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de Concepción, Concepción, Chile.

2
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Abstract

The study of the dynamical behavior of Boolean networks with different update schedules
has so far focused primarily on the possible dynamics and equivalent networks that can be
obtained. However, few studies have been done about which networks can be obtained from
another network with a non-parallel schedule.

In this article, we define the problem of finding a Boolean network that is dynamically
equivalent to another network. For the general case, it is shown that the problem is NP-
Hard. However, if the problem is restricted to disjunctive Boolean networks, it can be solved
in polynomial time.

Keywords: Boolean network, block-sequential update schedule, dynamical behavior,
disjunctive network.

Contact: luiscabrera@udec.cl.

1 Introduction

A Boolean network is defined as a system of n Boolean variables interacting with each other that
evolves, in discrete time, according to a predefined update schedule. Applications of Boolean
networks include computer science, circuit theory, social systems, among others. In particular,
from the initial works of Kauffman and Thomas [9, 10, 14, 15], they are widely used as models of
gene networks.

A key aspect in modeling biological systems using Boolean networks is the update schedule
used. A widely used type of update schedule is the synchronous or parallel one. However, other
schedules have also been investigated, such as block-sequential schedules, which are a generalization
of the parallel schedule.

It is well known that the dynamic behavior of a network is very sensitive to changes in the
update schedule [3]. Therefore, in the absence of biological information to determine which schedule
to use, it is very useful to know if there is any dynamically equivalent network that reproduces the
studied phenomenon using a different block-sequential update schedule.
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Parallel digraphs, which are preliminary presented by F. Robert [12, 13], calling them Gauss-
Seidel operator, are a widely used tool over the years. Thanks to [7, 3], equivalence classes have
been defined between different update schedules based on their update digraph, so that elements
in the same class have the same dynamic behavior.

In this sense, in [4] the dynamics of discrete neural networks with deterministic update schedules
is studied and in [2] we studied how many different dynamics can exist in a Boolean network when
the update schedule changes. In the particular case of disjunctive networks, in [1] we studied
the complexity of deciding whether there exists a limit cycle of a given length k for some update
schedule, and in [6] we classified them according to the robustness of their dynamics concerning
changes in the update schedule, all this using parallel digraphs.

However, to our knowledge, the following questions have been little explored: What other
networks have the same dynamics as that of a given network? What dynamics are only yielded by
a parallel schedule? Research closer to this one is [8], with the difference being that while authors
go in one direction, our research goes in the opposite direction, i.e., the authors in [8] study among
other things how the network changes when it is updated with a given sequential schedule, while
in this article we are interested in studying whether it is possible to obtain a given network from
some other network updated with some block-sequential schedule.

This article addresses the above questions. For that, our approach as follows: in Section 1
we define the notations that are used. Then, in Section 3, we formally define the problem and
prove that it is NP-hard in the general case. In Section 4, we restrict our problem to disjunctive
Boolean networks. Later, in Section 5, we present an algorithm that decides the problem defined
in Section 4 in polynomial time for disjunctive (conjunctive) networks. Finally, in the last section,
the conclusions reached are presented.

2 Definition and notation

A Boolean network with n components is a discrete dynamical system usually defined by a global
transition function:

f : {0, 1}n → {0, 1}n , x→ f(x) = (f1(x), . . . , fn(x)),

where each function fv : {0, 1}n → {0, 1} associated to the component v is called local activation
function.

Any vector x = (x1, . . . , xn) ∈ {0, 1}n is called a state of the network f with local state xv on
each component v. The dynamics of f is given by its application on any state of the network.

Definition 1. We define the interaction graph of a Boolean network f : {0, 1}n → {0, 1}n, denoted
by G(f) = ([n], A(f)), as:

[n] = {1, . . . , n} ,
A(f) = {(u, v) ∈ [n]× [n] : ∃x ∈ {0, 1}n , fv(x) 6= fv(x

¬u)}

where x¬uv = xv ⇐⇒ u 6= v.
Also, for each u ∈ [n] we define the in-neighborhood and the out-neighborhood of u as:

N−f (u) = {v ∈ [n] : (v, u) ∈ A(f)}
N+

f (u) = {v ∈ [n] : (u, v) ∈ A(f)}
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1

2

3 4

5

f1(x) = ¬x2 ∧ x5

f2(x) = (x1 ∧ x3) ∨ (x5 ∧ ¬x3)
f3(x) = (¬x1 ∨ ¬x5) ∧ x3 ∧ x4

f4(x) = (x4 ∧ x3) ∨ (x5 ∧ ¬x3)
f5(x) = x4

Figure 1: Example of a Boolean network and its interaction graph.

Example 1. An example of a Boolean network f and its interaction graph G(f) is shown in
Figure 1.

Definition 2. Given f : {0, 1}n → {0, 1}n a Boolean network, f is called a disjunctive Boolean
network if: ∀u ∈ [n], fu(x) = 1 ⇐⇒ (∃v ∈ N−f (u), xv = 1).

We observe that the global transition function of a disjunctive Boolean network is completely
described by its interaction graph.

An update schedule is defined by a function s : [n]→ [n] such that s([n]) = [m] for some m ≤ n,
where s(u) indicates the updating order of the component u in a time step. A block of an update
schedule s is a set Bi = {u ∈ [n] : s(u) = i}, with i ∈ [m]. An update schedule s is also denoted
by s = B1, B2, . . . , Bm. In this case, we say that s has m blocks. If m = 1, the update schedule
is called synchronous or parallel and is denoted by sp. If m = n, the update schedule is called
sequential. Other kinds of update schedules are named block-sequential updates.

Definition 3. Let f : {0, 1}n → {0, 1}n be a Boolean network, xt = (xt1, . . . , x
t
n) ∈ {0, 1}n a state

and s = B1, B2, . . . , Bm a block-sequential update schedule. The dynamical behavior of f updated
according to s is given by:

∀v ∈ B1, xt+1
v = fv(x

t). (1)

∀v /∈ B1, xt+1
v = fv(x

t+1
u : s(u) < s(v);xtu : s(u) ≥ s(v)) (2)

The expression in (1) is because when updating the elements in B1, no other elements have
been updated. The expression in (2) is because at the time of updating xv, if its dependency (xu)
belongs to a previous block it has already been updated (xt+1

u ) and if its dependency belongs to a
later block (or the same block) it takes its value without updating (xtu).

This definition is an interpretation of what was introduced by F. Robert in [12], where the
origin of this expression is explained in depth.

This is equivalent to applying a function f s to x:

xt+1 = f s(xt),

where f s is defined by:

∀v ∈ B1, f s(x)v = fv(x). (3)

∀v /∈ B1, f s(x)v = fv(f
s
u(x) : s(u) < s(v);xu : s(u) ≥ s(v)) (4)

It is easy to prove that f s is equivalent to:

f s = fBm ◦ fBm−1 ◦ · · · ◦ fB2 ◦ fB1
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with fBi : {0, 1}n → {0, 1}n given by:

∀x ∈ {0, 1}n , fBi
v (x) =

{
xv if v /∈ Bi

fv(x) if v ∈ Bi.

Note that, under this definition, f = f sp . Moreover, if f is a disjunctive Boolean network, then,
by definition, f s is also a disjunctive Boolean network. This is because the family of disjunctive
Boolean networks is closed under composition.

In this way, the dynamical behavior of f updated according to s is equivalent to the dynamical
behavior of f s updated according to the parallel schedule.

An example of a Boolean network f updated according to a block-sequential update schedule
s is shown in Figure 2(a) and Figure 2(c).

1

2

3 4

5

f1(x) = x1 ∨ x4

f2(x) = x2 ∧ x4

f3(x) = x4 ∧ ¬x5

f4(x) = x3 ∧ ¬x5

f5(x) = x2 ∧ ¬x4

s = {2} {5} {3} {4} {1}

1

2

3 4

5

f s
1 (x) = x1 ∨ (x4 ∧ ¬(x2 ∧ x4 ∧ ¬x4))
f s

2 (x) = x2 ∧ x4

f s
3 (x) = x4 ∧ ¬(x2 ∧ x4 ∧ ¬x4)
f s

4 (x) = x4 ∧ ¬(x2 ∧ x4 ∧ ¬x4)
f s

5 (x) = x2 ∧ x4 ∧ ¬x4

1

2

3 4

5

f s
1 (x) = x1 ∨ x4

f s
2 (x) = x2 ∧ x4

f s
3 (x) = x4 ∧ ¬(0) = x4

f s
4 (x) = x4 ∧ ¬(0) = x4

f s
5 (x) = (x2 ∧ x4) ∧ ¬x4 = 0

(a) (b) (c)

Figure 2: (a) A Boolean network f and an update schedule s (b) The parallel digraph GP (f, s)
(c) The effective network f s.

Figure 2 shows that, obtaining G(f s), that is, the interaction graph that presents the actual
dependencies of the local functions of f updated according to s, is not a simple task. In fact, it
was proved to be a DP-complete problem [11]. For example, f s

5 is a constant function 0, when
the function f5 depends on x2 and x4. Obtaining G(f s) depends on the local functions of f and
how they interact with each other. For this reason, a useful tool to study this is the potential
dependencies digraph of the equivalent parallel network (in short, parallel digraph). This digraph
represents the potential effective dependencies of a network if it were to be updated in parallel.

Definition 4. Let f : {0, 1}n → {0, 1}n be a Boolean network and s an update schedule, the
parallel digraph, denoted as GP (f, s) = ([n], A), where:

∀v ∈ B1,(u, v) ∈ A ⇐⇒ (u, v) ∈ A(f) (5)

∀v /∈ B1,(u, v) ∈ A ⇐⇒ (∃w ∈ N−f (v), s(w) < s(v) ∧ (u,w) ∈ A) ∨ (s(u) ≥ s(v) ∧ (u, v) ∈ A(f))

(6)

which is equivalent to:

(u, v) ∈ A ⇐⇒
[
(∃w ∈ N−f (v), s(w) < s(v) ∧ (u,w) ∈ A) ∨ ((u, v) ∈ A(f) ∧ s(u) ≥ s(v))

]
(7)
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Note that in the equivalences (6) and (7) the construction of the arc (u, v) depends on the arc
(u,w) which was previously constructed (since w is updated before v). Therefore, the set A is well
defined.

By calling it a digraph of potential dependencies we mean that transitively these variables may
depend on each other. For example, in Figure 2(a), f3 depends on x5, and also f5 depends on x2,
therefore, if x5 is updated before x3 (as in the case of update schedule s), it is likely that f3 depends
on x2. But this is not always the case, since by the nature of the different Boolean functions, some
may cancel with others, as is the case of f s

3 in Figure 2(b) and Figure 2(c). Therefore, it is easy
to notice that G(f s) ⊆ GP (f, s).

In the case of disjunctive networks, from the research conducted in [6], there is a direct rela-
tionship between the parallel digraph and the effective network when updated in parallel.

Remark 1. Given f, h : {0, 1}n → {0, 1}n two disjunctive Boolean networks and an update
schedule s, hs = f is equivalent to GP (h, s) = G(f).

Indeed, if we consider the transitivity of dependencies of the parallel digraph, it will produce a
composition of functions when defining the effective dependencies of a variable. And considering
that the OR function is closed under composition, no potential dependence will be canceled. There-
fore, in the case of disjunctive networks, all potential dependencies will be effective dependencies
and therefore hs = f is equivalent to GP (h, s) = G(f).

Another tool that can provide a better understanding of these concepts is the labeled digraph.
Given a digraph G = (V,A), a labeling function is a function lab : A→ {⊕,	}. A pair (G, lab)

is called a labeled digraph and is represented by the vertices and arcs from G, but adding the
corresponding labels on its arcs (Figure 3). For any arc (u, v) ∈ A:

• if lab(u, v) = ⊕, the arc is called a positive arc,

• if lab(u, v) = 	, the arc is called a negative arc.

Let G = (V,A) be a digraph and s an update schedule. We define the labeling function
labs : A→ {	,⊕} in the following way:

∀(u, v) ∈ A, labs(u, v) =

{
⊕ if s(u) ≥ s(v)

	 if s(u) < s(v)

1

2

3

4

	

	

	

⊕
⊕

⊕

Figure 3: A digraph G labeled by the function labs, with s = {1} {2} {3} {4}

A labeled digraph (G, lab) is said to be an update digraph if there exists an update schedule s
such that lab = labs, that is ∀a ∈ A(G), lab(a) = labs(a) (see the example in Figure 4).

Given f : {0, 1}n → {0, 1}n a Boolean network, we define the following equivalence relation
between updates schedule s and s′:

s ∼f s
′ ⇐⇒ (G(f), labs) = (G(f), labs′).
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2 3

	 	

⊕

1

2 3

	 	

	

(a) (b)

Figure 4: (a) A labeled digraph (G, lab) which is an update digraph. (b) A labeled digraph (G, lab′)
which is not an update digraph.

We denote [s]f the equivalence class of s induced by ∼f . In [3] was proved that if two different
updates schedules s and s′ have the same update digraph, then the Boolean network f updated
according to s has the same dynamical behavior that f updated according to s′, i.e.

s ∼f s
′ =⇒ f s = f s′ . (8)

3 Dynamically equivalent networks problem

In this section we focus on the inverse problem, i.e. given a dynamical behavior of a Boolean
network, we want to know if there exists a Boolean network with an update schedule different
from the parallel that produces the same dynamical behavior.

Definition 5. Let f, h : {0, 1}n → {0, 1}n be two Boolean networks and s an update schedule. We
say that (h, s) is dynamically equivalent to f if hs = f . Moreover, if h 6= f , or h = f and s �f sp,
we say that (h, s) and f are non-trivially dynamically equivalent.

By Equation (8), remember that if h = f , for every s equivalent to sp, we have hs = f . And
there exists s 6= sp equivalent to sp if and only if G(f) is not strongly connected. Indeed, if G(f)
is not strongly connected, then there is at least one initial (source) strongly connected component.
Then, the two-block schedule s wherein the second block are the vertices of the initial component
and in the first block, the rest of the vertices, is equivalent to sp. On the other hand, if G(f) is
strongly connected and s is equivalent to sp, then between any pair of vertices (u, v), there exists
a fully positive path from u to v, so by transitivity, s(u) ≥ s(v). Therefore, for any pair of vertices
u, v, s(u) = s(v), and thus s is the parallel schedule.

Example 2. Let f : {0, 1}2 → {0, 1}2 be the Boolean network defined by f(x1, x2) = (x2, x1)
(see Figure 5(a)), let us prove that it does not exist another network non-trivially dynamically
equivalent to f .

Note that the only update schedules that are not equivalent to sp are s = {1} {2} and s′ =
{2} {1}.

Let us suppose that there exists a Boolean network h such that hs = f , where s = {1} {2}.
And let x ∈ {0, 1}2 be such that h2(x2, x2) 6= x1. Then,

hs(x1, x2) = (hs1(x1, x2), hs2(x1, x2)).

Since 1 ∈ B1,
hs1(x1, x2) = h1(x1, x2) = f1(x1, x2) = x2.

Thus,
hs2(x1, x2) = h2(hs1(x1, x2), x2) = h2(x2, x2) 6= x1 = f2(x1, x2).
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Therefore, there is no network h with update schedule s that are non-trivially dynamically
equivalent to f .

Analogously, it is possible to show that there is no network h non-trivially dynamically equiv-
alent to f when s′ = {2} {1}.
Example 3. On the other hand, if we consider the function f ′(x) = (f ′1(x), f ′2(x)) = (x1, x1) (see
Figure 5(b)) which only differ with f in the first local activation function, and s = {2} {1}, the
Boolean network h′(x) = (h′1(x), h′2(x)) = (x1 ∨ x2, x1) satisfies h′s = f ′.

1 2 1 2

(a) (b)

Figure 5: Interaction digraph of the Boolean network from Example 2 and Example 3.

Using the above definition, we introduce the following problem:

Dynamically equivalent networks problem (DEN problem)

Input: A Boolean network f (encoded as a Boolean formula for each fi).

Question: does there exists a Boolean network h and an update schedule s, such that
(h, s) is non-trivially dynamically equivalent to f?

The universe of possible solutions is very large: for n components, there are O(2n2n

) possible
Boolean networks and O(n!) possible update schedules [5]. The following result shows a relation
between different solutions:

Theorem 1. If there exists a solution to DEN problem then there exists a solution to DEN
problem with a block-sequential update schedule with two blocks.

To prove the previous theorem, we use the following lemma:

Lemma 2. Let h, f : {0, 1}n → {0, 1}n be Boolean networks and s = B1, B2, . . . , Bm with m > 1.
If hs = f , then there exists h̄ and s̄ such that h̄s̄ = f where s̄ = B1, B2, . . . , Bm−1 ∪Bm.

Proof. Without loss of generality, let us suppose that there exists u ∈ Bm−1 and v ∈ Bm such
that (u, v) ∈ A(h). If this condition does not hold, s̄ ∼h̄ s. We define h̄ as follows:

h̄v(x) =

{
hv(x) ∀v /∈ Bm,

hv(f
Bm−1(x)) ∀v ∈ Bm.

Finally:

∀v ∈ Bj ∧ j < m, h̄s̄v(x) = h̄v(h̄
B′j−1 ◦ h̄B′j−2 ◦ · · · ◦ h̄B′1(x)). (9)

= hv(h
Bj−1 ◦ hBj−2 ◦ · · · ◦ hB1(x)). (10)

= hsv(x) = fv(x). (11)

∀v ∈ Bm, h̄s̄v(x) = h̄v(h
B′m−2 ◦ hB′m−3 ◦ · · · ◦ hB′1(x)). (12)

= h̄v(h
Bm−2 ◦ hBm−3 ◦ · · · ◦ hB1(x)). (13)

= hv(h
Bm−1(hBm−2 ◦ hBm−3 ◦ · · · ◦ hB1(x))). (14)

= hv(h
Bm−1 ◦ hBm−2 ◦ hBm−3 ◦ · · · ◦ hB1(x)). (15)

= hsv(x) = fv(x). (16)
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For this reason, h̄s̄ = f . 2

1

2

3 4

5

f1(x) = x1 ∨ x4

f2(x) = x2 ∧ x4

f3(x) = x4

f4(x) = x4

f5(x) = 0

1

2

3 4

5

f̃1(x) = x1 ∨ x4

f̃2(x) = x2 ∧ x4

f̃3(x) = x4 ∧ ¬x5

f̃4(x) = x3 ∧ ¬x5

f̃5(x) = x2 ∧ ¬x4

s̃ = {2} {5} {3} {4} {1}

1

2

3 4

5

f̄1(x) = x1 ∨ (x3 ∧ ¬x5)
f̄2(x) = x2 ∧ x4

f̄3(x) = x4 ∧ ¬x5

f̄4(x) = x3 ∧ ¬x5

f̄5(x) = x2 ∧ ¬x4

s̄ = {2} {5} {3} {4, 1}

(a) (b) (c)

Figure 6: (a) A Boolean network f (b) A solution with 5 blocks (c) A solution with 4 blocks.

Notice that, s̄ is non-equivalent to s if and only if there exists an arc from some vertex in Bm−1

to a vertex in Bm.

Proof of Theorem 1. If there exists a solution with an update schedule with k > 2 blocks,
applying the Lemma 2 successively, it is possible to construct a solution with 2 blocks. 2

To understand the real complexity of the problem, let us see the following theorem:

Theorem 3. DEN is NP-Hard.

Proof. To prove NP-Hardness we show that 3-SAT ≤p DEN. Let φ be a 3-CNF formula in
variables x1, . . . , xn. Without loss of generality, let us consider that φ has only non-trivial clauses;
a non-trivial clause Ci being a clause such that for each variable xj ∈ Ci, we have x̄j /∈ Ci. Note
that eliminating trivial clauses from φ is a simple task. Now, we consider f : {0, 1}n+2 → {0, 1}n+2

as follows:

∀u ∈ [n], fu(x) = xu,

fn+1(x) = φ(x1, . . . , xn) ∨ xn+2

fn+2(x) = xn+1.

See G(f) in Figure 7(a).
(⇒) If φ is satisfiable, we consider the function f̄ = f and the update schedule s =

{1, . . . , n}{n + 1, n + 2}. Since φ is satisfiable and there exists x ∈ {0, 1}n such that φ(x) = 0
(because φ has only non-trivial clauses), fn+1 depends on xu for some u ∈ [n], so s is not equivalent
to the parallel update schedule, and f̄ s = f .

(⇐) If φ is not satisfiable ∀u ∈ [n], fu(x) = xu, fn+1(x) = xn+2 and fn+2(x) = xn+1. See G(f)
in Figure 7(b). We see that the sub-graph induced by vertices n + 1 and n + 2 is isomorphic
to the digraph presented in Figure 5(a). And, as in that example, it is shown that there is no
Boolean network that is non-trivially dynamically equivalent to the disjunctive Boolean network

8



with this interaction sub-graph. Then there is also no Boolean network that is non-trivially
dynamically equivalent to f . In this way, any update schedule that preserves the dynamical
behavior is equivalent to the parallel. 2

1 2 n

n + 1 n + 2

. . . 1 2 n

n + 1 n + 2

. . .

(a) (b)

Figure 7: Interaction digraph of the transformation defined in Theorem 3.

4 Dynamically equivalent disjunctive networks problem

As we can see, in the general case, the DEN problem is hard, therefore, we focus on disjunctive
networks, defining the following problem:

Dynamically equivalent disjunctive networks problem (D-DEN prob-
lem)

Input: A disjunctive Boolean network f (encoded as a Boolean formula for each fi).

Question: does there exists a disjunctive Boolean network h and an update schedule
s, such that (h, s) is non-trivially dynamically equivalent to f?

Why only restrict ourselves to disjunctive Boolean networks h? As can be seen in Figure 8,
there are non-disjunctive networks (because h1 and h2 are linear functions) that can generate
disjunctive networks. But in this case, the equality between the parallel digraph and the effective
digraph produced by the composition of functions, as analyzed in Remark 1, is lost.

1

2 3

h1(x) = x2 + x3

h2(x) = x1 + x3

h3(x) = x1

1

2 3

hs1(x) = (x1 + x1) + x1

hs2(x) = x1 + x1

hs3(x) = x1

s = {3} {2} {1}

1

2 3

hs1(x) = x1

hs2(x) = 0
hs3(x) = x1

(a) (b) (c)

Figure 8: (a) A non-disjunctive Boolean network h (b) The parallel digraph GP (h, s) (a disjunctive
network) (c) The effective network f s (a disjunctive network). [+ represents modulo-two addition]
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Remark 2. Based on the last part of Definition 4, it is possible to define the parallel digraph
GP (f, s) = ([n], A) in terms of the labeled digraph as:

A = {(u, v) ∈ A(f) : labs(u, v) = ⊕} ∪ {(u, v) : ∃w ∈ N−f (v), (u,w) ∈ A ∧ labs(w, v) = 	}.

where the set {(u, v) : ∃w ∈ N−f (v), (u,w) ∈ A∧ labs(w, v) = 	} represents the arcs generated for
the predecessors that were already updated in a previous block.

An example of parallel digraph is shown in Figure 2(b).
In the same way, given a labeled digraph (G, lab) without fully negative cycles, we can define

GP (G, lab) = ([n], A) as:

A = {(u, v) ∈ A(G) : lab(u, v) = ⊕}∪
{(u, v) ∈ [n]× [n] : ∃w ∈ [n], (w, v) ∈ A(G) ∧ (u,w) ∈ A ∧ lab(w, v) = 	} .

In this definition, if f is a disjunctive Boolean network and s is an update schedule, then
GP (G(f), labs) = GP (f, s).

The following results are consequences of the definition of parallel digraph:

Lemma 4. Let h, f : {0, 1}n → {0, 1}n be two disjunctive Boolean networks and s an update
schedule such that hs = f . Then, for u, v ∈ [n]:

[(u, v) ∈ A(h) ∧ labs(u, v) = 	] =⇒ N−f (u) ⊆ N−f (v).

Proof. By Remark 1, we have that hs = f is equivalent to GP (h, s) = G(f).
By contradiction, let us suppose that there exists (u, v) ∈ A(h) such that labs(u, v) = 	

and N−f (u) * N−f (v). Since N−f (u) \ N−f (v) 6= ∅, let w ∈ N−f (u) \ N−f (v), then, (w, u) ∈ A(f)
and (u, v) ∈ A(h) with labs(u, v) = 	, by definition of parallel digraph, there exists a vertex
u ∈ N−h (v), such that (w, u) ∈ A(f) and labs(u, v) = 	, therefore (w, v) ∈ A(f), which is a
contradiction because w /∈ N−f (v). 2

Remark 3. Based on Lemma 4, for all those disjunctive Boolean networks whose vertex neighbor-
hoods are not comparable there is no network that is non-trivially dynamically equivalent. Some
examples are the disjunctive Boolean networks f : {0, 1}n → {0, 1}n such that:

• Complete digraphs without loops, for n ≥ 2, where:

∀v ∈ [n], N−f (v) = [n] \ {v}

• The double chain digraph with loops in the extreme vertices, for n ≥ 3, where:

∀v ∈ [n], N−f (v) =


{1, 2} if v = 1

{n− 1, n} if v = n

{v − 1, v + 1} otherwise

• The double cycle, for n ≥ 2 (with exception of n = 4), where:

∀v ∈ [n], N−f (v) =


{n, 2} if v = 1

{n− 1, 1} if v = n

{v − 1, v + 1} otherwise

10



Note that the condition of Lemma 4 is necessary but not sufficient, as shown in the following
example.

Example 4. The Figure 9 shows that, given a disjunctive Boolean network f , if there are vertices
u, v ∈ [n] such that N−f (u) ⊆ N−f (v), then a non-trivially dynamically equivalent network does not
necessarily exist. This Boolean network is known because the only equivalent dynamic network is
the trivial one, since according to the schedule {1}{2} there is no way to build the arc (1, 2), and
according to the schedule {2}{1} there is no way to build the arc (2, 1), (the loop in 1 cannot be
included for any h, since it is not in A(f)). Note also that it is true that N−f (1) = {2} ⊆ {1, 2} =

N−f (2).

1 2

Figure 9: N−f (1) ⊆ N−f (2) but the only network dynamically equivalent
is the trivial one.

However, if we consider the case of equal neighborhoods, we obtain a sufficient condition.

Proposition 5. Let f : {0, 1}n → {0, 1}n be a disjunctive Boolean network. There exists a dis-
junctive Boolean network h and an update schedule s, such that (h, s) is non-trivially dynamically
equivalent to f and with only one negative arc (u, v) ∈ A(h) if and only if the following conditions
are satisfied:

1. N−f (u) ⊆ N−f (v),

2. u /∈ N−f (v) \N−f (u),

3. For every vertex w ∈ N−f (v) \N−f (u), it does not exist a path from u to w in G(f)− v.

Proof. Since f and h are disjunctive Boolean networks, we have that hs = f is equivalent to
GP (h, s) = G(f).

(⇒ 1.) This is true according to Lemma 4.
(⇒ 2.) Let us suppose that there exists a Boolean network h and an update schedule s, such

that (h, s) is non-trivially dynamically equivalent to f with only one negative arc (u, v) ∈ A(h)
and u ∈ N−f (v) \ N−f (u). Then (u, v) ∈ A(f) (because u ∈ N−f (v)) and (u, u) /∈ A(f) (because

u /∈ N−f (u)). Since (u, u) /∈ A(f) the only way to create (u, v) in f is that there exists a vertex
w ∈ [n] such that (u,w) ∈ A(f), (w, v) ∈ A(h) and labs(w, v) = 	, but since (u, v) is the only
negative arc of G(h), this path does not exist, therefore (u, v) /∈ A(f), which is a contradiction.

(⇒ 3.) Let us suppose that there exists a Boolean network h and an update schedule s, such
that (h, s) is non-trivially dynamically equivalent to f and with only one negative arc (u, v) ∈ A(h),
in this case s(u) < s(v). Also, let us suppose, there exists a vertex w ∈ N−f (v) \N−f (u), such that
there exists a path from u to w in G(f)− v. Since (u, v) is the only negative arc, all arcs in the
path from u to w in G(f) − v are in A(h) and their labels are ⊕, the same occurs with the arc
(w, v) (because w ∈ N−f (v)), so s(u) ≥ s(w) ≥ s(v). Therefore, s(u) < s(v) and s(u) ≥ s(v) which
is a contradiction.
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(⇐) Let u∗ and v∗ be two vertices in [n] such that N−f (u∗) ⊆ N−f (v∗) and for every vertex

w ∈ N−f (v∗) \N−f (u∗), w 6= u∗ and it does not exists a path from u∗ to w in G(f)− v∗. We define
the Boolean network h : {0, 1}n → {0, 1}n such that:

A(h) =
(
A(f) \

{
(w, v∗) : w ∈ N−f (u∗)

})
∪ {(u∗, v∗)} .

Notice that:

N−h (v) =

{
N−f (v) if v 6= v∗

{u∗} ∪N−f (v∗) \N−f (u∗) if v = v∗

Let s = B1B2 where:

B2 = {v∗} ∪ {w ∈ V (h) : there exists a path from w to v∗ in G(h)− (u∗, v∗)}

Note that, B1 = V (h) \ B2 is not empty, since condition 3 ensures that the only path from u∗

to v∗ is the arc (u∗, v∗), so u∗ ∈ B1. Also, the only arc from a vertex in B1 to a vertex in B2

is (u∗, v∗), because if there exists a vertex u ∈ B1 such that u is in the in-neighborhood of a
vertex v ∈ B2 (v 6= v∗), then there is a path from u to v∗ and, therefore u ∈ B2 which is a
contradiction. In this way, for all v ∈ V (h) if v 6= v∗, (u, v) ∈ A(hs) is equivalent to (u, v) ∈ A(h),
therefore (u, v) ∈ A(hs) if and only if (u, v) ∈ A(f). Now, (u, v∗) ∈ A(hs) is equivalent to:
u ∈ N−f (v∗) \ N−f (u∗) (labs(u, v) = ⊕) or u ∈ N−hs(u∗) = N−f (u∗), since labs(u

∗, v∗) = 	. In this
way, (u, v∗) ∈ A(hs) if and only if (u, v∗) ∈ A(f).

G(f) G(h)
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Figure 10: An example of h, f and (u∗, v∗) = (1, 3). Note that N−f (1) = {2, 5} ⊆ {2, 4, 5} = N−f (3)
and it does not exists a path from 4 to 1 in G(f)− 3.

Finally, it has been proven that there exists a disjunctive Boolean network h 6= f and s 6∼h sp
such that GP (h, s) = G(f). 2

Corollary 6. Let f : {0, 1}n → {0, 1}n be a disjunctive Boolean network. If there exist u, v ∈ [n]
such that N−f (u) = N−f (v), then there exists a disjunctive Boolean network h and an update
schedule s such that (h, s) is non-trivially dynamically equivalent to f .

Proof. If N−f (u∗) = N−f (v∗) then the conditions of Proposition 5 are satisfied. 2

5 Algorithm to decide D-DEN Problem

To design a strategy to recognize all the vertices that meet the necessary condition given by
Lemma 4, we introduce the following definitions:
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Definition 6. Let f : {0, 1}n → {0, 1}n be a disjunctive Boolean network. We define the following
set of arcs:

A	(f) = {(u, v) ∈ [n]× [n] : u 6= v ∧N−f (u) ⊆ N−f (v)}.

This set represents all arcs in [n]×[n] that can be labeled 	. Note that the inclusion relationship
of these sets is transitive, because if N−f (u) ⊆ N−f (w) and N−f (w) ⊆ N−f (v), then N−f (u) ⊆ N−f (v).

Remark 4. Note that in terms of A	(f) we can reinterpret the previous lemmas as follows:

1. By Lemma 4, if A	(f) = ∅, then there is no network (h, s) that is non-trivially dynamically
equivalent to f .

2. By Corollary 6, if A	(f) induces a digraph with at least one cycle, then there exist at least
two vertices with equal in-neighborhoods, for this reason, there exists a network non-trivially
dynamically equivalent to f .

3. By Proposition 5, if |A	(f)| = 1, there exists a network non-trivially dynamically equivalent
to f if and only if for all w ∈ N−f (v) \N−f (u), w 6= u and it does not exist a path from u to
w in G(f)− v.

Definition 7. Given a partially labeled digraph (G, lab) we denoted the sets of arcs lab⊕[G, lab]
and lab	[G, lab] as follows:

lab⊕[G, lab] = {a ∈ A(G) : lab(a) = ⊕}
lab	[G, lab] = {a ∈ A(G) : lab(a) = 	}

Definition 8. Given n ∈ N and two sets of arcs A−, A+ ⊆ [n] × [n], such that A− ∩ A+ = ∅, we
define (G, lab) the labeled digraph induced by [n], A− and A+, denoted by G[A−, A+], as follows:

• V (G) = [n]

• A(G) = A− ∪ A+

• ∀a ∈ A(G), lab(a) =

{
	 if a ∈ A−

⊕ if a ∈ A+

Definition 9. Let f : {0, 1}n → {0, 1}n be a disjunctive Boolean network and A− ⊆ A	(f), we
define the operator Glab(f, A−) as the output of the Algorithm 1, where:

(A+)∗ = {(u, v) : there exists a path from u to v in G[A+]}.

Algorithm 1: Glab(f, A−)

Input: A disjunctive Boolean network f : {0, 1}n → {0, 1}n and a subset A− ⊆ A	(f) of
G = G(f) such that G[A−] is acyclic.

Output: A labeled digraph G[A−, A+].
1 A+ ← {(u, v) ∈ A(f) : ∀w ∈ N+

f (u), (w, v) /∈ A−)};
2 if (A+)∗ ∩ A− = ∅ then return G[A−, A+];
3 else return Glab(f, A− \ (A+)∗);

13



Remark 5. It is important to note that, since f is a disjunctive Boolean network, we can encode
it by its adjacency matrix, which implies that the size of the input is O(n2).

If we analyze each operation, we can observe the following: first, constructing the set A+

takes O(n3) time; then, obtaining (A+)∗ and intersecting it with A− also takes O(n3) and, finally,
calculating the difference of sets takes O(n2).

We must consider that the recursive call will be performed at most O(n2) times, since at least
one arc of A− is removed in each iteration.

Therefore, the cost of Algorithm 1 is O(n5).

Note that the result of the Glab(f, A−) operator is a labeled digraph for which its parallel
digraph, if update, is equal to G(f). To prove its correctness, we can classify the arcs of G(f) into
two classes:

• Directly explained arcs: Those that are in the digraph G(h) and have positive label.

• Indirectly explained arcs: Those arcs (u, v) that need an arc (u,w) ∈ A(f) and (w, v) ∈ A(h)
with negative label.

Clearly, an indirectly explained arc (u, v) needs that arc (u,w) is directly or indirectly explained.
In the case of Algorithm 1, for each of the arcs (u, v) ∈ A(f), we have two options:

• either there exists w such that (u,w) is in A(f) and (w, v) is in A−, so (u, v) is not added to
A+, and clearly (u, v) is an indirectly explained arc, or else

• there is no such w, therefore (u, v) is added to A+ and thus directly explained.

In this way, to be sure that all the arcs of A(f) can be explained, it is strictly necessary that
at least one of the arcs of A(f) is directly explained. This can be guaranteed from the following
proposition:

Proposition 7. Let h, f : {0, 1}n → {0, 1}n be two disjunctive Boolean networks. If for all arc
(u, v) ∈ A(f), (u, v) is a indirectly explained arc then the set of negative arcs in h has at least one
cycle.

Proof. Let (u, v0) be an arc indirectly explained, then there exists a vertex v1 such that (u, v1) ∈
A(f) and (v1, v0) ∈ A(h) with negative label. And so on, we can construct a succession of vertices
v0, v1, . . . , vn that fulfill this condition.

Without loss of generality, let us consider vn, . . . , v0 the longest path of negative arcs in A(h)
that satisfy this condition (Figure 11).

And for the case of (u, vn), it is necessary that it can be explained indirectly (initial premise),
but there does not exist a vertex vn+1 such that (u, vn+1) ∈ A(f) and (vn+1, vn) ∈ A(h) with
negative label (since, in that case, vn, . . . , v0 would not be the longest path). Therefore, that value
j such that (u, vj) ∈ A(f) and (vj, vn) ∈ A(h) with negative label, must necessarily be in the set
{0, . . . , n− 1}, thus forming a cycle in the set of negative arcs in G(h). 2

In addition to each arc of f being explained (directly or indirectly) another interesting condition
is that the resulting labeled graph is update. Condition (A+)∗ ∩A− = ∅ eliminates several simple
cases, but it is not sufficient as can be seen in Figure 12. To find an update solution, based on this
one, it is necessary to study some properties previously.
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G(h) G(f)

u

v0 v1 . . . vn−1 vn
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v0 v1 . . . vn−1 vn	 	 	 	

Figure 11: Explanation of Proposition 7.
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Figure 12: (a) A disjunctive Boolean network f . (b) A	(f). (c) Iterations of Glab(f, A	(f)).
(d) Glab(f, A	(f)) which is not update, because according to the labeled digraph there should be
an update schedule s such that s(2) < s(1) < s(3) ≤ s(2), which is a contradiction.

An interesting set to study is the set of positive arcs generated by Glab, i.e. lab⊕[Glab(f, A−)].
An important characteristic of this set is that for all disjunctive Boolean network h and update
schedule s such that hs = f , we have lab⊕[Glab(f, A−)] ⊆ A(h).

The following result shows that given two sets of negative arcs (subsets of A	(f)), the positive
arcs of Glab on the larger set are also positive arcs of Glab on the smaller set.

Proposition 8. Let f : {0, 1}n → {0, 1}n be a disjunctive Boolean network and A′′ ⊆ A′ ⊆ A	(f),
then lab⊕[Glab(f, A′)] ⊆ lab⊕[Glab(f, A′′)].

Proof. Let us suppose that A′′ ⊆ A′ ⊆ A	(f).
Let (u, v) ∈ lab⊕[Glab(f, A′)], then ∀w ∈ N+

f (u), (w, v) /∈ A′.
Since A′′ ⊆ A′, then ∀w ∈ N+

f (u), (w, v) /∈ A′′, and therefore, (u, v) ∈ lab⊕[G(f), A′′]. Hence,

lab⊕[G(f), A′] ⊆ lab⊕[G(f), A′′]. 2
The following result allows us to ensure that if there exists an acyclic set of negative arcs

A− ⊆ A	(f) such that Glab(f, A−) is an update digraph, then GP (Glab(f, A−)) = G(f).

Proposition 9. Let f : {0, 1}n → {0, 1}n be a disjunctive Boolean network and A− ⊆ A	(f) such
that G[A−] is acyclic. If Glab(f, A−) is an update digraph, then GP (Glab(f, A−)) = G(f).

Proof. [GP (Glab(f, A−)) ⊆ G(f)] Let (u, v) ∈ A(GP (Glab(f, A−))). We have two cases:
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• If (u, v) ∈ lab⊕[Glab(f, A−)], then (u, v) ∈ A(f).

• Otherwise, if (u, v) /∈ lab⊕[Glab(f, A−)], since (u, v) ∈ A(GP (Glab(f, A−))), then, by definition
of parallel digraph, there exists a vertex w such that (u,w) ∈ A(f) and (w, v) ∈ A−. Since
(w, v) ∈ A−, then N−f (w) ⊆ N−f (v). For this reason, since (u,w) ∈ A(f), then (u, v) ∈ A(f).

[G(f) ⊆ GP (Glab(f, A−))] Let (u, v) ∈ A(f). We have two cases:

• If it does not exist w ∈ [n] such that (u,w) ∈ A(f) and (w, v) ∈ A−, then (u, v) ∈
lab⊕[Glab(f, A−)], therefore, (u, v) ∈ A(GP (Glab(f, A−))).

• If there exists w ∈ [n] such that (u,w) ∈ A(f) and (w, v) ∈ A−, then, by definition of parallel
digraph, (u, v) ∈ A(GP (Glab(f, A−))).

Hence, if (u, v) ∈ A(f), then (u, v) ∈ A(GP (Glab(f, A−))). Therefore, since GP (Glab(f, A−)) ⊆ G(f)
and G(f) ⊆ GP (Glab(f, A−)), we have GP (Glab(f, A−)) = G(f). 2

Remark 6. Note that if G[A−] has a cycle, it is not possible to calculate Glab(f, A−). Also, it is
not necessary, because by Corollary 6 we have a solution for the studied problem.

The following proposition shows that if there is a solution (with negative arcs A− and positive
arcs B), then the set of negative arcs of Glab(f, A−) is exactly A− and the set of positive arcs of
Glab(f, A−) is a subset of B. Therefore, the solution obtained using Glab(f, A−) is minimal in the
number of arcs.

Proposition 10. Let f : {0, 1}n → {0, 1}n be a disjunctive Boolean network and A− ⊆ A	(f)
such that G[A−] is acyclic. If there exists B ⊆ [n]×[n] such that A−∩B = ∅, G[A−, B] is an update
digraph and GP (G[A−, B]) = G(f), then lab	[(Glab(f, A−)] = A− and lab⊕[Glab(f, A−)] ⊆ B.

Proof. Let us suppose that there exists B ⊆ [n]× [n] such that A−∩B = ∅ and GP (G[A−, B]) =
G(f).

If the Glab(f, A−) operator is applied, note that (A+)∗ ∩ A− = ∅, since if there is an arc (or a
path) in A+ that coincides with an arc in A−, then there is no solution with A− as negative arcs
(because it breaks the update condition, since s(u) ≥ s(w0) ≥ · · · ≥ s(wn) ≥ s(v) (according to
the positive path), and s(u) < s(v) (according to the negative arc), which is a contradiction). For
this reason, the Glab operator does not make a new recursive call, hence lab	[(Glab(f, A−)] = A−.
On the other hand, lab⊕[Glab(f, A−)] is not necessarily equal to B, because B, being part of an
update solution, may contain arcs that Glab omitted (because they are indirectly explained) and
that do not affect the rest of the digraph (as can be seen in Figure 13).
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Figure 13: Example of lab⊕[Glab(f, A−)] ⊆ B.

For this reason, we can state that lab⊕[Glab(f, A−)] is a minimal set for the positive arcs of
Glab(f, A−) and this together with A− is a minimal set for the arcs of Glab(f, A−). 2
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Definition 10. Let (G, lab) be a labeled digraph. A partition {V1, V2} of [n] is said to be admissible
if satisfies the following conditions:

1. ∃(u, v) ∈ A(G), u ∈ V1 ∧ v ∈ V2,

2. ∀(u, v) ∈ A(G), u ∈ V1 ∧ v ∈ V2 =⇒ lab(u, v) = 	,

3. ∀(u, v) ∈ A(G), u, v ∈ V2 =⇒ lab(u, v) = ⊕.

Lemma 11. Let f : {0, 1}n → {0, 1}n be a disjunctive Boolean network and {V1, V2} an ad-
missible partition of Glab(f, A	(f)). If we define A− = {(u, v) ∈ A(G) : u ∈ V1 ∧ v ∈ V2},
where G is the digraph of the resulting labeled digraph, then Glab(f, A−) is an update digraph and
GP (Glab(f, A−)) = G(f).

Proof. We denoted by (G, lab) the labeled digraph obtained by Glab operator.
To show that (G, lab) is an update digraph, we prove that if we define s = V1, V2, then lab =

labs.
Note that for all (u, v) in A(G) such that u /∈ V1 or v /∈ V2, lab(u, v) = labs(u, v) = ⊕, because

all these arcs, if they appear in G (resulting from the Glab operator), have a label ⊕ since they are
not in A−.

On the other hand, we prove that lab	[G, lab] = A−. Note that when choosing the arcs in A−

only the arcs from V1 to V1 and from V2 to V1 have been removed from lab	[G, lab] (those from V1

to V2 remain in A− and there are no negative arcs from V2 to V2, since V1 and V2 is an admissible
partition). For this reason, for every new arc (u, v) in A+, v ∈ V1. Therefore, in the first iteration
of the Glab operator, no edge of A− will be removed, hence lab	[G, lab] = A−.

Thus, since the only negative arcs are from V1 to V2, we have lab = labs, with s = V1, V2, so
(G, lab) is update.

Finally, since Glab(f, A	(f)) is update, according to Proposition 9, GP (Glab(f, A	(f))) = G(f).
2

Theorem 12. Let f : {0, 1}n → {0, 1}n be a disjunctive Boolean network. There exists a solution
for D-DEN problem if and only if A	(f) has a cycle or lab	[Glab(f, A	(f))] 6= ∅. Besides, if a
solution exists, it can be found in polynomial time.

Proof. If A	(f) has a cycle, we have at least 2 vertices with the same input neighborhood. With
those vertices with equal neighborhood we have the conditions of Corollary 6 and therefore there
is a solution to the D-DEN problem.

On the contrary, if A	(f) is acyclic, the first step is to compute Glab(f, A	(f)). Next, we use
the following algorithm to define the set V2, where ComponentDigraph(G) is a digraph (V̂ , Â)
defined as follows:

• V̂ = {G1, G2, . . . , Gk}, where Gi are the strongly connected components of G.

• (Gi, Gj) ∈ Â if and only if there exists an arc from a vertex in Gi to a vertex in Gj.
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Algorithm 2: AdmPartition(G, lab)

Input: A labeled digraph (G, lab).
Output: A partition {V1, V2} of V (G).

1 G⊕ ← lab⊕[(G, lab)];

2 (V̂ , Â)← ComponentDigraph(G⊕);

3 Q← {Gi ∈ V̂ : @Gj ∈ V̂ , (Gj, Gi) ∈ Â}; // initial components

4 v∗ ← Null;
5 while v∗ = Null do
6 Gq ← first element of Q;
7 if ∃u ∈ Gq ∧ ∃(w, u) ∈ A(G), lab(w, u) = 	 then v∗ ← u;

8 else Q← Q ∪ {Gi ∈ V̂ : (Gq, Gi) ∈ Â};
9 V2 ← {v ∈ V (G): ∃ a path in G⊕ from v to some vertex in the same component of v∗};

10 V1 ← V (G) \ V2;
11 return {V1, V2}

Note that the resulting set V2 will never be empty since lab	[Glab(f, A	(f))] 6= ∅.
Moreover, let us note that the cost of finding this admissible partition is O(n2), since the while-

cycle in lines 5 to 8 can be executed at most O(n) times, and the operation within the while-cycle
takes O(n). Therefore, the total cost of the while cycle is O(n2). In addition, each of the operations
in lines 1 to 3 and 9 can be performed in O(n2) time.

The strategy presented in this algorithm is to do a Breadth First Search in the digraph for
strongly connected components of the positive arcs of the labeled digraph. The goal of the search
is to find the first strongly connected component that receives a negative arc (which we call the
pivot component). Once this component is found, a partition is created: in V2 are all the vertices
that can reach the pivot component by a path of positive arcs and in V1 the rest of vertices.

Now, we prove that {V1, V2} is an admissible partition.

• Note that in the arc (w, u) (with label 	) that activate the line 7 of Algorithm 2, which
triggers the construction of V2, u ∈ V2 (by how the algorithm is defined) and w ∈ V1

(because if w ∈ V2, (w, u) it would have been removed from A− by applying Glab operator).
Therefore, ∃(u, v) ∈ A(G), u ∈ V1 ∧ v ∈ V2,

• By contradiction, let us suppose that there exists an arc (u, v) ∈ V1×V2, such that lab(u, v) =
⊕. Note that since v ∈ V2, there exists k ≥ 1, (v, p) ∈ A(lab⊕[(G, lab)])k where p is a pivot
vertex (found from lines 1 to 7 of Algorithm 2) and since u ∈ V1, it does not exist k′ ≥ 1,
(u, p) ∈ A(lab⊕[(G, lab)])k

′
. Since we suppose that (u, v) ∈ A(G) and lab(u, v) = ⊕, then

there exists k′ = k + 1, therefore, u ∈ V2, which is a contradiction. Therefore ∀(u, v) ∈
A(G), u ∈ V1 ∧ v ∈ V2 =⇒ lab(u, v) = 	,

• By contradiction, let us suppose that there exists an arc (u, v) ∈ V2×V2, such that lab(u, v) =
	. Note that since u, v ∈ V2, there exists k, k′ ≥ 1, (v, p) ∈ A(lab⊕[(G, lab)])k and (u, p) ∈
A(lab⊕[(G, lab)])k

′
where p is a pivot vertex (found from lines 1 to 7 of Algorithm 2). If

(u, v) ∈ A(G) and lab(u, v) = 	, then p would not have been chosen as a pivot (since v
appears earlier in the poset), which is a contradiction. Therefore ∀(u, v) ∈ A(G), u, v ∈
V2 =⇒ lab(u, v) = ⊕.
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With what we learned above, we can build the following algorithm:

Algorithm 3: D-DENPSolve(f)

Input: A disjunctive Boolean network f : {0, 1}n → {0, 1}n.
Output: (G, lab) an update digraph such that GP (G, lab) = G(f) if there exists a

solution of the D-DEN problem with instance f , or Null otherwise.
1 if A	(f) has a cycle then
2 Let u and v be two vertices such that N−f (u) = N−f (v);

3 return G[{(u, v)}, A(f) \
{

(x, v) : x ∈ N−f (v)
}

]

4 else
5 (G, lab)← Glab(f, A	(f));
6 if lab	[(G, lab)] = ∅ then return Null;
7 if (G, lab) is update then return (G, lab);
8 {V1, V2} ← AdmPartition(G, lab);
9 A− ← {(u, v) ∈ A(G, lab) : u ∈ V1 ∧ v ∈ V2};

10 return Glab(f, A−);

Given a disjunctive Boolean network f : {0, 1}n → {0, 1}n, first we obtain the A	(f), in this
way, we know which arcs, of a possible digraph G, can be labeled 	. If A	(f) has a cycle, by
Corollary 6, there is a solution (lines 1 to 3).

Otherwise, if A	(f) is acyclic, the operator Glab can be applied. If the resulting labeled digraph
(G, lab) has no negative arcs, then no neighborhood is contained in another one and, according to
Lemma 4, there is no non-trivial solution, therefore the algorithm ends (line 6).

If lab	[(G, lab)] is not empty and (G, lab) is update, then we found a solution (line 7).
Finally, if (G, lab) is not update, since we know that lab	[(G, lab)] 6= ∅, we can find an admis-

sible partition of Glab(f, A	(f)) and with that partition build a solution (lines 8 to 10).
Let us analyze that Algorithm 3 is a polynomial algorithm, since constructing A	(f) takes

O(n3) and checking whether it has a cycle requires O(n2). Therefore, the cost of the if-section is
O(n3). In the else-section, we must construct Glab(f, A	(f)), which takes O(n5) (Remark 5), and
then the operations in lines 6 to 9 require O(n2). Therefore, the total cost of the else-section and
the whole Algorithm 3 is O(n5). 2

Example 5. Given f a disjunctive Boolean network (Figure 14(a)), the first step is to create the
digraph A	(f) (Figure 14(b)).

Since A	(f) has no cycles, the algorithm continues. The next step is to get Glab(f, A	(f)).
First, A+ is calculated (Figure 14(c)). Then, since no edge (or path) of A+ coincides with the
arcs of A	(f), the operator Glab ends and the result is Figure 14(d) and its negative arcs are
Figure 14(b). Since lab	[Glab(f, A	(f))] 6= ∅, the algorithm continues.

The labeled digraph of the operator Glab (Figure 14(d)) is not update. For this reason, we look
for an admissible partition. First, G⊕ (Figure 14(c)) is obtained. Then, the POSET digraph (Fig-
ure 14(e)) is generated, where we have three strongly connected components: {1} , {2, 3} , {4, 5}.
We find negative arcs from the component {2, 3} to {1}. With this, we can define V2 = {1} and
V1 = {2, 3, 4, 5}. With this set, we define the labeling in Figure 14(f). Finally, the parallel digraph
of the labeling digraph in Figure 14(f) is exactly Figure 14(a).

Corollary 13. D-DEN can be decided in polynomial time.
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(e) The POSET digraph (f) Labeled digraph
according Algorithm 2 according V1 and V2

Figure 14: Figures of Example 5.

Proof. With what we learned above, we can build the following algorithm:

Algorithm 4: D-DENDecider(f)

Input: A disjunctive Boolean network f : {0, 1}n → {0, 1}n.
Output: True if there exists a solution of the D-DEN problem with instance f , or

False otherwise.
1 if A	(f) has a cycle then return True ;
2 if lab	[Glab(f, A	(f))] 6= ∅ then return True ;
3 return False ;

Note that the simplicity of this algorithm lies in answering two questions:

• Does A	(f) have a cycle?: If the answer is yes, we have at least two vertices with the same
input neighborhood, therefore, according to Corollary 6, there is a solution.

• lab	[Glab(f, A	(f))] 6= ∅?: If the answer is yes, according to Theorem 12, there is a solution.

If the answer to both questions is no, then there is no solution, because all the candidates to
be negative arcs in some solution have been discarded.

In the first line, constructing A	(f) takes O(n3) and checking if it has a cycle requires O(n2). In
the second, constructing Glab(f, A	(f)) takes O(n5) and then getting lab	[Glab(f, A	(f))] requires
O(n2). Therefore, the total cost of Algorithm 4 is O(n5). 2
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6 Conclusions and future work

In this paper, we present different approaches to the problem of dynamically equivalent networks.
As could be seen in this paper, solving the general problem, i.e., given a Boolean network f ,

finding another Boolean network f̄ and an update schedule s̄ such that f̄ s̄ = f is NP-Hard, since
it is as difficult as 3-SAT, but it does present an approach to finding a possible solution: if there
exists a solution with an update schedule with more than two blocks, then there exists a solution
with an update schedule of only two blocks.

Now, if we restrict the problem to disjunctive networks, finding a disjunctive Boolean network
h and an update schedule s such that hs = f , this problem can be solved in polynomial time.

It is worth noting that the fact that in the labeled digraph contains an arc (u, v) whose label is
negative only if N−f (u) ⊆ N−f (v) in the parallel digraph is a very important result since it implies
that any digraph whose neighborhoods are not comparable, has no other dynamically equivalent
network different to the trivial one.

With all these results, there remain several ideas to explore, such as finding an algorithm that
can solve the general problem, and explore enumeration algorithms, in the case we fix some element
of the triplet (h, s, f). Another idea would be to analyze if for a Boolean network f , there exists
a Boolean network h and an update schedule s such that s has some particularity (e.g.: s is a
sequential update schedule) and that hs = f .
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[15] René Thomas and Richard d’Ari. Biological feedback. CRC press, 1990.

22



Centro de Investigación en Ingenieŕıa Matemática (CI
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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