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Abstract

We develop a numerical analysis for the linear elasticity problem with non homogeneous Dirichlet
boundary condition, approximated by an unusual conforming finite element scheme. Specifically,
for our approach, we show optimal rate of convergence for the a priori error analysis, which turns
out to be valid for both 2D and 3D. In addition, we include an a posteriori error analysis based
on the Ritz projection of the error, and we present an a posteriori error estimator that is reliable
and local efficient. We remark that the resulting scheme has fewer degrees of freedom than many
others for the same problem, that can be found in the current literature. We provide numerical
experiments that illustrate the performance of the corresponding adaptive algorithm and support
its use in practice.

Mathematics Subject Classifications (1991): 65N15, 65N30, 65N50, 74B05, 74S05

Key words: A posteriori error estimates, mixed finite element, augmented formulation, linear elas-
ticity, Ritz projection

1 Introduction

This paper proposes a numerical solution for the linear elasticity problem with nonhomegeous Dirichlet
boundary conditions, covering both a priori and a posteriori error analysis. In order to describe the
problem of interest, we let Ω ⊂ Rn, with n = 2, 3, be a bounded and simply connected domain with a
Lipschitz-continuous boundary Γ := ∂Ω of an elastic body subject to an exterior force f ∈ [L2(Ω)]n,
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and a given displacement boundary condition g. The kinematic model of linear elasticity seeks a
displacement vector field ũ satisfying{

−div(σ(ũ)) = f in Ω ,

ũ = g on Γ .

Hereafter, σ(ũ) denotes the symmetric Cauchy stress tensor, given by

σ(ũ) := 2µ ε(ũ) + λ div(ũ)I ,

where ε(ũ) := 1
2 (∇ũ+ (∇ũ)t) represents the strain tensor, I is meant for the identity tensor of order

n. In addition, µ and λ are the Lamé constants, which are given by

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
,

with E being the elasticity modulus and ν ∈ (0, 1/2) is the Poisson’s ratio.
It is very well known that the employment of dual-mixed variational formulations and the associ-

ated mixed finite element methods in linear elasticity, arrives to locking free schemes (see [7], [8] and
the references therein). Probably, one of the most popular schemes is based on the mixed method of
Hellinger and Reissner, providing simultaneous approximation for the stress and the displacement. In
addition, at least in [2] (see also [15], [12], [13]), the symmetry of the stress tensor is imposed weakly,
through the introduction of the rotation as an additional unknown.

Recently in [1], a new augmented mixed finite element method for the linear elasticity problem is
developed and analysed. The authors follow the ideas previously introduced in [9], and impose the
symmetry of the stress tensor weakly. This is done using a skew symmetric tensor instead of the
standard strain tensor, allowing them to circumvent the use of any additional unknowns. As a conse-
quence, the number of degrees of freedom in the discrete scheme is decreased. The nonhomogeneous
boundary condition is treated by augmenting the bilinear form with an additional term of least square
type, involving the Dirichlet datum. Then, the stabilization’s parameters are chosen such that the
resulting bilinear form results to be strongly coercive, which is usually established with the help of a
Korn’s type inequality.

Concerning the a posteriori error analysis for the augmented mixed formulation in linear elasticity,
an a posteriori error estimator of residual type has been derived in [6], for the case of pure homogeneous
Dirichlet boundary condition. Years later, in [3] the authors have extended that analysis to the
case of nonhomogeneous Dirichlet and mixed boundary conditions. More recently in [4] the authors
dealt with an elasticity problem with nonhomogeneous boundary conditions, deriving an a posteriori
error estimator based on the Ritz projection of the error. We remark that this estimator is of low
computational cost, in the sense that the estimator developed in [4] has fewer terms than those found
in [3] for the same formulation of the problem. We notice that in both articles ([3] and [4]), as well
as in [1], the treatment of the boundary condition is following the ideas developed in [13], that is,
stabilizing the bilinear form by adding a least squares type term that involves the Dirichlet datum.

The novelty in this article is to present, for the elasticity problem with nonhomogeneous Dirichlet
boundary condition, an alternative procedure for dealing with the boundary condition, to the one
developed in [1]. Indeed, we first impose the symmetry of the stress tensor by using a skew symmetric
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tensor instead of standard strain tensor. For the treatment of the boundary condition, we perform a
homogenization procedure of the Dirichlet datum. It is important to remark that our proposal exploits
the linearity of the partial differential equation in order to deal with a similar problem, having as a
boundary datum a suitable polynomial approximation of the original one. From a computational point
of view, this is not expensive, since the matrix of the corresponding linear system is the same. The
strategy just modified the right hand side. Moreover, the corresponding a posteriori error estimator
only consists of two residual terms.

The rest of the paper is organized as follows. In Section 2, we introduce the augmented variational
formulation proposed for the linear elasticity problem with homogeneous Dirichlet boundary condition,
the corresponding Galerkin scheme and the simplest finite element subspaces that can be used. In
Section 3, we develop an a posteriori error analysis, obtaining a reliable and quasi-efficient local a
posteriori error estimator. The extension of the methodology, when a nonhomogeneous Dirichlet
condition for the displacement appears, is described in Section 4. Finally, in Section 5 we provide
several numerical experiments that support the use of the new a posteriori error estimates in practice.

We end this section with some notations to be used throughout the paper. Given a Hilbert space
H, we denote by Hn (resp., Hn×n) the space of vectors (resp., square tensors) of order n with entries
in H. Given τ := (τij) and ζ := (ζij) ∈ Rn×n, we denote τ t := (τji), tr(τ ) := τ11 + . . . + τnn and
τ : ζ :=

∑n
i,j=1 τij ζij . We also use the standard notations for Sobolev spaces and norms. Finally, C or

c (with or without subscripts) denote generic constants, independent of the discretization parameters,
that may take different values at different occurrences.

2 The augmented mixed finite element method

Since slight modifications of the analysis presented in [1], allow us to study the case with null dis-
placement on Γ, in this section we give a brief description of the analysis, resuming the main results.
These modifications are related to the fact that here the boundary datum is null, which has an impact
on the fact that the spaces must be slightly redefined, and it is not necessary to augment the bilinear
form with the term that involves the boundary condition.

In what follows, we denote by C the Hooke’s law, that is,

C ζ := λ tr(ζ) I + 2µ ζ , ∀ ζ ∈ [L2(Ω)]n×n ,

It is not difficult to see that

C−1 ζ :=
1

2µ
ζ − λ

2µ (nλ+ 2µ)
tr(ζ) I , ∀ ζ ∈ [L2(Ω)]n×n .

Next, we consider the problem: Find the displacement û and the stress tensor σ̂ such that
−div(σ̂) = f in Ω,
C−1σ̂ = ε(û) in Ω,

û = 0 on Γ,
(1)

The approach in [1] introduces the skew symmetric tensor γ(v) := ∇v−(∇v)t

2 , for any v ∈ [H1(Ω)]n

and provides simultaneous approximations of the displacement û and the stress tensor σ̂.
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Now, we recall the well known Hilbert spaces

[H1
0 (Ω)]n := {v ∈ [H1(Ω)]n : v = 0 on Γ },

and
H(div; Ω) := {τ ∈ [L2(Ω)]n×n : div(τ ) ∈ [L2(Ω)]n } .

We set H := H(div; Ω)× [H1(Ω)]n, H0 := H(div; Ω)× [H1
0 (Ω)]n. Moreover, we endow H with the

usual norm
‖(τ ,v)‖H :=

(
‖τ‖2H(div;Ω) + ‖v‖2[H1(Ω)]n

)1/2
, ∀ (τ ,v) ∈ H .

Next, we consider the bilinear form A : H ×H → R, given for any (ρ,w), (τ ,v) ∈H, by

A((ρ,w), (τ ,v)) :=

∫
Ω
C−1ρ : τ +

∫
Ω
w · div(τ ) +

∫
Ω
γ(w) : τ −

∫
Ω
v · div(ρ) −

∫
Ω
ρ : γ(v)

+ κ1

∫
Ω

(
ε(w) − C−1 ρ

)
:
(
ε(v) + C−1 τ

)
+ κ2

∫
Ω

div(ρ) · div(τ ) , (2)

and the linear functional F : H → R defined by

F (τ ,v) :=

∫
Ω
f · (v − κ2 div(τ )) ∀ (τ ,v) ∈H ∀ (τ ,v) ∈H ,

where κ1 and κ2 are positive parameters, independent of λ, at our disposal.
The augmented variational formulation proposed in [1] for problem (1), reads: Find (σ̂, û) ∈ H0

such that
A((σ̂, û), (τ ,v)) = F (τ ,v) , ∀ (τ ,v) ∈ H0 . (3)

Hereafter, we assume that the stabilization parameters (κ1, κ2) satisfy the assumptions of Theorem
2.3 in [1]. Namely, (κ1, κ2) is independent of λ, κ1 ∈ (0, 2µ) and κ2 > 0 Then, there exist positive
constants M and α, independent of λ, such that A is bounded in H and elliptic on H0, that is

|A((σ̂, û), (τ ,v))| ≤ M ‖(σ̂, û)‖H ‖(τ ,v)‖H , ∀ (σ̂, û), (τ ,v) ∈H ,

A((τ ,v), (τ ,v)) ≥ α ‖(τ ,v)‖2H , ∀ (τ ,v) ∈ H0 .

As a consequence, the augmented variational formulation (3) has a unique solution (σ̂, û) ∈ H0 and
there exists a positive constant C, independent of λ, such that

‖(σ̂, û)‖H ≤ C ‖f‖[L2(Ω)]n .

Now, let h be a positive parameter and consider finite dimensional subspace H0,h ⊂ H0. Then,
the Galerkin scheme associated to problem (3), reads: Find (σ̂h, ûh) ∈ H0,h such that

A((σ̂h, ûh), (τh,vh)) = F (τh,vh) ∀ (τh,vh) ∈ H0,h . (4)

The well posedness of problem (4) needs to be proved for any choice of the finite element subspaces
H0,h ⊂H0. Next we describe the simplest choice of H0,h that preserves stability. In what follows, we
assume that Ω is a polygonal/polyhedral region and let {Th}h>0 be a regular family of triangulations
of Ω̄ made of simplicial cells, such that Ω̄ = ∪{T : T ∈ Th }. Given an element T ∈ Th, we denote
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by hT its diameter and define the mesh size h := max{hT : T ∈ Th }. In addition, given an integer
` ≥ 0 and a subset S of Rn, we denote by ¶`(S) the space of polynomials in n variables defined in S
of total degree at most `. Moreover, for each T ∈ Th, we define the local Raviart-Thomas space of
order `, RT `(T ) := [¶`(T )]n ⊕ ¶`(T )x ⊆ [¶`+1(T )]n, where x := (x1, . . . , xn)t is a generic vector
of Rn. Then, we define the finite element subspaces

Hσ
h :=

{
τh ∈ H(div; Ω) : τh|T ∈ [RT 0(T )t]n , ∀T ∈ Th

}
,

Hu
h :=

{
vh ∈ [C(Ω̄)]n : vh|T ∈ [¶1(T )]n , ∀T ∈ Th

}
,

Hu
0,h := {vh ∈ Hu

h : vh = 0 on Γ } .
Then, the simplest choice of stable finite element subspaces (cf. [12]) is given by

H0,h := Hσ
h ×Hu

0,h ⊆H0 .

The following result allows us to recall the rate of convergence of the Galerkin scheme (4) for this
particular choice of finite element subspaces.

Theorem 1 Let (σ̂, û) ∈ H0 and (σ̂h, ûh) ∈ H0,h be the unique solutions to problems (3) and (4),
respectively. In addition, assume that σ ∈ [Hr(Ω)]n×n, div(σ) ∈ [Hr(Ω)]n, u ∈ [Hr+1(Ω)]n, for some
r ∈ (0, 1]. Then, there exists C > 0, independent of λ, h, such that there holds

‖(σ̂, û, )− (σ̂h, ûh)‖H ≤ C hr
(
‖σ̂‖[Hr(Ω)]n×n + ‖div(σ̂)‖[Hr(Ω)]n + ‖û‖[Hr+1(Ω)]n

)
.

Proof. It is a consequence of the coercivity of A, Céa’s estimate and the corresponding approximation
properties of the finite element spaces. We refer to Section 3.3 in [1], for further details. �

3 A posteriori error analysis

In this section, we follow the ideas given in [4], and develop an a posteriori error analysis for the
discrete scheme (4), using an appropriate Ritz projection of the error. First, we introduce the usual
inner product of H

〈(ρ,w), (τ ,v)〉H := (ρ, τ )H(div;Ω) + (w,v)[H1(Ω)]n ∀ (ρ,w), (τ ,v) ∈H ,

and let (σ̂, û) and (σ̂h, ûh) be the unique solutions to problem (3) and (4), respectively. We define
the Ritz projection of the error with respect to the as the unique element (σ̄, ū) ∈H0 such that

〈(σ̄, ū), (τ ,v)〉H = A((σ̂ − σ̂h, û− ûh), (τ ,v)) ∀ (τ ,v) ∈H0 . (5)

We remark that the existence and uniqueness of (σ̄, ū) ∈H0 is guaranteed by the Riesz’ representation
theorem.

On the other hand, using the continuous dependence of the solution on the data, we are able to
bound the error in terms of its Ritz projection, as follows:

||(σ̂ − σ̂h, û− ûh)||H ≤ C ||(σ̄, ū)||H . (6)

Then, according to (6), in order to obtain reliable a posteriori error estimates for the discrete scheme
(4), it is enough to bound from above the Ritz projection of the error. In the next lemma we obtain
an upper bound for ||(σ̄, ū)||H in terms of residuals.
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Lemma 2 There exists a constant C > 0, independent of λ and h, such that

||(σ̄, ū)||H ≤ C
(
||f + div(σ̂h)||[L2(Ω)]n + ||ε(ûh)− C−1σ̂h||[L2(Ω)]n×n

)
. (7)

Proof. We first use the fact that (σ̂, û) ∈H0 is the unique solution to problem (3), to obtain

〈(σ̄, ū), (τ ,v)〉H = F (τ ,v)−A((σ̂h, ûh), (τ ,v)) , ∀ (τ ,v) ∈H0 .

The latter is equivalently to{
(σ̄, τ )H(div;Ω) = R1(τ ) , ∀ τ ∈ H(div; Ω) ,

(ū,v)[H1(Ω)]n = R2(v) , ∀v ∈ [H1
0 (Ω)]n ,

where R1 : H(div; Ω)→ R and R2 : [H1
0 (Ω)]n → R are the bounded linear functionals, defined by

R1(τ ) := − κ2

∫
Ω

(f + div(σ̂h)) · div(τ ) −
∫

Ω
(C−1σ̂h − ε(ûh)) : τ

− κ1

∫
Ω

(ε(ûh)− C−1σ̂h) : C−1τ , ∀ τ ∈ H(div; Ω)

R2(v) :=

∫
Ω

(f + div(σ̂h)) · v − κ1

∫
Ω

(
ε(ûh)− C−1σ̂h

)
: ε(v) , ∀v ∈ [H1

0 (Ω)]n .

Then, the result follows after applying the Cauchy-Schwarz inequality, the continuity of C−1 and the
definition of the H-norm. � Lemma 2 leads us to define the following a posteriori error estimator

η̂ :=

 ∑
T∈Th

η̂2
T

1/2

,

where
∀T ∈ T : η̂2

T := ||f + div(σ̂h)||2[L2(T )]n + ||ε(ûh)− C−1σ̂h||2[L2(T )]n×n .

In the next result, we establish that the a posteriori error estimator η̂ is reliable and efficient.

Theorem 3 There exist positive constants, Ceff and Crel, independent of h and λ, such that

Ceff η̂ ≤ ||((σ̂ − σ̂h, û− ûh)||H ≤ Crel η̂ . (8)

Proof. The reliability of η̂ (inequality on the right hand side of (8)) follows from its definition and
(6)–(7). To prove that η̂ is efficient (inequality on the left hand side of (8)), we proceed similarly as
in [6]. In this way, noticing that f = −div(σ̂) and ε(û) = C−1σ̂ in Ω, we have

||f + div(σ̂h)||[L2(T )]n = ||div(σ̂h − σ̂)||[L2(T )]n ,

||ε(ûh)− C−1σ̂h||[L2(T )]n×n ≤ ||ε(ûh)− ε(û)||[L2(T )]n×n + ||C−1(σ̂ − σ̂h)||[L2(T )]n×n

≤
(
||û− ûh||[H1(T )]n +

1

µ
(||σ̂ − σ̂h||[L2(T )]n×n

)
≤ max{1, 1/µ}

(
||û− ûh||[H1(T )]n + ||σ̂ − σ̂h||[L2(T )]n×n

)
.

�
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4 Nonhomogeneous Dirichlet boundary condition

We remark that the novelty of the current work, relies on the treatment of nonhomogeneous Dirichlet
boundary condition, which will be described in this section. To this aim, given the data f ∈ [L2(Ω)]n

and g ∈ [H1/2(Γ)]n, we consider the problem: Find the displacement field ũ ∈ [H1(Ω)]n such that{
−div(σ(ũ)) = f in Ω ,

ũ = g on Γ ,

where, as described in Section 1, σ(ũ) represents the Cauchy stress tensor.
Now, introducing the stress, ρ̃ := σ(ũ) as a new unknown, we arrive to the following first order

system: Find ρ̃ ∈ H(div; Ω) and ũ ∈ [H1(Ω)]n such that
C−1ρ̃ = ε(ũ) in Ω ,

−div(ρ̃) = f in Ω ,

ũ = g on Γ ,

(9)

Now, we denote by w ∈ [H1(Ω)]n the unique weak solution of the auxiliary problem:

−∆w = 0 in Ω , w = g on Γ . (10)

We emphasize that it is well known that w satisfies the following stability condition: There exists
C1 > 0, such that ||w||[H1(Ω)]n ≤ C1 ||g||[H1/2(Γ)]n . Decomposing the displacement ũ := û + w, the
first order system (9) can be rewritten as follows: Find (ρ̃, û) ∈H0 such that

C−1ρ̃ − ε(û) = ε(w) in Ω ,

−div(ρ̃) = f in Ω ,

û = 0 on Γ ,

(11)

whereH0 := H(div; Ω)×[H1
0 (Ω)]n is the same space introduced in Section 2. Comparing (1) and (11),

we notice that the only difference between them relies on the presence of term ε(w) on the right hand
side of the first equation in (11). Despite this, the approach that we present here for the treatment
of the inhomogeneous boundary condition, differs from the one introduced in [1]. Therefore, in what
follows, we describe the deduction of the stabilized variational formulation.

Now, proceeding as in [9], we have ε(û) = ∇û − γ(û) in Ω. This allows us to rewrite the first
equation in (11) as

C−1ρ̃ − ∇û + γ(û) = ε(w) in Ω , (12)

while the symmetry of the Cauchy stress tensor implies that∫
Ω
γ(v) : ρ̃ = 0 in Ω ∀ v ∈ [H1

0 (Ω)]n , (13)

7



These equations allow us to introduce the following mixed variational formulation: Find (ρ̃, û) ∈H0

such that ∫
Ω
C−1ρ̃ : τ +

∫
Ω
û · div(τ ) +

∫
Ω
γ(û) : τ =

∫
Ω
ε(w) : τ ∀ τ ∈ H(div; Ω) , (14)

−
∫

Ω
v · div(ρ̃) −

∫
Ω
γ(v) : ρ̃ =

∫
Ω
f · v ∀ v ∈ [H1

0 (Ω)]n. (15)

Now, considering κ1 and κ2 positive parameters, independent of λ, nd at our disposal, we include the
least squares terms given by

κ1

∫
Ω

(
ε(û) − C−1 ρ̃

)
:
(
ε(v) + C−1 τ

)
= − κ1

∫
Ω
ε(w) :

(
ε(v) + C−1 τ

)
∀ (τ ,v) ∈H0 ,

(16)

κ2

∫
Ω

divρ̃) · div(τ ) = − κ2

∫
Ω
f · div(τ ) ∀τ ∈ H(div; Ω) . (17)

Then adding (14), (15), (16) and (17), we obtain the following variational formulation: Find (ρ̃, û) ∈
H0 such that

A((ρ̃, û), (τ ,v)) = F̃ (τ ,v) , ∀ (τ ,v) ∈H0 , (18)

where the bilinear form A : H × H → R has been introduced in (2), while the linear functional
F̃ : H → R is defined by

F̃ (τ ,v) :=

∫
Ω
ε(w) : τ − κ1

∫
Ω
ε(w) : (ε(v) + C−1τ ) +

∫
Ω
f · (v − κ2 div(τ )) ∀ (τ ,v) ∈H .

Straightforward application of Cauchy-Schwarz inequality and the stability condition ofw with respect
to the datum g, implies that F̃ is bounded, that is, there exists a constant C∗ > 0, such that
||F̃ ||H′ ≤ C∗(‖f‖[L2(Ω)]n + ‖g‖[H1/2(Γ)]n). Additionally, in view of what has been developed in Section
2 regarding the bilinear form A, and under the same assumptions on the parameters (κ1, κ2), we
conclude that the problem (18) has one and only one solution, thanks to the Lax-Milgram Theorem.
As a consequence, we obtain that there exists c > 0, such that,

‖(ρ̃, û)‖H ≤ c
(
‖f‖[L2(Ω)]n + ‖g‖[H1/2(Γ)]n

)
.

In addition, the above inequality allows us to deduce the continuous dependence on the data, of the
solution of the problem (9). This means that there exists a constant C̄ > 0, such that

‖(ρ̃,u)‖H = ‖(ρ̃, û) + (0,w)‖H ≤ C̄
(
‖f‖[L2(Ω)]n + ‖g‖[H1/2(Γ)]n

)
. (19)

Remark 4 In order to solve problem (18), one can think of approximating the solution of the auxiliary
problem (10). Unfortunately, this could carry into a high computational cost. In the next section we
provide an alternative procedure.
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4.1 A priori error analysis

From now on, we assume that the parameters κ1 and κ2, part of the definitions of bilinear form A
(cf. (2)) and F̃ , satisfy the same conditions given in Section 2: κ1 ∈ (0, µ) and κ2 > 0. In this way,
we ensure existence and uniqueness of discrete solution for any subspace of finite elements given. In
particular, for those subspaces considered in Section 2. Indeed, we denote by H0,h := Hσ

h × Hu
0,h,

where Hσ
h and Hu

0,h are the same discrete spaces defined in Section 2.
In what follows, we denote by E(Γ) the list of all edges/faces induced by the triangulation Th

on the boundary Γ. Next, we set gh := π1
hg on E(Γ), with π1

hg the orthogonal L2-projection of the
function g onto P1(E(Γ)), component-wise, i.e. gh|e ∈ [P1(e)]n for all e ∈ E(Γ). Now, we define wh

as the piecewise linear continuous function such that wh(x) = 0 for each node x ∈ Ω and wh = gh
on Γ. Clearly, wh ∈ [H1(Ω)]n and, in the sense of distributions, −div(∇(wh)) = 0 in Ω. This leads
us to the following equations

−∆(w −wh) = 0 in Ω , w −wh = g − gh on Γ . (20)

Therefore, the stability of the solution with respect to the data, implies that there exists C > 0, such
that

‖w −wh‖[H1(Ω)]n ≤ C‖g − gh‖[H1/2(Γ)]n . (21)

Next, to approximate the solution of problem (9), we consider the problem: Find (ρ̄, ū) ∈ H, such
that 

C−1ρ̄− ∇ū + γ(ū) = 0 in Ω ,

−div(ρ̄) = f in Ω ,

ū = gh on Γ .

(22)

Hence, we decompose ū = u+wh, and the first order system (22) is rewritten in terms of (ρ̄,u) ∈H0

as 
C−1ρ̄ − ∇u + γ(u) = ε(wh) in Ω ,

−div(ρ̄) = f in Ω ,

u = 0 on Γ ,

(23)

Thus, the discrete variational formulation to approximate problem (23) consists in: Find (ρ̄h,uh) ∈
H0,h such that

A((ρ̄h,uh), (τh,vh)) = F̄ (τh,vh) , ∀ (τh,vh) ∈H0,h, (24)

where the functional F̄ is obtained simply by replacing wh instead of w, in the definition of F̃ .
We remark that, under the same assumption on the parameters κ1 and κ2, the Galerkin scheme

(24) is well posed and a Céa’s estimate can be obtained. In addition, the corresponding rate of
convergence of the Galerkin scheme (24) for this particular choice of finite element subspaces, is
presented in the next theorem. Previously, given s > 0, we introduce the notation for the broken
spaces Hs(Th) := ΠT∈ThH

s(T ). Analogously, we introduce the vectorial broken spaces [Hs(Th)]n.
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Theorem 5 Let (ρ̄,u) ∈H0 and (ρ̄h,uh) ∈H0,h be the unique solutions of problems (23) and (24),
respectively. In addition, assume that ρ̄ ∈ [Ht(Th)]n×n, div(ρ̄) ∈ [Ht(Th)]n and u ∈ [Ht+1(Th)]n for
some t ∈ (0,m+ 1]. Then, there exists C̄∗ > 0, independent of h, such that there holds

‖(ρ̄,u)− (ρ̄h,uh)‖2H ≤ C̄∗
∑
T∈Th

h
2 min(t,r+1,m)
T

(
‖ρ̄‖2[Ht(T )]n + ‖div(ρ̄)‖2[Ht(T )]n + ‖u‖2[H1+t(T )]n

)
.

Proof. Thanks to the ellipticity of the bilinear form A in H0, there exists a constant CCea > 0,
independent of h, such that

||(ρ̄− ρ̄h,u− uh)||H ≤ CCea inf
(τh,vh)∈H0,h

||(ρ̄− τh,u− vh)||H .

The rest relies on bounding the infimum by taking (τh,vh) := (πRTh (ρ̄), πkh(u)), the standard orthogonal
projection of ρ̄ and u onto Hσ

h and Hu
0,h, respectively. The proof follows after invoking very well known

approximation properties of these projectors. We omit further details. �
Now, we introduce ūh := uh +wh. As a first consequence, we notice that

||(ρ̄− ρ̄h, ū− ūh)||H = ||(ρ̄− ρ̄h,u− uh)||H ,

that is, the approximation of the solution of the problem (22) by the pair (ρ̄h, ūh), has the same
convergence rate than the problem (23), given in Theorem 5.

Furthermore, after applying triangle inequality, we obtain

||(ρ̃− ρ̄h, ũ− ūh)||H ≤ ||(ρ̃− ρ̄, ũ− ū)||H + ||(ρ̄− ρ̄h, ū− ūh)||H .

This means that the error of approximating the solution of the problem (9) by the pair (ρ̄h, ūh), is
controlled by the error that is committed when approximating the Dirichlet datum, plus the error
associated with the finite element method given in Theorem 5.

On the other hand, the pair (ρ̃− ρ̄, ũ− ū) ∈H0 satisfies, in weak sense,
C−1(ρ̃− ρ̄)− ε(ũ− ū) = 0 in Ω ,

−div(ρ̃− ρ̄) = 0 in Ω ,

ũ− ū = g − gh on Γ .

Therefore, using the continuity of the solution with respect to the corresponding data to this kind of
problem (cf. (19)), we have that

‖(ρ̃− ρ̄, ũ− ū)‖H ≤ C̄‖g − gh‖[H1/2(Γ)]n .

Remark 6 From now on, we assume g ∈ [H1(Γ)]n. By invoking the interpolation theorem, we deduce

‖g − gh‖[H1/2(Γ)]n ≤ C‖g − gh‖
1/2
[L2(Γ)]n

‖g − gh‖
1/2
[H1(Γ)]n

.

Remark 7 For 2D case, under the assumption g ∈ [H1(Γ)]2, we can take gh as the linear Lagrange
interpolation of the function g, i.e., we have gh(x) = g(x) for each node x ∈ Γ and gh|e ∈ [P1(e)]2

for all e ∈ E(Γ), where E(Γ) denotes de set of all edges induced by the triangulation Th, lying on the
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boundary Γ. The fact that now the function g−gh vanishes at the nodes of Th lying on Γ, allows us to
estimate its [H1/2(Γ)]2-norm in terms of L2-local norms on the edges of Γ. More precisely, according
to Theorem 1 in [10], there holds

‖g − gh‖2[H1/2(Γ)]2
≤ C

log[1 + Ch(Γ)]
m∑
j=1

hj

∥∥∥∥∂g∂t − ∂gh
∂t

∥∥∥∥2

[L2(Γj)]2

 ,

where hj = |Γj |, j = 1, . . . ,m, Ch(Γ) := max
{
hi
hj

: Γi is a neighbor of Γj , i, j ∈ {1, ...,m}
}

, and

{Γ1, . . . ,Γm} is the partition of Γ induced by Th. We remind that given an edge e induced by Th, and
lying on Γ, we set t as the tangential vector associated to e. In addition, ∂g

∂t represents the tangential

derivative of g along e. Similar meaning is given to ∂gh
∂t .

Moreover, assuming a little more regularity, that is g| ∈ [H2(Γi)]
2 for i = 1, . . . ,m, and taking into

account Proposition 1.2 in [14], it is possible to establish that this error behaves at least as O(h3/2),
i.e., it can be seen as a higher order term.

Remark 8 For the 3D case, and assuming that g ∈ [H1(Γ)]3, the Sobolev interpolation theorem
implies

‖g − gh‖2[H1/2(Γ)]3
≤ C‖g − gh‖[L2(Γ)]3‖g − gh‖[H1(Γ)]3 , (25)

which allows us to deduce

‖g − gh‖2[H1/2(Γ)]3
≤ CD

 ∑
F ∈E(Γ)

h2
D‖g − gh‖[H1(F )]3

 , (26)

where hD := max{hF : F ∈ E(Γ)}.
Furthermore, under the assumption that u ∈ H1+s(Ω), with s > 1/2, we have that g ∈ H1+δ(Γ),

with δ > 0 and therefore it is possible to use Lagrange interpolation. Following the same spirit of
the Remark 7, we can assume a little more regularity, that is g ∈ H2(F ), for each F ∈ E(Γ), and
then, after invoking Proposition 3.1 in [14], it is possible to establish that this error behaves at least
as O(h3/2), i.e., it can be seen as a higher order term.

4.2 A posteriori error analysis

Straightforward modifications of the analysis described in Section 3, allow us to endow the problem
(24) with an a posteriori error estimator. Let (ρ̄,u) ∈H0 and (ρ̄h,uh) ∈H0,h be the unique solutions
of the problems (23) and (24), respectively. We define the residual

R̃h(τ ,v) := F̄ (τ ,v)−A((ρ̄h,uh), (τ ,v)) , ∀ (τ ,v) ∈H0 . (27)

Taking (τ ,v) := (ρ̄ − ρ̄h,u − uh) ∈ H0, and after invoking the ellipticity of the bilinear form A on
H0, as well as the definition of the residual (27), we deduce that

‖(ρ̄− ρ̄h,u− uh)‖H ≤ C−1
ell sup

(τ ,v)∈H0
(τ ,v) 6=(0,0)

R̃h((τ ,v))

‖(τ ,v)‖H
. (28)

In the next lemma, we collect an upper bound for the residual
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ν µ λ

0.4900 0.3356 16.4430
0.4999 0.3334 1666.4444

Table 1: Lamé parameters, for some values of Poisson ratio ν

Lemma 9 There exists a positive constant C, independent of h, such that

sup
(τ ,v)∈H0

(τ ,v) 6=(0,0)

R̃h(τ ,v)

‖(τ ,v)‖H
≤ C

(
||f + div(ρ̄h)||[L2(Ω)]n + ||ε(uh +wh)− C−1ρ̄h||[L2(Ω)]n×n) .

Proof. Taking into account the definitions of the linear functional F̄ as well as of the bilinear form
A, the proof follows the same ideas than the ones described in Section 3. We omit further details. �

Then, we define the a posteriori error estimator η as follows:

η2 :=
∑
T∈Th

η2
T , with η2

T := ‖f + div(ρ̄h)‖2[L2(T )]n + ‖ε(uh +wh)− C−1ρ̄h‖2[L2(T )]n×n , (29)

for each T ∈ Th.
The reliability and the local efficiency of η, are established in the next result.

Theorem 10 Let (ρ̄,u) ∈H0 and (ρ̄h,uh) ∈H0,h be the unique solutions to problems (23) and (24),
respectively. Then, there exists a positive constant Crel, independent of h, such that

‖(ρ̄− ρ̄h,u− uh)‖H ≤ Crel η , (30)

and there exists a positive constant Ceff, independent of h and T , such that

Ceff ηT ≤ ‖(ρ̄− ρ̄h,u− uh)‖H(div,T )×[H1(T )]n , ∀T ∈ Th . (31)

Proof. The proof is analogous to the proof of Theorem 3. We omit further details. �

5 Numerical experiments

In this section we present several numerical results that illustrate the performance of the augmented
scheme (24) and the a posteriori error estimator η for the simplest finite element subspaceH0,h defined
in Section 4.

We recall that given the Young modulus E and the Poisson ratio ν of a linear elastic material, the
corresponding Lamé parameters are defined by µ := E

2(1+ν) and λ := E ν
(1+ν) (1−2 ν) . In the examples

below, we take E = 1 and consider the values ν = 0.4900 and ν = 0.4999, which yield the following
values of µ and λ that are shown in Table 1. The adaptive refinement algorithm we consider can be
found in [16], and reads as follows:
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Example Ω ν u1(x1, x2) = u2(x1, x2)

1 (0, 1)2 0.4900
x1 (x1 − 1)x2 (x2 − 1)

(x1 − 1)2 + (x2 − 1)2 + 0.01
0.4999

2 (0, 1)2 0.4900 x1 x2 ex1+x2

3 (−0.25, 0.25)2 \ [0, 0.25]2 0.4900
x1 x2

(x2
1 + x2

2)1/3
+ 2x2

4 (0, 1)2 \ {x ∈ R2 : ‖x‖ ≤ 0.1} 0.4900
10−4

x2
1 + x2

2 − 0.052

Table 2: Domain Ω, values of ν and exact solution u = (u1, u2)t for the first 4 examples

Algorithm 1: Adaptive Refinement Algorithm

Result: Improvement of quality of approximation
Input: tolerance tol, initial / coarse mesh T 0

h ;
Step 1: Solve the Galerkin scheme for the current mesh T 0

h . Then compute {ηT }T∈T 0
h

.

while η > tol do
Mark each element T ′ ∈ Th such that

ηT ′ ≥
1

2
max{ηT : T ∈ Th} .

Refine marked elements and remove hanging nodes if corresponds;
This generates an adapted mesh Th;
T 0
h ← Th and go to Step 1.

end

In Table 2 below, we specify the four examples to be considered in this section. By simplicity,
all examples are in 2D. We choose the data f and g so that the exact solution is u(x1, x2) :=
(u1(x1, x2), u2(x1, x2))t.

We first emphasize the robustness of the approach and the a posteriori error estimator η with
respect to the Poisson ratio. We approximate the solution of Example 1 for two different values of
ν using a sequence of uniform / adapted meshes. Hereafter, uniform refinement means that given a
uniform initial triangulation, each subsequent mesh is obtained from the previous one by dividing each
triangle into the four ones arising when connecting the midpoints of its sides. In Figure 1 and Figure 2
we present the total errors vs degrees of freedom (cf. Figures (1a) and (2a)), and the efficiency indices
(cf. Figures (1b) and (2b)) obtained for Example 1 with ν = 0.4900 and ν = 0.4999, respectively. In
both cases we can see that the scheme converges with the optimal convergence rate and the efficiency
indices remain constant, close to 1. This shows that both, the scheme and the estimator, remain
locking free.

In what follows, we take ν = 0.4900 and consider Examples 2, 3 and 4 to illustrate the performance
of the adaptive Algorithms 1, based on η. We use Example 2 to illustrate the behavior of the scheme
and the estimator when we deal with no null boundary term. We observe, in Figure 3, the robustness
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Figure 1: (a) Total errors vs. DOFs for Example 1, with Poisson ratio ν = 0.49, using uniform and
adaptive refinements. (b) Corresponding efficiency indices vs. DOFs on both kind of refinements.
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Figure 2: (a) Total errors vs. DOFs for Example 1, with Poisson ratio ν = 0.4999, using uniform and
adaptive refinements. (b) Corresponding efficiency indices vs. DOFs on both kind of refinements.

of the scheme and the estimator when working with non-homogeneous boundary data. Its convergence
rate is optimal and the efficiency index remains lower and upper bound.

We remark that the solution of Example 3 has a singularity at the boundary point (0, 0). In
fact, the behavior of u in a neighborhood of the origin implies that div(σ) ∈ [H1/3(Ω)]2. Thus, the
expected rate of convergence for the uniform refinement is 1/3. On the other hand, the solution of
Example 4 shows large stress regions around the curve x2

1 +x2
2 = 0.052. In Figures 4 and 6 we observe

that the errors in the adaptive procedures decrease much faster than in the uniform one. In particular,
we can observe in Figure 4a that, for Example 3, the experimental convergence rates for the uniform
refinement procedure approach 1/3, as predicted by the theory. Furthermore, we see that the adaptive
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Algorithm 1, based on η, is able to recover the linear convergence. We also observe that the efficiency
indices in Example 3 are always in a neighborhood of 1.0, which confirms the reliability and eventual
efficiency of the a posteriori error estimator η. Some adapted meshes are reported in Figure 5, where
we can see that the a posteriori error estimator recognizes the singularity.

For Example 4, the convergence of the adaptive Algorithm 1, based on η, is faster than the
corresponding to the uniform refinement procedure, as can be seen from Figure 6a. In Figure 6b,
we display the efficiency indices of η, and we observe that, again, it is close to 1. This confirms the
reliability and eventual efficiency of the a posteriori error estimator. In addition, Figure 7 shows the
ability of Algorithm 1, to recognize the region where the greatest stresses are concentrated.
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Figure 3: (a) Total errors vs. DOFs for Example 2, with Poisson ratio ν = 0.49, using uniform and
adaptive refinements. (b) Corresponding efficiency indices vs. DOFs on both kind of refinements.
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Figure 4: (a) Total errors vs. DOFs for Example 3, with Poisson ratio ν = 0.49, using uniform and
adaptive refinements. (b) Corresponding efficiency indices vs. DOFs on both kind of refinements.
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(a) (b) (c)

Figure 5: Some adapted meshes for Example 3, obtained with Algorithm 1, corresponding to (a) 1954,
(b) 14490 and (c) 23138 DOFs, respectively.
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Figure 6: (a) Total errors vs. DOFs for Example 4, with Poisson ratio ν = 0.49, using uniform and
adaptive refinements. (b) Corresponding efficiency indices vs. DOFs on both kind of refinements.

5.1 Another singular test

Here we consider an example described in [11] (see Section 7.6.4.2, page 371), where the components
of the displacement are different from each other and its gradient has a singularity at origin. In order

to introduce it, we introduce A := {(x1, x2) ∈ R2 : |x1 +
√

2
2 | + |x2| ≤

√
2

2 }, and we define the

L-shape domain Ω := {(x1, x2) ∈ R2 : |x1| + |x2| <
√

2} \ A. The displacement of the solution, in
polar coordinates (r, θ), is given by

u(r, θ) =
1

2G
rL
(

(κ−Q(L+ 1)) cos(Lθ)− L cos((L− 2)θ)
(κ+Q(L+ 1)) sin(Lθ) + L sin((L− 2)θ)

)
,

where the various parameters take the following numerical values: E = 1, ν = 3, G = 5
13 , κ = 9

5 ,
L = 0, 5444837367825, Q = 0, 5430755788367. The forcing term in this case is equal to zero, while
the Dirichlet boundary condition is inferred from the exact solution. In Figure 8 we display the rate
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(a) (b) (c)

Figure 7: Example 4: Initial and adapted meshes, generated after applying Algorithm 1, corresponding
to (a) 1058, (b) 5374 and (c) 74610 DOFs, respectively.

convergence (cf. Figure 8a) and efficiency indices of η (cf. Figure 8b). We see that the adaptive
scheme is capable of converging linearly as if the solution were smooth, while the uniform refinement
converges with L-rate. Furthermore, the efficiency indexes remain bound. The ability to detect the
singularity is exhibited in Figure 9, which confirms that the estimator is indeed detecting the place
where it is.
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Figure 8: (a) Total errors vs. DOFs for Example 5, with Poisson ratio ν = 3, using uniform and
adaptive refinements. (b) Corresponding efficiency indices vs. DOFs on both kind of refinements.

Concluding remarks

In this paper, we develop a reliable and local efficient a posteriori error estimator for linear elasticity
problem with non homogeneous displacement on the boundary. We deal with a locking-free augmented
variational formulation, which is well posed and does not include a penalization term of the Dirichlet
condition. To circumvent that, we first perform a homogenization technique that yields to analize a
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(a) (b) (c)

Figure 9: Some adapted meshes for Example 5 obtained with Algorithm 1, corresponding to (a) 1954,
(b) 14490 and (c) 23138 DOFs, respectively.

variant of the linear elasticity problem, but with homogeneous displacement on the boundary. As a
consequence, the resulting a posteriori error estimator consists of two element residual terms, which
shows the low cost (computationally speaking) of our estimator. Numerical experiments are in agree-
ment with the obtained theoretical results. We check the locking-free behaviour of the scheme when
the Poisson ratio ν is close to 1/2. Moreover, the proposed adapted refinement Algorithm 1 helps
to detect and refine such region of the domain where the estimator is more dominant. Finally, is
important to remark that the current approach, described in this work, could be extended to deal
with other types of problems.
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[9] J. Camaño, R. Oyarzúa , R. Ruiz-Baier , G. Tierra. Error analysis of an augmented mixed method
for the Navier-Stokes problem with mixed boundary conditions, IMA Journal of Numerical Anal-
ysis, 38, 1452–1484, (2018).

[10] C. Carstensen. An a posteriori error estimate for a first-kind integral equation. Mathematics of
Computation, 66, 139–155, (1997).

[11] D. A. Di Pietro, J. Droniou: The Hybrid High-Order Method for Polytopal Meshes: Design,
Analysis, and Applications. Number 19 in Modeling, Simulation and Applications, Springer In-
ternational Publishing, 2020. ISBN 978-3-030-37202-6 (Hardcover) 978-3-030-37203-3 (eBook).
DOI: 10.1007/978-3-030-37203-3

[12] G.N. Gatica. Analysis of a new augmented mixed finite element method for linear elasticity
allowing RT0-P1-P0 approximations. M2AN Mathematical Modelling and Numerical Analysis,
40, 1, 1–28, (2006).

[13] G.N. Gatica. An augmented mixed finite element method for linear elasticity with non-
homogeneous Dirichlet conditions. Electronic Transactions on Numerical Analysis, 26, 421–438,
(2007).

[14] M.G. Larson and F. Bengzon. The Finite Element Method: Theory, Implementation and Appli-
cations. Springer-Verlag, Berlin, Heidelberg, 2013.

[15] R. Stenberg, A family of mixed finite elements for the elasticity problem. Numerische Mathematik,
53, 513–538, (1988) .

[16] R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Tech-
niques, Wiley-Teubner, Chichester, 1996.

19



Centro de Investigación en Ingenieŕıa Matemática (CI
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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