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Abstract

In this work we analyze a mixed finite element method for the stationary incompressible
magneto-hydrodynamic problem providing an exactly divergence-free approximation of the
magnetic field and a direct approximation of the electric field. The method is based on the
introduction of the electric field as a further unknown leading to a mixed formulation where
the primary magnetic variables consist of the electric and the magnetic fields, and a Lagrange
multiplier included to enforce the divergence-free constraint of the magnetic field, whereas
the hydrodynamic unknowns are the velocity and pressure. Then the associated Galerkin
scheme can be defined by employing Nédélec and Raviart–Thomas elements of lowest order
for the electric and magnetic fields, respectively, discontinuous piecewise constants for the
Lagrange multiplier and any inf-sup stable pair of elements for the velocity and pressure,
such as the Mini-element. The analysis of the continuous and discrete problems are carried
out by means of the Banach–Nečas–Babuška theorem and the Banach fixed-point theorem,
under a sufficiently small data assumption and quasi-uniformity of the mesh, the latter for
the discrete scheme. Finally, we derive the corresponding Cea’s estimate and provide the
theoretical rate of convergence.

Key words: Incompressible magnetohydrodynamics, mixed finite element method, Banach
spaces, Raviart–Thomas elements, Nédélec elements, exactly divergence-free magnetic field.
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1 Introduction

Magnetohydrodynamics (MHD) is a field that studies the dynamics of electrically conducting
fluids in the presence of magnetic fields. This interdisciplinary area merges principles from both
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fluid dynamics and electromagnetism, with wide-ranging applications in engineering and physics,
such as in astrophysical phenomena, nuclear fusion reactors, and industrial processes involving
liquid metals.

The stationary MHD problem, focusing on the steady-state behavior of these conducting
fluids, is of particular interest due to its implications in the design and optimization of various
technological systems. Unlike its transient counterpart, the stationary MHD problem involves
time-independent equations, simplifying the analysis while still capturing essential physical be-
haviors. However, solving these equations presents significant challenges due to their nonlinear
and coupled nature.

To begin the bibliographical discussion, we start by mentioning one of the first works de-
voted to the analysis of finite element methods (FEM) for MHD by Gunzburger et al. [19].
In this foundational work, the authors developed the well-posedness and convergence analysis
for a conforming FEM for MHD, considering inf-sup stable velocity-pressure elements for the
hydrodynamic variables and standard nodal finite elements, i.e., H1-conforming elements, for
the magnetic field. An extension to this work can be found in Gerbeau [17], where a stabilized
method for the three-field formulation considered in [19] is proposed. Both contributions assume
the magnetic field is in H1(Ω)3, which is feasible only if the domain is convex.

To address the limitations in non-convex domains, Hasler, Schneebeli, and Schötzau [20] in-
troduced a mixed finite element method based on weighted regularization for the incompressible
MHD system, which can be used even in non-convex domains (see also Costabel and Dauge
[10]). Another approach to circumvent this problem is presented by Schötzau [28], where the
author imposes the divergence-free condition of the magnetic field weakly through the intro-
duction of a Lagrange multiplier. This allows the magnetic field to be approximated by curl -
conforming Nédélec elements, eliminating the need for a convex domain assumption. Later,
Houston, Schötzau, and Wei [23] introduced a fully discontinuous Galerkin (DG) method for a
linearized incompressible MHD model problem based on the mixed method from [28]. While this
approach uses discontinuous finite element spaces for all variables, it requires a large number
of degrees of freedom. This drawback is addressed by Greif, Li, Schötzau, and Wei [18], who
introduced a finite element discretization using divergence-conforming Brezzi-Douglas-Marini
(BDM) elements for the velocity and curl-conforming Nédélec elements for the magnetic field,
reducing the number of degrees of freedom required. More recently, Camaño et al. [6] introduced
a new mixed finite element discretization for MHD that enables the approximation of additional
fluid variables of interest, such as the fluid gradient and fluid vorticity, by postprocessing the
primary unknowns of the system,. without using numerical differentiation, thereby eliminating
extra sources of error. The approach employs the pseudostress-based method introduced in [5]
for the fluid variables, while for the magnetic variables, it follows the approach described in [28].
Similar to [5], the fluid variables are sought in nonstandard Banach spaces, which allows for the
derivation of optimal rates of convergence.

Recently, various works have focused on developing new numerical methods that exactly
satisfy the divergence-free constraint of the magnetic field at the discrete level. For instance,
Hiptmair et al. [22] proposed a numerical scheme to preserve the divergence-free constraint for
both the velocity and the magnetic field. Similarly, Hu, Ma, and Xu [24] achieved the divergence-
free condition for the magnetic field by introducing the electric field as an additional, allowing
the magnetic field to be sought in the space H(div). These contributions do not concentrate on
error analysis.

Later, Hu and Xu [25] developed a similar method to approximate the solution of the sta-
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tionary MHD problem, ensuring an exactly divergence-free magnetic field. Their approach
introduces the volume current density as an additional unknown and includes an extra unknown
to manage the curl of the volume current density. The discrete system is proven to be well-posed
and the corresponding error estimate is achieved under the assumption of quasi-uniformity of
the mesh, with constants that depend on the L∞-norm of the velocity.

While each of these methods has contributed significantly to solving the MHD equations,
challenges remain in achieving accurate, stable, and efficient solutions. This paper builds on
these advancements by proposing a mixed finite element method tailored for the stationary
incompressible MHD problem, aiming to provide an exactly divergence-free approximation of
the magnetic field and a direct approximation of the electric field with rigorous theoretical
support.

Unlike the previously mentioned contributions, our approach introduces the electric field as
an additional unknown. This leads to a mixed formulation where the primary magnetic variables
are the electric and magnetic fields, and a Lagrange multiplier to enforce the divergence-free
constraint, whereas the hydrodynamic unknowns are the velocity and pressure.

The associated Galerkin scheme employs Nédélec and Raviart-Thomas elements of the lowest
order for the electric and magnetic fields, respectively, discontinuous piecewise constants for the
Lagrange multiplier, and any inf-sup stable pair of elements for the velocity and pressure, such
as the Mini-element. The analysis of both the continuous and discrete problems is carried
out using the Banach–Necas–Babuška theorem and the Banach fixed-point theorem, under the
assumptions of sufficiently small data and quasi-uniformity of the mesh for the discrete scheme.
This rigorous mathematical framework, based on the introduction of suitable Banach spaces
(see [5, 6, 7]) where the unknowns and test functions naturally belong, ensures the stability and
optimal convergence of the method, where the constants in the corresponding estimates depend
solely on the problem data. The most challenging part of the analysis, which we believe can be
applied or adapted to other contexts, is deriving the inf-sup conditions for the bilinear forms
involving the curl operator. This requires, among other technical results, the application of
Lp-theory for vector potentials on non-smooth domains.

The rest of this paper is organized as follows. In Section 2 we present the main aspects
of the continuous problem. We reformulate the problem as an equivalent set of equations and
derive the mixed variational formulation. In Section 3 we introduce the fixed–point strategy
and apply, firstly, the classical Banach–Nečas–Babuška theorem, and secondly, the Banach’s
fixed–point theorems, to prove that the associated fixed–point operator is well defined and that
the continuous problem is uniquely solvable, respectively. Next, in Section 4 we introduce and
analyze the associated Galerkin scheme by mimicking the theory developed for the continuous
problem. In Section 5 we establish the corresponding Cea’s estimate and prove optimal conver-
gence of the method. Finally, in Section 6 we present numerical results for a test problem with
a smooth solution to corroborate the theoretical rate of convergence of the method.

We conclude this section by noting that in the following discussions, we will utilize C and
c, with or without subscripts, bars, tildes, or hats, to represent generic positive constants in-
dependent to represent generic positive constants independent of the discretization parameters.
These constants may assume varying values at different locations within our analysis.
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2 Continuous problem

In this section we present the model problem and derive the variational formulation. We begin
by introducing some notations and definitions.

2.1 Preliminaries

Let us denote by Ω ⊆ R3 a given bounded domain with polyhedral boundary Γ. Then, for any
p ∈ [1,∞] and r ≥ 0 we let Lp(Ω) and W r,p(Ω) be the well-known Lebesgue and Sobolev spaces,
respectively, endowed with the respective norms ‖ · ‖Lp(Ω) and ‖ · ‖W r,p(Ω). Note that W 0,p(Ω) =
Lp(Ω) and if p = 2, we write Hr(Ω) in place of W r,2(Ω), with the corresponding Lebesgue and
Sobolev norms denoted by ‖ · ‖0,Ω and ‖ · ‖r,Ω, respectively. We also write | · |r,Ω for the Hr-
seminorm. In addition, we will denote by H1/2(Γ) the trace space of H1(Ω) and by H−1/2(Γ) its
dual. With 〈·, ·〉 we denote the corresponding product of duality between H1/2(Γ) and H−1/2(Γ).
In the sequel, for a generic scalar functional space S, we will denote the corresponding vectorial
and tensorial counterparts by S and S, respectively, and 0 will denote a generic null vector.
When no confusion arises, we will also denote by ‖(u, v)‖ := ‖(u, v)‖U×V := ‖u‖U + ‖v‖V the
norm on the product space U × V and | · | will denote the Euclidean norm in R3 or R3×3

For any vector fields v = (vi)i=1,3 and w = (wi)i=1,3 we set the cross product and the curl,
gradient and divergence operators, respectively, as

w × v :=

 w2v3 − w3v2

w3v1 − w1v3

w1v2 − w2v1

 , curl v := ∇× v, ∇v :=

(
∂vi
∂xj

)
i,j=1,2,3

, div v :=
3∑
j=1

∂vj
∂xj

.

For any tensor fields τ = (τij)i,j=1,3 and ζ = (ζij)i,j=1,3, we also define the tensor inner product
as

τ : ζ :=
3∑

i,j=1

τijζij .

For simplicity, in what follows we denote

(v, w)Ω :=

∫
Ω
vw, (v,w)Ω :=

∫
Ω

v ·w, (v,w)Γ :=

∫
Γ

u · v and (τ , ζ)Ω :=

∫
Ω
τ : ζ.

Furthermore, for given p, q > 1 we define the Banach spaces Hp(div; Ω) and H(curl q; Ω), as

Hp(div; Ω) := {v ∈ Lp(Ω) : div v ∈ L2(Ω)} and H(curlq; Ω) :=
{
φ ∈ L2(Ω) : curlφ ∈ Lq(Ω)

}
,

endowed, respectively, with the norms

‖v‖p,div;Ω :=
(
‖v‖2Lp(Ω) + ‖div v‖20,Ω

)1/2
and ‖φ‖curlq ;Ω :=

(
‖φ‖20,Ω + ‖curlφ‖2Lq(Ω)

)1/2
.

For the particular case p = q = 2, we simply denote H(div; Ω) = H2(div; Ω) and H(curl ; Ω) =
H(curl 2; Ω), and for the forthcoming analysis we define the subspace

Hp(div0; Ω) := {d ∈ Hp(div; Ω) : div d = 0 in Ω},

for p > 1.
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In addition, in the sequel we will make use of the well-known Hölder and Poincaré inequalities,
given respectively by

|(f, g)Ω| ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω) ∀ f ∈ Lp(Ω),∀g ∈ Lq(Ω), with
1

p
+

1

q
= 1, (2.1)

CP ‖v‖21,Ω ≤ |v|21,Ω ∀ v ∈ H1
0(Ω). (2.2)

Finally, we recall that H1(Ω) is continuously embedded into Lq(Ω) for q ∈ [1, 6]. More precisely,
the following inequality holds

‖w‖Lq(Ω) ≤ CSob(q)‖w‖1,Ω ∀w ∈ H1(Ω), (2.3)

with CSob(q) a positive constant depending only on |Ω| and q (see [27, Theorem 1.3.4]).

2.2 The stationary incompressible MHD problem and its variational formu-
lation

Let Ω ⊆ R3 be a bounded domain with Lipschitz boundary Γ. For simplicity, we assume that Ω
is simply-connected and that its boundary Γ is connected. We consider the following stationary
incompressible magneto-hydrodynamic model (see, e.g. [18, 25, 28]):

−ν∆u + (u · ∇)u +∇p− Sc(curl b)× b = f in Ω,

Scνmcurl (curl b) +∇r − Sccurl (u× b) = g in Ω,

div u = 0 in Ω,

div b = 0 in Ω,

(p, 1)Ω = 0,

(2.4)

where, u and p represent the velocity and pressure, respectively, of a viscous incompressible
fluid occupying Ω, exposed to a magnetic field b, r is a Lagrange multiplier associated with
the divergence constraint on the magnetic field b and f and g are given source terms. These
equations are characterized by three dimensionless parameters: the hydrodynamic Reynolds
number Re = ν−1, the magnetic Reynolds number Rm = ν−1

m , and the coupling number Sc. In
addition, we consider the following boundary conditions:

u = 0 on Γ, n× b = 0 on Γ and r = 0 on Γ,

where n is the outward unit normal vector on Γ. Notice that if div g = 0, then from the second
equation of (2.4) and the boundary condition r = 0 on Γ, it follows that r = 0 in Ω.

In order to introduce a finite element scheme providing an exactly divergence-free approxi-
mation of the magnetic field b, similarly to [24] we introduce the electric field as an additional
unknown, namely

ε := νmcurl b − u× b in Ω,
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and rewrite the MHD system (2.4) as

−ν∆u + (u · ∇)u +∇p− Scν−1
m ε× b− Scν−1

m (u× b)× b = f in Ω,

ε − νmcurl b + u× b = 0 in Ω,

Sccurl ε+∇r = g in Ω,

div u = 0 in Ω,

div b = 0 in Ω,

(p, 1)Ω = 0.

(2.5)

In what follows we employ the latter system to derive the associated variational formulation.
To that end we multiply the first equation of (2.5) by v ∈ H1

0(Ω), integrate by parts, and make
use of the identity [(u× b)× b] · v = −(u× b) · (v × b), to obtain

ν(∇u,∇v)Ω +((u ·∇)u,v)Ω +
Sc
νm

(u× b,v × b)Ω−(p,div v)Ω−
Sc
νm

(ε×b,v)Ω = (f ,v)Ω, (2.6)

for all v ∈ H1
0(Ω). In turn, multiplying the second equation of (2.5) by φ ∈ Φ, where Φ is

a Banach space to be specified next, integrating by parts and using the boundary condition
n× b = 0 on Γ and the fact that (u× b) · φ = −(φ× b) · u, we arrive at

Scν
−1
m (ε,φ)Ω − Sc (b, curlφ)Ω − Scν

−1
m ((φ× b),u)Ω = 0 ∀φ ∈ Φ. (2.7)

In addition, we multiply the third equation of (2.5) by d ∈ C (to be specified next), integrate
by parts and employ the boundary condition r = 0 on Γ, to obtain

Sc(curl ε,d)Ω − (r, div d)Ω = (g,d)Ω, ∀d ∈ C. (2.8)

Finally, the fourth and fifth equations of (2.5) are imposed weakly as follows:

(div u, q)Ω = 0 ∀ q ∈ L2
0(Ω) and (div b, s)Ω = 0 ∀ s ∈ L2(Ω). (2.9)

In this way, and according to the above, we arrive at the weak problem: Find u ∈ H1
0(Ω), ρ ∈ Φ,

b ∈ C, p ∈ L2
0(Ω) and r ∈ L2(Ω), such that (2.6)–(2.9) hold.

Now we turn to specify the spaces C and Φ. We begin by observing that the second equation
of (2.9) is well defined if div b ∈ L2(Ω). In turn, the third term at the left-hand side of (2.6)
is well-defined if u × b and v × b belong to L2(Ω). However, since u,v ∈ H1

0(Ω), according
to the Sobolev embedding H1(Ω) ↪→ Lλ(Ω), with λ ∈ [1, 6], we conclude that the third term
at the left-hand side of (2.6) is well-defined if b ∈ Lµ(Ω), with µ ≥ 3 satisfying 1

λ + 1
µ = 1

2 .
Consequently, from now on we choose λ = 6, which yields µ = 3 , and set

C = H3(div; Ω).

With this choice for C we also observe that the last terms at the left-hand side of (2.6) and (2.7)
are well defined if ε and φ are both in L2(Ω). Nevertheless, since b,d ∈ L3(Ω), the second and

first terms of (2.7) and (2.8), respectively, force curl ε and curlφ to be in L
3
2 (Ω). In this way, a

suitable choice for the space Φ is
Φ = H(curl 3

2
; Ω).
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According to the above, defining the following global unknowns and their corresponding
spaces:

σ := (u, ε,b) ∈ H := H1
0(Ω)×H(curl 3

2
; Ω)×H3(div; Ω),

p := (p, r) ∈ Q := L2
0(Ω)× L2(Ω),

the system of equations (2.6)–(2.7) can be written as the following nonlinear dual-mixed problem:
Find σ = (u, ε,b) ∈ H and p = (p, r) ∈ Q, such that

Au,b(σ, τ ) + B(τ ,p) = F(τ ) ∀ τ ∈ H,

B(σ,q) = 0 ∀q ∈ Q,
(2.10)

where for fixed w ∈ H1
0(Ω) and c ∈ H3(div; Ω), the bilinear forms Aw,c : H × H → R and

B : H×Q → R, are given by

Aw,c(σ, τ ) := Aw,c((u, ε), (v,φ)) +B((u, ε),d) +B((v,φ),b),

B(τ ,q) := −(q,div v)Ω + (s, div d)Ω,
(2.11)

for all σ = (u, ε,b), τ = (v,φ,d) ∈ H and q = (q, s) ∈ Q, with

Aw,c((u, ε), (v,φ)) := ν(∇u,∇v)Ω + ((w · ∇)u,v)Ω + Scν
−1
m (u× c,v × c)Ω

+Scν
−1
m (ε,φ)Ω − Scν−1

m (ε× c,v)Ω − Scν
−1
m ((φ× c),u)Ω ,

B((v,φ),d) := −Sc (d, curlφ)Ω ,

(2.12)

and the linear functional F is given by

F(τ ) := (f ,v)Ω − (g,d)Ω, ∀ τ = (v,φ,d) ∈ H.

3 Analysis of the continuous problem

In this section, we undertake the well-posedness analysis of (2.10) by means of a fixed-point
strategy. More precisely, we let J be the operator defined by

J : H1
0(Ω)×H3(div; Ω)→ H1

0(Ω)×H3(div; Ω), (w, c)→ J (w, c) := (u,b), (3.1)

where, u and b are the first and last components of the solution of the linearized version of
problem (2.10): Find σ = (u, ε,b) ∈ H and p ∈ Q, such that

Aw,c(σ, τ ) + B(τ ,p) = F(τ ) ∀ τ ∈ H,

B(σ,q) = 0 ∀q ∈ Q,
(3.2)

and observe that proving that (2.10) is well-posed is equivalent to prove existence and uniqueness
of solution of the following fixed-point problem: Find (u,b) ∈ H1

0(Ω)×H3(div; Ω), such that

J (u,b) = (u,b).

According to the above, in the subsequent sections, our focus will be on deriving suitable con-
ditions under which the operator J possesses a unique fixed-point. However, before delving
into that, we must first establish the well-definiteness of the fixed-point operator J . This is
established next.
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3.1 Well-definiteness of J

Based on the definition of J (as shown in (3.1)), it is evident that in order to establish the
well-defined nature of operator J , it is sufficient to demonstrate the well-posedness of problem
(3.2) for given (w, c) ∈ H1

0(Ω) ×H3(div; Ω). Consequently, considering the mixed structure of
(3.2), in what follows we employ the Banach–Nečas–Babuška theorem and the Babuška–Brezzi
theory to prove its well-posedness (eg. [13, Theorem 2.6 and Theorem 2.34]). We begin by
establishing the stability properties of the forms involved.

Let us start by observing that the bilinear forms Aw,c, B, Aw,c, B and the functional F ,
satisfy the following estimates:

|Aw,c((u, ε), (v,φ))| ≤ CAw,c‖(u, ε)‖‖(v,φ)‖, ∀ (u, ε), (v,φ) ∈ H1
0(Ω)×H(curl 3

2
; Ω), (3.3)

|B((v,φ),d)| ≤ Sc‖d‖3,div;Ω‖(v,φ)‖, ∀ ((v,φ),d) ∈ H1
0(Ω)×H(curl 3

2
; Ω)×H3(div; Ω), (3.4)

|Aw,c(σ, τ )| ≤ CAw,c‖σ‖H‖τ‖H, ∀σ, τ ∈ H, (3.5)

|B(τ ,q)| ≤ ‖τ‖H‖q‖Q, ∀ τ ∈ H, ∀q ∈ Q, (3.6)

|F(τ )| ≤ (‖f‖0,Ω + ‖g‖
L

3
2 (Ω)

)‖τ‖H, ∀ τ ∈ H, (3.7)

where CAw,c and CAw,c are given by

CAw,c := C
(
ν + Scν

−1
m + ‖w‖1,Ω + Scν

−1
m ‖c‖23,div;Ω + Scν

−1
m ‖c‖3,div;Ω

)
, (3.8)

and
CAw,c := CAw,c + 2Sc, (3.9)

with C > 0, independent of the physical parameters.
Next, we establish the inf-sup condition of the bilinear form B through the following lemma:

Lemma 3.1 The exists β > 0, independent of the physical parameters, such that

sup
0 6=τ∈H

B(τ ,q)

‖τ‖H
≥ β‖q‖Q, ∀q ∈ Q. (3.10)

Proof. Owing to the surjectivity of the operator div : H1
0(Ω)→ L2

0(Ω), we have that there exists
c1 > 0, such that

sup
06=v∈H1

0(Ω)

(q,div v)Ω

‖v‖1,Ω
≥ c1‖q‖0,Ω ∀ q ∈ L2

0(Ω). (3.11)

In turn, given s ∈ L2(Ω) and O ⊆ R3 an open ball satisfying Ω ⊂ O, we let ϕ ∈ H1
0 (O)∩H2(O)

be the unique weak solution of the boundary value problem

−∆ϕ = K(s) in O, ϕ = 0 on ∂O, with K(s) =

{
−s in Ω,

0 in O\Ω .

It is well known that the solution satisfies

‖ϕ‖2,O ≤ c‖K(s)‖0,O = c‖s‖0,Ω, (3.12)
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with c > 0. Then, we let d̂ = ∇ϕ|Ω ∈ H1(Ω) ↪→ L3(Ω) and observe that div d̂ = s ∈ L2(Ω),
which implies that d̂ ∈ H3(div; Ω). In addition, from (2.3) and (3.12), we obtain

‖d̂‖L3(Ω) ≤ CSob(3)‖d̂‖1,Ω ≤ c‖ϕ‖2,O ≤ ĉ‖s‖0,Ω,

which combined with the fact that s = div d̂, implies ‖d̂‖3,div;Ω ≤ c̃‖s‖0,Ω. Consequently, from
the above it is easy to see that the following estimate holds:

sup
0 6=d∈H3(div;Ω)

(s, div d)Ω

‖d‖3,div;Ω
≥ (s, div d̂)Ω

‖d̂‖3,div;Ω

≥ c̃−1‖s‖0,Ω. (3.13)

In this way, combining (3.11) and (3.13) we readily obtain the desired result. �

Now, we let K be the null space of the bilinear form B, that is

K := {τ ∈ H : B(τ ,q) = 0 ∀q ∈ Q}, (3.14)

which, in accordance with the definition of B, becomes:

K = N ×M,

with
N := {(v,φ) ∈ H1

0(Ω)×H(curl 3
2
; Ω) : div v = 0 in Ω},

M := H3(div 0; Ω).

Now we turn to prove that for suitable choices of w ∈ H1
0(Ω) and c ∈ H3(div; Ω), the bilinear

form Aw,c satisfies the Banach–Nečas–Babuška conditions on K (see [13, Theorem 2.6]):

sup
0 6=τ∈K

Aw,c(ζ, τ )

‖τ‖H
≥ γ‖ζ‖H, ∀ ζ ∈ K. (3.15)

and
sup

06=τ∈K
Aw,c(τ , ζ) > 0, ∀ ζ ∈ K , ζ 6= 0. (3.16)

However, since Aw,c has itself a mixed structure (see (2.11)), according to [13, Proposition 2.36],
to prove (3.15) and (3.16), it suffices to prove that there exist β1 > 0 and α1 > 0, such that

sup
06=(v,φ)∈N

B((v,φ),d)

‖v‖1,Ω + ‖φ‖curl 3
2

;Ω
≥ β1‖d‖L3(Ω), ∀d ∈M, (3.17)

and

Aw,c((v,φ), (v,φ)) ≥ α1

(
‖v‖21,Ω + ‖φ‖2curl 3

2
;Ω

)
∀ (v, φ) ∈ K0,

with

K0 := {(v,φ) ∈ N : B((v,φ),d) = 0 ∀d ∈M}

= {(v,φ) ∈ H1
0(Ω)×H(curl 3

2
; Ω) : div v = 0 in Ω and (d, curlφ)Ω = 0 ∀d ∈M}.
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Notice that, owing to the fact that

(∇w, curlφ)Ω = 0 ∀w ∈W 1,3
0 (Ω) and φ ∈ H(curl 3

2
; Ω),

and the Helmholtz decomposition (see [15, Theorem 11.2]):

L3(Ω) = ∇W 1,3
0 (Ω)⊕H3(div 0; Ω),

K0 becomes

K0 = {(v,φ) ∈ H1
0(Ω)×H(curl 3

2
; Ω) : div v = 0 and curlφ = 0 in Ω}. (3.18)

We begin by proving the ellipticity of Aw,c on K0.

Lemma 3.2 Let (w, c) ∈ H1
0(Ω)×H3(div 0; Ω) be such that div w = 0 in Ω and

Sc
νmν

C1(Ω)‖c‖23,div;Ω ≤ 1, (3.19)

where C1(Ω) is a positive constant, independent of physical parameters, as defined in (3.21).
Then, there exists α1 > 0 such that

Aw,c((v,φ), (v,φ)) ≥ α1

(
‖v‖21,Ω + ‖φ‖2curl 3

2
;Ω

)
∀ (v, φ) ∈ K0. (3.20)

Proof. Given (v,φ) ∈ K0, from the definition of Aw,c, estimates (2.1), (2.2) and the fact that
((w · ∇)v,v)Ω = 0, we have

Aw,c((v,φ), (v,φ)) = ν|v|21,Ω + Scν
−1
m

(
‖v × c‖20,Ω + ‖φ‖20,Ω

)
− 2Scν

−1
m (φ× c,v)Ω,

≥ νCP ‖v‖21,Ω + Scν
−1
m

(
‖v × c‖20,Ω + ‖φ‖20,Ω

)
+ 2Scν

−1
m (v × c,φ)Ω,

≥ νCP ‖v‖21,Ω + Scν
−1
m

(
‖v × c‖20,Ω + ‖φ‖20,Ω − 2‖v × c‖0,Ω‖φ‖0,Ω

)
.

Then, using the inequality 2ab ≤ 2a2 +
b2

2
for all a, b > 0, and employing estimates (2.1) and

(2.3), the latter with q =
3

2
, we obtain

Aw,c((v,φ), (v,φ)) ≥ νCP ‖v‖21,Ω − Scν−1
m ‖v × c‖20,Ω + Scν

−1
m

1

2
‖φ‖20,Ω,

≥ νCP ‖v‖21,Ω − Scν−1
m C2

Sob(
3
2)‖v‖21,Ω‖c‖23,div;Ω + Scν

−1
m

1

2
‖φ‖20,Ω,

= νCP

(
1− Sc

νmν

C1(Ω)

2
‖c‖23,div;Ω

)
‖v‖21,Ω + Scν

−1
m

1

2
‖φ‖20,Ω,

where

C1(Ω) :=
2C2

Sob(
3
2)

CP
. (3.21)
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Then, from (3.19) and recalling that curlφ = 0 in Ω, we obtain (3.20) with

α1 :=
1

2
min

{
νCP , Scν

−1
m

}
. (3.22)

�
Now we turn to prove the inf-sup condition (3.17). To that end, we first introduce the

following preliminary result.

Lemma 3.3 Let t ∈ (3
2 − ε, 3 + ε), where ε > 0 represents a positive constant that depends on

Ω, as specified in [15, Corollary 9.3]. Then, for any function u in Ht(div 0; Ω) there exists a
vector potential ψ ∈W1,t(Ω), such that

u = curlψ in Ω and divψ = 0 in Ω. (3.23)

Moreover, there exists C > 0, such that

‖ψ‖W1,t(Ω) ≤ C‖u‖Lt(Ω), (3.24)

Conversely, for any function ψ ∈W1,t(Ω), the function u = curlψ belongs to Ht(div 0; Ω).

Proof. Given t ∈ (3
2−ε, 3+ε), we let u ∈ Ht(div 0; Ω), and define O ⊆ R3 an open ball satisfying

Ω ⊂ O. Then, according to [15, Corollary 9.3], there exists a unique χ ∈W 1,t(O \ Ω), up to an
additive constant, such that

∆χ = 0 in O \ Ω, ∇χ · n = u · n on Γ, ∇χ · n = 0 on ∂O, (3.25)

and
‖∇χ‖Lt(O\Ω) ≤ C‖u‖Lt(Ω).

Then we let Et : Ht(div; Ω)→ Ht(div;O) be the extension operator defined by

Et(u) :=

{
u in Ω,

∇χ in O \ Ω
. (3.26)

Observe that Et and satisfies

‖Et(u)‖Lt(O) ≤ C‖u‖Lt(Ω), div Et(u) = 0 in O and Et(u) · n = 0 on ∂O.

In addition, since O has boundary of class C1,1, owing to [3, Lemma 4.1], it follows that there
exists a vector potential ψ0 ∈W1,t(O), such that

Et(u) = curlψ0 in O, divψ0 = 0 in O and ‖ψ0‖W1,t(O) ≤ C‖Et(u)‖Lt(O), (3.27)

with C > 0 depending only on t and Ω. In this way, it is clear that ψ := ψ0|Ω ∈ W1,t(Ω)
satisfies (3.23) and (3.24).

Conversely, if u = curlψ, with ψ ∈W1,t(Ω), it readily follows that u ∈ Ht(div 0; Ω), which
concludes the proof. �
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Remark 3.4 Let s, t ∈ (3/2 − ε, 3 + ε) with s ≤ t, and u ∈ Ht(div 0; Ω). Observing that
Ht(div 0; Ω) ⊆ Hs(div 0; Ω) and W 1,t(O \ Ω) ⊆ W 1,s(O \ Ω), we first note that the function χ
satisfying (3.25) also belongs to W 1,s(O \ Ω) and satisfies

‖∇χ‖Ls(O\Ω) ≤ C‖u‖Ls(Ω).

Then, Et(u) defined by (3.26) satisfies

Et(u) ∈ Ls(O) and ‖Et(u)‖Ls(O) ≤ C‖u‖Ls(Ω) ∀s ≤ t,

implying that ψ0 satisfying (3.27) is in W1,s(O) and satisfies

‖ψ0‖W1,s(O) ≤ c‖Et(u)‖Ls(O) ≤ ĉ‖u‖Ls(Ω) ∀s ≤ t.

Given the above, the vector potential ψ = ψ0|Ω satisfying (3.23) also belongs to W1,s(Ω) and
satisfies

‖ψ‖W1,s(Ω) ≤ ĉ‖u‖Ls(Ω) ∀s ≤ t.

Now we are in position of establishing the inf-sup condition of B.

Lemma 3.5 There exists β1 > 0, such that (3.17) holds.

Proof. Given d ∈M = H3(div 0; Ω), we let f(d) := d|d| and notice that

(|f(d)|
3
2 , 1)Ω = (|d|3, 1)Ω < +∞,

which implies that f(d) ∈ L
3
2 (Ω) and

‖f(d)‖
L

3
2 (Ω)

= ‖d‖2L3(Ω). (3.28)

On the other hand, since the Helmholtz decomposition

L
3
2 (Ω) = ∇W 1, 3

2
0 (Ω)⊕H

3
2 (div 0; Ω),

holds true and is stable (see, [15, Theorem 11.2]), it follows that there exist χ ∈ W 1, 3
2

0 (Ω) and

z ∈ H
3
2 (div 0; Ω), such that

f(d) = ∇χ+ z and ‖∇χ‖
L

3
2 (Ω)

+ ‖z‖
L

3
2 (Ω)
≤ Ĉ‖f(d)‖

L
3
2 (Ω)

. (3.29)

In turn, owing to Lemma 3.3, we known that there exists a vector potential ψ ∈ W1, 3
2 (Ω),

satisfying
z = curlψ in Ω and ‖ψ‖

W1, 32 (Ω)
≤ C‖z‖

L
3
2 (Ω)

.

Then, recalling that W1, 3
2 (Ω) is continuously embedded into L2(Ω) (see [13, Corollary B.43]),

form the latter we deduce that (3.29) becomes

f(d) = ∇χ+ curlψ and ‖∇χ‖
L

3
2 (Ω)

+ ‖ψ‖curl 3
2

;Ω ≤ C̃‖f(d)‖
L

3
2 (Ω)

. (3.30)
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In this way, from (3.30) and (3.28) we obtain

sup
06=(v,φ)∈N

B((v,φ),d)

‖v‖1,Ω + ‖φ‖curl 3
2

;Ω
≥ B((0,ψ),d)

‖ψ‖curl 3
2

;Ω
=
Sc(d, curlψ)Ω

‖ψ‖curl 3
2

;Ω
,

≥ Sc

C̃

(d, f(d)−∇χ)Ω

‖f(d)‖
L

3
2 (Ω)

=
Sc

C̃

(d, f(d))Ω

‖d‖2
L3(Ω)

,

= β1‖d‖L3(Ω),

which implies (3.17), with β1 = Sc/C̃. �

Finally, we establish suitable hypotheses under which the bilinear form Aw,c (cf. (2.11))
satisfies (3.15) and (3.16).

Lemma 3.6 Let w ∈ H1
0(Ω) satisfying div w = 0 in Ω and let c ∈ H3(div; Ω) be such that

estimate (3.19) holds. Then, estimates (3.15) and (3.16) hold true, the former with γ given by

γ(w) := (γ1(w) + γ2(w))−1,

where γ1(w) and γ2(w) are positive constants that depend on ν, νm, and Sc, as given below in
(3.33).

Proof. Owing to Lemmas 3.2, 3.5 and [13, Proposition 2.36] it readily follows that (3.15) and
(3.16) hold. In particular, to deduce (3.15) and characterize γ, we firstly observe that from (3.8)
and (3.19), there holds

CAw,c ≤ CAw := C (κ(ν, νm, Sc) + ‖w‖1,Ω) , (3.31)

with
κ(ν, νm, Sc) := ν + Scν

−1
m + S1/2

c ν−1/2
m , (3.32)

and C > 0, independent of the physical parameters. Then, given ((u, ε),b) ∈ K, proceeding
analogously to the proof of [13, Proposition 2.36] it is possible to obtain

γ1(w) sup
0 6=τ∈K

Aw,c(((u, ε),b), τ )

‖τ‖H
≥ ‖(u, ε)‖ and γ2(w) sup

0 6=τ∈K

Aw,c(((u, ε),b), τ )

‖τ‖H
≥ ‖b‖L3(Ω),

with

γ1(w) :=
1

α1β1
(α1 + β1 + CAw) > 0 and γ2(w) :=

1

α1β2
1

(α1β1 + CAw(α1 + β1 + CAw)) > 0,

(3.33)
which combined yield (3.15). �

Remark 3.7 We notice that, from to (3.31) and (3.33), given w ∈ H1
0(Ω), γ1(w) and γ2(w)

can be bounded in terms of ‖w‖1,Ω as follows

γ1(w) ≤ c1

(
S−1
c + α−1

1 + S−1
c α−1

1 κ(ν, νm, Sc) + ‖w‖1,Ω
)
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and

γ2(w) ≤ c2S
−1
c

(
1 + κ(ν, νm, Sc) + α−1

1 S−1
c κ2(ν, νm, Sc)

+(1 + κ(ν, νm, Sc))‖w‖1,Ω + α−1
1 S−1

c ‖w‖21,Ω
)
,

where c1, c2 > 0 are positive constants independent of the physical parameters. In this way,
combining the estimates above, we deduce that

γ−1(w) = γ1(w) + γ2(w) ≤ δ1 + δ2‖w‖1,Ω + δ3‖w‖21,Ω, (3.34)

where δ1, δ2 and δ3 are positive constants that depend on ν, νm and Sc.

Now we are in position of establishing the well-definiteness of operator J .

Theorem 3.8 Let w ∈ H1
0(Ω) satisfying div w = 0 in Ω and let c ∈ H3(div; Ω) be such that

estimate (3.19) holds. Then, there exists a unique (u,b) ∈ H1
0(Ω) × H3(div; Ω), such that

J (w, c) = (u,b). In addition, the following estimate holds:

‖J (w, c)‖ ≤
(
δ1 + δ2‖w‖1,Ω + δ3‖w‖21,Ω

) (
‖f‖0,Ω + ‖g‖

L
3
2 (Ω)

)
, (3.35)

where δ1, δ2 and δ3 are the positive constants satisfying (3.34).

Proof. Let w ∈ H1
0(Ω) and c ∈ H3(div; Ω) satisfying div w = 0 in Ω and (3.19), respectively.

Then, we apply Lemmas 3.6, 3.1, and the Babuska–Brezzi theory in Banach spaces ([13, Theorem
2.34]) to deduce that there exists a unique (σ,p) = ((u, ε,b),p) ∈ H×Q, solution to (3.2). Then,
according to the definition of J (cf.(3.1)), (u,b) is the unique element in H1

0(Ω) ×H3(div; Ω)
satisfying J (w, c) = (u,b), which implies that J is well-defined.

Now, to deduce (3.35) we first observe that from the first equation of (3.2), there holds

Aw,c(σ, τ ) = F(τ ) ∀ τ ∈ K,

where K is the kernel of B (cf. (3.14)). Then, employing (3.7) and (3.15), we obtain that

‖J (w, c)‖ = ‖(u,b)‖ ≤ ‖σ‖H = ‖(u, ε,b)‖H ≤ γ−1(w)(‖f‖0,Ω + ‖g‖
L

3
2
), (3.36)

which together with (3.34) implies (3.35). �

3.2 Well-posedness of the continuous problem

In what follows we prove that, under suitable hypotheses on the data, problem (2.4) is well-posed.
This result is established in the next theorem.

Theorem 3.9 Given t0 ≤
(

νmν

C1(Ω)Sc

)1/2

, with C1(Ω) being the positive defined in (3.21), let

t ∈ (0, t0), and assume that f and g satisfy

‖f‖0,Ω + ‖g‖
L

3
2 (Ω)

≤ t

δ1 + δ2t+ δ3t2
, (3.37)
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where δ1, δ2 and δ3 are the positive constants satisfying (3.34). Assume further that t satisfies

C2(Ω)t (δ1 + δ2t+ δ3t
2)(1 + Scν

−1
m (t+ 1)) < 1, (3.38)

where C2(Ω) is the positive constant satisfying (3.44). Then, there exists a unique (σ,p) ∈ H×Q
solution to (2.10). In addition, the solution satisfies

‖σ‖H ≤
(
δ1 + δ2t+ δ3t

2
) (
‖f‖0,Ω + ‖g‖

L
3
2 (Ω)

)
, (3.39)

‖p‖Q ≤ C
(
1 + (κ(ν, νm, Sc) + Sc + t)

(
δ1 + δ2t+ δ3t

2
)) (
‖f‖0,Ω + ‖g‖

L
3
2 (Ω)

)
, (3.40)

with C > 0, independet of the physical parameters.

Proof. According to the definition of J (cf. (3.1)), to prove the well-posedness of (2.10), in
what follows we prove equivalently that there exists a unique fixed-point for J . To that end,
we let t ∈ (0, t0) and define the convex and bounded set

K :=
{

(v,b) ∈ H1
0(Ω)×H3(div; Ω) : div v = 0 in Ω and

‖(v,b)‖ ≤
(
δ1 + δ2t+ δ3t

2
) (
‖f‖0,Ω + ‖g‖

L
3
2 (Ω)

)}
.

Notice that owing to (3.35), it is clear that J (K) ⊆ K. Then, we let (w1, c1), (w2, c2) ∈ K,
and observe from assumption (3.37) that

‖(w1, c1)‖ ≤ t and ‖(w2, c2)‖ ≤ t, (3.41)

which in particular implies that c1 and c2 satisfy the inequality in (3.19). Hence, employing
Theorem 3.8 we obtain that there exist uniques (u1,b1), (u2,b2) ∈ H1

0(Ω) ×H3(div; Ω), such
that

(u1,b1) = J (w1, c1) and (u2,b2) = J (w2, c2),

which according to the definition of J implies that for each i = 1, 2, there exist uniques εi ∈
H(curl 3

2
; Ω) and pi := (pi, ri) ∈ Q, such that (σi,pi) = ((ui, εi,bi),pi) ∈ H ×Q, satisfies

Awi,ci(σi, τ ) + B(τ ,pi) = F(τ ), ∀ τ = (v,φ,d) ∈ H,

B(σi,q) = G(q), ∀q = (q, s) ∈ Q.

Then, we subtract both systems and add and subtract suitable terms to obtain

Aw1,c1(σ1 − σ2, τ ) + B(τ ,p1 − p2) = Aw2,c2(σ2, τ )−Aw1,c1(σ2, τ ), ∀ τ = (v,φ,d) ∈ H,

B(σ1 − σ2,q) = 0, ∀q = (q, s) ∈ Q.
(3.42)

Now, for the right-hand side of the first equation in (3.42), it becomes evident that by applying
the definitions of Aw,c (cf. (2.11)) and Aw,c (cf. (2.12)), and by adding and subtracting
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appropriate terms, we can establish the following relationship

Aw2,c2(σ2, τ )−Aw1,c1(σ2, τ ) = Aw2,c2((u2, ε2), (v,φ))−Aw1,c1((u2, ε2), (v,φ))

= (((w2 −w1) · ∇)u2,v)Ω − Scν−1
m (u2 × c2,v × (c1 − c2))Ω

−Scν−1
m (u2 × (c1 − c2),v × c1)Ω

−Scν−1
m (ε2 × (c2 − c1),v)Ω − Scν

−1
m ((φ× (c2 − c1)),u2)Ω .

(3.43)
Hence, noticing that (3.34), (3.36), (3.37) and the fact that ‖wi‖1,Ω ≤ t, for i ∈ {1, 2}, imply

‖ui‖1,Ω + ‖εi‖curl 3
2
,Ω + ‖bi‖3,div ,Ω ≤ t,

from (2.3) and (3.41), (3.43) and the Hölder’s inequality, we readily obtain

|Aw2,c2(σ2, τ )−Aw1,c1(σ2, τ )|

≤ c1

(
‖w1 −w2‖1,Ω‖u2‖1,Ω + Scν

−1
m ‖u2‖1,Ω‖c2‖3,div;Ω‖c1 − c2‖3,div;Ω

+Scν
−1
m ‖u2‖1,Ω‖c1 − c2‖3,div;Ω‖c1‖3,div;Ω + Scν

−1
m ‖ε2‖curl 3

2
;Ω‖c1 − c2‖3,div;Ω

)
‖v‖1,Ω

+ c2Scν
−1
m ‖c1 − c2‖3,div;Ω‖u2‖1,Ω‖φ‖curl 3

2
;Ω

≤ c1

(
t‖w1 −w2‖1,Ω + Scν

−1
m t(2t+ 1)‖c1 − c2‖3,div;Ω

)
‖v‖1,Ω

+ c2Scν
−1
m t‖c1 − c2‖3,div;Ω‖φ‖curl 3

2
;Ω,

which implies

Aw2,c2(σ2, τ )−Aw1,c1(σ2, τ )

≤ C2(Ω)t(1 + Scν
−1
m (t+ 1)) (‖w1 −w2‖1,Ω + ‖c1 − c2‖3,div;Ω) ‖τ‖H,

(3.44)

with C2(Ω) > 0, independent of the physical parameters. In this way, from (3.15), (3.34), (3.42)
and (3.44) , and recalling that ‖w1‖1,Ω ≤ t, it follows that

‖J (w1, c1)− J (w2, c2)‖ = ‖(u1 − u2,b1 − b2)‖ ≤ γ−1(w1) sup
0 6=(τ ,q)∈K

Aw1,c1(σ1 − σ2, τ )

‖(τ ,q)‖

≤ C2(Ω)t(δ1 + δ2t+ δ3t
2)(1 + Scν

−1
m (t+ 1))‖(w1 −w2, c1 − c2)‖.

This, together with assumption (3.38), implies that J is a contraction mapping. Therefore,
applying Banach’s fixed-point Theorem, we conclude that there exists a unique (u,b) ∈ K, such
that (u,b) = J ((u,b)). In this way, using the definition of J , we obtain that there exist unique
ε ∈ H(curl 3

2
; Ω) and p := (p, r) ∈ Q, such that (σ,p) = ((u, ε,b),p) ∈ H × Q, is the unique

solution of (2.10).
Now, we proceed to demonstrate that (σ,p) satisfies estimate (3.39)–(3.40). To establish

this, we first observe that (u,b) = J (u,b) ∈ K. This, together with (3.36) and (3.37), implies
that:

‖u‖1,Ω + ‖b‖3,div ,Ω ≤ t. (3.45)
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In particular, b satisfies (3.19). Consequently, the inf-sup condition (3.15) holds true for (w, c) =
(u,b). Furthermore, as σ satisfies the second equation of (2.10), we have σ ∈ K. This, and the
first equation of (2.10), imply:

‖σ‖H ≤ γ−1(u) sup
0 6=τ∈K

Au,b(σ, τ )

‖τ‖H
= γ−1(u) sup

0 6=τ∈K

F(τ )

‖τ‖H
≤ γ−1(u)(‖f‖0,Ω + ‖g‖

L
3
2 (Ω)

),

which together with (3.34) and (3.45), implies (3.39). Moreover, from (3.5), (3.7), (3.10), and
the first equation of (2.10), we obtain:

‖p‖Q ≤ β−1 sup
06=τ∈H

B(τ ,p)

‖τ‖H
= β−1 sup

0 6=τ∈H

|F(τ )−Au,b(σ, τ )|
‖τ‖H

,

≤ β−1(‖f‖0,Ω + ‖g‖
L

3
2 (Ω)

) + β−1CAu,b
‖σ‖H. (3.46)

Hence, since b satisfies (3.19), which implies that CAu,b
(cf. (3.9)) can be bounded using (3.31)

as follows

CAu,b
= CAu,b

+ 2Sc ≤ C (κ(ν, νm, Sc) + Sc + ‖u‖1,Ω) ≤ C (κ(ν, νm, Sc) + Sc + t) .

with C > 0 independent of the physical parameters, we combine (3.39) and (3.46) to deduce
(3.40), which concludes the proof. �

4 Galerkin scheme

In this section we introduce the Galerkin scheme associated to problem (2.10), analyze its
solvability by employing a discrete version of the fixed point strategy developed in Section 3,
and finally prove its convergence and derive the corresponding theoretical rate of convergence.
We begin by introducing the Galerkin scheme.

4.1 Discrete scheme

Let Th be a regular family of triangulations of the polyhedral region Ω made up of tetrahedrons
T in R3 of diameter hT such that Ω = ∪{T : T ∈ Th} and define h := max{hT : T ∈ Th}. Given
an integer l ≥ 0 and a subset S of R3, we denote by Pl(S) the space of polynomials of total
degree at most l defined on S. Hence, for each T ∈ Th, we define the local Raviart–Thomas and
Nédélec elements of lowest order (see for instance [4] and [26]), respectively by

RT0(T ) := P0(T ) ⊕ P0(T )x and N0(T ) := P0(T )⊕P0(T )× x,

where x := (x1, x2, x3)t is a generic vector of R3. In addition, for each T ∈ Th, we define the
local MINI-element space

B(T ) := P1(T )⊕ 〈{ϕ1ϕ2ϕ3ϕ4}〉3 ,
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where {ϕ1, ϕ2, ϕ3, ϕ4} are the baricentric coordinates of T . Then, we let

Hh :=
{
vh ∈ H1(Ω) : vh|T ∈ B(T ), ∀T ∈ Th

}
, Hh,0 := Hh ∩H1

0(Ω),

Qh :=
{
qh ∈ C(Ω̄) : qh|T ∈ P1(T ), ∀T ∈ Th

}
, Qh,0 := Qh ∩ L2

0(Ω) ,

Ch :=
{
dh ∈ H3(div; Ω) : dh|T ∈ RT0(T ), ∀T ∈ Th

}
, C0

h := Ch ∩H3(div 0; Ω) ,

Sh := {sh : Ω→ R : sh|T ∈ P0(T ), ∀T ∈ Th} ,

Φh :=
{
φh ∈ H(curl 3

2
; Ω) : φh|T ∈ N0(T ), ∀T ∈ Th

}
,

and define the global spaces

Hh := Hh,0 ×Φh ×Ch and Qh := Qh,0 × Sh, (4.1)

to propose the following Galerkin scheme for (2.10): Find σh = (uh, εh,bh) ∈ Hh and ph =
(ph, rh) ∈ Qh, such that

Ahuh,bh(σh, τ h) + B(τ h,ph) = F(τ h) ∀ τ h ∈ Hh,

B(σh,qh) = G(qh) ∀qh ∈ Qh,
(4.2)

where, for given zh ∈ Hh,0 and ch ∈ Ch, Ahzh,ch is defined by

Ahzh,ch((uh, εh,bh), (vh,φh,dh)) := Ahzh,ch((uh, εh), (vh,φh))+B((uh, εh),dh)+B((vh,φh),bh),
(4.3)

for all (uh, εh,bh), (vh,φh,dh) ∈ Hh, with B being the bilinear form defined in (2.12) and Ahzh,ch
is given by

Ahzh,ch((uh, εh), (vh,φh)) := Azh,ch((uh, εh), (vh,φh)) +
1

2
(div zh,uh · vh), (4.4)

where Azh,ch is also defined in (2.12).

Remark 4.1 It is well-established that the pair (Hh,0, Qh,0) is inf-sup stable, meaning that
the discrete counterpart of the inf-sup condition (3.11) holds. This condition is the primary
criterion for selecting the discrete spaces for velocity and pressure. However, it’s worth noting
that other pairs that fulfill the inf-sup stability requirement can also be used to approximate these
unknowns. For instance, both the Taylor–Hood element and the Bernardi–Raugel element are
viable alternatives, and the subsequent analysis remains applicable.

On the other hand, the inclusion of the term 1
2(div zh,uh · vh) in the bilinear form Ahzh,ch is

motivated by the fact that the pair (Hh,0, Qh,0) does not exactly yield divergence-free velocities.
As in [29], this term is introduced to enable us to derive the discrete counterpart of the estimate
presented in (3.20). Alternatively, we could adopt the approach introduced in [11] to approximate
the fluid variables and adapt the subsequent analysis to study a fully divergence-free finite element
method, similar to the one presented in [22]. This will be addressed in a forthcoming contribution.

Finally, noticing that Ch is nothing but the classical lowest order Raviart–Thomas space
for H(div; Ω) (see, e.g., [4, 16]), we note that an alternative approach could involve using the
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methods proposed in [1, 2] to approximate the magnetic field directly in C0
h by employing suitable

divergence-free basis functions within C0
h. This approach would eliminate the need to introduce

the discrete Lagrange multiplier rh. However, we keep the Lagrange multiplier in the scheme
(4.2) since the numerical results presented in Section 6 are implemented in FreeFem++, where
the aforementioned divergence-free basis functions are not yet available. The computational
implementation of the method considering the magnetic field in C0

h is subject for future work.

In the following section we address the unique solvability of (4.2) by adapting the fixed-
point strategy developed in Section 3. To that end, and analogously to the continuous case,
we introduce the operator Jh : Hh,0 ×Ch → Hh,0 ×Ch, (wh, ch) → Jh(wh, ch) := (uh,bh),
where, uh and bh are the first and last components of the solution of the linearized version of
problem (4.2): Find σh = (uh, εh,bh) ∈ Hh and ph ∈ Qh, such that

Ahwh,ch
(σh, τ h) + B(τ h,ph) = F(τ h) ∀ τ h ∈ Hh,

B(σh,qh) = G(qh) ∀qh ∈ Qh.
(4.5)

In this way, to prove the well-posedness of (4.2), in what follows we prove equivalently the
existence of a unique (uh,bh) ∈ Hh,0 × Ch, such that Jh(uh,bh) = (uh,bh) by means of the
Banach-fixed point theorem. Before doing that, as for the continuous case we begin by proving
that Jh is well-defined.

4.2 Well-definiteness of Jh
To establish the well-definiteness of Jh we proceed analogously to the continuous case and first
establish the stability properties of the forms involved. We start by noticing that the estimates
(3.4), (3.6) and (3.7) are also valid in our discrete setting with the same constants. In turn,
according to the definitions in (4.3) and (4.4), and proceeding similarly to (3.3) and (3.5), it is
easy to see that

|Ahw,c((u, ε), (v,φ))| ≤ ĈAw,c‖(u, ε)‖‖(v,φ)‖, ∀ (u, ε), (v,φ) ∈ Hh,0 ×Ch,

and
|Ahw,c(σ, τ )| ≤ ĈAw,c‖σ‖H‖τ‖H, ∀σ, τ ∈ Hh, (4.6)

where ĈAw,c and ĈAw,c are given by

ĈAw,c := Ĉ
(
ν + Scν

−1
m + ‖w‖1,Ω + Scν

−1
m ‖c‖23,div;Ω + Scν

−1
m ‖c‖3,div;Ω

)
, (4.7)

and
ĈAw,c := ĈAw,c + 2Sc, (4.8)

with Ĉ > 0, independent of the physical parameters.
Now, we let Kh be the discrete kernel of the bilinear form B, that is:

Kh := {τ h ∈ Hh : B(τ h,qh) = 0 ∀qh ∈ Qh}.

Thanks to the definition of B (cf. (2.11)) and the choice of the discrete spaces (cf. (4.1)), it is
clear that Kh can be decomposed as

Kh = Nh ×Mh,
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with
Nh := {(vh,φh) ∈ Hh,0 ×Φh : (div vh, qh) = 0 ∀ qh ∈ Qh,0},

Mh := C0
h = {dh ∈ Ch : div dh = 0 in Ω}.

(4.9)

In what follows we establish suitable hypotheses under which, for given wh ∈ Hh,0, the
bilinear form Awh,ch(·, ·) induces an invertible operator in Kh, which in a finite dimensional
setting, is equivalent to prove that the following inf-sup condition holds:

sup
0 6=τh∈Kh

Ahwh,ch
(ζh, τ h)

‖τ h‖H
≥ γ̂‖ζh‖H, ∀ ζh ∈ Kh, (4.10)

with γ̂ a positive constant independent of h (to be specified below). To do that, and according
to the saddle-point structure of Awh,ch(·, ·) in the sequel we prove that Ahwh,ch

and B and satisfy
the discrete versions of the estimates (3.20) and (3.17), respectively. To that end, we need to
define the discrete version of K0 (cf. (3.18)), that is

Kh,0 := {(vh,φh) ∈ Nh : B((vh,φh),dh) = 0 ∀d ∈Mh}

= {(vh,φh) ∈ Hh,0 ×Φh : (div vh, qh) = 0 ∀ qh ∈ Qh,0

and (dh, curlφh)Ω = 0 ∀dh ∈Mh} .

Notice that for a given (vh,φh) ∈ Kh,0, it follows that curlφh ∈ Mh and (dh, curlφh)Ω = 0,
∀dh ∈ Mh, which implies that particularly φh satisfies curlφh = 0 in Ω. According to this,
Kh,0 can be characterized as follows

Kh,0 = {(vh,φh) ∈ Hh,0 ×Φh : (div vh, qh) = 0 ∀ qh ∈ Qh,0 and curlφh = 0 in Ω} .

The following result establishes suitable conditions under which, for given wh and ch, Ahwh,ch
is elliptic on Kh,0. The proof, which is analogous to the proof of Lemma 3.6, is omitted.

Lemma 4.2 Let (wh, ch) ∈ Hh,0 ×Ch, and assume that ch satisfies (3.19). Then, there holds

Ahwh,ch
((vh,φh), (vh,φh)) ≥ α1

(
‖vh‖21,Ω + ‖φh‖2curl 3

2
;Ω

)
∀ (vh, φh) ∈ Kh,0,

with α1 > 0 given by (3.22).

Now we turn to prove the counterpart of estimate (3.17). To that end, we let Eh be the set
of faces of Th, whose corresponding diameters are denoted he, and define

Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and Eh(Γ) := {e ∈ Eh : e ⊆ Γ}.

We also let [[·]] be the usual jump operator across internal faces defined for piecewise continuous
functions v, by

[[v]] = (v
∣∣
T+

)
∣∣
e
− (v

∣∣
T−

)
∣∣
e

with e = ∂T+ ∩ ∂T−,

where T+ and T− are the elements of Th having e as a common face. Then, we introduce the
well-known Crouzeix–Raviart space:

CRh :=

{
vh : Ω→ R : vh|T ∈ P1(T ), ∀T ∈ Th,

∫
e

[[vh]] = 0, ∀e ∈ Eh(Ω)

and

∫
e
vh = 0, ∀e ∈ Eh(Γ)

}
.
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We recall from [30, Theorem 4.9] that the following orthogonal decomposition holds:

Sh := [Sh]3 = curl (Φh)⊕∇CRh, (4.11)

where
∇CRh := {sh ∈ Sh : ∃ vh ∈ CRh such that sh|T = ∇(vh|T ), ∀ T ∈ Th} .

Notice also that this decomposition is stable, in particular, in L
3
2 (Ω), in the sense that there

exists C > 0, such that for any sh ∈ Sh, ϕh ∈ Φh and χh ∈ CRh satisfying sh = curlϕh +∇χh,
there holds

‖curlϕh‖L 3
2 (Ω)

+ ‖∇χh‖
L

3
2 (Ω)
≤ C‖sh‖

L
3
2 (Ω)

.

Now, given T ∈ Th, s > 1/2 and p > 2, we let N(T ) := {w ∈ Hs(T ) : curl (w) ∈ Lp(T )}
and denote by IN,T : N(T ) → N0(T ) and IR,T : H1(T ) → RT0(T ) the local Nédélec and
Raviart-Thomas interpolation operators, respectively.

Let us recall from [26, Theorem 5.4.1], that for all T ∈ Th and 0 < δ ≤ 1/2, IN,T satisfies
the local approximation property

‖w − IN,T (w)‖0,T ≤ C
(
h

1/2+δ
T ‖w‖H1/2+δ(T ) + hT ‖curl w‖0,T

)
, (4.12)

for all w ∈ H1/2+δ(T ), such that curl w ∈ RT0(T ). In addition, both IN,T and IR,T satisfy the
following relations (see [13, Lemma 1.44] and [5, Section 4.2.1]):

IR,T (curl w) = curl (IN,T (w)), (4.13)

for all w ∈ N(T ), such that curl w ∈ H1(T ), and

div (IR,T (d)) = PT (div d), ∀d ∈ H1(T ), (4.14)

where PT : L2(T )→ P0(T ) is the L2–projection.
On the other hand, the Raviart–Thomas operator satisfies the following local estimates (see

for instance [5, Lemma 4.1])

|d− IR,T (d)|Wm,r(T ) ≤ c1h
1−m
T |d|W1,r(T ), d ∈W1,r(T ), r > 1, m ∈ {0, 1}, (4.15)

and

|div d− div (IR,T (d))|Wm,r(T ) ≤ c2h
1−m
T |d|W1,r(T ), d ∈W1,r(T ), r > 1, m ∈ {0, 1}.

In particular, employing (4.15), it is possible to obtain the following estimate:

Lemma 4.3 There exists C > 0, independent of h, such that

‖d− IR,T (d)‖L3(T ) ≤ Ch
1/2
T |d|1,T , d ∈ H1(T ). (4.16)

Proof. Similarly to the proof of [9, Lemma 5.4], given T ∈ Th, we denote by BT the square
matrix of the local affine transformation JT : T̂ → T and recall that |det(BT )| = O(h3

T ) and
‖BT ‖ ≤ chT . Then, denoting by v̂ := v ◦JT for any sufficiently smooth function v, and applying
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the Denny–Lions Lemma [13, Lemma B.67], the scaling estimates given in [13, Lemma 1.101],
the Sobolev embedding (2.3) with q = 3, and estimate (4.15), we deduce that for all d ∈ H1(Ω),

‖d− IR,T (d)‖L3(T ) ≤ c|det(BT )|1/3‖d̂− I
R,T̂

(d̂)‖
1,T̂
,

≤ c|det(BT )|1/3
(
‖d̂− I

R,T̂
(d̂)‖

0,T̂
+ |d̂− I

R,T̂
(d̂)|

1,T̂

)
,

≤ c|det(BT )|−1/6 (‖d− IR,T (d)‖0,T + ‖BT ‖|d− IR,T (d)|1,T ) ,

≤ ch1/2
T |d|1,T .

�
In the sequel we will also employ the global Nédélec and Raviart-Thomas interpolation

operators, denoted respectively by IN and IR, which satisfy IN |T = IN,T and IR|T = IR,T , for
all T ∈ Th.

Finally, we recall that for all piece-wise polynomial functions v, the following local inverse
inequality holds

‖v‖0,T ≤ ch−1/2
T ‖v‖

L
3
2 (T )

, ∀T ∈ Th,

and assuming further that Th is a quasi-uniform mesh, the latter implies the following global
inverse inequality

‖v‖0,Ω ≤ ch−1/2‖v‖
L

3
2 (Ω)

. (4.17)

Now, we are in position of establishing the discrete inf-sup condition of B.

Lemma 4.4 Let Th be a regular familily of quasi-uniform meshes. Then, there exists β̂1 > 0,
independent of h, such that

sup
0 6=(vh,φh)∈Nh

B((vh,φh),dh)

‖vh‖1,Ω + ‖φh‖curl 3
2

;Ω
≥ β̂1‖dh‖L3(Ω), ∀dh ∈Mh.

Proof. Given dh ∈ Mh, we first observe that, since div dh = 0 in Ω, according to [16, Theorem
3.3], dh is a piece-wise constant vector field, that is, dh ∈ Sh (cf. (4.11)). Then, we let
f(dh) := dh|dh| ∈ Sh and owing to the decomposition (4.11), let ϕh ∈ Φh and χh ∈ CRh, be
such that

f(dh) = curlϕh +∇χh, (4.18)

and
‖curlϕh‖L 3

2 (Ω)
+ ‖∇χh‖

L
3
2 (Ω)
≤ C1‖f(dh)‖

L
3
2 (Ω)

= C1‖dh‖2L3(Ω). (4.19)

In turn, noticing that curlϕh ∈ C0
h ⊆ H(div 0; Ω) (cf. (4.9)), we apply Lemma 3.3 and let

ψ ∈ H1(Ω) be such that

curlψ = curlϕh in Ω , divψ = 0 in Ω and ‖ψ‖1,Ω ≤ C2‖curlϕh‖0,Ω, (4.20)

and since curlϕh ∈ L
3
2 (Ω), from Remark 3.4 we additionally deduce that ψ also belongs to

W1, 3
2 (Ω) and satisfies

‖ψ‖
W1, 32 (Ω)

≤ C3‖curlϕh‖L 3
2 (Ω)

. (4.21)
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Hence, since curlϕh ∈ C0
h, from (4.12), (4.17) and (4.20), we deduce that

‖ψ − IN (ψ)‖20,Ω =
∑
T∈Th

‖ψ − IN,T (ψ)‖20,T ≤ C4

∑
T∈Th

(
h2
T ‖ψ‖21,T + h2

T ‖curlψ‖20,T
)

≤ C4h
2
(
‖ψ‖21,Ω + ‖curlϕh‖20,Ω

)
≤ C5h

2‖curlϕh‖20,Ω ≤ C6h‖curlϕh‖2
L

3
2 (Ω)

,

which implies that
‖ψ − IN (ψ)‖0,Ω ≤ C7h

1/2‖curlϕh‖L 3
2 (Ω)

. (4.22)

In this way, we define ϕ̃h := IN (ψ) and utilize (4.13) to obtain

curl ϕ̃h = curl (IN (ψ)) = IR (curlψ) = IR (curlϕh) = curlϕh. (4.23)

Notice that estimates (4.21) and (4.22), the triangle inequality and the Sobolev embedding

W1, 3
2 (Ω) into L2(Ω), imply that ϕ̃h satisfies

‖ϕ̃h‖0,Ω ≤ ‖ψ − IN (ψ)‖0,Ω + ‖ψ‖0,Ω ≤ C7h
1/2‖curlϕh‖L 3

2 (Ω)
+ C8‖ψ‖

W1, 32 (Ω)

≤ C7h
1/2‖curlϕh‖L 3

2 (Ω)
+ C8C3‖curlϕh‖L 3

2 (Ω)
≤ C9‖curlϕh‖L 3

2 (Ω)
,

which together with (4.19) and (4.23), implies

‖ϕ̃h‖curl 3
2
,Ω =

(
‖ϕ̃h‖20,Ω + ‖curl ϕ̃h‖2

L
3
2 (Ω)

)1/2

≤ (C9 + 1)‖curlϕh‖L 3
2 (Ω)

≤ (C9 + 1)C1‖dh‖2L3(Ω).

(4.24)

Moreover, making use of the decomposition (4.18), integrating by parts, and using the fact that∫
e
ξ = 0 ∀e ∈ Eh(Γ), div dh = 0, in Ω and dh · n|e ∈ P0(e) ∀e ∈ Eh(Γ), from (4.23) we easily

obtain
(dh, curl ϕ̃h)Ω = (dh, curlϕh)Ω = (dh, f(dh)−∇χh)Ω = ‖dh‖3L3(Ω). (4.25)

According to the above, from (4.24) and (4.25), we finally obtain

sup
0 6=(vh,φh)∈Nh

B((vh,φh),dh)

‖vh‖1,Ω + ‖φh‖curl 3
2

;Ω
≥ B((0, ϕ̃h),dh)

‖ϕ̃h‖curl 3
2

;Ω

=
Sc(dh, curl ϕ̃h)Ω

‖ϕ̃h‖curl 3
2

;Ω
≥ β̂1

‖dh‖3L3(Ω)

‖dh‖2L3(Ω)

= β̂1‖dh‖L3(Ω).

with β̂1 := Sc/((C9 + 1)C1). �

Given the above discussion, we can now confirm that the inf-sup condition (4.10) is satisfied,
ensuring the invertibility of Awh,ch(·, ·) on Kh. The proof of this result is provided in the
following Lemma, which follows a similar argument to that of Lemma 3.6, and hence is omitted.
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Lemma 4.5 Let Th be a regular familily of quasi-uniform meshes and let (wh, ch) ∈ Hh,0×Ch,
with ch satisfying (3.19). Then, estimate (4.10) holds with γ̂ given by

γ̂(wh) := (γ̂1(wh) + γ̂2(wh))−1,

where γ̂1(wh) and γ̂2(wh) are defined by

γ̂1(wh) :=
1

α1β̂1

(
α1 + β̂1 + ĈAwh

)
and γ̂2(wh) :=

1

α1β̂2
1

(
α1β̂1 + ĈAwh

(α1 + β̂1 + ĈAwh
)
)
.

Above, ĈAwh
is a positive constant that bounds (4.7) as follows

ĈAwh,ch
≤ ĈAwh

:= Ĉ (κ(ν, νm, Sc) + ‖wh‖1,Ω) ,

with κ being the positive constant defined in (3.32) and Ĉ a positive constant independent of h
and the physical parameters.

Remark 4.6 As in the continuous case, given wh ∈ Hh,0, γ̂1(wh) and γ̂2(wh) can be bounded
in terms of ‖wh‖1,Ω as follows

γ̂1(wh) ≤ ĉ1

(
S−1
c + α−1

1 + S−1
c α−1

1 κ(ν, νm, Sc) + ‖wh‖1,Ω
)

and

γ̂2(wh) ≤ ĉ2S
−1
c

(
1 + κ(ν, νm, Sc) + α−1

1 S−1
c κ2(ν, νm, Sc)

+(1 + κ(ν, νm, Sc))‖wh‖1,Ω + α−1
1 S−1

c ‖wh‖21,Ω
)
,

where ĉ1, ĉ2 > 0 are positive constants independent of the physical parameters. Then γ̂−1(wh) =
γ̂1(wh) + γ̂2(wh), can be bounded as follows

γ̂−1(wh) = γ̂1(wh) + γ̂2(wh) ≤ δ̂1 + δ̂2‖wh‖1,Ω + δ̂3‖wh‖21,Ω, (4.26)

where δ̂1, δ̂2 and δ̂3 are positive constants that depend on ν, νm and Sc.

Finally, we establish the discrete version of Lemma 3.1.

Lemma 4.7 There exists β̂ > 0, independent of h, such that

sup
06=τh∈Hh

B(τ h,qh)

‖τ h‖H
≥ β̂‖qh‖Q, ∀qh ∈ Qh. (4.27)

Proof. Given qh = (qh, sh) ∈ Qh, we first recall that the pair (Hh,0, Qh,0) is inf-sup stable, thus

sup
06=vh∈Hh,0

(qh, div vh)Ω

‖vh‖1,Ω
≥ ĉ1‖qh‖0,Ω. (4.28)

On the other hand, similarly to the proof of Lemma 3.1, given O ⊆ R3 an open ball satisfying
Ω ⊂ O, we let ϕ ∈ H1

0 (O) ∩H2(O) be the unique weak solution of the boundary value problem

−∆ϕ = K(sh) in O, ϕ = 0 on ∂O, with K(sh) =

{
−sh in Ω,

0 in O\Ω ,
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which satisfies
‖ϕ‖2,O ≤ c‖K(sh)‖0,O = c‖sh‖0,Ω,

with c > 0, independent of h. Then, we let d̂ = ∇ϕ|Ω ∈ H1(Ω) ↪→ L3(Ω), which clearly satisfies

div d̂ = sh in Ω and ‖d̂‖L3(Ω) ≤ CSob(3)‖d̂‖1,Ω ≤ c‖ϕ‖2,O ≤ ĉ‖sh‖0,Ω.

Then, we let d̂h = IR(d̂) ∈ Ch and observe from the latter, estimate (4.16) and the subadditivity

inequality

(∑
i

ai

)2/3

≤
∑
i

a
2/3
i , that there holds

‖d̂h‖L3(Ω) ≤ ‖d̂h − d̂‖L3(Ω) + ‖d̂‖L3(Ω) ≤

∑
T∈Th

‖d̂h − d̂‖3L3(T )


1/3

+ ĉ‖sh‖0,Ω

≤ c

∑
T∈Th

h
3
2
T |d̂|

3
1,T


1/3

+ ĉ‖sh‖0,Ω ≤ c

∑
T∈Th

hT |d̂|21,T


1/2

+ ĉ‖sh‖0,Ω

≤ ch1/2|d̂|1,Ω + ĉ‖sh‖0,Ω ≤ (c̃h1/2 + ĉ)‖sh‖0,Ω,

which together with the fact that div d̂ = sh in Ω, implies

‖d̂h‖3,div;Ω ≤ Ĉ‖sh‖0,Ω. (4.29)

In turn, using (4.14) it is clear that

div d̂h = div d̂ = sh in Ω. (4.30)

Hence, combining (4.29) and (4.30) we readily obtain

sup
0 6=d∈Ch

(s, div d)Ω

‖d‖3,div;Ω
≥ (s, div d̂h)Ω

‖d̂h‖3,div;Ω

≥ Ĉ−1‖sh‖0,Ω. (4.31)

In this way, from (4.28) and (4.31), we readily obtain (4.27), which concludes the proof. �

Similarly to the continuous case, Lemmas 4.5 and 4.7 guarantee the well-definedness of Jh.
This conclusion is summarized in the following theorem, the proof of which is omitted due to
its similarity to that of Theorem 3.8.

Theorem 4.8 Let Th be a regular familily of quasi-uniform meshes and let (wh, ch) ∈ Hh,0 ×
Ch, with ch satisfying (3.19). Then, there exists a unique (uh,bh) ∈ Hh,0 × Ch, such that
J (wh, ch) = (uh,bh). In addition, the following estimate holds:

‖J (wh, ch)‖ ≤
(
δ̂1 + δ̂2‖wh‖1,Ω + δ̂3‖wh‖21,Ω

)(
‖f‖0,Ω + ‖g‖

L
3
2 (Ω)

)
,

where δ̂1, δ̂2 and δ̂3 are the positive constants satisfying (4.26).
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4.3 Well-posedness of the Galerkin scheme

Theorem 4.9 Let Th be a regular familily of quasi-uniform meshes. Given t0 ≤
(

νmν

C1(Ω)Sc

)1/2

,

with C1(Ω) being the positive defined in (3.21), let t ∈ (0, t0), and assume that f and g satisfy

‖f‖0,Ω + ‖g‖
L

3
2 (Ω)

≤ t

δ̂1 + δ̂2t+ δ̂3t2
, (4.32)

where δ̂1, δ̂2 and δ̂3 are the positive constants satisfying (4.26). Assume further that t satisfies

Ĉ2(Ω)t (δ̂1 + δ̂2t+ δ̂3t
2)(1 + Scν

−1
m (t+ 1)) < 1, (4.33)

with Ĉ2(Ω) > 0, independent of the physical parameters. Then, there exists a unique (σh,ph) ∈
Hh ×Qh solution to (4.2). In addition,

‖σh‖H ≤
(
δ̂1 + δ̂2t+ δ̂3t

2
)(
‖f‖0,Ω + ‖g‖

L
3
2 (Ω)

)
, (4.34)

‖ph‖Q ≤ Ĉ
(

1 + (κ(ν, νm, Sc) + Sc + t)
(
δ̂1 + δ̂2t+ δ̂3t

2
))(
‖f‖0,Ω + ‖g‖

L
3
2 (Ω)

)
, (4.35)

with Ĉ > 0, independet of the physical parameters.

Proof. Analogously to the proof of Theorem 3.9, we let t ∈ (0, t0), define the convex and bounded
set

Kh :=
{

(vh,bh) ∈ Hh,0 ×Ch : ‖(vh,bh)‖ ≤
(
δ̂1 + δ̂2t+ δ̂3t

2
)(
‖f‖0,Ω + ‖g‖

L
3
2 (Ω)

)}
,

let (w1, c1), (w2, c2) ∈ Kh, and observe from assumption (4.32) that

‖(w1, c1)‖ ≤ t and ‖(w2, c2)‖ ≤ t,

which implies that c1 and c2 satisfy (3.19). Then we let (u1,b1), (u2,b2) ∈ Hh,0 ×Ch, be such
that

(u1,b1) = Jh(w1, c1) and (u2,b2) = Jh(w2, c2),

and proceed as in the proof of Theorem 3.9, to deduce that there exists Ĉ2(Ω) > 0, independent
of the physical parameters, such that

‖Jh(w1, c1)− Jh(w2, c2)‖ ≤ Ĉ2(Ω)t(δ̂1 + δ̂2t+ δ̂3t
2)(1 + Scν

−1
m (t+ 1))‖(w1 −w2, c1 − c2)‖.

The latter and (4.33) imply that there exists a unique (uh,bh) ∈ Kh, such that (uh,bh) =
Jh(uh,bh), which in turn implies that there exist uniques εh ∈ Φh and ph := (ph, rh) ∈ Qh,
such that (σh,ph) = ((uh, εh,bh),ph) ∈ Hh ×Qh, is the unique solution of (4.2). In addition,
proceeding analogously to the proof of Theorem 3.9, we can also deduce that (σh,ph) satisfies
(4.34)–(4.35), which concludes the proof. �
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5 Cea’s estimate and theoretical rate of convergence

In this section we study the convergence of the Galerkin scheme (4.2). More precisely, we first
deduce that the error satisfies a Cea’s-type estimate and later on, under an extra regularity
assumption of the exact solution, and employing the approximation properties of the discrete
spaces introduced in (4.1), we derive the theoretical rate of convergence. To do that, and for
the sake of simplicity, we define the errors:

eσ := σ − σh, ep := p− ph

and for any (τ̂ h, q̂h) ∈ Hh ×Qh, we write

eσ := ξσ + χσ, ep := ξp + χp

where
ξσ := σ − τ̂ h, χσ := τ̂ h − σh, ξp := p− q̂h, χp := q̂h − ph. (5.1)

The following result establishes the aforementioned Cea’s estimate.

Theorem 5.1 Let Th be a regular familily of quasi-uniform meshes. Given t0 ≤
(

νmν

C1(Ω)Sc

)1/2

,

with C1(Ω) being the positive defined in (3.21), let t ∈ (0, t0), and assume that f and g satisfy
(3.37) and (4.32). Assume further that t satisfies (3.38) and (4.33), and the estimate

Λt
(
1 + 2Scν

−1
m t + 2Scν

−1
m

)
(δ̂1 + δ̂2t+ δ̂3t

2) ≤ 1

2
, (5.2)

where Λ is the parameter–free positive constant satisfying (5.7) below. Let (σ,p) ∈ H ×Q and
(σh,ph) ∈ Hh × Qh be the unique solutions of problems (2.10) and (4.2), respectively. Then,
there exists a positive constant Ccea, independent of h, such that

‖eσ‖H + ‖ep‖Q ≤ Ccea
{

inf
τh∈Hh

‖σ − τ h‖H + inf
qh∈Qh

‖p− qh‖Q
}
.

Proof. Let (σ,p) = ((u, ε,b),p) ∈ H × Q and (σh,ph) = ((uh, εh,bh),ph) ∈ Hh × Qh be the
unique solutions of problems (2.10) and (4.2), and observe that from (3.37), (3.39), (4.32) and
(4.34), there hold

‖u‖1,Ω ≤ t, ‖b‖3,div;Ω ≤ t, ‖ε‖curl 3
2

;Ω ≤ t,

‖uh‖1,Ω ≤ t, ‖bh‖3,div;Ω ≤ t, ‖εh‖curl 3
2

;Ω ≤ t.
(5.3)

On the other hand, recalling that the exact velocity u ∈ H1
0(Ω) satisfies div u = 0 in Ω, we

observe that Ahu,b (cf. (4.3)), satisfies

Au,b(σ, τ h) = Ahu,b(σ, τ h), ∀ τ h ∈ Hh.

Then, subtracting equations (2.10) and (4.2), the former with τ h ∈ Hh, adding and subtracting
suitable terms and using the decompositions (5.1), we deduce that (χσ,χp) ∈ Hh×Qh satisfies

Ahuh,bh(χσ, τ h) + B(τ h,χp) = L1(τ h), ∀ τ h ∈ Hh,

B(χσ,qh) = L2(qh), ∀qh ∈ Qh,
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with
L1(τ h) := Ahuh,bh(σ, τ h)−Ahu,b(σ, τ h)−Ahuh,bh(ξσ, τ h)− B(τ h, ξp),

L2(qh) := −B(ξσ,qh).
(5.4)

Then, recalling that Auh,bh and B satisfy the hypotheses of [13, Theorem 2.34], namely estimates
(4.10) and (4.27), we observe that (4.8), (4.26) and (5.3), imply

γ̂−1(uh) ≤ δ̂1 + δ̂2t+ δ̂3t
2,

and
ĈAuh,bh

≤ C1 := Ĉ
(
ν + Sc + Scν

−1
m + t+ Scν

−1
m t2 + Scν

−1
m t
)
, (5.5)

and employ [13, eq. (2.30)], to obtain

‖χσ‖H ≤ (δ̂1 + δ̂2t+ δ̂3t
2)‖L1‖H′h + β̂−1

(
1 + C1

(
δ̂1 + δ̂2t+ δ̂3t

2
))
‖L2‖Q′h ,

‖χp‖Q ≤ β̂−1
(

1 + C1

(
δ̂1 + δ̂2t+ δ̂3t

2
))
‖L1‖H′h + β̂−2Υ

(
1 + C1

(
δ̂1 + δ̂2t+ δ̂3t

2
))
‖L2‖Q′h ,

(5.6)
where Υ > 0 is independent of h and the physical parameters.

Now we turn to bound ‖L1‖H′h and ‖L2‖Q′h . We begin by proceeding similarly as for estimate
(3.44), to deduce that

|Ahuh,bh(σ, τ h)−Ahu,b(σ, τ h)|

≤ c1

(
‖u− uh‖1,Ω‖u‖1,Ω + Scν

−1
m ‖u‖1,Ω‖b‖3,div;Ω‖b− bh‖3,div;Ω

+Scν
−1
m ‖u‖1,Ω‖b− bh‖3,div;Ω‖bh‖3,div;Ω + Scν

−1
m ‖ε‖curl 3

2
;Ω‖b− bh‖3,div;Ω

)
‖vh‖1,Ω

+ c2Scν
−1
m ‖b− bh‖3,div;Ω‖u‖1,Ω‖φh‖curl 3

2
;Ω,

≤ c1

(
t‖u− uh‖1,Ω + 2Scν

−1
m t2‖b− bh‖3,div;Ω + Scν

−1
m t‖b− bh‖3,div;Ω

)
‖vh‖1,Ω

+ c2Scν
−1
m t‖b− bh‖3,div;Ω‖φh‖curl 3

2
;Ω,

which implies that

|Ahuh,bh(σ, τ h)−Ahu,b(σ, τ h)| ≤ Λ
(
t+ 2Scν

−1
m t2 + 2Scν

−1
m t

)
‖eσ‖H‖τ h‖H, (5.7)

for all τ h = (vh,φh,dh) ∈ Hh, with Λ > 0 independent of h and the physical parameters. In
turn, using (5.5), from (4.6), we deduce that

|Auh,bh(ξσ, τ h)| ≤ C1‖ξσ‖H‖τ h‖H, (5.8)

whereas from (3.6) we get
|B(τ h, ξp)| ≤ ‖τ h‖H‖ξp‖Q. (5.9)

In this way, from (5.4), (5.7) and (5.8) and (5.9), we obtain

|L1(τ h)| ≤ Λt
(
1 + 2Scν

−1
m t + 2Scν

−1
m

)
‖χσ‖H‖τ h‖H + C2(‖ξσ‖H + ‖ξp‖Q)‖τ h‖H,

|L2(qh)| = |B(ξσ,qh)| ≤ ‖ξσ‖H‖qh‖Q ≤ ‖ξσ‖H‖qh‖Q,
(5.10)
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with C2 > 0 a positive constant that depends on ν, νm, Sc and t.
Having derived the corresponding estimates for L1 and L2, now we proceed to bound ‖χσ‖H

and ‖χp‖Q. We start by noticing that from the first estimate in (5.6) and (5.10), we easily
deduce that

‖χσ‖H ≤ Λt
(
1 + 2Scν

−1
m t + 2Scν

−1
m

)
(δ̂1 + δ̂2t+ δ̂3t

2)‖χσ‖H + C3(‖ξσ‖H + ‖ξp‖Q),

which together with assumption (5.2) implies

‖χσ‖H ≤ 2C3(‖ξσ‖H + ‖ξp‖Q), (5.11)

with C3 > 0 independent of h. Finally, from (5.10), (5.11) and the second estimate in (5.6), we
obtain

‖χp‖Q ≤ C4(‖ξσ‖H + ‖ξp‖Q). (5.12)

We conclude the proof by observing that the desired result follows from (5.11), (5.12), the
triangle inequality and the fact that (τ̂ h, q̂h) ∈ Hh ×Qh is arbitrary. �

We end this section by providing the theoretical rate of convergence for the numerical method
studied in this work. We begin by recalling the approximation properties of the numerical spaces
introduced in Section 4.1:

inf
vh∈Hh,0

‖v − vh‖1,Ω ≤ Ch‖v‖2,Ω, ∀v ∈ H2(Ω), (5.13)

inf
φh∈×Φh

‖φ− φh‖curl 3
2

;Ω ≤ Ch
(
‖φ‖2,Ω + ‖curlφ‖

W1, 32 (Ω)

)
, ∀φ ∈ H2(Ω), (5.14)

such that curlφ ∈W1, 3
2 (Ω),

inf
dh∈Ch

‖d− dh‖3,div;Ω ≤ Ch
(
‖d‖W1,3(Ω) + ‖div d‖1,Ω

)
, ∀d ∈W1,3(Ω), (5.15)

such that div d ∈ H1(Ω),

inf
qh∈Qh,0

‖q − qh‖0,Ω ≤ Ch‖q‖1,Ω, q ∈ H1(Ω), (5.16)

inf
sh∈Sh

‖s− sh‖0,Ω ≤ Ch‖s‖1,Ω, ∀ s ∈ H1(Ω). (5.17)

For (5.13), (5.16) and (5.17) we refer the reader to [13, Proposition 1.134, Section 1.6.3].
In turn, (5.14) and (5.15) can be easily deduced from [14, Section 16.2] and [5, Lemma 4.1],
respectively.

The following result establishes the theoretical rate of convergence associated to the Galerkin
scheme (4.2).

Theorem 5.2 Assume that the hypotheses of Theorem 5.1 hold and let (σ,p) ∈ H × Q and
(σh,ph) ∈ Hh ×Qh be the unique solutions of problems (2.10) and (4.2), respectively. Assume
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further that u ∈ H2(Ω), ε ∈ H2(Ω), with curl ε ∈W1,3/2(Ω), b ∈W1,3(Ω), with div b ∈ H1(Ω)
and p, r ∈ H1(Ω). Then there exists C > 0, independent of h, such that

‖eσ‖H + ‖ep‖Q ≤ Ch
(
‖u‖2,Ω + ‖ε‖2,Ω + ‖curl ε‖W1,3/2(Ω) + ‖b‖W1,3(Ω)

+ ‖div b‖1,Ω + ‖p‖1,Ω + ‖r‖1,Ω
)
.

Proof. The result is a straightforward application of Theorem 5.1 and estimates (5.13)–(5.17).
�

6 Numerical results

In this section, we present computed errors and orders of convergence for a three-dimensional
MHD problem (2.4) with a smooth solution. Our goal is to confirm the convergence rates in
Theorem 5.2. Our implementation is based on the FreeFem++ finite element library (see [21]),
in conjunction with the direct linear solver UMFPACK (see [12]).

In our test, the computational domain is taken as Ω = (0, 1)3, and we consider a sequence
of uniformly refined tetrahedral meshes {Th}h>0 of mesh size reported in Table 6.1. We take
ν = νm = Sc = 1, and prescribe boundary data and additional right-hand sides so that the test
solution is given by the smooth functions:

u(x, y, z) = b(x, y, z) := curl
(
sin2(πx) sin2(πy) sin2(πz)(1, 1, 1)t

)
,

p(x, y, z) = yz sin(πx) and r(x, y, z) = sin(πx) sin(πy) sin(πz).

On each mesh, we simply take (wh, ch) = (0,0) as initial guess and solve iteratively the
linearized problem (4.5) until the relative error of the entire coefficient vectors between two
consecutive iterates is sufficiently small, i.e.,

|coeffm+1 − coeffm|
|coeffm+1|

≤ tol,

where tol= 1e-6 and | · | is the standard euclidean norm RN , with N denoting the total number
of degrees of freedom defining the finite element subspaces Hh and Qh.

We now introduce some additional notations. The individual errors are denoted as:

eu := ‖u− uh‖1,Ω, eε := ‖ε− εh‖curl 3
2

;Ω, eb := ‖b− bh‖3,div;Ω,

ep := ‖p− ph‖0,Ω, er := ‖r − rh‖0,Ω.

and we let R(u), R(ε), R(b), R(p) and R(r) be the experimental rates of convergence given by

R(u) :=
log(eu/e

′
u)

log(h/h′)
, R(ε) :=

log(eε/e
′
ε)

log(h/h′)
, R(b) :=

log(eb/e
′
b)

log(h/h′)

R(p) :=
log(ep/e

′
p)

log(h/h′)
, R(r) :=

log(er/e
′
r)

log(h/h′)
,

where h and h′ denote two consecutive meshsizes with errors e and e′.
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The computed errors and convergence rates for all the unknowns are listed in Table 6.1. From
the table, it can be seen that the H1-norm errors for u, the H3(div)-norm errors for b, and the
H(curl 3

2
)-norm errors for ε converge at an order of O(h), in agreement with Theorem 5.2. A

similar behavior is observed for the Lagrange multiplier r, where for coarser meshes the order
of convergence is higher and quickly approaches O(h). In Table 6.1 we also observe that for

the pressure, optimal rates of order O(h
3
2 ) are observed (although this is not corroborated by

our theoretical results). In [8], the same phenomenon has been observed for the Mini-element
approximation of the Stokes problem. In addition, the property that the approximate magnetic
fields are exactly divergence-free is verified by evaluating ‖div bh‖l∞ for each case. Finally, for
the sake of completeness, Table 6.2 reports the number of degrees of freedom used on each mesh
and the number of iterations required for the fixed-point scheme to converge.

Fluid variables

h e(u) R(u) e(p) R(p)

0,1101 8,4220 – 11,5698 –
0,0550 4,1758 1,0121 3,8657 1,5816
0,0367 2,7678 1,0143 2,0534 1,5603
0,0275 2,0690 1,0115 1,3000 1,5890
0,0220 1,6518 1,0093 0,9148 1,5746
0,0183 1,3745 1,0078 0,6881 1,5619

Magnetic variables

e(ε) r(ε) e(b) R(b) e(r) R(r) ‖div b‖l∞
69,1574 – 0,8011 – 0,4706 – 3,1974e-14
35,9918 0,9422 0,4058 0,9813 0,0953 2,3038 6,3949e-14
24,1753 0,9815 0,2715 0,9914 0,0430 1,9622 1,0658e-13
18,1795 0,9908 0,2039 0,9954 0,0267 1,6514 1,7053e-13
14,5617 0,9944 0,1632 0,9972 0,0194 1,4511 2,1316e-13
12,1428 0,9963 0,1360 0,9981 0,0152 1,3250 2,5580e-13

Table 6.1: Mesh size, errors, rates of convergence and l∞–norm of div b for the mixed approxi-
mation of the MHD problem.

N 6.629 49.854 164.929 387.104 751.629 1.293.754

# Iterations 6 8 8 7 7 8

Table 6.2: Degrees of freedom and corresponding number of iterations for the fixed-point method
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[18] Ch. Greif, D. Li, D. Schötzau and X. Wei, A mixed finite element method with ex-
actly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods
Appl. Mech. Engrg. , vol. 199, pp. 2840–2855, (2010).

[19] M.D. Gunzburger, A.J. Meir and J.S. Peterson, On the existence and uniqueness
and finite element approximation of solutions of the equations of stationary incompressible
magnetohydrodynamics. Math. Comp. vol. 56, 523–563 (1991).
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[23] P. Houston, D. Schötzau and X. Wei, A mixed DG method for linearized incompress-
ible magnetohydrodynamics. J. Sci. Comp. vol. 40, pp. 281–314, (2009).

[24] K. Hu, Y. Ma and J. Xu, Stable finite element methods preserving ∇ ·B = 0 exactly for
MHD models. Numer. Math. vol. 315, pp. 371–396, (2017).

[25] K. Hu and J. Xu, Structure-preserving finite element methods for statonary MHD models.
Math. Comp. vol. 88, 316, pp. 553–581, (2019).

[26] P. Monk, Finite Element Methods for Maxwell’s Equations Numerical Mathematics and
Scientific Computation, Springer, Oxford University Press, New York, (2003).

[27] A. Quarteroni and A. Valli, Numerical approximation of partial differential equations.
Springer Series in Computational Mathematics, 23. Springer-Verlag, Berlin, 1994.
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Universidad de Concepción

Casilla 160-C, Concepción, Chile
Tel.: 56-41-2661324/2661554/2661316

http://www.ci2ma.udec.cl


