
FeH
F£0

Proof. Given V = (vg,vp) € Q, we set V, := |v,|?v, with = € {f,p} and let z, € H' () be the unique solution
to the boundary value problem

Nz, =V, in Q,, z, =0 on Foutsr and Vz,n, = 0 on Doy .
Thus, defining 7, := —Vz, € L?(Q,), noticing that 7, € HZ and proceeding similarly to the proof of [6, Lemma
3.3], it follows that
by (7, V
sup 22T = 5, vl
ren | Tlm
T#0
where Bs. = (cp|ij| +1)7", ¢p is a Poincaré’s constant depending only on || and i} is the continuous
1
injection of H'(€2,) into L*(Q.). Thus, (3.14) is satisfied with 35 = 3 min {Bs ., Bs.p}- O

Letting now A : (H x Q) x (H x Q) — R be the bilinear form given by

A((€.2), (7,V)) == as(C.7) + bs(7,2) +bs(, V) V((,2), (7,¥) e H x Q,
we deduce that (3.2), can be stated, equivalently as: Find (&, 1) € H x Q such that
Ay ((6,1),(7,V)) == A((6,1), (T, ¥)) — Os(W; 7,V) = Fg(F) V(7,V)eHx Q. (3.15)

Consequently, knowing from Lemmas 3.1 and 3.2 that as and by satisfy the hipotheses of [18, Theorem 2.34],
a direct application of this result yields the existence of a positive constant aa, depending on |agl|, ag, and fs,
such that

wp AlC2).(79)

(7,9)eHxQ H(;v G)HHXQ
(7,9)#0

> aal(2)uxq V({2 eHxQ. (3.16)

Then, it follows from (3.7a), (3.15) and (3.16) that

A ((¢,2), (7, 7))

sup S > {an = wlaf (€ Dlaxq  V(EH)eHXQ.
P [C T e ° e
(#.9)20
Hence, assuming that |W|q < V;&? we arrive at
p
A€ (F9) _ aa iz »
sup - = — (¢ 2)[u V(¢,Z)eHxQ. (3.17)
Foeixa (T, V) [Exq 2 9
(7,%)#0
Similarly, noting that A is symmetric, employing (3.7a) and (3.16), and assuming again that |[W|q < V;A,
p
we obtain
As((&2), (7, v
sup w((§ _,) (7. %) > oA [(7,¥)|luxq > 0 V(#,V)eH x Q, (7,V) #0. (3.18)
(£ 2)eHxQ 1€, Z)|rxq 2

(&2)#0

Then, we are now in position to prove that the operator J (cf. (3.1)) is well-defined.

10



ro

Theorem 3.3. For each ¥ € M and W € Q such that |W|q < ZZA  there exists a unique (¢,1) e Hx Q

2p
solution to (3.2) (equivalently (3.15)). Moreover, there holds
o I 2CF (. .
17 Dlixq = 18, B)lsxaq < T {I€lyars, + ot} (3.19)

Proof. We first recall from (3.17) and (3.18), that Ay satisfies the hypotheses of the Banach-Necas-Babuska
Theorem [18, Theorem 2.6], which allows us to conclude the well-posedness of (3.15). In turn, the estimate
(3.19) is a direct consequence of (3.17), (3.15) and (3.9). O

3.1.2 Well-definedness of the operator j

We will prove now that (3.4) is well-posed, equivalently, that J is well-defined. Indeed, it is clear that a, and
d; are symmetric, and the former is positive semidefinite. In addition, thanks to (1.16), it follows that dy (cf.
(2.7e)), satisfies

e (&, 7). (,7) = (@1 = @0)|mel§ 2 + @rp +A0)|mp52 >0 V(@D eQ, (3.20)

which confirm hypothesis i) of [14, Theorem 3.4]). On the other hand, given » € {f, p}, we let K1 be the kernel
of the operator induced by the bilinear form by (cf. (2.7d)), that is

Kr:= {§:= (st,sp)eH: div(s,) =0 in Q, and s, n. =0 on Ficn,*}'

Then, it is straightforward to see from the definition of a; (cf. (2.7b)), that for each § := (s, s,) € Ky, there
holds

- = L. "
a.(8,9) o 18112 VSe Ky, (3.21)

V

1
which proves that a; is Kr-elliptic with constant a. = —, and hence that ag verify the continuous inf-sup

K
condition required by the hypothesis ii) of [14, Theorem 3.4]. Now, we provide the corresponding inf-sup
condition of the bilinear form by (cf. (2.7d)) and its proof is basically an adaptation of the version in [3,
Theorem 2.1].

Lemma 3.4. There exists a positive constant Br such that

REACN)

wn Sl
§#0

> Bl Ml V(7 eQ. (3.22)

Proof. Let (1;, 77) € Q. Then, similarly as done in Lemma 3.2, we deduce that

b §7 _}7_' Do
up 22O 3y (3.23)
seH HSHH
§#0

~ 1 - _
with By = =—min{ (corlit] + 1), (cppli®] +1)7" L, where % is the continuous injection of H!(Q,) into
2 p.filta p,pll¥e 4 ]
1/2

L*(Q.) and ¢ . is the Poincare’s constant, for each = € {f,p}. On the other hand, given u,. € Hy, /" (TS, ,), we

in,*
let 2z, € H(Q,) be the solution to

Az, =0 in Q, Z =0 on Iy, and VZ.-n, = p. on I

in,*’
and set 8, := VZ, € L?(,). Noticing that 8, € H%, proceeding analogously to the proof of [3, Theorem 2.1],
we conclude that there exists a constant 51, > 0 such that

b (8, (4, 7))

= Brolnelizo0rs, |-

o lu
s#0
: . . 1 o~ 1 o~
The above, along with (3.23), yields (3.22) with f; = 5 Min {,BT, 5 Min {61;,61])}}. O
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Now, we let A: (H x Q) x (H x Q) — R be the bounded bilinear form defined by
A((F, (X)), 5, (0,7)) := ar(F,5) + b2 (5, (5, X)) + be (7. (4,7) — de($.0), (070)  (329)

for all (%, (3, X)), (5, (1, 7)) € H x Q. Next, letting now Aw g (Hx Q) x (Hx Q) — R be the bilinear form
such that

-, —

Az ((E (3, 2), G, (0, 7)) == A((EF, (7, X)), 5, (0, 7)) — Ox(W; F, ) — Cx(; X, 7) (3.25)
for all (%, (@, X)), (5, (1, 7)) € H x Q. We realize that (3.4) can be rewritten, equivalently, as: Find (&, (ﬂ, 3) €
H x Q such that

—

Aw x (£, (6.9), 5 &, 7)) = Fe(W,7) Y& (7)) e Hx Q. (3.26)

Then, thanks to (3.21), (3.20) and (3.22), the hypotheses of [14, Theorem 3.4] are satisfied, and hence the a
priori estimates given by [14, Theorem 3.4, eq. (3.51)] imply the existence of a positive constant « 4, depending
on |ar|, ar, |dr|, and By, such that

2 (G, (5 (.7 . .

sup A((r,s ) _)))_: (8, ("/)777))) > a4 ||(F, (3, X)|Hxq V(F, (3, ) e HxQ. (3.27)
E.(4.7)eHxQ IS, (&, M) Exq
(8,(¥,1)#0

Thus, from (3.25), (3.7b), (3.10) and (3.27), it follows that

‘A, (Iﬂ‘(_’, )),(g,(i/;: )) ~ ||= — — - /= Y
sup (5 (5 ) L > {au =t - 5~ 190} IGE, (5 ) e
(5.0, )eHxQ I(8, (¥, 1) laxq
(8,(¥,m)#0
for all (%, (@, X)) € H x Q. Hence, under the assumption (W, X)lgxm < LAN, we arrive at
2(1 + kay)
Aw g ((F (G X)), G 0D) _ aayw - v L
wp AmalB5 Lo %@ e e YEGD)CHxQ  329)
(.(4.7)eHxQ I(S, (0, 7) [xq

(5,(4,7)#0

Similarly, using the fact that A is symmetric, employing the same boundedness estimates for Oy (cf. (3.7b))

and Cr (cf. (3.10)), and assuming again that |(W, X)|lgxm < 2<1H0[A

———=—— we are able to prove the companion
+ Kd7)

inf-sup condition to (3.28), that is

AVT’, X (Fv (QE? X))v (§’ (7/_;; 77)) Ao 7

sup X( P ) = — H(S7 (¢aﬁ))||HxQ >0
(F.(#,X)eHxQ H(L (@7)‘))”H><Q
(F,(#,7))#0

for all (5, (¢,7) € H x Q, (8, (1,7)) # 0. As a consequence, we are in position to establish that J (cf. (3.3))
is well defined.

KJO(_A R
——————  there exists a unique (t, (¢, =
AL que (£, (6,))

T (W, %) € H x Q solution to (3.4) (equivalently (3.26)). Moreover, there holds

Theorem 3.5. For each (W, Y) € QxQ such that |(W, X)|qxm <

- =

~ L . 2 _ =
1T (W, X)|axq = [(t;(¢,8)[axq < aa3(1+ [XIn). (3.29)
where a1 and a3 have been defined in (3.11).

Proof. Tt follows from a straightforward application of [18, Theorem 2.6]. In particular, the a priori estimate
(3.29) follows from (3.28) and the fact that, according to (3.10), there holds |F¢| < @3 (1 + [X]|m)- O
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3.2 Solvability analysis of the fixed-point scheme

Knowing from the previous sections that the operators j , j , and hence [J are well-defined, we now focus on

the solvability of the fixed-point equation (3.5). To this end, in what follows we first derive sufficient conditions
Vaa RO A }

2p ’ 2(1 + /@&1)

on J to map a closed ball of Q x M into itself. Indeed, from now on setting § := min {

let

W) = {(#,0) e Qx M: (%, D)lqxw < 3} (3.30)
Lemma 3.6. If

{Hng/z re., +a15} < OjTAé, and dz(1+6) < %‘6, (3.31)

then J (W(6)) < W(6).

Proof. Given (w,Y) € W(J), we first recall from (3.5) that J(w,x) = (jg( Y), J3(W ,X)). In this way,
the choice of § along with assumption (3.31) allows to conclude from (3.19) and (3.29) that |Ja(W, X)llq
<4

and | J3(W, ¥)|m are bounded each by 6/2, which implies that |7 (W, ¥) lexm < 4, and hence J(W(4)) <
W(5). O

We continue the analysis with the Lipschitz-continuity properties of J and J.

Lemma 3.7. There exist positive constants Lg; and Lg ,, depending only on v, p, aa, a1, and Cr such that
1T (%, %) = T (Wo, Xo)li1x@ < { Lo (I€l1/2rs,, +@10) + Loo W, %) = (Wo, Ko)laxm (3:32)
Jor all (W, X), (Wo, Xo) € W(6).

Proof. Given (W, ), (Wo, Xo) € W(4), we set J(W,%) = (&
the unique solutions of the formulations (3.2) (equivalentl

€ H x Q and j(Wo,Xo) = (6p,up) e H x Q as

u)
3.15)), that is

Iy (315
Aﬁ((&vﬁ)v(’f’vv)) = F)Z(i—’) and Ag ((0_:0,1_1[‘0),(7_",\_/’)) = F)Zo(’f')a

respectively, both for all (7,¥v) € H x Q. Then, applying the global inf-sup condition (3.17) to (5, Z) =
(¢ — &y, U — dy), using the above identities, (3.15), (3.7a) and (2.9), we find that

A - - = — . AW((U—O'O,H—U()),(T7V))
— (6 = &0, 1 — tip) [uxq < sup g
(7,9)elx Q H(7'7V)|\HxQ
(7, ¥)#0
Os(W — Wo; 60, V) + (Fy —Fg, )(F) _ p, . . L
= sup - (Fy—Fy) < =W — Wollqll@olu + a1CF [X — Xo|m,
(7, 9)eHx Q (7, V) |mxq v
(7,¥)#0

which, along with the fact that | J (W, X) — J (Wo, Xo)[xq = [(&, 1) — (&0, 1) |rxq and (3.19), yields (3.32),

4p C 2a1C;
with Lg, := d 2F and Lg, := ! F, thus completing the proof. O
vaa A

Lemma 3.8. There exists a positive constant Ly, depending only on a4, a1, a3 and k, such that
|7 (%, X) = T (Wo, Xo)[rxq < L (1 +6) [(W,X) = (Wo, Xo)@xm (3.33)

for all (W, X)), (Wo, Xo) € W(0).
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Proof. Given (W, ), (Wo, Xo) € W(6), we let J(W,X) = (£,(6,)) € H x Q and T (Wo, %o) = (fo. (d0.&))
H x Q as the unique solutions of (3.4), Then, subtracting both systems and rearranging the terms appropriately,
we find that

AVT/,)Z((E_E(M (gi_)’— 50; g_ a))), (57 (7/_;777))) = OT(V_‘} - V_‘}O;E(b/([;) + CT()Z_ YO;&)aﬁ) + (‘F)Z - Fio)(%vﬁ)

-

for all (8, (1, 7)) € H x Q. In this way, applying the global inf-sup condition (3.28) to (F, (3, X)) := (&, (¢,£)) —
(to, (60, &0)), and then employing the foregoing identity along with (3.7b) and (3.10), we obtain

— — — — —

- - = — - - Av?/"{—"a _}7 _t7 ) a_’a 7_'
aq IE(3.8) = (o, (For e leing < sup x(( (¢ ))ﬁ (40_, (00, 0)), (8, (¥, 7))
2 (5.(4,M)eHxQ I(S, (¥,17)) [mxq
(8,(4,77)) #0

< &HW — Woll [Eoller + @1 ¥ — Xollnl €0l + @5/ X — Xolm,

from which, using the bounds for [€o|u = | J1(W,¥)|a and |&llv = [F5(Wo, Xo)|m provided by (3.29), we

2 2 ~
arrive at (3.33) with Ly := —@dsmax{ — (k7' +d),1 . ]
Qa XA

Having proved Lemmas 3.7 and 3.8, we are able to establish now the Lipschitz-continuity of our fixed point

operator J in the closed ball W(0).

Lemma 3.9. Let Lg,, Ls, and Ly be the constants provided by Lemmas 3.7 and 3.8. There holds
179, %) — T (o, ¥o)laxn < {Les (I8l s, +18) + Lea + L (14+6) } (%, %) — (Wo, Xo)lqun
for all (W, %), (Wo, Xo) € W(J).
Proof. Tt follows from the definition of 7 (cf. (3.5)) and the estimates (3.32) and (3.33). O

Owing to the above analysis, we now establish the main result of this section.

Theorem 3.10. Let us assume that the given data are sufficiently small to satisfy (3.31), and
Ls, (H§||1/2,Fg“t +a10) + Ls> + Lo (1+6) < 1. (3.34)

— —

The problem (2.6) has a unique solution (&,d) € H x Q and (1?,, (¢, )) € H x Q with (4,£) € W(8). Moreover,
there hold

2CF
aA

I (6,6)1xq < %M 1 9). (3.36)

{Iglors,, + @0}, and (3.35)

out

[(&,0)]rxq <

Proof. We first recall that the choice of § and the assumptions of Lemma 3.6 guarantee that J maps W(4)
into itself. Then, bearing in mind the Lipschitz-continuity of 7 : W(d) — W(J) given by Lemma 3.9 and the
hypotheses (3.34), a straightforward application of the classical Banach fixed-point Theorem yields the existence

of a unique fixed point (4, §) € W(J) of this operator, and hence a unique solution of (2.6). In addition, the a
priori estimates provided by (3.19) and (3.29), yield (3.35) and (3.36), which completes the proof. O

4 The Galerkin scheme

In order to approximate the solution of our mixed variational formulation (2.6), we now introduce the associated
Galerkin scheme, analyze its solvability by applying a discrete version of the fixed-point approach adopted in
the previous section, and derive the corresponding a priori error estimate.
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4.1 Preliminaries

Let 7, and T;” be the respective triangulations of the domains Q¢ and €2, formed by shape-regular triangles of
diameter hg and denote by h¢ and hy, their corresponding meshsizes. Assume that they match on ¥ so that
T,:= ’775 U T2 is a conforming triangulation of € := Qy U X U Q,,. Hereafter, h := max{hs, hy}. Now, for each

* € {f, p}, letting ]ﬁ[Z* c H(divy/s; Q2), selecting a set of arbitrary discrete spaces, namely

HY* = H7* N Hr,,, (divys; Q4), Hy < Hdivs; Q), My € H(T5,), (4.1)
Q= L'(Q), Xpr < LA(Q), |
defining the global spaces
Hy, := HI x HI®, H), := HY x H?, My, := MEF x M3P,
Qn = Qp x Q7 Xy o= Xpt x X}, Qn := Xp x My,
and setting the notation
T, = (1}, 7P) € Hy, Sh = (s},sh) e Hy, &= (&,€2) e My,

Wi, = (wh,wP) e Qu, Un = (YL, 0P) € X, (Gns En) = (dh, 85, €L, E0) € Qn,

the Galerkin scheme associated to (2.6) reads: Find (&h, ﬁh) € Hj, x Qp, and (Eh, (q?h,él)) € Hj;, x Qy, such that

ag(Gn, Th) +bs(Th, Un) ¢, (Th),
bs (G, Vi) — Os(Up; &p, Vi) =0,
S L e oz (4.2)
aTS hash) +bT(S§7 (?hv&h_)) . oL = 07 .
be(th, (Vn, ) —do((Dn,€n), (Vns7Th))  —Ox(Un;th,¥n) — Cr(€niénsn) = Fg, (Vns7n),

for all (7, V) € Hy x Qp, and (Sh, (¥, 7n)) € Hy x Qp.

Then, we adopt the discrete version of the strategy employed in Section 3.1 to analyze the solvability of
(4.2). To this end, we let Jp : Qp x My, — Hj, x Qp be the discrete operator defined by

In(Fns Xn) = (T10(Fhy Xn)s Ton (Wi, Xn)) = (G, )

for all (Wp, Xrn) € Qn x My, where (&, 1) € Hy, x Qp, is the unique solution (to be confirmed in Theorem 4.1)
of the following problem:

as (G, Th) + bs(Th, Up) Fy, (Th), 13)
bs(Gn, V) = Os(Wp; Gh, Vi) =0,
for all (7, Vy) € Hy x Qp. In addition, we also let jh : Qn x My, — Hj, x Qp be the discrete operator given by
TIn(Wh, Xn) = (ﬁ,h(v_\?m)?h),(jz,h(v_\hu)?h%jg,h(‘x’h,Yh))) = (En, (Pn:En))

for all (W, Xrn) € Qn x My, where (‘Eh, ((Eh, Eh)) € Hj, x Qp, is the unique solution (to be confirmed in Theorem
4.2) of the following system of equations:

aT(Ehagh) + bT(ghv(ggh?gh)) =0,

L Lo ~ L . . (4.4)
b (tr, (Vn, 70)) — de((n: &)y (Wn, 7)) — Ox(Whs th, ¥n) — Co(Xni&nyiin) = Fxn (Vny 7in),
for all (§h, (Jh,ﬁh)) € Qh x Hy,.
Finally, we define the operator 7, : Qn x My — Qp x My, as
Tn(FnXn) = (Fean(Wny Xn)s Ts.n(Wny Xn)) = (8n,€) ¥ (Wn, Xn) € Qn x My, (4.5)

and notice that solving (4.2) is equivalent to seeking a unique fixed point of Jj, that is (dp, {h) € Qp x My, such
that Jn(dn, &n) = (Un, &n).-

15



4.2 Well-definedness of the operators jh and fh

In this section we proceed analogously to Sections 3.1.1 and 3.1.2 and establish the well-posedness of the discrete
systems (4.3) and (4.4), equivalently that the discrete operators ), and Ty are well-defined. To this end, given
x € {f,p}, we introduce certain hypotheses on the finite element subspaces defined above, and the discrete
kernels associated with the bilinear forms bg, and b, respectively, that is

Kowim {Fctns | vi-divir) =0 wvieQp),
Q.

=0 i e M}

Jx

ICT,h, = {gh eHy, : f w;dw(sfl) =0 Vw}: € X}f* and <S;L : 11*7772>1"§n
Qe
More precisely, from now on we assume that

(H.1) ]ﬁlg* contains the multiplies of the identity tensor I,
(H.2) div(Hy*) < Qp*
(H.3) there exists a positive constant fs 4, independent of h, such that

b
sup S(T’“;’l) > Boa|Vrlq VVa e Qn, (4.6)

=
PpeHy, HT H
Th#0

(H.4) div(HY) < XJ*,
(H.5) there exists a positive constant Sy 4, independent of h, such that

b (8, (Vn, 7))

sheHh HShH
§p#0

> Bral@niin)lq ¥ (@n.7in) € Qn. (4.7)

Then, bearing in mind the assumption (H.2), we find that Kg ), := {*Fh eHy : div(ry) =0 in Q*}.

In this regard, it is worth noting that the KCs-ellipticity of the bilinear form ag, as shown in Lemma 3.1,
relies solely on the divergence-free property of the tensors in g along with the estimate (3.13). Therefore, by
selecting our discrete space Hy* := ﬁg* NHr,,, (divy/s; Q.), it follows that as is also K ,-elliptic with the same
positive constant ag, that is

aS(Fh,T'h) = Qg H'Fh”]%{[ V7, € K:s,h~ (48)

In this way, (H.3) and (4.8), guarantee, thanks to [18, Proposition 2.42], the discrete global inf-sup condition
for A (cf. (3.16)) with a positive constant aa a4, depending only on as, fs.4, and |ag|, and hence independent
of h, that is

A((Chn,Zn), (Tn, %))

sup E— > aaal(CrZn)luxq ¥ (CriZn) € Hy x Qu, (4.9)
(%95 €H, X Q) H(Thzvh)HHxQ
(Th,Vn)#0
Vaaa

so that, for each wj, € Qj, such that |Wy|q < , there holds

A, ((Cn.Zn), (70, %0) _ «a L L
sup Wi ( - ) > ZAd 1(Sn, Zn) xq Y (CnyZn) € Hy x Qp. (4.10)
(Fh, ¥p)€HY X Qp H(Thvvh)HHXQ 2

(Th,Vn)#0

Consequently, we are now in position to establish the discrete analogue of Theorem 3.3.

va
Theorem 4.1. For each Wy, € Qp, and X € My, such that |[Wy|q < Ad

, there exists a unique (&', Uy) €

H;, x Qp solution to (4.3), equivalently

Aw, ((Gn,tn), (Tns Vi) = Fg, (Th) ¥ (Th, V) € Hp x Qp. (4.11)
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Moreover, there holds

=L . 2CF (. S
170 (Wn, Xn)luxq = [(&r, Ur)[mxq < E{Hglluzrgm +a1HXhHM}- (4.12)

s

VoA

Proof. Let (Wp, Xn) € Qn x My, such that |[Wy|q < ZZAd Analogously to the continuous case, we find that

Ag, (cf. (4.10)) satisfies the hypotheses of the discrete Banach-Nec¢as—Babuska theorem [18, Theorem 2.22],
and then we conclude the existence of a unique (&, ) € Hjy, x Qp, solution to (4.11). In addition, the a priori
error estimates (4.12) is consequence of (4.11), (4.10) and the boundedness of Fy, (cf. (3.9)). O

Similarly, thanks to (H.4), it is easy to see that K, can be characterized as
Koy i= {gh = (sh,sP)eHy: div(s)) =0 in Q. and (sjommire . =0 Viie Mf;} ,

and hence ar(Sy,S,) = i IS|% for all 8, € K1 ,. In turn, knowing from the continuous analysis that d
is positive semi-definite in Q (cf. (3.20)), this property is also true in Q. Hence, bearing in mind (H.5), a
straightforward application of [14, Theorem 3.5] implies the discrete global inf-sup condition for A (cf. (3.24))
with a positive constant o 4,4, depending on ||ar|, o, |dr|, and Br 4, and thus the same property is shared by

Ag, 5, (cf. (3.25)) for each (W, ¥n) € Qu x My, such that |(Wh, Xn)lgxm < — 2% that is
vxh 2(1 + ka)
Aw X (Fhv(ﬁhvxh))v(gm(q;hyﬁh)) XAd |/ - 7
sup B — ) > =5 @, (Gns An)) lraxa (4.13)
(ghs(zﬁh’l’-h))EHh,XQh “(Sh) (whvnh))HHXQ

(8n,(¥n,7in))#0

for all (Fh, (@h,xh)) e Hy, x Qh-
In this way, we are now in a position to establish the discrete analogue of Theorem 3.5.

HOé.A,d
2(1 + /{51) ’
(th, (Dn:n)) = Tn(Wn, Xn) € Hy x Qp, solution to (4.4). Moreover, there holds

Theorem 4.2. For each (Wp,Xn) € Qn x My, such that |(Wn, Xn)|gxm < there ewists a unique

~ . - oS4 2 - .
|Tn (W, Xn)lHxq = [(th, (Dr,&n))[HXQ < - as(1+ [ Xnlwm)- (4.14)

)

Proof. Tt reduces to a direct application of [18, Theorem 2.22]. In particular, the a priori estimate (4.14) follows
from (4.13) and the fact that, according to (3.10), there holds |Fg, | < @3 (1 + [|Xa]m)- O

4.3 Discrete solvability analysis

VaAd  KQAd }
b

We now address the solvability of the fixed-point equation (4.5). For that, we set dq := min , —
2p " 2(1 + Kay)

and define
W(oa) = { (W %0) € Qu x My s [, )l xnt < dal, (4.15)

to provide sufficient conditions under which J;, maps W(dq) into itself. More precisely, we have the following
result.

Lemma 4.3. If

= « ~ «
CF{||gH1/2,rgut+a15d} < Z’dfsm and  G3(1+da) < “Z’déd, (4.16)

then jh(W((Sd)) c W((Sd)

Proof. 1t follows analogously to the proof of Lemma 3.6, but now using the well-posedness and associated a
priori estimates of 7, and J) provided by Theorems 4.1 and 4.2, respectively. O
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Next, we establish the Lipschitz-continuity properties of jh and jh.

Lemma 4.4. There exist positive constants L | and Lg‘d depending only on v, p, aa.a, a1, and Cr such that

S,d

|0 (Wh, Xn) — T (Wo,n, Xoon)lxq < {Lé,d (I€l1/2,re., + a16a) + Li,d} [(Wh, Xn) — (Wo,ns Xo,n) | Qxm

for all (Wn, Xn), (Wo,n, Xo,n) € W(dq).

Proof. Tt follows analogously to the proof of Lemma 3.7, using now the discrete inf-sup condition satisfied by
Ag, (cf. (4.10)) with constant ZAd O

Lemma 4.5. There exists a positive constant Ly 4, depending only on aa 4, d1, d3 and k, such that
|0 (%h, Xn) = Tn(Wo,n, Xon)lxq < Lira (1+ da) [(Wh, Xn) — (Wo,ns Xo,n) Qs
for all (Wn, Xn), (Wo,n, Xo,n) € W(da)-

Proof. Tt follows very closely to the arguments from the proof of Lemma 3.8, employing now the discrete inf-sup
condition satisfied by Ag, ¢, (cf. (4.13)) with constant dAd O

As a consequence, we are able to establish the Lipschitz-continuity of the operator 7.

Lemma 4.6. Let L}

S,d’

Lg‘d and Ly 4 be the constants provided by Lemmas 4.4 and 4.5. There holds

[Tn(Why Xn) — Tn(Wo,ns Xo,n)llQxm
< {Lé,d(ngl/ZFC +a16q) + L2 4+ Lea(1+ 5d)}“(‘x’ha Xr) — (Wo,n, Xo,n) |@xm

out

(4.17)

for all (W, Xn), (Wo,n, Xo,n) € W(dq).

Proof. Given (W, Xn), (Wo.n, Xo,n) € W(dq), it suffices to employ the definition of 7, (cf. (4.5)), and the upper
bounds of Lemmas 4.4 and 4.5. O

According to the above, the main result of this section is establish as follows.

Theorem 4.7. If the given data are sufficiently small to satisfy (4.16), then the problem (4.2) has at least one
solution (&, 1) € Hy x Qp, and (€h, (n,&n)) € Hy, x Qp with (r,&n) € W(da). Moreover, under the further
assumption

LSy (I€]1/2re., +a16a) + L2+ Lea (1+6a) <1, (4.18)

out

this solution is unique. In addition, in both cases there hold

L - 2CF (4
I(Gnstin)lixe < ——{Iglars,, +araf, and (4.19)
QA d
— - — 2 ~
I(trs (Dn: &) [HxQ < oaa® (14 6a). (4.20)

s

Proof. We first notice that the assumptions of Lemma 4.3 guarantee that J, maps W(dq) into itself. Then,
the continuity of Jj, : W(da) — W(da) (cf. (4.17)) and a straightforward application of the Brouwer Theorem
(cf. [12, Theorem 9.9-2]) implies the existence of at least one solution (d,&,) € W(dq) to (4.2). Next, the
uniqueness of solution is a consequence of the Banach fixed-point Theorem and assumption (4.18). Finally,
thanks to the a priori estimates (4.12) and (4.14), we obtain (4.19) and (4.20). O
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4.4 A priori error analysis

We consider finite element subspaces satisfying the assumptions specified in Section 4.2, and derive the Céa
estimate for the Galerkin error E := Eg + E, where

Es := (&, 1) — (&n,n)|uxq and Ep:=|(t,(,€)) — (tn, (dn: 1)) |Ex Qs

and (&,u) € H x Q, (ﬁ ((Z,E)) € H x Q and (&,1,) € Hy x Qp, (fh,($h7§h)) € H;, x Qp are the unique
solutions to (2.6) and (4.2), respectively, with (d,&) € W(§) (cf. (3.30)) and (tp,&n) € W(da) (cf. (4.15)). In
what follows, given a subspace Zj, of an arbitrary Banach space (Z, I Z), we set

dist(z,Zy) :== inf |z—z]z VzeZ

ZhEZh

Now, using (3.15) and (3.26), we observe that (2.6) and (4.2) can be rewritten as the following pairs of continuous
formulations and their associated discrete counterparts

A((G.10), (7,9)) = O(;8,9) + F£(7),  A((Gn.Tn), (7. V1)) = Ox(iin; G, 9s) + Fe, () (4.21)

for all (#,V) e H x Q and (74, V) € Hyp x Qp, and

(4.22)

for all (8, (¢, 7)) € H x Q and (S, (¥n, 7)) € Hy x Qp.
Then, from (4.21), it is easy to see that for each (7, V) € Hy, x Qp, there holds

A ((6,1) — (Gn,1n), (Th, Vi) = Os(t; 6, Vy) — Os(Up; G, Vi) + (Fg— th)(?h),

whence, subtracting and adding &}, in the second component of the first term, invoking the boundedness
properties of Og (cf. (3.7a)), Fz— Fg (cf. (3.9)), and the a priori estimates (cf. (3.35) and (4.19)) for [i]q
and | & |m, respectively, we obtain for each (7, V) € Hy, x Qp,

A ((6,1) — (Gn,Gn), (Th, Vi)

oo P Lo o (4.23)
< {Lliilqlé — Gl + 2181l — Glq + i Crl€ — il HI(Fh 91 o
Now, the triangle inequality gives for each (Q_’;L, Zp) € Hy, x Qp,
Es <[(&,1) = (ChrZn) [axq + |(Chs Zn) — (n, 1) [1xq, (4.24)

and then, applying (4.9), subtracting and adding (&, @) in the first component of A, and using the boundedness
of A with constant |A[, which depends on |ag|, and ||bs| (cf. (3.6)), we find that

. oL A((Cn,Zn) — (Gn,tin), (Fn, Vi)
aa.d|(Ch,Zn) — (h, Un)[Hxq < sup (G, )

(74,95 )€l), xQy, H('Fh,‘_"h)”HXQ
(Th,Vn)#0

L A((5, ) — (G, ), (F, 92)
< JANG @) - Cnilig+ s A )

(71,9, )EH, X Qp, ‘|(7:’h7vh)‘|HxQ
(Th,Vr)#0

In this way, inserting (4.23) into the supremum and replacing the resulting estimate in (4.24), and the fact that
(Ch,Zn) is arbitrary, we conclude that there exists a positive constant Csy depending only on p, v, aa 4, and
hence independent of h, such that

B, < Cor{dist((5, ), Hy x Qu) + liilQlé — Gulls + |51l — nla + a1Celé~ &} (425)
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Similarly, for each (Sp, (¢¥n,7r)) € Hp x Qp, from (4.22), we deduce that

—

A(®, (6,€)) — (Ens (D1n. 1)), Bny (Pn, 7))
= O (15t 0n) + Cr(& € 71n) — O (in; Eny ) — Cor(€ns Ens ) + (Fz— Fz, ) (s iln),

from which, subtracting and adding t;, and 5 » in the second component of the first and second terms, respectively,
invoking the boundedness properties of O, Cr, and Fz— Fe,» the a priori estimates (cf. (3.36) and (4.19)), we
proceed exactly as in the previous case for Eg, and realize that there exists a positive constant Crr, depending
only on ||A|, @44, @1 and x, and hence independent of h, such that

—

Er < CTT{dist((E, $:€), Hy, x Qu) + [Tl — tnllq + € — tauldlq

(4.26)
o+ (I€hv + I€nln + ) 1€ = €l }-
Consequently, we are in position to establish the announced Céa estimate.
Theorem 4.8. In addition to the hipotheses of Theorems 3.10 and 4.7, assume that
2C 2 1
e, +md) (4 0) < e, and
aA,d 2Cst (4 27)
QCF{H g1 o, + @0} + (14 8) + iy + mCp < o |
a - Q a, a S 5
gll1/2,re,, 1 aa 3 3 1UF 20

where G4 := min {aA, ozAd}, and § := max {5, 5d}. There exists a positive constant Ce, independent of h, such
that

—

1, d) — (&n, in) lxq + | (£, (6,) = (n, (Jn,
< ZCe{dist((c?,ﬁ),Hh x Qp) + dist(( (t, (¢,

_'h))HHxQ (4 28)
), Hy, x Qh)}- .

Proof. By combining (4.25) and (4.26), it suffices to use the bounds given by Theorems 3.10 and 4.7 along with
(4.27), which yield (4.28). m

We end this section by remarking that (1.10) suggests the following postprocessed approximation for the
pressure p,

*

1 .
Py = —Etr(a,:) in Q,, (4.29)

so that, it is easy to show that

(4.30)

low =y,

u <5
D~ < \/ﬁ
Thus, combining (4.28) and (4.30), we conclude the existence of C. = 0, independent of h, such that

—

[(&, @)~ (&, n) |mxq + (€, (6,6) = €, (6n. &) laxq + D) Ipe = phloc
~eit.p} (4.31)
gée{diSt((&aﬁ)aHh X Qh) + dlSt((E? (57 _3)7Hh X Qh)}

5 Specific finite element subspaces

In what follows, given K € T,*, with x € {f, p}, we let Po(K) be the space of polinomials of degree 0 defined on
K, whose vector version is denoted by Po(K) := [Po(K)]?. Next, we define the corresponding local Raviart—
Thomas spaces of order 0 as (see [21, Chapter 3| for further details) RTo(K) := Po(K) @ Po(K)x, where
x := (w1, 72)" is a generic vector in R2. Then, we introduce, respectively, the following finite element spaces for
the variables t., o, ¢, and u,:

5 {s; e H(div;2,): stk € RTo(K) VK¢ 7',:}, HZ* := Hr,,, (divy/s; Q) N, with
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I = {TgeH(div;Q*): 7k e RTG(K), Vie{1,2}, VKeTh*},
X§* = {wgeLQ(Q*): U}l € Po(K) VKeTh*}, and
b {v,*LeLz(Q*): Vil € Po(K) VKeT,;},

where 757 ; denotes the ith-row of 7. It remains to introduce the finite element space for the variable &.. To
that aim, we proceed similarly to [23] and denote by I, , ; the partition of I'f, , inherited from 7. Let us
assume, without loss of generality, that the number of edges of I'j , ), is even. Then, we let I'j , ,, be the
partition of I'{, , arising by joining pairs of adjacent edges of I';, |, ;. If the number of edges of I'{ , ; is odd,

we simply reduce it to the even case by adding one node to the discretization of the boundary I'j, , and locally

modify the triangulation to keep the mesh conformity and regularity. In this way, denoting by @y and x the

extreme points of fic we define the following finite element space:

n,x’

Mj = {nj, e C(I5,.) : mile € Pi(e) VedgeeeD§,, o, mi(zo) = mj(2n) = 0}
We stress here that the above particular subspaces satisfy the inclusions (4.1). We now verify that these

subspaces satisfy the hypotheses (H.1)-(H.5).

First, it is easy to show (see, [6, Section 4.2] for details) that ]I?H}*l satisfy (H.1) and (H.2). Next, in order to
check (H.3), we require the following result.

Lemma 5.1. Assume that there exists a polygonal convexr domain B, such that Q, < B, and Dout,« S oB,.
There exists a positive constant B 4, independent of h, such that

f vy - div(Ty)
sup e = B 4[|l
T} eHT* HTh, Hdiv4/3;9*
T #0

0,4;Q, VVZ € QE*
Proof. We proceed similarly to the proof of [6, Lemma 4.3], employing the arguments utilized in [11, Lemma
41]. O

In this way, since for each * € {f, p} we have

oL vy - div(Ty
s (T, %n) o o f i - div()

7, €l HFhHH TreHT ”T}:”diVA;/s;Q*
Tn#0 740

= Bialviloan, YvieQpr, (5.1)

it is straightforward to see that Hj, and Qp, satisty (H.3) (cf. (4.6)) with a positive constant fs 4, independent
of h.

On the other hand, we observe that (H.4) holds according to [21, Lemma 3.7]. It only remains to verify
(H.5). To that aim, we follow the simplest approach suggested in [24]. More precisely, for each » € {f, p}, we
recall (cf. [24, Lemma 5.2]) that there exists a positive constant 8*, independent of h, such that

| widivtst) + s nenion,
Q, )

sup > 8" {Iilos. + Imily00rs,, | (5.2)

s}eH* R IIdiviQ,
N
sy #0

for all (¢, ;) € Xﬁ* X Mi‘. Then, proceeding similarly to [22, Section 4.4.1], we use the fact that there exists a
positive constant c({2,), depending only on ||, such that [s.div,;:0, < c(Q4) [[S+]aiv;0, for all s, € H(div; 2.),
along with (5.2), to deduce that

Ypdiv(sy) + {sj, - e, M), .
Qe

> h .
() H’?hHl/z,oo,r.

in,*

Y (g5, mp) € X0 x M5 (5.3)

sup *
spemts HSthivzx/s;Q*
s;‘L;r':()

In addition, we have the following result.
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Lemma 5.2. Assume that there exists a polygonal convex domain B, such that Q, < B, and T, , < 0B,.

in,*

Then there exists a positive constant 5;,.3’ independent of h, such that

Ypdiv(sy) + (s, - me, mj)r

in,*

Q. ok * * % « *
sup ” * = /6T,d H"/)h”(),‘l;ﬂ* v (whanh) € X(fé x Mi . (5-4)
s} eRT( (T}) Sthiv4/3;Q,
S;L;EO
Proof. Similarly as in Lemma 5.1, the result follows directly from [11, Lemma 4.1]. 0

Hence, a straightforward linear combination of (5.3) and (5.4) implies that

o ’lp;‘dlv(sz) + <S;L L § N 77;’>Ficn,* R
sup = > Bru v
SZEH;’* HS;(L||diV4/3;Q* ~ e
sy #0

0,40, + [milz00rs, | ¥ (Whmi) € Xpr x M,

in,*

where B;d is a positive constant depending only on §*, 5;,3 and ¢(€).

Finally, proceeding in the same way as we did in (5.1), we deduce that Hj;, and Qp, satisfy (H.5) (cf. (4.7))
with a positive constant S 4, independent of h.

We end this section by providing the rates of convergence of the Galerkin scheme (4.2) with the specific
finite element subspaces introduced in Section 5. More precisely, we can state the following main theorem.

Theorem 5.3. Let us consider the hypothesis of Theorem 4.8. In addition, let p, and p;, be the exact and ap-
prozimate pressures defined by (1.10) and (4.29), respectively. Assume that o, € H'(2,) N Hr,, (divys; Q).
div(e,) € WH3(Q,), t. € HY(Q,), div(t,) € WH3(Q,), u, € WH4(Q,), ¢é. € WHH(Q,) and &, €
Hgéz(l"'? ). Then, there exists a constant C' > 0, independent of h, such that

in,*

[(&,6) = (G, i) laxq + | (E, (6,€) = En, (6n, &) lHxq + Y, Ipe —ph
*e{f,p}

0,0

<c Y .

+e{f,p}
in, % }

Lo, +[div(es) |1z, + [0ediae + [t]o, + [div(ta) |10, + [@«]140.

+ [€«l13/2,00,r¢

Proof. The proof follows from the corresponding Céa estimate (4.31), the approximation properties of the
subspaces involved. In particular, for H7* and Hz* we refer, respectively, to [6, eq. (4.7)] and [7, eq. (3.8)],
which in turn are consequences of [18, Lemma B.67, Lemma 1.101] and [21, Section 3.4.4]. For Q;* and Xf*
we refer to [18, Proposition 1.135, Section 1.6.3], whereas for Mi* we refer to [23, Section 5.4, (AP3)]. O

6 Computational results

To illustrate the performance of the method, we present two computational simulations. The first one consists
of a manufactured solution to verify numerically the rates of convergence anticipated by Theorem 5.3. The
second one is a realistic situation in a reverse osmosis processes, with no analitical solution available. The
implementation is done in FreeFem++ (cf. [25]). In both, the iterative method comes straightforward from the
uncoupling strategy presented in Section 4.1 and we use the following stopping criteria. Let us denote by coeff
the vector that contains all the degrees of freedom associates to &, Uy, ‘Eh, (Eh and f;, Given a tolerance tol,
we stop the fixed point iteration when the relative error between two consecutive iterations (m and m + 1),
satisfies

ﬁ'm+1

|coe — coeff ™ ||;2

T < tol. (6.1)

|coe ez
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Here, ||-|;2 stands for the usual Euclidean norm in R%* and dof denoting the total number of degrees of freedom.
Subsequently, errors are defined as follows:

e(0x) = [ow = Tpllaivasa.,  e(w) = | —ujfosa,,  elps) =[P —pj

e(ts) = [tu =t} aivysi0., e(¢x) = ll¢w — 03

0,825

0,4; 5 e(&) = |6« — fﬁHl/z,oo,r.c )

in,x

where we recall, thanks to Sobolev interpolation results (cf. [1, Chapter 5], [28, Appendix B]) that

1/2 1/2
& = €iluaoors,, < Cléw = &illgpe e — &7 -

This relation suggests that the norm in Hj¢ (TS, ,) can be estimated by the norms in L2(T'¢, ) and H! (T, ,).

in,* in,* in,*

In turn, the experimental order of convergence, is set as

r(x) = M
log(h/)

where e and €’ denote the errors computed on two consecutive meshes of sizes h and h’. In addition, we
refer to the number of iterations as iter. Next, in our two examples, we consider the computational domain

Q=0 UQ, US, where Q¢ = (0,L) x (d,2d), , = (0, L) x (0,d), and £ = (0,L) x {d}.

V= € {U*,uivpivtihqs*ag*})

Example 1: A manufactured smooth solution. In our first numerical test, we consider the computational
domain Q with L = 1 and d = 0.5, and set the parameters v = 2, p = 0.1, K = 1.6, ag = 1078, a; = 0.01 and
as = 2.5 x 1076, In addition, we define the manufactured solution:

sin(mx) cos(my)
— cos(mx) sin(7y)

Py = cos(mz)exp (y), U, = ( ) , ¢ = cos(ma) sin(my),

We notice that the only external sources of the physical model (1.14) are due to the velocity profile and
concentration at the inlet. So, in order to be able to use the above manufactured solution, we introduce
artificial volumetric, boundary and interface sources that make this solution to satisfy the equations. Table 6
shows the history of convergence for a sequence of quasi-uniform mesh refinements. The experiment confirm
the theoretical rate of convergence O(h), provided by Theorem 5.3. In addition, as initial guess to start the
iteration, we consider zero velocity and concentration. The number of iterations required to reach the stopping
criterion (6.1) with a tolerance of le — 6, was less than or equal to 4.

Example 2: Coupled channels. We set L = 15mm, d = 0.74 mm. The inlet velocity profiles are consider
as in Remark 2, and the physical parameters specified in Section 1.2 are in Table 6.2. In Figure 6.1 we display
the computed velocity magnitudes, pressure and salt concentration fields, which were built using the fully-mixed
RTy — Py and RTy — Py — Py schemes on a mesh with A = 0.02 and 348,140 triangular elements (actually
representing 2,616,096 dof). In addition, as initial guess to start the iteration, we consider zero velocity and
concentration. The number of iterations required to reach the stopping criterion (6.1) with a tolerance of 1e — 6,
was equal to 12. We see that the parabolic profile remains in both channels (top panel). The velocity magnitude
in the feed channel decreases along the axial axis, while the opposite occurs in the permeate channel. This is
expected because water flows from the feed channel to the permeate across the membrane. Also, a pressure
loss is observed along the entire channels (center panel), which, for laminar flows, is related to the friction
between the fluid and the channel walls, as well as to the accumulation of salt near the membrane [31]. This
accumulation is typical in reverse osmosis processes, as shown in the bottom panel.

7 Conclusions

We have developed and analyzed a mixed finite element method for the coupled Navier—Stokes and transport
equations with nonlinear transmission conditions. We proved well-posedness of both, the continuous and discrete
formulations, specified finite element subspaces and show the convergence properties of the proposed numerical
scheme. To the best of our knowledge, this is the first contribution that provides the mathematical framework
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RTy — Py and RTy— Py — P; approximation

dof efogr) | r(og) | e(ur) | r(u) e(pr) r(ps) e(ts) r(tr)

1161 1.62¢e + 00 * 9.43e¢ — 02 * 2.06e — 01 * 5.16e — 01 #
4527 7.74e — 01 | 0.99 | 4.59¢—02 | 0.96 | 9.30e —02 | 1.07 | 2.50e — 01 | 0.97
17559 | 3.86e — 01 | 1.17 | 2.30e —02 | 1.17 | 4.60e —02 | 1.19 | 1.27e—01 | 1.14
68913 1.94e — 01 | 1.06 | 1.16e —02 | 1.05 | 2.29¢ —02 | 1.08 | 6.35¢ —02 | 1.07
280476 | 9.55e — 02 | 1.05 | 5.74e—03 | 1.04 | 1.13¢—02 | 1.04 | 3.14e—02 | 1.04
1106742 | 4.79¢ — 02 | 1.08 | 2.89¢ — 03 | 1.08 | 5.64e — 03 | 1.10 | 1.58¢—02 | 1.08
h e(¢r) r(¢x) e(&) r(&) e(op) r(op) e(up) r(up)

0.1863 | 7.46e — 02 * 2.51e — 01 * 1.63e + 00 * 9.60e — 02 #
0.0884 | 3.50e —02 | 1.01 | 1.13¢—01 | 1.08 | 7.79¢ —01 | 1.19 | 4.65¢—02 | 1.17
0.0488 | 1.77e —02 | 1.15 | 5.62e —02 | 1.17 | 3.80e—01 | 0.96 | 2.31le—02 | 0.93
0.0255 | 8.79¢—03 | 1.07 | 2.86e—02 | 1.04 | 1.90e —01 | 1.10 | 1.16e—02 | 1.08
0.0130 | 4.33e—03 | 1.05 | 1.41le—02 | 1.05 | 9.36e—02 | 1.09 | 5.72e —03 | 1.09
0.0069 | 2.18¢—03 | 1.08 | 7.13¢—03 | 1.07 | 4.71le—02 | 1.22 | 2.88¢e —03 | 1.21
iter e(pp) r(pp) e(tp) r(tp) e(ép) r(¢p) e(ép) ()
3.07e — 01 * 5.12e — 01 * 7.10e — 02 * 2.15e — 01 *
1.26e — 01 | 1.43 | 2.53¢—01 | 1.13 | 3.52¢ —02 | 1.13 | 9.55¢ —02 | 1.31
5.65e—02 | 1.07 | 1.27e—01 | 0.92 | 1.74e —02 | 0.94 | 4.62¢ —02 | 0.97
2.76e —02 | 1.13 | 6.34e—02 | 1.09 | 876e—03 | 1.08 | 2.30e —02 | 1.10
1.35¢e — 02 | 1.10 | 3.14e—02 | 1.08 | 4.31le—03 | 1.09 | 1.14e—02 | 1.08
6.80e —03 | 1.22 | 1.58e —02 | 1.22 | 2.18¢—03 | 1.21 | 5.72¢—03 | 1.23

W W wWwwWwwk

Table 6.1: Example 1, number of degrees of freedom, meshsizes, iterations, errors, and rates of convergence for
the RTy — Py — RTy — Py — Py approximations of the Navier—Stokes/transport model, and convergence of the
Po—approximation of the postprocessed pressures field.

Parameter || Meaning | Value | Units

T System temperature 298 K

R Ideal gas constant 8.314 Jmol 1K1
i Number of ions from salt solution 2 —
Uin,f/Uin,p | Inlet mean feed/permeate fluid velocity 0.01/0.001 ms !
Gint/Pin,p || Inlet feed/permeate salt molar concentration || 600/6 mol m™3
AP Hydrostatic transmembrane pressure 5575875 Pa

P Feed /permeate fluid density 1027.2 kgm=3

K Feed /permeate diffusivity of salt in water 1.611 x 1077 || m2s~1

v Feed /permeate fluid dynamic viscosity 89 x 1074 kgm=1s~!
A Membrane water permeability 2.5 x 10712 ms~ ! Pa~1
B Membrane salt permeability 2.5 x 1078 ms—!

Table 6.2: Physical parameters [4, 10, 29].

to handle nonlinear transmission conditions in domains with mixed boundary conditions. The method proposed
here is the main background for modeling other types of configurations. In fact, in different physical models
utilized to simulate a reverse osmosis effect in water desalination processes, the coupled Navier—Stokes/transport
equations are used in two situations, one where explicit spacers (small obstacles) are located inside the channel
and another where the channel does not include spacers (usually called empty channel). The latter is what
we have addressed here. However, the former can be easily extended with minor modifications to our work.
Moreover, the framework developed in this paper can also be employed to analyze models that couple Brinkman—
Forchheimer /tranport equations instead of the Navier-Stokes/tranport equations. This type of models are also
present in reverse osmosis for desalination processes where the effect of spacers is implicit. This circumvents the
high computational cost of including the spacers and instead handles them as an homogeneous porous medium
in the entire domain. This perspective can also be addressed by making minor modifications to the work done
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Feed velocity magnitude |uf|
0.26 3.75 7.00 11.25

S

99 (x1073)
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0.03 0.40 0.80 1.20 164 (X1079)
Permeate velocity magnitude |uf)|

Feed pressure pf,

0.0000 0.00075 0.00150 0.00225 0.0029
| (x103)

— |

3
0.00000 0.00007 0.00015 0.00023 0.00031 (x10°)
Permeate pressure pf

Feed concentration ¢
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Figure 6.1: Example 2, approximations with dof = 2,616,096 for the velocity magnitudes of the fluid, pressure
fields and concentration levels in the whole domain.

here. Finally, we point out that this work provides the theoretical foundations of the numerical simulations that
we have performed in [4] for different models.

A Appendix

A.1. Boundedness of byr. We proceed similarly to [7, Section 4.1]. Given * € {f,p}, we let s, € H} and
7. € MA. Thus, by (1.1) we have

e menry = S neBags, (1en, = [ 593 Burg, )+ [ 37 (o, (r)iv(s.)

* *

where F; 1 : HY/2(0Q,) — [H}()]* is the right inverse of the trace operator 7o : H' () — HY2(0Q,) (see,
[21, Section 1.3.4]). Thus, applying Hélder’s inequality, we obtain

lo,2. + |3 (Eo,re . (n:)]o,450. [div(s.)]

in, %

0.2. 1V (Eore. (n4))

in,*

| < ]

|<S* i ¢ 77*>1"?

in,*

0,4/3;9 -

Next, thanks to the continuous injection i} : H!(2,) — L*(Q.), we have that H'Nyal(EO,picn*(77*))||0’4;Q* <
a3l 135 (Bo,rs, , (1))

in,x

1,0, Moreover, since Fore (1) belongs to H'Y2(09,), we get (cf. [21, Lemma 1.3])

1% (EBo.re, , (1))

in,x

lo.ssa. < 7l Eore, , (1)1 /2.00. = [é3l74l1/2.00.rg, .

in,* in,*

whence, (S, - D, Niore

in,*

| < max {1, 5] }sx laivaas0. |74 1/2,00,r¢

in,*

As a consequence of the latter and Holder’s inequality, we deduce (3.8a).
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A.2. Boundedness of dr. We recall from [18, Theorem B.46] (see also [15, Theorem 6.10]) that H'/2(052,)
is continuously embedded in L!(09,) for any ¢ € [1, +0). In other words, for any ¢, € H'/2(052,), there exists a

positive constant c;, depending only on 0, such that |(ifo;t,00, < ¢f [Cal1/2,00,, YVt € [1,4+00). In this way,

given 7, € Hé{f (T, ,) it follows that

in,*

|0,t;6ﬂ* < ¢ HEOI-C (%)Hm,m, = C;Hn*Hl/ZOO,F? . (A1)

in,* in,*

|O,t;l“AC

in,*

|7 = | Eors, , (n:)

Thus, by the Cauchy—Schwarz inequality and (A.1), we obtain (3.8b).

A.3. Boundedness of Fy. Given X = (xt, xp) € M, we stress that to bound the functional Fy, one cannot
proceed in a direct way as when applying the Cauchy—Schwarz or Holder inequalities since the dual parity
defining the functional Fy involves the data g, and g& (cf. (2.4)), which are defined by parts on the boundary
¢, and belong to H/2(T¢ ), for » € {f,p}. Therefore, we will make use of the results of Section 1.1 to

out,* out,*

properly bound each one of these data providing details for * = f since * = p is analogous. For that, we write

(Teng, g + gfore = (Teng, geyre  + (Trng, gire (A.2)

out,f out,f out,f’

For the first term on the right-hand side of (A.2), one can define the extension Ere (g;) := zt|oq,, where

zr € H' () is the unique solution to (1.4), with g;, n¢, I+ and Doyg ¢ instead of 7, n, I and fc, respectively.
Moreover, there exists a constant Cy > 0, such that

|Ere  (8)l1/2,00; < Crlgelliyzre (A.3)

out, f out,f

Next, we recall from the last part of Section 1.1 that since Ere (g;) € H'/2(09)), there exist unique elements
Cre. e HY2(TS, ) and Cr.,., € Hy) (Tousr) such that

ut, out,f

(g, Ere

out,f

(8¢)Yon, 1= {mig, Ere (e

out, out, f

Pocr +<{Tens, Eo v,  (Croc))o0

(&)

c
out,f out,f

This means that (cf. (1.3))

= Cre,,, and Ere  (8)|r,uc = Crou- Moreover, by uniqueness we have that {re =~ = gr.

out,f

(g, Ere

out,f

(8¢))oa; = (Teng,gejre - V71 € Hr,, (divyys; Q). (A.4)

As a consequence, employing the identity (A.4) and same arguments for bounding b, but now with the

continuous injection iy : H'(Qf) — L*(Q) (see, [13, Section 3.1]) and (A.3), we obtain
of

{7t g, gf>rgut1f| < max {17 H14H}Cf||7'f”di‘z4/3;ﬂfHngl/ngm’f- (A.5)

It remains to deal with the second term on the right-hand side of (A.2). Therefore, in what follows, we make

use of a convenient extension operator to define an appropriated Gy € HY/ 2(0€)) such that its restriction

to 'S, ; coincides precisely with g¥. Since x, € H(%Q(F-C ), that is Eore (xp) € H'Y2(0Q,) we note that

out, m,p

Eore (xp)ls = xp € HY2(Z) and x, = 0 on Ty, p. Thus, one could define Ex¢(x,) := 2t|oq,, where

in,p

2 € H(Q¢) is the unique solution to the boundary value problem

Nz =0 in Qf 2= Xp oOn ¥, 2z =0 on Fimf and Vzr-nf =0 on FW7fUF0ut,f,

and show that there exists a constant Cx, t > 0, such that | Ex t(xp)[1/2,00, < Cst
from the fact that

IXpll1/2,- On the other hand,

Ixpli2s = [Eore, (Xp)lslies < [Eore,  (Xp)li2.00, = [Xpl1/2.000

in,p in,p in,p’

we get

1Es ¢ (xp)lli/2,00: < Cstlxpli/2,00,re (A.6)

Now, we define
Giy = (Eore ,(xi) — Bxi(xp))Qr n € HY2(0),
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where Qf can be any function in C*(€)), such that Qf = a1 an £, Qf = 0 on I'y, ¢ and || Q¢ 00,0, < a1. For
example, we can consider Q¢(x,y) = %(d—y), where Q¢ = (0,L)x(0,d), ¥ = (0,L)x{0} and 'y, s = (0, L) x{d}.
In turn, noticing that Gy, [re = = gr e H1/2(1"f)ut7f)7 and proceeding similarly as we did for (A.4), it is easy to
see that ’

(reng, Gy Yoo, = {Ting, g yre V¢ € Hr,,, (divy/s; Qf).

out,f

Thus, knowing that |Eore (xt)|1/2,00, = lxtlli/2,00,r ., and employing (A.6), as well as applying similar

in,f m‘f7

arguments to those used in (A.5), we find that

[Crene, gore, | < axmax {1, |i} ]} max {Cs. ¢, 1} 7t aiv. oicae [ Xl (A7)

out,f

The analogous conclusion is obtained by setting * = p, in order to write

(Tpmp, 8p + &1, = (Tphp, Bpore,,  + (Tphp, GTS,
and obtain

[Krpmp, gpore,, | < max {1, [if]}Cp 7y laiva i, 185 l1/2,0 and (A.8)

gut,p7
KTomp, gore,, | < armax {1, [i§ ]} max {Cs.p, 1} |7 div, g, [Xnr- (A.9)

As a consequence, employing the bounds (A.5), (A.7), (A.8) and (A.9), we obtain (3.9).
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