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K-INDEPENDENT BOOLEAN NETWORKS∗1

JULIO ARACENA † AND RAÚL ASTETE-ELGUIN‡2

Abstract. This paper proposes a new parameter for studying Boolean networks: the indepen-3
dence number. We establish that a Boolean network is k-independent if, for any set of k variables4
and any combination of binary values assigned to them, there exists at least one fixed point in the5
network that takes those values at the given set of k indices. In this context, we define the indepen-6
dence number of a network as the maximum value of k such that the network is k-independent. This7
definition is closely related to widely studied combinatorial designs, such as “k-strength covering8
arrays”, also known as Boolean sets with all k-projections surjective. Our motivation arises from9
understanding the relationship between a network’s interaction graph and its fixed points, which10
deepens the classical paradigm of research in this direction by incorporating a particular structure11
on the set of fixed points, beyond merely observing their quantity. Specifically, among the results12
of this paper, we highlight a condition on the in-degree of the interaction graph for a network to13
be k-independent, we show that all regulatory networks are at most n/2-independent, and we con-14
struct k-independent networks for all possible k in the case of monotone networks with a complete15
interaction graph.16
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1. Introduction.19

1.1. Boolean networks and covering arrays. A Boolean network (BN) on
n variables is a function f : {0, 1}n → {0, 1}n, defined as f(x) = (f1(x), . . . , fn(x))
for x ∈ {0, 1}n. Each function fi : {0, 1}n → {0, 1} is called a local activation
function of the network. For x ∈ {0, 1}n, we denote by wH(x) the Hamming weight
of x, which is the number of ones in x. Additionally, let [n] := {1, . . . , n}. Given
x = (x1, . . . , xn) ∈ {0, 1}n, i ∈ [n], and b ∈ {0, 1}, we define the vector (x : xi = b) as:

(x : xi = b) = (x1, . . . , xi−1, b, xi+1, . . . , xn).

The following are some examples of families of Boolean networks:20

• Linear networks: Boolean networks where each local activation function is21

the sum modulo two of some variables.22

• Majority networks: Networks where each local activation function take23

the value of the majority of the variables they depend on.24

• Monotone networks: Given x, y ∈ {0, 1}n, denote x ≤ y if xi ≤ yi for25

every i ∈ [n]. A Boolean network f is said to be monotone if it is increasing26

with respect to the relation ≤. Majority networks are a particular case of27

monotone networks.28

• AND-OR networks: Boolean networks in which each local activation func-29

tion is a disjunction or a conjunction of the variables on which they depend.30

• Regulatory networks: A Boolean function h : {0, 1}n → {0, 1} is increasing31

with respect to the variable i if, for every x ∈ {0, 1}n, h(x : xi = 0) ≤32

∗Submitted to the editors October 8, 2024.
Funding: The research leading to these results was supported by ANID-Chile - Maǵıster Na-
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2 J. ARACENA, R. ASTETE-ELGUIN

h(x : xi = 1) and is said to be decreasing on i if for every x ∈ {0, 1}n,33

h(x : xi = 0) ≥ h(x : xi = 1). A Boolean function is unate if for every34

i ∈ [n], h is either increasing or decreasing with respect to the input i. A35

Regulatory Boolean network is a Boolean network where each local activation36

function is unate, and since every monotone Boolean function is unate, every37

monotone Boolean network is also regulatory.38

In this article, our primary focus will be on linear and monotone networks. In39

general, Boolean networks represent n variables interacting and evolving discretely40

over time based on a predefined rule. Introduced by Kauffman in 1969 [13, 14], BNs41

find applications in diverse fields such as social networks [9], genetic networks [1], and42

biochemical systems [10].43

In this context, the iteration digraph of a network f over the vertices {0, 1}n is44

defined such that the arcs are of the form (x, f(x)) for x ∈ {0, 1}n. Each iteration45

digraph fully represents a Boolean network. However, their utilization becomes im-46

practical due to their large number of nodes. For this reason, associated with any47

Boolean network f , we can define the interaction (or dependency) digraph G(f), with48

vertices [n] and arcs (i, j) indicating that fj “depends” on variable i, i.e., there exists49

x ∈ {0, 1}n such that50

fj(x1, . . . , xi = 0, . . . , xn) ̸= fj(x1, . . . , xi = 1, . . . , xn).51

It is important to note that G(f) may have loops, i.e., arcs from a vertex to itself.52

A fixed point of f is a vector x ∈ {0, 1}n such that f(x) = x. We will denote the53

set of fixed points by FP(f) = {x ∈ {0, 1}n : f(x) = x}. The set of fixed points54

in a BN is an intriguing subject of study for various reasons. One of them is its55

significance in applications within biological systems, as they can be interpreted as56

stable patterns of gene expression. It is also of interest to understand, at a theoretical57

level, the configurations that lead a Boolean network to stabilize, that is, periodic58

points [23, 7], meaning the states x ∈ {0, 1}n such that f ℓ(x) = x for some ℓ. Fixed59

points (case ℓ = 1) are particularly interesting for inferring information about the60

activation functions of the network [17]. However, most works in this direction study61

the relationship between the number of fixed points of a Boolean network and the62

properties of the local activation functions [2, 3] or of its interaction graph. The63

information that can be obtained about the architecture of a Boolean network from64

structural properties of its fixed points has not been thoroughly explored. A first65

step in this direction is the work carried out in [22], where the VC dimension in66

Boolean networks is defined in terms of their fixed points.67

Given x ∈ {0, 1}n and a set of indices I = {i1, . . . , ik} ⊆ [n] we denote xI =68

(xi1 , . . . , xik). A covering array of strength k is defined as a set of Boolean vectors69

from {0, 1}n such that for every subset I of k indices, and for every a = (a1, . . . , ak) ∈70

{0, 1}k, there exists a vector x in the set such that xI = a. In addition, we denote71

CA(m,n; k) as the set of all covering arrays with m vectors of size n and strength k.72

When we do not need to refer to the number of rows, we simply denote it by CA(n; k).73

For example, the following is an element of CA(5, 4; 2) :74

B =

0 0 0 0
1 0 1 1
0 1 1 1
1 1 0 1
1 1 1 0

.75
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K-INDEPENDENT BOOLEAN NETWORKS 3

One of the main challenges of covering arrays is to determine those with the least76

possible number of elements while maintaining strength. CAN(n; k) the minimum77

number of rows of a matrix in CA(m,n; k). It is worth mentioning that determining78

CAN(n; k) for arbitrary values of n and k remains an open problem; we can see some79

of the known values in Table 1. Various efforts have been made to find approximations80

to this minimum. However, the case of k = 2 is the only non-trivial case that has81

been completely solved [16, 12].82

s\t 1 2 3 4 5 6

0 2 4 8 16 32 64
1 2 4 8 12 32 64
2 2 5 10 21 42 85
3 2 6 12 24 48-52 96-108
4 2 6 12 24 48-54 96-116
5 2 6 12 24 48-56 96-118
6 2 6 12 24 48-64 96-128
7 2 6 12 24 48-64 96-128
8 2 6 12 24 48-64 96-128
9 2 7 15 30-32 60-64 120-128
10 2 7 15-16 30-35 60-79 120-179

Table 1
Some known values of CAN(s+ t; t) [18].

Considering the preceding discussion, it becomes pertinent to investigate the im-83

plications, in terms of the interaction graph of a Boolean network, when its fixed84

points constitute a covering array of strength k. Consequently, we introduce the con-85

cept of k-independence for a Boolean network on n variables f , wherein we define it86

as possessing fixed points that form an element of CA(n; k). Moreover, we denote by87

i(f) the maximum k such that f is k-independent, and extend this notion to graphs,88

stating that a graph G on n vertices is k-admissible if there exists a k-independent89

Boolean network whose interaction graph is isomorphic to G.90

It is also pertinent to ask why we study the case where fixed points form a covering91

array. The first reason is because it is a particular case of sets that have VC-dimension92

equals k. We believe it could be a significant step towards understanding the structure93

of fixed points against the structure of the interaction graph. Additionally, while this94

work introduces a previously unstudied family of Boolean networks, the study in95

[17] addresses an inference problem in networks using covering arrays, referred to as96

universal matrices. There is also an applied motivation: a network of individuals97

expressing binary opinions can be modeled by a k-independent Boolean network. In98

such a scenario, any group of k individuals can express any opinion in a stable state,99

providing a degree of “independence” in their opinions. Ultimately, this exploration100

not only enhances our understanding of Boolean networks but also opens new avenues101

for investigating their structural properties beyond the traditional focus on the number102

of fixed points.103

1.2. Our contribution. As previously mentioned, this work focuses on the con-104

cepts of covering arrays and Boolean networks. Our aim is to delve deeper into the105

fixed points of a Boolean network, examining not only their quantity but also the106

specific structure of a covering array.107
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Our work begins by showing the existence of Boolean networks on n variables108

and i(f) = k, for any 1 ≤ k ≤ n. However, the presented construction requires109

a complete interaction graph without loops and the network is not monotone. We110

present necessary conditions for the existence of a k-independent Boolean network in111

terms of its local activation functions, the number of fixed points, and the properties112

of its interaction graph. We then show some families of graphs that are k-admissible113

for different values of k. In Section 2.3, we present general constructions of networks114

with i(f) = k, representing various scenarios for the parameters m, n, and k of115

covering arrays in CA(m,n; k). Nevertheless,, these constructions do not explicitly116

demonstrate the existence of monotone networks with i(f) = k. Finally, we address117

this question in Section 3, where we present an existence result that utilizes Steiner118

systems to construct the local activation functions of a monotone network with i(f) =119

k on the complete graph without loops.120

2. Results.121

2.1. General results. In this section, we establish the basic results on the k-122

admissibility of graphs and the existence of Boolean networks with i(f) = k. To do123

this, first, we will review some classical results from the literature concerning fixed124

points of Boolean networks. A significant motivation in this area is to answer the125

question: What can we infer about the fixed points of f based on G(f), and vice126

versa? The results we present initially compare the number of fixed points of f with127

properties of G(f). Perhaps one of the most referenced result in this field is the128

feedback bound.129

Let us recall that, given a directed graph G = (V,A), we define a set S ⊆ V as a130

feedback vertex set if the subgraph G[V \S] is acyclic. Furthermore, we introduce the131

transversal number of G, denoted by τ(G), as the minimum cardinality of a feedback132

vertex set for G.133

Theorem 2.1 (Feeback bound [2]). For any Boolean Network f we have:134

|FP(f)| ≤ 2τ(G(f))
135

This result establishes a necessary condition for the k-admissibility of graphs.136

Specifically, for a graph G to be k-admissible, it must be the interaction graph of a137

Boolean network, where the fixed points form a covering array of strength k. This138

requires having at least 2k fixed points. Moreover, we stipulate that139

CAN(n; k) ≤ 2τ(G) ⇐⇒ τ(G) ≥ logCAN(n; k)140

It is important to note that for some values of n and k, as seen in Table 1,141

logCAN(n; k) > k, and therefore in such situations, k-admissible graphs require142

τ(G) > k. For example, consider a complete bipartite graph Kn,2. In this case,143

τ(Kn,2) = 2. Then, the feedback bound allows us to establish that for any Boolean144

network f with interaction graph Kn,2, |FP(f)| ≤ 22 = 4. Later, as we have already145

seen in Table 1, for all n ≥ 4 we have CAN(n; 2) > 4, we can conclude that for n ≥ 4,146

Kn,2 is not k-admissible for any 1 < k ≤ n.147

Hereafter, we address the problem of the existence of Boolean networks f :148

{0, 1}n → {0, 1}n with i(f) = k, for any 1 ≤ k ≤ n − 1. As we will see, the ar-149

chitecture that allows k-independence for any k turns out to be the complete graph150

on n vertices without loops. This is a reasonable candidate, as it is a graph with a151

transversal number of n− 1.152
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Proposition 2.2. Let G = Kn be the complete graph without loops. Then G is153

(n−1)-admissible. Moreover, for every 1 ≤ k ≤ n−1, there exists a Boolean network154

f such that G(f) = Kn and i(f) = k.155

Proof. Assuming linear functions in every node, we can compute that the set of156

fixed points is the set of every vector in {0, 1}n with an even number of ones. This is157

a known covering array of strength n− 1 (see, e.g. [18]).158

Consider 1 ≤ k < n− 1, and let159

Sk := {x ∈ {0, 1}n : wH(x) = j ≤ k + 1 and j = 0 mod 2},160

Tk := {x ∈ {0, 1}n : wH(x) = j ≤ k + 1 and j = 1 mod 2}.161

We claim that if k is even, Sk ∈ CA(n; k)\CA(n; k+1), and if k is odd, Tk ∈ CA(n; k)\162

CA(n; k+1). Additionally, there exist Boolean networks f, g : {0, 1}n → {0, 1}n such163

that FP(f) = Sk and FP(g) = Tk. We will prove the case for even k; the proof for164

odd k is analogous.165

Let I = {i1, . . . , ik} ⊆ [n] and a = (a1, . . . , ak) ∈ {0, 1}k. Clearly, a has at most166

k ones. If a has an even number of ones, consider x ∈ {0, 1}n such that xI = a and167

xi = 0 for every i ̸∈ I. Then x ∈ Sk. Now suppose a has an odd number of ones.168

Consider x ∈ {0, 1}n such that xI = a. Choose j ∈ [n] \ I and let xj = 1, while for169

every i ̸∈ I ∪ {j}, xi = 0. Therefore, x has at most k + 1 ones, and an even number170

of them, i.e., x ∈ Sk. Thus, Sk ∈ CA(n; k). If k is even, then k + 1 is odd. For171

every I = {i1, . . . , ik, ik+1} ⊆ [n], there is no x ∈ Sk such that xI = 1⃗. Therefore,172

Sk ∈ CA(n; k) \ CA(n; k + 1)173

Now define f : {0, 1}n → {0, 1}n such that for every x = (x1, . . . , xn) ∈ {0, 1}n,174

fi(x) = 1 iff wH(x \ xi) ≤ k and wH(x \ xi) is odd. Here we denote x \ xi :=175

(x1, . . . , xi−1, xi+1, . . . , xn) and recall that wH(x) denotes the amount of ones of x.176

Then, it is easy to see that G(f) = Kn and FP(f) = Sk. As a final remark, for the177

case where k is odd, we define g : {0, 1}n → {0, 1}n such that gi(x) = 1 if and only if178

wH(x \ xi) ≤ k and wH(x \ xi) is even.179

Remark 2.3. The Boolean networks constructed in the previous proposition are180

non monotone. Indeed, for k even, let f be the network constructed such that FP(f) =181

Sk. Let x ∈ {0, 1}n such that wH(x) = k + 1, and let y ∈ {0, 1}n such that x ≤ y.182

We observe an index i ∈ [n] such that xi = 1. Since x ≤ y, we have yi = 1, and183

wH(y) ≥ k + 2. Therefore, fi(y) = 0, as wH(y \ yi) ≥ k + 1. This implies that184

f(x) = x, and hence, f(x) ̸≤ f(y).185

As we can see in Fig 1, k-admissible graphs, with k ≥ 2, are not necessarily186

complete, but it is true that they tend to become denser for larger values of k. In187

fact, to prove this, let us first consider the following definition.188

Definition 2.4 (See e.g. [11]). We say that h : {0, 1}n → {0, 1} is k-set canaliz-189

ing if there exists a set I = {i1, . . . , ik} ⊆ {1, . . . , n} and values a1, . . . , ak, b ∈ {0, 1}190

such that191

∀x ∈ {0, 1}n, xI = (a1, . . . , ak) =⇒ h(x) = b192

In this context, we say that the input a1, . . . , ak canalizes h to b. Moreover, we denote193

by IC(h) the minimum k such that h is k-set canalizing.194

It is easy to see that h is k-set canalizing if and only if the minimum number of195

literals in a clause of a DNF-formula (or CNF-formula) of h is k. The following are196

examples of k-set canalizing functions for different values of k:197
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1

2

3

4

5

6

7

8

(a) 3-admissible graph with linear interaction

1

2

3

4

5

6

7 8

(b) 2-admissible
graph with majority
interaction

Fig. 1. Examples of k-admissible non-complete graphs with k > 1.

• The AND function g : {0, 1}n → {0, 1}, defined as g(x1, . . . , xn) =
∧n

i=1 xi,198

is 1-set canalizing. It canalizes to zero whenever any variable takes the value199

zero. Similarly, disjunctions are 1-set canalizing, canalizing to one when any200

variable takes the value one.201

• The majority function Maj : {0, 1}n → {0, 1}, defined as202

Maj(x1, . . . , xn) = 1 ⇐⇒ wH(x) ≥ ⌈n/2⌉203

is such that IC(Maj) = ⌈n/2⌉.204

The previous concept allows us to state the following necessary condition for the205

k-independence of a Boolean network.206

Theorem 2.5. Let f = (f1, . . . , fn) be a k-independent Boolean network such207

that G(f) has no loops, then for all i, IC(fi) ≥ k.208

Proof. By contradiction, assume that f is k-independent, and that there exists a209

local activation function fi that canalizes into Ĩ = {i1, . . . , iℓ} ⊆ N−(i) with ℓ < k,210

on inputs a = (a1, . . . , aℓ) ∈ {0, 1}ℓ to the value b ∈ {0, 1}. Since there are no loops,211

we may assume that i /∈ Ĩ. Then, |Ĩ ∪ {i}| = ℓ+ 1 ≤ k, and since f is k-independent212

(and thus (ℓ+ 1)-independent), there exist two fixed points x, y ∈ FP(f) such that:213

xi = 0, yi = 1, xĨ = a = yĨ214

Therefore, fi(x) = fi(y) = b, but fi(x) = xi = 0 and fi(y) = yi = 1, which is a215

contradiction.216

Corollary 2.6. If G is a loopless k-admissible digraph, then its minimum inde-217

gree is at least k.218

Corollary 2.7. There is no AND-OR Boolean network f with i(f) ≥ 2 and219

loopless interaction graph.220

Remark 2.8. It is worth mentioning that the hypothesis of having no loops is221

necessary to conclude the previous results. For instance, consider the network f :222

{0, 1}n → {0, 1}n defined by fi(x) = xi, for i = 1, . . . , n− 1; and223

fn(x) = xn ∨
(

n−1∧
i=1

xi

)
.

Then, G(f) has loops and IC(fi) = 1 for every i = 1, . . . , n. However, the set of fixed224

points of f is {0, 1}n \ {⃗0}, and this set is a covering array of strength n− 1.225
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A1 A2 Ak

B1 B2 B3 Bk2

· · ·

· · ·

Fig. 2. Construction from Remark 2.9.

Remark 2.9. As we have seen before, it is known that for n ≥ 4, CAN(n; 2) > 4.226

On the other hand, the bound CAN(n; k) ≥ 2k0CAN(n − k0; k − k0), for k0 ≤ k,227

is also known [18]. Using k − k0 = 2, we can conclude that CAN(n; k) > 2k for all228

n > k+1. This allows us to see that for all k > 1, the conditions τ(G) ≥ k, δ−(G) ≥ k,229

and that G has no loops are necessary but not sufficient. Consider n = k2+k > k+1,230

and a complete bipartite graph G, with one set of size k and the other of size k2.231

For this graph, τ(G) = k and δ−(G) = k. However, since CAN(n; k) > k, G is not232

k-admissible.233

2.2. Families of k-admissible graphs. We have already reviewed some nec-234

essary conditions for k-admissibility in terms of the interaction graph and its local235

activation functions. On the other hand, from Proposition 2.2, we observed that the236

complete graph is a suitable architecture for achieving high degrees of k-admissibility237

when considering linear networks. In this section, we will present two explicit con-238

structions of k-admissible graphs for different values of k, inspired by the (n − 1)-239

admissibility of the complete graph without loops.240

Proposition 2.10. Let r, s be two integers and define ξ := min{r, s} − 1. Then,241

there exists a ξ-admissible connected digraph on n = r + s vertices.242

Proof. Let Kr and Ks denote the cliques on r and s vertices, respectively. Now243

we define G composed by these two cliques and select i ∈ V (Kr), and add all the arcs244

of the form (i, ℓ) for ℓ ∈ Ks. Let f : {0, 1}n → {0, 1}n be a linear Boolean network245

with G(f) = G. Now, we see that for every x ∈ FP(f), if xi = 0 the number of ones246

in both cliques should be even. So there are 2r−22s−1 fixed points. On the other case,247

if xi = 1, every vector with an odd number of ones on the variables given by Ks, and248

an odd number of ones in Kr \ {i}, is a fixed point of f . In this case there are also249

2r−22s−1 options. In total, there are 2r+s−2 fixed points and by previous lemmas this250

set is a covering array of strength ξ.251

Kr Ks

i

Fig. 3. Construction from Proposition 2.10.

It is worth mentioning that the previous construction only allows us to construct252
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1 K1
m−1 K2

m−1 · · · Kk
m−1

0 even even even even
...

...
...

...
...

0 even even even even
1 odd odd odd odd
...

...
...

...
...

1 odd odd odd odd

Table 2
Fixed points of Wm,k with linear interaction, k odd.

digraphs that are, at most, n/2-admissible. Moreover it provides examples of ξ-253

admissible graphs G with n vertices, τ(G) = n − 2 and δ−(G) = ξ. In the following254

construction, we generalize this result and show a family of strongly connected k-255

admissible graphs.256

Furthermore, we are particularly interested in finding, for a given n and k, a257

family of strongly connected and k-admissible graphs. We were able to address this258

question for certain cases of n and k with the following lemma.259

Proposition 2.11. For any integer m ≥ 2 and odd k ≥ 1, there is a strongly260

connected graph that is (m− 1)-admissible, with n = (m− 1)k + 1 vertices.261

Proof. We know that cliques achieve high k-independence with linear functions.262

Our next construction is built upon this idea. Let Wm,k = (V,E) be a graph with263

n = (m − 1)k + 1 vertices, comprising a central vertex and k copies of Km, each264

sharing only the central vertex. Examples of these graphs are shown in Figure 4.265

We claim that for every m, k with odd k, the linear Boolean network with inter-266

action graph Wm,k is (m − 1)-independent. To prove this, we will first characterize267

the set of fixed points of this network. To do so, we denote by f the linear BN with268

G(f) = Wm,k, by 1 the central vertex of the graph, and let x ∈ FP(f). Now, we269

distinguish the following two cases:270

• If x1 = 0, then we need that the central vertex observes an even number of271

ones.272

• If x1 = 1, then we need for it to observe an odd number of ones.273

On the other hand, each of the cliques of size m must have an even number of ones;274

otherwise, the configuration would be unstable. We denote by K1
m−1, . . . ,K

k
m−1.275

Then, the set of fixed points of f is given by the configurations that have x1 = 0 and276

for every ℓ ∈ {1, . . . , k}, wH(xℓ
Km−1

) is even or x1 = 1 and for every ℓ ∈ {1, . . . , k},277

wH(xℓ
Km−1

) is odd. Here we note that if k is even, the central vertex cannot take the278

value 1 on a fixed point, because it will always observe an even number of ones. We279

can summarize the set of fixed points in the following table:280

Considering that for each Kℓ
m−1 there are 2m−2 possible configurations with281

even (or odd) weight, we have 2(m−2)k fixed points with x1 = 0 and the same282

amount with x1 = 1. Thus, f has 2(m−2)k+1 fixed points. Moreover, this set has283

strength m − 1. Indeed, let I be a subset of m − 1 vertices from Wm,k and let284

a = (a1, a
K

i1
m−1 , . . . , aK

it
m−1) ∈ {0, 1}m−1, with t ≤ k. We know that the set of fixed285

points, for x1 = 0 (or x1 = 1) restricted to any Kℓ
m−1 is a covering array of strength286

m − 2. Then, there exists a fixed point x such that xI = a, so FP(f) is a covering287
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Fig. 4. Windmill graphs with (m, k) ∈ {(5, 5), (7, 9), (9, 5), (11, 7)} (left to right).

array of strength m− 1.288

2.3. Constructions. From the results of the previous section, we can observe a289

trade-off between the parametersm, n, and k in an element of CA(m,n; k). We aim to290

understand how to grow one of these parameters in terms of another, focusing on the291

context of a k-independent Boolean network on n variables, with m fixed points and292

i(f) = k. In addition, we will translate these results into constructions of k-admissible293

graphs.294

The following result allows us to increase n by one while maintaining strength in295

a certain sense.296

Lemma 2.12 (See e.g. [18]). Let A ∈ CA(m1, n − 1; k) and B ∈ CA(m2, n −297

1; k − 1). Then,298

C =

[
A 0⃗

B 1⃗

]
∈ CA(m1 +m2, n; k).299

Proof. Let I = {i1, . . . , ik} ⊆ [n] and a = (a1, . . . , ak) ∈ {0, 1}k. Now there300

are two possible cases. If n ̸∈ I since A is a covering array of strength k, there is301

a vector x ∈ C such that xI = a. In the other case n ∈ I, and we write without302

loss of generality I = {i1, . . . , ik−1, n} and a = (ai1 , . . . , aik−1
, an). If an = 0, since303

A has strength k there exists x ∈ C such that xI = a. Otherwise, if an = 1, as B304

has strength k − 1, there is a vector y ∈ C such that yI\{n} = (ai1 , . . . , aik−1
), and305

therefore yI = a.306

Remark 2.13. In the previous lemma, if we also assume B ̸∈ CA(m2, n − 1; k),307

then C is not an element of CA(m1 + m2, n; k + 1). Indeed, let I ⊆ [n − 1] and308

a ∈ {0, 1}k be such that there is no x ∈ B with xI = a. Consider Ĩ = I ∪ {n} and309

ã ∈ {0, 1}k+1 such that ãI = a and an = 1. Then, there is no x ∈ C with xĨ = ã, and310

therefore, C does not have strength k + 1.311

In terms of k-independent networks, Lemma 2.12 and Remark 2.13 allows us to312

establish the following result.313

Proposition 2.14. Let f be a Boolean network on n − 1 variables with i(f) =314

k− 1. Then, there exists a Boolean network g on n variables, with i(g) = k and G(g)315

connected such that FP(g)[n−1] := {(x1, . . . , xn−1) ∈ {0, 1}n−1 : (x1, . . . , xn−1, xn) ∈316

FP(g)} contains the set of fixed points of f .317

Proof. Let f̃ : {0, 1}n−1 → {0, 1}n−1 such that i(f) = k (exists by Proposition318

2.2). Now, define319

gi(x) = (xn ∧ fi(x)) ∨ (xn ∧ f̃i(x)), i ∈ {1, . . . , n− 1},320
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G1

1 2

3 4

5 6

7 8

G2

1 2

3 4

5 6

7 8

G̃

1 2

3 4

5 6

7 8

9

Fig. 5. Construction from Proposition 2.14 using G1 with majority and G2 with linear functions.

and gn(x) = xn. Note that if xn = 0, then g(x) = f̃(x), while if xn = 1, g(x) = f(x).321

So, the set of fixed points of g is322

FP(g) =

[
FP(f̃) 0⃗

FP(f) 1⃗

]
323

And by Lemma 2.12 and Remark 2.13, FP(g) ∈ CA(n; k)\CAN(n; k+1) and therefore324

i(g) = k. Moreover, if we suppose FP(f) and FP(f̃) are disjoint we can avoid the325

loop in n by repeating the previous argument with gn(x) as the indicator function of326

FP(f), i.e., gn(x) = 1 if x ∈ FP(f) and gn(x) = 0 if x ∈ FP(f̃).327

Remark 2.15. We can also state Proposition 2.14 in the following manner: Given328

G1, G2 to graphs on V = [n], such that G1 is k-admissible and G2 is (k−1)-admissible,329

then we can construct G̃ = (Ṽ , Ẽ), where Ṽ = [n+1] and Ẽ = E(G1)∪E(G2). Thus,330

by the previous proposition, we can define the same network and conclude that G̃ is331

a k-admissible graph on n + 1 vertices. In Figure 5, we observe an example of this332

construction considering the Maj network in G1, being 2-independent, and the linear333

network in G2 achieving 3-independence. In this case, G̃ is the resulting graph, which334

turns out to be 3-admissible with the network defined in Proposition 2.14.335

The following remark shows that by adding an isolated loop, we can increase n336

by one while maintaining the strength. This, in turn, implies doubling the value of337

m, i.e., the number of fixed points.338

Remark 2.16. Given a k-admissible graph on n vertices, G, the addition of an339

isolated loop would return a k-admissible graph on n+ 1 vertices. Indeed, let f be a340

k-independent BN with interaction graph G. Now we define f̃ : {0, 1}n+1 → {0, 1}n+1341

as f̃(x) = (f1(x), . . . , fn(x), xn+1). So G(f̃) = G̃, and also342

FP(f̃) =

[
FP(f) 0⃗

FP(f) 1⃗

]
343

Now, by Lemma 2.12, FP(f̃) ∈ CA(2|FP(f)|, n+1; k). This construction also allows344

us to use cliques with linear functions and isolated loops to construct, for any n and k,345

Boolean networks with i(f) = k, and non-complete interaction graph. Additionally,346

if n is a multiple of k, incorporating disjoint copies of cliques of size k into this347

construction results in a (k − 1)-regular, (k − 1)-admissible graph on n vertices.348

After recognizing that the inclusion of loops doubles the number of fixed points,349

we wonder: Can we construct examples of networks with i(f) = k and the maximum350

number of fixed points without increasing the strength? To advance in this direction,351

we first prove the following upper bound.352
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Proposition 2.17. Let A ∈ CA(n; k) \ CA(n; k + 1). Then, an upper bound for353

the number of elements of A is354

2n−1(2− 2−k)355

Proof. Since A has no strength k + 1, there exists a = (a1, . . . , ak+1) ∈ {0, 1}k+1356

such that for any vector we select as a completion b = (bk+2, . . . , bn) ∈ {0, 1}n−k−1,357

the concatenation ab = (a1, . . . , ak+1, bk+2, . . . , bn) ∈ {0, 1}n is not an element of A.358

Therefore, there are at least 2n−k−1 elements that are not part of the rows of A, so359

the upper bound is 2n − 2n−k−1 = 2n−1(2− 2−k).360

Now consider a graph G composed by a clique of size k+1 and n− k− 1 isolated361

loops. Suppose we have a linear Boolean network with this interaction graph. Then,362

by the previous results, we know that i(f) = k. The inclusion of loops does not363

increase the strength, as the configuration 1⃗ ∈ {0, 1}k+1 remains unstable for the364

isolated clique. Then, since every loop duplicates the set of fixed points, we conclude365

that f has 2n−k−12k = 2n−1 fixed points. This result demonstrates that, for a fixed366

strength k, we can approach the bound from Proposition 2.17 closely (up to a constant367

in terms of k)368

Corollary 2.18. For every k ≤ n, there is a Boolean network with i(f) = k and369

2n−1 fixed points.370

1 2

3 4

5

6

7

8

Fig. 6. Construction from Proposition 2.18 with n = 8 and k = 3.

By using a different approach, the following result allows us to significantly in-371

crease n while keeping the strength controlled.372

Lemma 2.19. Let A ∈ CA(ms, ns; s) and B ∈ CA(mr, nr; r). We denote by A⊗B373

the set of all possible concatenations between a vector of A and a vector of B:374

A⊗B = {aibj ∈ {0, 1}ns+nr : i, j ∈ [s]× [r]}.375

Then, A⊗B ∈ CA(msmr, ns + nr; t), where t = min{r, s}.376

Proof. Without loss of generality, assume t = s. Let I = {i1, . . . , is} ⊆ [ns + nr].377

Consider the partition of I into IA and IB , where IA contains the ℓA indices between378

1 and ns, and IB contains the ℓB indices between ns+1 and ns+nr. Let a = aAaB ∈379

{0, 1}ns+nr , where aA = (aA1 , . . . , a
A
ℓA
) and aB = (aB1 , . . . , a

B
ℓr
). Since t = min{s, t},380

we know that A and B are covering arrays of strength s. Thus, there exist x ∈ A381

and y ∈ B such that x|A = aA and y|B = aB . As A ⊗ B contains all possible382

concatenations of elements between A and B, we conclude that xy ∈ A ⊗ B and,383

therefore, A⊗B ∈ CA(msmr, ns + nr; t).384

This manuscript is for review purposes only.



12 J. ARACENA, R. ASTETE-ELGUIN

Corollary 2.20. Let {Aℓ}Lℓ=1 be a collection of sets of Boolean vectors such that
for every ℓ, Aℓ is an element of CA(mℓ, nℓ; tℓ). Then,

L⊗
ℓ=1

Aℓ = ((A1 ⊗A2)⊗A3)⊗ · · · ⊗AL) ∈ CA(m,n; t)

Where m =
∏L

ℓ=1 mℓ, nℓ =
∑L

ℓ=1 nℓ and t = min{tℓ : ℓ = 1, . . . , L}.385

Remark 2.21. Consider a family of Boolean networks {fℓ}Lℓ=1 such that for each386

ℓ, G(f ℓ) = Gℓ and i(f ℓ) = tℓ. Define the graph G =
⋃L

ℓ=1 Gℓ by387

V (G) =

L⋃
ℓ=1

V (Gℓ), E(G) =

L⋃
ℓ=1

E(Gℓ).388

Then, there exists a Boolean network f such that G(f) = G and i(f) = k, where389

k = min{tℓ : ℓ = 1, . . . , L}. Indeed, since G is a disjoint union, we can define f390

locally as f ℓ for each Gℓ. Thus, the set of fixed points is of the form:391

FP(f) =

L⊗
ℓ=1

FP(f ℓ)392

where each FP(f ℓ) is a covering array of strength tℓ. Then, by Lemma 2.19, this set is393

a covering array of strength k = min{tℓ : ℓ = 1, . . . , L} with
∏L

ℓ=1 |FP(f ℓ)| elements.394

The preceding Remark shows that we can use Corollary 2.20 to, from a family of395

networks with certain degrees of k-independence, construct another one (increasing n396

and m, and controlling k), with a disconnected interaction graph. The following result397

demonstrates that we can also carry out a similar construction, but while maintaining398

the interaction graph strongly connected.399

Proposition 2.22. Let {fℓ}Lℓ=1 be a family of Boolean networks such that for400

each ℓ, G(f ℓ) = Gℓ and i(f ℓ) = tℓ. Then, there is Boolean network f with a strongly401

connected interaction graph G(f) = G and i(f) = k, where k = min{tℓ : ℓ =402

1, . . . , L}.403

Proof. DefineG with vertex set V :=
⋃L

ℓ=1 V (Gℓ), n = |V | and consider a Boolean404

network f : {0, 1}n → {0, 1}n such that for every i ∈ G1, fi is defined by405

fi(x) = f1
i (xG1

) ∧ C2(xG2
) ∧ · · · ∧ CL(xGL

),406

where Cℓ(x) = 1 if and only if xGℓ
∈ FP(f ℓ). We also define for every ℓ ∈ {2, . . . , L},407

and for every j ∈ Gℓ,408

fj(x) = f ℓ
j (xGℓ

) ∧ C1(xG1)409

Then, it is easy to see that410

FP(f) =

L⊗
ℓ=1

FP(f ℓ) ∈ CA(n; k).411

Finally, recall that we assume i(f ℓ) = tℓ for every ℓ. Suppose, for contradiction,412

that i(f) = k + 1. Consider I = {i1, . . . , ik+1} ⊆ V (Gℓ). For every a ∈ {0, 1}k+1,413

there would exist x ∈ FP(f ℓ) such that xI = a, implying i(f ℓ) ≥ k + 1 > tℓ, which414

contradicts our assumption.415
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3. The monotone case. As we saw in Remark 2.3, the general construction416

of Boolean networks with n variables and i(f) = k does not guarantee the existence417

of monotone k-independent networks. Similarly, the other constructions presented in418

the previous chapter do not provide results on the existence of k-admissible graphs419

with monotone networks. There have been previous studies on fixed points in mono-420

tone networks, but they do not consider the structure of the set of fixed points [3].421

This theoretically motivates us to question whether monotone networks can be k-422

independent for some 1 < k < n. Additionally, this question is interesting from an423

applied perspective, as networks modeling binary opinion exchange systems are often424

monotone. Therefore, we dedicate this section to studying the relationship between425

monotonicity and k-independence.426

The following combinatorial design proves to be convenient when working with427

covering arrays and monotone networks.428

Definition 3.1. Let A = {x1, . . . , xm} ⊆ {0, 1}n. We say that A is a Steiner429

system with parameters (n, k, t) if wH(xi) = k for i = 1, . . . ,m, and for every subset430

of indices I = {i1, . . . , it} there is an unique vector xj ∈ A such that xj
iℓ

= 1 for431

ℓ ∈ {1, . . . , t}.432

Given a set of indices I = {i1, . . . , it} and values a = (a1, . . . , at) ∈ {0, 1}t, we433

say that a vector x ∈ {0, 1}n such that xI = a is a completion of a. In this context,434

a Steiner system guarantees the uniqueness of the completion of the configuration435

1⃗ ∈ {0, 1}t for any subset of t indices.436

As an example, the following is a Steiner system with parameters (8, 4, 3):437

A =

11010001
01101001
00110101
00011011
10001101
01000111
10100011
00101110
10010110
11001010
11100100
01110010
10111000
01011100

438

The existence of a Steiner system with given parameters has been a fundamental439

problem in combinatorics [6]. In a broader context, divisibility conditions were es-440

tablished: for an (n, q, r) Steiner system to exist, a necessary condition is that
(
q−i
r−i

)
441

divides
(
n−i
r−i

)
for every 0 ≤ i ≤ r − 1. For many years, it was conjectured that these442

divisibility conditions were also sufficient. This conjecture was proven in 2014 for443

large values of n [15]. See also [8], [4].444

Lemma 3.2. Let A be a Steiner system with parameters (n, t + 1, t) such that445

2t < n. Then, A ∈ CA(n; t) \ CA(n; t+ 1).446

Proof. Let I be a subset of [n] of size t, we will assume without loss of generality447

that I = {1, . . . , t}. We aim to prove that for every a = (a1, . . . , at) ∈ {0, 1}t, there448
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exists x ∈ A such that xI = a. We will proceed with the proof by induction on the449

number of zeros in a.450

First, observe that there exists xℓ ∈ A such that xℓ
I = 11 · · · 1, due to the property451

of Steiner systems. As the vectors have weight t + 1, there exists a unique w ∈452

{t+1, . . . , n} such that xℓ
w = 1. Let i0 ∈ I and let ei0 ∈ {0, 1}t be the vector that has453

a single zero at position i0 and define Ki0 = ({1, . . . , t} \ {i0})∪{w}. Notice Ki0 is a454

subset of t indices, so there exists a vector xℓ1 ∈ A that has ones in the components455

Ki0 . Suppose xℓ1
i0

= 1. In such case, xℓ and xℓ1 would be two vectors in A that has456

ones in I, which contradicts the definition of a Steiner system. Therefore, xℓ1
i0

must457

be zero, and hence xℓ1
I = ei0 . With this, we proved that given a subset of t indices,458

all configurations with one zero and t− 1 ones appear.459

Now, suppose that all configurations with s zeros appear, and let us prove that460

those with s + 1 zeros also appear. Let a = (a1, . . . , at) ∈ {0, 1}t such that a1 =461

· · · = as+1 = 0 and as+2 = · · · at = 1. We will prove that there exists an element of462

the Steiner system that takes the values of a at the indices I. Consider the vector463

xs that completes the configuration b = (b1, . . . , bt) with values b1 = · · · = bs = 0,464

bs+1 = · · · = bt = 1 (which exists by the induction hypothesis). Now, let J =465

{ℓ ∈ t+ 1, . . . , n : xs
ℓ = 1}. As the vectors of the Steiner system have weight t + 1,466

|J | = s+1. We denote J = {j1, . . . , js, js+1}, and consider w ∈ {t+1, . . . , n}\J , which467

allows us to define Ki = ({j1, . . . , js} ∪ {w}) ∪ {s+ 2, . . . , t}, which is a subset of [n]468

of size t, so there exists y ∈ A that takes the value one in the components indexed by469

Ki, and also has another component with value one. Note that if ys+1 = 1, we would470

have two different completions for {s+1, . . . , t}∪J \{js+1}, which is a contradiction.471

Now, if there exists ℓ ∈ {1, . . . , s} such that yℓ = 1, we can consider, instead of xs,472

the vector ξs such that ξsℓ = 1, ξss+2 = · · · = ξst = 1, and define J based on ξs, and473

thus repeat the same argument as before. We thus conclude that there must exist474

ζ ∈ {t+ 1, . . . , n} \Ki such that yζ = 1, and therefore yI = a.475

Finally, it is easy to see that A cannot be a covering array of strength t+1. Indeed,476

suppose it is, and let I = {1, . . . , t + 1}. The existence of a configuration x that has477

all its ones in I and a vector y that has t ones in I implies two different completions478

for the vector of ones in {j ∈ I : xj = yj = 1}, leading to a contradiction.479

Theorem 3.3. Given a Steiner system A with parameters (n, t+1, t), where 2 ≤480

t < n/2, there exists a monotone Boolean network f such that i(f) = t and G(f) =481

Kn, with fixed points that include A.482

Proof. Let A = {y1, . . . , ym} be a (n, t + 1, t)-Steiner system. By the previous483

lemma, we know that A is a covering array of strength t. Now for every i ∈ [n] we484

define the Boolean function485

fi(x1, . . . , xn) =
∨

{k : yk
i =1}

∧
{j ̸=i : yk

j =1}

xj .486

Now we will prove that A ∪ {⃗0, 1⃗} ⊆ FP(f). Indeed, it is clear that 0⃗ and 1⃗ are fixed
points of f . Let yℓ ∈ A, and let us prove that f(yℓ) = yℓ. Let i ∈ [n], and suppose
initially that yℓi = 0. By contradiction, suppose fi(y

ℓ) = 1, and therefore there exists
k ∈ [m] where yki = 1 and for every j ̸= i such that ykj = 1, we have that yℓj = 1.

Notice that the above would imply that the index set I = {j ̸= i : ykj = 1}, which has

size t, has two different completions, one by yℓ and the other by yk. This contradicts
the uniqueness of the definition of Steiner systems. On the other hand, suppose now
that yℓi = 1. In this case, within the expression for fi(y

ℓ), the following conjunction
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appears: ∧
{j ̸=i : yℓ

j=1}

yℓj

Therefore, fi(y
ℓ) = 1. This implies that for any yℓ in A, f(yℓ) = yℓ, which is487

equivalent to A ⊆ FP(f), and therefore i(f) ≥ t. Moreover, by definition IC(fi) = t488

for every i ∈ [n]. Using the contrapositive of Theorem 2.5, we can conclude that489

i(f) < t+ 1, and thus i(f) = t.490

Now we will prove that G(f) = Kn. To do this, we first notice that since fi491

can be written as a DNF formula without negated variables, fi is monotone and it492

depends on the variable xj if it appears in any clause. That is, (j, i) is an arc in G(f)493

if and only if there exists yk ∈ A such that yki = 1 and ykj = 1, with j ̸= i. Indeed,494

if i ̸= j ∈ [n], then we can consider any completion T ⊆ [n] \ {i, j} with |T | = t − 2.495

Then, by considering T ∪{i, j}, we have a subset of t indices in [n], and by definition,496

there exists a unique yk ∈ A ⊆ FP(f) such that yki = ykj and yT = 1⃗. Therefore,497

(j, i) ∈ G(f), and as these are two arbitrary vertices, we conclude that G(f) = Kn.498

For example, the set

A =

1101000
0110100
0011010
0001101
1000110
0100011
1010001

is a Steiner system with parameters (7, 3, 2). The previous construction gives us the499

2-independent monotone network500

f1(x) = (x2 ∧ x4) ∨ (x5 ∧ x6) ∨ (x3 ∧ x7)501

f2(x) = (x1 ∧ x4) ∨ (x3 ∧ x5) ∨ (x6 ∧ x7)502

f3(x) = (x2 ∧ x5) ∨ (x4 ∧ x6) ∨ (x1 ∧ x7)503

f4(x) = (x1 ∧ x2) ∨ (x3 ∧ x6) ∨ (x5 ∧ x7)504

f5(x) = (x2 ∧ x3) ∨ (x4 ∧ x7) ∨ (x1 ∧ x6)505

f6(x) = (x3 ∧ x4) ∨ (x1 ∧ x5) ∨ (x2 ∧ x7)506

f7(x) = (x4 ∧ x5) ∨ (x2 ∧ x6) ∨ (x1 ∧ x3).507

Finally, we conclude this section by showing that monotone networks on n vari-508

ables cannot achieve independence number greater than n/2. We will state a more509

general proposition for regulatory networks.510

Proposition 3.4. Let h : {0, 1}n → {0, 1} be an unate Boolean function. Define511

γ+ := {i ∈ [n] : h is increasing on i} and γ− := {i ∈ [n] : h is decreasing on i}.512

Now we define a weight function, w̃, such that for every x ∈ {0, 1}n,513

w̃(x) := |{i ∈ γ+ : xi = 1}|+ |{j ∈ γ− : xi = 0}|.514

Then,515

max

{
max

{x :h(x)=1}
(n− w̃(x)), max

{y :h(y)=0}
w̃(y)

}
≥ n/2.516
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Proof. Denote by ξ(h) the maximum from the proposition above. Suppose by517

contradiction that ξ(h) < n/2 and assume that the maximum is attained in the518

second element. That is, there exists y ∈ {0, 1}n such that h(y) = 0 and ξ(h) = w̃(y).519

Then, for every x ∈ {0, 1}n with w̃(x) > w̃(y), we have h(x) = 1. In particular, there520

exists z ∈ {0, 1}n such that w̃(z) = w̃(y) + 1 = ξ(h) + 1 and h(z) = 1. Therefore,521

max
{x :h(x)=1}

(n− w̃(x)) ≥ n− w̃(z) ≥ n/2,522

which contradicts the assumption that ξ(h) < n/2. The proof in the case where the523

maximum is reached at the first element follows analogously.524

Before stating the following corollary, we will need to consider an alternative way of525

viewing k-set canalizing functions. To do so, recall that {0, 1}n is the set of vertices of526

an n-cube Qn, and that any Boolean function h : {0, 1}n → {0, 1} can be understood527

as a coloring of the vertices of the n-cube with two colors (0 and 1). Now, fixing528

k variables and considering all vectors that have these variables fixed translates into529

viewing a (n − k)-subcube of Qn. Therefore, a function h is k-set canalizing if and530

only if Qn has a monochromatic Qn−k according to the coloring given by h.531

Corollary 3.5. Let h : {0, 1}n → {0, 1} be an unate function, then IC(h) ≤532

n/2.533

Proof. Consider γ+ and γ− defined in the same manner than the previous propo-534

sition. Suppose first that ξ(h) is attained in the second maximum and y ∈ {0, 1}n sat-535

isfies w̃(y) = ξ(h). Denote γ+
1 (x) = {i ∈ γ+ : xi = 1} and γ+

0 (x) = {i ∈ γ+ : xi = 0}536

(and analogously γ−
0 (x), γ−

1 (x)) for x ∈ {0, 1}n and consider537

Sy = {x ∈ {0, 1}n : γ+
0 (x) = γ+

0 (y) ∧ γ−
1 (x) = γ−

1 (y)}.538

Recall that w̃(y) = γ+
1 (y) + γ−

0 (y). Note that Sy is a set of vectors in {0, 1}n that539

originates from fixing γ+
0 (y) + γ−

1 (y) = n− w̃(y) variables, and therefore, it is a ξ̃(h)-540

subcube of Qn. Now observe that we are fixing all increasing variables that are zero541

and all decreasing variables that are one in y. Consider x ∈ Sy with x < y; given542

that the free decreasing variables of y are zero, it necessarily follows that xγ+ < yγ+ ,543

and therefore h(x) = 0. On the other hand, now consider x ∈ Sy such that x > y.544

Since the increasing variables not fixed in y are all ones, it necessarily follows that545

xγ− > yγ− , and therefore h(x) = 0. For every x ∈ Sy such that wH(x) = wH(y) we546

are not able to determine if h(x) = 0 or not. However, we can consider547

S<y = {x ∈ Sy : x < y} or S>y = {x ∈ Sy : x > y},548

where both sets contain a zero monochromatic Qξ(h)−1, which implies

IC(h) ≤ n− ξ(h) + 1 ≤ n/2.

Finally, if ξ(h) is attained in the first element, a similar argument can be developed
by considering y ∈ {0, 1}n such that n− w̃(y) = ξ(h), h(y) = 1 and

Sy = {x ∈ {0, 1}n : γ+
1 (x) = γ+

1 (y) ∧ γ−
0 (x) = γ−

0 (y)}.

Corollary 3.6. There is no k-independent monotone Boolean network with k >549

n/2.550

Proof. Suppose there exists f : {0, 1}n → {0, 1}n, a k-independent monotone551

Boolean network with k > n/2. By Theorem 2.5, for every i ∈ [n], IC(fi) ≥ k > n/2.552

Since fi is monotone, it is unate, and by the previous result, IC(fi) ≤ n/2.553
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4. Concluding remarks and open problems. We introduced the concept of554

k-independent Boolean networks and addressed fundamental questions about their ex-555

istence, in the general case, through Theorem 2.2, and in the monotone case, through556

Theorem 3.3, for specific values of n and k determined by the existence of Steiner sys-557

tems with those parameters. Furthermore, we derived necessary conditions in terms558

of the interaction graph to represent a k-independent network, as detailed in Theorem559

2.5 and its respective corollaries. On the other hand, we also presented constructions560

that demonstrate the existence of networks with fixed i(f) and disconnected interac-561

tion graph, as shown in Remark 2.16; with connected interaction digraph, as detailed562

in Proposition 2.10; with strongly connected graph, as presented in Proposition 2.22563

and Proposition 2.11. Additionally, we explored constructions showing how the pa-564

rameters m, n, and k vary for networks f in n variables, with i(f) = k and m fixed565

points, as described in Proposition 2.18.566

Furthermore, there is a wide range of open questions, such as the general existence567

of monotone Boolean networks in n variables with 1 ≤ k < n. Similarly to what was568

discussed in Section 2.3, constructions are also needed to vary the parameters of569

monotone networks. Likewise, characterizations of networks with i(f) = k in terms of570

structural properties of the interaction graph, for a specific family of networks, remain571

to be discovered. We believe it would be interesting to adapt and utilize results from572

coding theory to advance in this direction. Similarly, we believe it could be interesting573

to explore Boolean networks whose sets of fixed points exhibit other combinatorial574

structures, such as Orthogonal arrays [19], Covering arrays avoiding Forbidden Edges575

[5], Covering arrays on graphs [21], or more generally, to investigate how parameters576

studied in set-systems (e.g., [20]) translate to the set of fixed points and understand577

their implications in terms of the interaction graph.578

Acknowledgments. Acknowledgements will be added in the final version.579
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