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K-INDEPENDENT BOOLEAN NETWORKS*

JULIO ARACENA T AND RAUL ASTETE-ELGUIN?

Abstract. This paper proposes a new parameter for studying Boolean networks: the indepen-
dence number. We establish that a Boolean network is k-independent if, for any set of k variables
and any combination of binary values assigned to them, there exists at least one fixed point in the
network that takes those values at the given set of k indices. In this context, we define the indepen-
dence number of a network as the maximum value of k such that the network is k-independent. This
definition is closely related to widely studied combinatorial designs, such as “k-strength covering
arrays”, also known as Boolean sets with all k-projections surjective. Our motivation arises from
understanding the relationship between a network’s interaction graph and its fixed points, which
deepens the classical paradigm of research in this direction by incorporating a particular structure
on the set of fixed points, beyond merely observing their quantity. Specifically, among the results
of this paper, we highlight a condition on the in-degree of the interaction graph for a network to
be k-independent, we show that all regulatory networks are at most n/2-independent, and we con-
struct k-independent networks for all possible k in the case of monotone networks with a complete
interaction graph.

Key words. Boolean networks, Fixed points, Covering arrays, Regulatory Networks.

AMS subject classifications. 05C99, 05B99

1. Introduction.

1.1. Boolean networks and covering arrays. A Boolean network (BN) on
n variables is a function f : {0,1}"™ — {0,1}", defined as f(x) = (f1(z),..., fu(z))
for x € {0,1}". Each function f; : {0,1}" — {0,1} is called a local activation
function of the network. For x € {0,1}", we denote by wgy(z) the Hamming weight
of x, which is the number of ones in x. Additionally, let [n] := {1,...,n}. Given
x=(x1,...,2y) €{0,1}", 7 € [n], and b € {0, 1}, we define the vector (x : x; = b) as:

(33 LIy = b) = (331,...,xi_l,b,l‘i+1,...,$n).

The following are some examples of families of Boolean networks:

e Linear networks: Boolean networks where each local activation function is
the sum modulo two of some variables.

e Majority networks: Networks where each local activation function take
the value of the majority of the variables they depend on.

e Monotone networks: Given z,y € {0,1}", denote z < y if z; < y; for
every ¢ € [n]. A Boolean network f is said to be monotone if it is increasing
with respect to the relation <. Majority networks are a particular case of
monotone networks.

¢ AND-OR networks: Boolean networks in which each local activation func-
tion is a disjunction or a conjunction of the variables on which they depend.

e Regulatory networks: A Boolean function h : {0,1}" — {0, 1} is increasing
with respect to the variable i if, for every x € {0,1}", h(z : z; = 0) <
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2 J. ARACENA, R. ASTETE-ELGUIN

h(z : z; = 1) and is said to be decreasing on i if for every x € {0,1}",
h(z : ©; = 0) > h(z : x; = 1). A Boolean function is unate if for every
i € [n], h is either increasing or decreasing with respect to the input 7. A
Regulatory Boolean network is a Boolean network where each local activation
function is unate, and since every monotone Boolean function is unate, every
monotone Boolean network is also regulatory.

In this article, our primary focus will be on linear and monotone networks. In
general, Boolean networks represent n variables interacting and evolving discretely
over time based on a predefined rule. Introduced by Kauffman in 1969 [13, 14], BNs
find applications in diverse fields such as social networks [9], genetic networks [1], and
biochemical systems [10].

In this context, the iteration digraph of a network f over the vertices {0,1}" is
defined such that the arcs are of the form (z, f(z)) for z € {0,1}™. Each iteration
digraph fully represents a Boolean network. However, their utilization becomes im-
practical due to their large number of nodes. For this reason, associated with any
Boolean network f, we can define the interaction (or dependency) digraph G(f), with
vertices [n] and arcs (4, j) indicating that f; “depends” on variable ¢, i.e., there exists
x € {0,1}™ such that

fj(ajl,...,xi:(),...,xn) ;éfj(xl,...,xi = 1,...7.%“).

It is important to note that G(f) may have loops, i.e., arcs from a vertex to itself.
A fixed point of f is a vector z € {0,1}"™ such that f(z) = x. We will denote the
set of fixed points by FP(f) = {z € {0,1}™ : f(x) = «}. The set of fixed points
in a BN is an intriguing subject of study for various reasons. One of them is its
significance in applications within biological systems, as they can be interpreted as
stable patterns of gene expression. It is also of interest to understand, at a theoretical
level, the configurations that lead a Boolean network to stabilize, that is, periodic
points [23, 7], meaning the states z € {0,1}" such that f*(z) = = for some ¢. Fixed
points (case £ = 1) are particularly interesting for inferring information about the
activation functions of the network [17]. However, most works in this direction study
the relationship between the number of fixed points of a Boolean network and the
properties of the local activation functions [2, 3] or of its interaction graph. The
information that can be obtained about the architecture of a Boolean network from
structural properties of its fixed points has not been thoroughly explored. A first
step in this direction is the work carried out in [22], where the VC dimension in
Boolean networks is defined in terms of their fixed points.

Given z € {0,1}™ and a set of indices I = {i1,...,ix} C [n] we denote z; =
(iys.-.,24,). A covering array of strength & is defined as a set of Boolean vectors
from {0, 1}" such that for every subset I of k indices, and for every a = (a1, ...,ax) €
{0, 1}”“, there exists a vector x in the set such that x; = a. In addition, we denote
CA(m,n; k) as the set of all covering arrays with m vectors of size n and strength k.
When we do not need to refer to the number of rows, we simply denote it by CA(n; k).
For example, the following is an element of C'A(5,4;2) :

ool

Il
= =0 = O
= =0 O
= =)
= =)
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K-INDEPENDENT BOOLEAN NETWORKS 3

One of the main challenges of covering arrays is to determine those with the least
possible number of elements while maintaining strength. CAN(n;k) the minimum
number of rows of a matrix in CA(m,n; k). It is worth mentioning that determining
CAN (n; k) for arbitrary values of n and k remains an open problem; we can see some
of the known values in Table 1. Various efforts have been made to find approximations
to this minimum. However, the case of kK = 2 is the only non-trivial case that has
been completely solved [16, 12].

EEEE I 5 |
0 2 4 16 32 64
1 2 4 8 12 32 64
2 2 5 10 21 42 85
3 2 6 12 24 48-52  96-108
4 2 6 12 24 48-54  96-116
5 2 6 12 24 48-56  96-118
6 2 6 12 24 48-64  96-128
7 2 6 12 24 48-64  96-128
8 2 6 12 24 48-64  96-128
9 2 7 15 30-32 60-64 120-128
10 | 2 7 15-16 30-35 60-79 120-179

TABLE 1
Some known values of CAN (s + t;t) [18].

Considering the preceding discussion, it becomes pertinent to investigate the im-
plications, in terms of the interaction graph of a Boolean network, when its fixed
points constitute a covering array of strength k. Consequently, we introduce the con-
cept of k-independence for a Boolean network on n variables f, wherein we define it
as possessing fixed points that form an element of C' A(n; k). Moreover, we denote by
i(f) the maximum k such that f is k-independent, and extend this notion to graphs,
stating that a graph G on n vertices is k-admissible if there exists a k-independent
Boolean network whose interaction graph is isomorphic to G.

It is also pertinent to ask why we study the case where fixed points form a covering
array. The first reason is because it is a particular case of sets that have VC-dimension
equals k. We believe it could be a significant step towards understanding the structure
of fixed points against the structure of the interaction graph. Additionally, while this
work introduces a previously unstudied family of Boolean networks, the study in
[17] addresses an inference problem in networks using covering arrays, referred to as
universal matrices. There is also an applied motivation: a network of individuals
expressing binary opinions can be modeled by a k-independent Boolean network. In
such a scenario, any group of k individuals can express any opinion in a stable state,
providing a degree of “independence” in their opinions. Ultimately, this exploration
not only enhances our understanding of Boolean networks but also opens new avenues
for investigating their structural properties beyond the traditional focus on the number
of fixed points.

1.2. Our contribution. As previously mentioned, this work focuses on the con-
cepts of covering arrays and Boolean networks. Our aim is to delve deeper into the
fixed points of a Boolean network, examining not only their quantity but also the
specific structure of a covering array.

This manuscript is for review purposes only.
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4 J. ARACENA, R. ASTETE-ELGUIN

Our work begins by showing the existence of Boolean networks on n variables
and i(f) = k, for any 1 < k < n. However, the presented construction requires
a complete interaction graph without loops and the network is not monotone. We
present necessary conditions for the existence of a k-independent Boolean network in
terms of its local activation functions, the number of fixed points, and the properties
of its interaction graph. We then show some families of graphs that are k-admissible
for different values of k. In Section 2.3, we present general constructions of networks
with i(f) = k, representing various scenarios for the parameters m, n, and k of
covering arrays in C'A(m,n; k). Nevertheless,, these constructions do not explicitly
demonstrate the existence of monotone networks with i(f) = k. Finally, we address
this question in Section 3, where we present an existence result that utilizes Steiner
systems to construct the local activation functions of a monotone network with i(f) =
k on the complete graph without loops.

2. Results.

2.1. General results. In this section, we establish the basic results on the k-
admissibility of graphs and the existence of Boolean networks with i(f) = k. To do
this, first, we will review some classical results from the literature concerning fixed
points of Boolean networks. A significant motivation in this area is to answer the
question: What can we infer about the fixed points of f based on G(f), and vice
versa? The results we present initially compare the number of fixed points of f with
properties of G(f). Perhaps one of the most referenced result in this field is the
feedback bound.

Let us recall that, given a directed graph G = (V, A), we define a set S C V as a
feedback vertex set if the subgraph G[V'\ S] is acyclic. Furthermore, we introduce the
transversal number of G, denoted by 7(G), as the minimum cardinality of a feedback
vertex set for G.

THEOREM 2.1 (Feeback bound [2]). For any Boolean Network f we have:
|FP(f)| < 27(¢W)

This result establishes a necessary condition for the k-admissibility of graphs.
Specifically, for a graph G to be k-admissible, it must be the interaction graph of a
Boolean network, where the fixed points form a covering array of strength k. This
requires having at least 2* fixed points. Moreover, we stipulate that

CAN(n; k) <279 «— 7(G) >log CAN (n; k)

It is important to note that for some values of n and k, as seen in Table 1,
logCAN(n;k) > k, and therefore in such situations, k-admissible graphs require
7(G) > k. For example, consider a complete bipartite graph K, 2. In this case,
T(Kn,2) = 2. Then, the feedback bound allows us to establish that for any Boolean
network f with interaction graph K, », | FP(f)| < 2% = 4. Later, as we have already
seen in Table 1, for all n > 4 we have CAN (n;2) > 4, we can conclude that for n > 4,
K, 2 is not k-admissible for any 1 < k£ <n.

Hereafter, we address the problem of the existence of Boolean networks f :
{0,1}" — {0,1}" with i(f) = k, for any 1 < k < n — 1. As we will see, the ar-
chitecture that allows k-independence for any k turns out to be the complete graph
on n vertices without loops. This is a reasonable candidate, as it is a graph with a
transversal number of n — 1.

This manuscript is for review purposes only.
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K-INDEPENDENT BOOLEAN NETWORKS 5

PRrROPOSITION 2.2. Let G = K,, be the complete graph without loops. Then G is
(n—1)-admissible. Moreover, for every 1 < k < n—1, there exists a Boolean network
f such that G(f) = K,, and i(f) = k.

Proof. Assuming linear functions in every node, we can compute that the set of
fixed points is the set of every vector in {0, 1}™ with an even number of ones. This is
a known covering array of strength n — 1 (see, e.g. [18]).

Consider 1 <k <n —1, and let

Sy :={r€{0,1}" : wy(z)=j<k+1land j =0 mod 2},
Ty :={z€{0,1}" : wg(r)=j<k+1land j=1 mod 2}.

We claim that if k is even, Sy, € CA(n; k)\CA(n; k+1), and if k is odd, T, € CA(n; k)\
CA(n; k+1). Additionally, there exist Boolean networks f, g : {0,1}™ — {0, 1}" such
that FP(f) = S and FP(g) = T). We will prove the case for even k; the proof for
odd k is analogous.

Let I = {i1,...,ix} C [n] and a = (ay,...,a;) € {0,1}%. Clearly, a has at most
k ones. If a has an even number of ones, consider z € {0,1}" such that z; = a and
x; = 0 for every ¢ € I. Then =z € Si. Now suppose a has an odd number of ones.
Consider z € {0,1}" such that z; = a. Choose j € [n]\ I and let z; = 1, while for
every i € I U{j}, x; = 0. Therefore, x has at most k + 1 ones, and an even number
of them, i.e., x € Si. Thus, Sy € CA(n;k). If k is even, then k + 1 is odd. For
every I = {i1,...,ig,ixp1} C [n], there is no = € Sy such that z; = 1. Therefore,
Sk € CA(n; k) \ CA(n; k+ 1)

Now define f : {0,1}"™ — {0,1}" such that for every z = (x1,...,2z,) € {0,1}",
file) = 1 iff wy(x\ ;) < k and wy(z \ z;) is odd. Here we denote z \ z; :=
(X1, Ti1,Zit1, ..., Tpn) and recall that wy(z) denotes the amount of ones of x.
Then, it is easy to see that G(f) = K,, and FP(f) = Sk. As a final remark, for the
case where k is odd, we define ¢ : {0,1}™ — {0, 1}"™ such that g;(x) =1 if and only if
wyg(x\ z;) <k and wy(x \ ;) is even. |

Remark 2.3. The Boolean networks constructed in the previous proposition are
non monotone. Indeed, for k even, let f be the network constructed such that FP(f) =
Si. Let © € {0,1}" such that wy(x) = k+ 1, and let y € {0,1}" such that = < y.
We observe an index i € [n] such that z; = 1. Since x < y, we have y; = 1, and
wr(y) > k + 2. Therefore, f;(y) = 0, as wy(y \ v;) > k + 1. This implies that
f(x) = x, and hence, f(z) £ f(y).

As we can see in Fig 1, k-admissible graphs, with k& > 2, are not necessarily
complete, but it is true that they tend to become denser for larger values of k. In
fact, to prove this, let us first consider the following definition.

DEFINITION 2.4 (See e.g. [11]). We say that h: {0,1}™ — {0,1} is k-set canaliz-
ing if there exists a set I = {iy,...,ix} C {1,...,n} and values ay,...,ar,b € {0,1}
such that

Ve € {0,1}", x5y = (a1,...,ax) = h(z) =b

In this context, we say that the input ay,...,a canalizes h to b. Moreover, we denote
by IC(h) the minimum k such that h is k-set canalizing.

It is easy to see that h is k-set canalizing if and only if the minimum number of
literals in a clause of a DNF-formula (or CNF-formula) of h is k. The following are
examples of k-set canalizing functions for different values of k:

This manuscript is for review purposes only.
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(a) 3-admissible graph with linear interaction (b) 2-admissible
graph with majority
interaction

Fic. 1. Ezamples of k-admissible non-complete graphs with k > 1.

e The AND function g : {0,1}" — {0,1}, defined as g(z1,...,2,) = Al_y 2,
is 1-set canalizing. It canalizes to zero whenever any variable takes the value
zero. Similarly, disjunctions are 1-set canalizing, canalizing to one when any
variable takes the value one.

e The majority function Maj : {0,1}" — {0, 1}, defined as

Maj(z1,...,zn) =1 <= wg(x) > [n/2]

is such that 7C(Maj) = [n/2].
The previous concept allows us to state the following necessary condition for the
k-independence of a Boolean network.

THEOREM 2.5. Let f = (f1,...,fn) be a k-independent Boolean network such
that G(f) has no loops, then for all i, IC(f;) > k.

Proof. By contradiction, assume that f is k-independent, and that there exists a
local activation function f; that canalizes into I = {i1,...,i¢} € N~ (i) with £ < k,
on inputs a = (ay,...,as) € {0,1}¢ to the value b € {0,1}. Since there are no loops,

we may assume that i ¢ I. Then, [T U {i}| = £+ 1 < k, and since f is k-independent
(and thus (¢ + 1)-independent), there exist two fixed points z,y € FP(f) such that:

z; =0y, =1, 25 =a=y;
Therefore, f;(z) = fi(y) = b, but fi(x) = x; = 0 and f;(y) = y; = 1, which is a
contradiction. 0

COROLLARY 2.6. If G is a loopless k-admissible digraph, then its minimum inde-
gree is at least k.

COROLLARY 2.7. There is no AND-OR Boolean network f with i(f) > 2 and
loopless interaction graph.

Remark 2.8. Tt is worth mentioning that the hypothesis of having no loops is
necessary to conclude the previous results. For instance, consider the network f :
{0,1}" — {0,1}™ defined by f;(xz) = a;, for i=1,...,n —1; and

fn(x)—a:n\/</_\xz>

i=1

Then, G(f) has loops and IC(f;) =1 for every i = 1,...,n. However, the set of fixed
points of f is {0,1}™\ {0}, and this set is a covering array of strength n — 1.

This manuscript is for review purposes only.
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K-INDEPENDENT BOOLEAN NETWORKS 7

Fic. 2. Construction from Remark 2.9.

Remark 2.9. As we have seen before, it is known that for n > 4, CAN(n;2) > 4.
On the other hand, the bound CAN(n;k) > 2% CAN(n — ko k — ko), for ko < k,
is also known [18]. Using k — kg = 2, we can conclude that CAN(n;k) > 2F for all
n > k+1. This allows us to see that for all £ > 1, the conditions 7(G) > k, §—(G) > k,
and that G has no loops are necessary but not sufficient. Consider n = k?>+k > k+1,
and a complete bipartite graph G, with one set of size k and the other of size k2.
For this graph, 7(G) = k and 6~ (G) = k. However, since CAN(n;k) > k, G is not
k-admissible.

2.2. Families of k-admissible graphs. We have already reviewed some nec-
essary conditions for k-admissibility in terms of the interaction graph and its local
activation functions. On the other hand, from Proposition 2.2, we observed that the
complete graph is a suitable architecture for achieving high degrees of k-admissibility
when considering linear networks. In this section, we will present two explicit con-
structions of k-admissible graphs for different values of k, inspired by the (n — 1)-
admissibility of the complete graph without loops.

PROPOSITION 2.10. Let 1, s be two integers and define £ := min{r,s} — 1. Then,
there exists a &-admissible connected digraph on n = r + s vertices.

Proof. Let K, and K, denote the cliques on r and s vertices, respectively. Now
we define G composed by these two cliques and select ¢ € V(K,.), and add all the arcs
of the form (i,¢) for £ € K. Let f: {0,1}"™ — {0,1}" be a linear Boolean network
with G(f) = G. Now, we see that for every x € FP(f), if ; = 0 the number of ones
in both cliques should be even. So there are 2772251 fixed points. On the other case,
if x; = 1, every vector with an odd number of ones on the variables given by K, and
an odd number of ones in K, \ {i}, is a fixed point of f. In this case there are also
27225~ options. In total, there are 2"+%~2 fixed points and by previous lemmas this
set is a covering array of strength &. ]

K,

=

=

e‘

Fic. 3. Construction from Proposition 2.10.

It is worth mentioning that the previous construction only allows us to construct

This manuscript is for review purposes only.
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T 2 13

H 1 Kmfl Kmfl Kmfl H
0 even even  even  even
0 even even  even  even

1 odd odd odd odd
1 odd odd odd odd

TABLE 2
Fized points of Wy, 1 with linear interaction, k odd.

digraphs that are, at most, n/2-admissible. Moreover it provides examples of &-
admissible graphs G with n vertices, 7(G) = n — 2 and 0~ (G) = &. In the following
construction, we generalize this result and show a family of strongly connected k-
admissible graphs.

Furthermore, we are particularly interested in finding, for a given n and k, a
family of strongly connected and k-admissible graphs. We were able to address this
question for certain cases of n and k with the following lemma.

PROPOSITION 2.11. For any integer m > 2 and odd k > 1, there is a strongly
connected graph that is (m — 1)-admissible, with n = (m — 1)k + 1 vertices.

Proof. We know that cliques achieve high k-independence with linear functions.
Our next construction is built upon this idea. Let W, = (V,E) be a graph with
n = (m — 1)k + 1 vertices, comprising a central vertex and k copies of K,,, each
sharing only the central vertex. Examples of these graphs are shown in Figure 4.

We claim that for every m, k with odd k, the linear Boolean network with inter-
action graph W, j is (m — 1)-independent. To prove this, we will first characterize
the set of fixed points of this network. To do so, we denote by f the linear BN with
G(f) = Wik, by 1 the central vertex of the graph, and let z € FP(f). Now, we
distinguish the following two cases:

e If 1 = 0, then we need that the central vertex observes an even number of
ones.
e If z; = 1, then we need for it to observe an odd number of ones.
On the other hand, each of the cliques of size m must have an even number of ones;

otherwise, the configuration would be unstable. We denote by K} ,...,KF .
Then, the set of fixed points of f is given by the configurations that have z; = 0 and
for every ¢ € {1,...,k}, wu(zf ) is even or 1 = 1 and for every £ € {1,...,k},

wy (Y ) is odd. Here we note that if k is even, the central vertex cannot take the
value 1 on a fixed point, because it will always observe an even number of ones. We
can summarize the set of fixed points in the following table:

Considering that for each K’ , there are 2™~2 possible configurations with
even (or odd) weight, we have 2("~2* fixed points with z; = 0 and the same
amount with z; = 1. Thus, f has 20"~2%+1 fixed points. Moreover, this set has
strength m — 1. Indeed, let I be a subset of m — 1 vertices from W, and let

a = (al,aK:nlr—l,...,aK;i—l) € {0,1}™~ ! with ¢t < k. We know that the set of fixed
points, for z; = 0 (or x; = 1) restricted to any K¢, _, is a covering array of strength
m — 2. Then, there exists a fixed point = such that x; = a, so FP(f) is a covering

This manuscript is for review purposes only.
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F1G. 4. Windmill graphs with (m, k) € {(5,5),(7,9),(9,5), (11,7)} (left to right).

array of strength m — 1. 0

2.3. Constructions. From the results of the previous section, we can observe a
trade-off between the parameters m, n, and k in an element of C A(m, n; k). We aim to
understand how to grow one of these parameters in terms of another, focusing on the
context of a k-independent Boolean network on n variables, with m fixed points and
i(f) = k. In addition, we will translate these results into constructions of k-admissible
graphs.

The following result allows us to increase n by one while maintaining strength in
a certain sense.

LEMMA 2.12 (See e.g. [18]). Let A € CA(my,n — 1;k) and B € CA(ma,n —
1;k—1). Then,

A0
C= |:B H € CA(my + ma,n; k).

Proof. Let I = {iy,...,ix} C [n] and @ = (a1,...,ax) € {0,1}*. Now there
are two possible cases. If n & I since A is a covering array of strength k, there is
a vector € C such that z; = a. In the other case n € I, and we write without
loss of generality I = {i1,...,ix—1,n} and a = (a;y,...,Gi,_,,an). If a, = 0, since
A has strength k there exists x € C such that x; = a. Otherwise, if a,, = 1, as B
has strength k — 1, there is a vector y € C such that yp\ (ny = (aiy,...,a;,_,), and
therefore y; = a. ]

Remark 2.13. In the previous lemma, if we also assume B ¢ CA(ma,n — 1; k),
then C is not an element of CA(my + mo,n;k + 1). Indeed, let I C [n — 1] and
a € {0,1}* be such that there is no z € B with z; = a. Consider I = I U {n} and
a € {0,1}**1 such that @; = a and a,, = 1. Then, there is no z € C with z; = a, and
therefore, C' does not have strength k + 1.

In terms of k-independent networks, Lemma 2.12 and Remark 2.13 allows us to
establish the following result.

PROPOSITION 2.14. Let f be a Boolean network on n — 1 variables with i(f) =
k —1. Then, there exists a Boolean network g on n variables, with i(g) = k and G(g)
connected such that FP(g)p,—q) = {(z1,...,2p—1) € {0,1}"71 ¢ (21,...,2pn_1,2y) €
FP(g)} contains the set of fized points of f.

Proof. Let f: {0,1}"~* — {0,1}"! such that i(f) = k (exists by Proposition
2.2). Now, define

9i(2) = (@ A fi(@)) V (@ A filz)), i€ {1,...,n—1},

This manuscript is for review purposes only.
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FIG. 5. Construction from Proposition 2.1/ using G' with magjority and G? with linear functions.

and g, (z) = x,. Note that if x,, = 0, then g(z) = f(x), while if z,, = 1, g(z) = f(x).
So, the set of fixed points of g is

FP(f)
FP(f)

And by Lemma 2.12 and Remark 2.13, FP(g) € CA(n; k)\C AN (n; k+1) and therefore
i(g) = k. Moreover, if we suppose FP(f) and FP(f) are disjoint we can avoid the
loop in n by repeating the previous argument with g, (z) as the indicator function of
FP(f), i.e., go(z) =1if x € FP(f) and g, (x) = 0 if = € FP(f). O

Remark 2.15. We can also state Proposition 2.14 in the following manner: Given
G', G? to graphs on V = [n], such that G' is k-admissible and G? is (k—1)-admissible,
then we can construct G = (V, E), where V = [n+1] and E = E(G')UE(G?). Thus,
by the previous proposition, we can define the same network and conclude that G is
a k-admissible graph on n + 1 vertices. In Figure 5, we observe an example of this
construction considering the Maj network in G', being 2-independent, and the linear
network in G2 achieving 3-independence. In this case, G is the resulting graph, which
turns out to be 3-admissible with the network defined in Proposition 2.14.

= O

PP - |

The following remark shows that by adding an isolated loop, we can increase n
by one while maintaining the strength. This, in turn, implies doubling the value of
m, i.e., the number of fixed points.

Remark 2.16. Given a k-admissible graph on n vertices, GG, the addition of an
isolated loop would return a k-admissible graph on n + 1 vertices. Indeed, let f be a
k-independent BN with interaction graph G. Now we define f : {0,1}"*! — {0,1}"*!

as f(x) = (fu(@), ..., fn(x),Zns1). So G(f) = G, and also

=[5

Now, by Lemma 2.12, FP(f) € CA(2|FP(f)|,n + 1; k). This construction also allows
us to use cliques with linear functions and isolated loops to construct, for any n and k,
Boolean networks with i(f) = k, and non-complete interaction graph. Additionally,
if n is a multiple of k, incorporating disjoint copies of cliques of size k into this
construction results in a (k — 1)-regular, (k — 1)-admissible graph on n vertices.

After recognizing that the inclusion of loops doubles the number of fixed points,
we wonder: Can we construct examples of networks with i(f) = k and the maximum
number of fixed points without increasing the strength? To advance in this direction,
we first prove the following upper bound.

This manuscript is for review purposes only.
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PROPOSITION 2.17. Let A € CA(n; k) \ CA(n;k +1). Then, an upper bound for
the number of elements of A is

2n—1(2 _ 2—k)

Proof. Since A has no strength k + 1, there exists a = (ay,...,ar41) € {0, 1}F+!
such that for any vector we select as a completion b = (bg1o,...,b,) € {0, 1} k-1
the concatenation ab = (ay,...,ak+1,0k+2,-..,0,) € {0,1}" is not an element of A.
Therefore, there are at least 27 %1 elements that are not part of the rows of A, so
the upper bound is 27 — 2n~F~1 = 2n=1(2 — 2=k) |

Now consider a graph G composed by a clique of size k+ 1 and n — k — 1 isolated
loops. Suppose we have a linear Boolean network with this interaction graph. Then,
by the previous results, we know that i(f) = k. The inclusion of loops does not
increase the strength, as the configuration I € {0,1}**! remains unstable for the
isolated clique. Then, since every loop duplicates the set of fixed points, we conclude
that f has 27~*F=12F = 27=1 fixed points. This result demonstrates that, for a fixed
strength k, we can approach the bound from Proposition 2.17 closely (up to a constant
in terms of k)

COROLLARY 2.18. For every k < n, there is a Boolean network with i(f) = k and

271 fized points.

080
IR ©=

v

Fic. 6. Construction from Proposition 2.18 with n =8 and k = 3.

By using a different approach, the following result allows us to significantly in-
crease n while keeping the strength controlled.

LEMMA 2.19. Let A € CA(ms, ng;s) and B € CA(my,n,;r). We denote by AQB
the set of all possible concatenations between a vector of A and a vector of B:

A® B = {a;bj € {0,1}"" . i j € [s] x [r]}.

Then, A® B € CA(msm,,ns + n,;t), where t = min{r, s}.

Proof. Without loss of generality, assume t = s. Let I = {i1,...,4i5} C [ns + n.].
Consider the partition of I into I4 and Ig, where I4 contains the ¢4 indices between
1 and ng, and Ig contains the ¢p indices between ngs+1 and ns+n,.. Let a = ata®f e
{0,1}m=*nr where a® = (af',...,af ) and a® = (af,...,af’). Since t = min{s,t},
we know that A and B are covering arrays of strength s. Thus, there exist z € A
and y € B such that z|4 = a? and y|p = a®. As A ® B contains all possible
concatenations of elements between A and B, we conclude that zy € A ® B and,
therefore, A® B € CA(msm,,ns + n,;t). a

This manuscript is for review purposes only.
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COROLLARY 2.20. Let {A}E_| be a collection of sets of Boolean vectors such that
for every £, A is an element of CA(mg,ng;ty). Then,

~

R4 = (A e A o ©A") € CA(m,n;t)
{=1
Where m = HgL:1 my, ng = Zngl ng and t =minf{ty : £=1,...,L}.

Remark 2.21. Consider a family of Boolean networks {f;}1_, such that for each
0, G(f*) = Gy and i(f*) = t;. Define the graph G = (J;_, G¢ by

L L
V(G) =] V(G), E@G) =|]EGH.
=1 (=1

Then, there exists a Boolean network f such that G(f) = G and i(f) = k, where
k= min{t, : £ =1,...,L}. Indeed, since G is a disjoint union, we can define f
locally as f¢ for each G,. Thus, the set of fixed points is of the form:

L
FP(f) = Q) FP(f*)
/=1

where each FP(f*) is a covering array of strength ;. Then, by Lemma 2.19, this set is
a covering array of strength k = min{t, : £=1,...,L} with HzL:1 | FP(f*)| elements.

The preceding Remark shows that we can use Corollary 2.20 to, from a family of
networks with certain degrees of k-independence, construct another one (increasing n
and m, and controlling k), with a disconnected interaction graph. The following result
demonstrates that we can also carry out a similar construction, but while maintaining
the interaction graph strongly connected.

PROPOSITION 2.22. Let {fi}t_, be a family of Boolean networks such that for
each £, G(f*) = Gy and i(f*) = ty. Then, there is Boolean network f with a strongly
connected interaction graph G(f) = G and i(f) = k, where k = min{t, : £ =
1,...,L}.

Proof. Define G with vertex set V := Usz1 V(Gy), n = |V] and consider a Boolean
network f:{0,1}" — {0,1}" such that for every i € Gy, f; is defined by

filz) = fl(xa,) A Colxgy) A+ A CL(za,),

where Cy(z) = 1 if and only if x¢, € FP(f*). We also define for every £ € {2,..., L},
and for every j € Gy,

f](x) = ff(zcz) /\Cl(xcl)

Then, it is easy to see that

L
FP(f) = QFP(f') € CA(n; k).

(=1

Finally, recall that we assume i(f*) = t, for every £. Suppose, for contradiction,
that i(f) = k + 1. Consider I = {iy,...,ix11} C V(Gy). For every a € {0,1}F+1
there would exist x € FP(f*) such that x; = a, implying i(f*) > k + 1 > t,;, which
contradicts our assumption. 0
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3. The monotone case. As we saw in Remark 2.3, the general construction
of Boolean networks with n variables and i(f) = k does not guarantee the existence
of monotone k-independent networks. Similarly, the other constructions presented in
the previous chapter do not provide results on the existence of k-admissible graphs
with monotone networks. There have been previous studies on fixed points in mono-
tone networks, but they do not consider the structure of the set of fixed points [3].
This theoretically motivates us to question whether monotone networks can be k-
independent for some 1 < k < n. Additionally, this question is interesting from an
applied perspective, as networks modeling binary opinion exchange systems are often
monotone. Therefore, we dedicate this section to studying the relationship between
monotonicity and k-independence.

The following combinatorial design proves to be convenient when working with
covering arrays and monotone networks.

DEFINITION 3.1. Let A = {x',..., 2™} C {0,1}". We say that A is a Steiner

system with parameters (n,k,t) if wy(z') =k fori=1,...,m, and for every subset
of indices I = {iy,...,i;} there is an unique vector ¥/ € A such that xfz =1 for
Ce{l,... t}.

Given a set of indices I = {iy,...,4;} and values a = (ay,...,a;) € {0,1}, we

say that a vector z € {0,1}" such that x; = a is a completion of a. In this context,
a Steiner system guarantees the uniqueness of the completion of the configuration
1€ {0,1}* for any subset of ¢ indices.

As an example, the following is a Steiner system with parameters (8,4, 3):

11010001
01101001
00110101
00011011
10001101
01000111
10100011
00101110
10010110
11001010
11100100
01110010
10111000
01011100

The existence of a Steiner system with given parameters has been a fundamental
problem in combinatorics [6]. In a broader context, divisibility conditions were es-
tablished: for an (n,q,r) Steiner system to exist, a necessary condition is that (777)

divides (::1) for every 0 <4 <r — 1. For many years, it was conjectured that these

divisibility conditions were also sufficient. This conjecture was proven in 2014 for
large values of n [15]. See also [8], [4].

LEMMA 3.2. Let A be a Steiner system with parameters (n,t + 1,t) such that
2t <n. Then, A€ CA(n;t)\ CA(n;t+1).

Proof. Let I be a subset of [n] of size ¢, we will assume without loss of generality
that I = {1,...,t}. We aim to prove that for every a = (aq,...,as) € {0,1}!, there

This manuscript is for review purposes only.



14 J. ARACENA, R. ASTETE-ELGUIN

exists x € A such that x; = a. We will proceed with the proof by induction on the
number of zeros in a.

First, observe that there exists 2 € A such that x§ =11---1, due to the property
of Steiner systems. As the vectors have weight ¢ 4+ 1, there exists a unique w €
{t+1,...,n} such that 2/, = 1. Let ig € I and let &;, € {0,1}! be the vector that has
a single zero at position iy and define K = ({1,...,t} \ {ip}) U{w}. Notice K% is a
subset of ¢ indices, so there exists a vector z¢* € A that has ones in the components
K. Suppose xfé = 1. In such case, z* and 21 would be two vectors in A that has

ones in I, which contradicts the definition of a Steiner system. Therefore, xf; must

be zero, and hence x? = €;,,. With this, we proved that given a subset of ¢ indices,

all configurations with one zero and ¢t — 1 ones appear.

Now, suppose that all configurations with s zeros appear, and let us prove that

those with s + 1 zeros also appear. Let a = (a1,...,a;) € {0,1}" such that a; =

- =asy1 = 0 and asy2 = ---a; = 1. We will prove that there exists an element of
the Steiner system that takes the values of a at the indices I. Consider the vector
x® that completes the configuration b = (by,...,b;) with values by = --- = by = 0,
bs41 = -+ = by = 1 (which exists by the induction hypothesis). Now, let J =
{{et+1,...,n : xf =1}. As the vectors of the Steiner system have weight ¢ + 1,
|J| = s+1. We denote J = {j1, ..., s, js+1}, and consider w € {t+1,...,n}\J, which
allows us to define K* = ({j1,...,js} U{w}) U{s+2,...,t}, which is a subset of [n]
of size t, so there exists y € A that takes the value one in the components indexed by
K%, and also has another component with value one. Note that if y,,; = 1, we would
have two different completions for {s+1,...,t}UJ\ {js41}, which is a contradiction.
Now, if there exists £ € {1,...,s} such that y, = 1, we can consider, instead of z°,
the vector £° such that £§ =1, §,, = --- = & = 1, and define J based on £°, and
thus repeat the same argument as before. We thus conclude that there must exist
¢e{t+1,...,n}\ K such that y. = 1, and therefore y; = a.

Finally, it is easy to see that A cannot be a covering array of strength ¢t+1. Indeed,
suppose it is, and let T = {1,...,t + 1}. The existence of a configuration = that has
all its ones in I and a vector y that has ¢t ones in I implies two different completions
for the vector of ones in {j € I : x; = y; = 1}, leading to a contradiction. 0

THEOREM 3.3. Given a Steiner system A with parameters (n,t+1,t), where 2 <
t < n/2, there exists a monotone Boolean network f such that i(f) =t and G(f) =
K,,, with fixed points that include A.

Proof. Let A = {y',...,y™} be a (n,t + 1,t)-Steiner system. By the previous

lemma, we know that A is a covering array of strength t. Now for every i € [n] we
define the Boolean function

filwy, ... x,) = \/ /\ ;.

{k:yb=1} {j#i:yb=1}

Now we will prove that AU {0,1} € FP(f). Indeed, it is clear that 0 and T are fixed
points of f. Let y* € A, and let us prove that f(y*) = y*. Let i € [n], and suppose
initially that yf = 0. By contradiction, suppose f;(y*) = 1, and therefore there exists
k € [m] where y¥ = 1 and for every j # i such that yf = 1, we have that yf =1
Notice that the above would imply that the index set I = {j # i : yf = 1}, which has
size t, has two different completions, one by 3* and the other by y*. This contradicts
the uniqueness of the definition of Steiner systems. On the other hand, suppose now
that yf = 1. In this case, within the expression for f;(y*), the following conjunction
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appears:

Ay

{5#i:yi=1}

Therefore, f;(y*) = 1. This implies that for any y* in A, f(y*) = y*, which is
equivalent to A C FP(f), and therefore i(f) > t. Moreover, by definition IC(f;) =t
for every i € [n]. Using the contrapositive of Theorem 2.5, we can conclude that
i(f) <t+1, and thus i(f) = ¢.

Now we will prove that G(f) = K,,. To do this, we first notice that since f;
can be written as a DNF formula without negated variables, f; is monotone and it
depends on the variable z; if it appears in any clause. That is, (j,4) is an arc in G(f)
if and only if there exists y* € A such that y* = 1 and yf =1, with j # ¢. Indeed,
if i # j € [n], then we can consider any completion T C [n] \ {4,j} with |T| =t — 2.
Then, by considering T'U {i, j}, we have a subset of ¢ indices in [n], and by definition,
there exists a unique y* € A C FP(f) such that y* = y;? and yp = I. Therefore,
(4,4) € G(f), and as these are two arbitrary vertices, we conclude that G(f) = K,,.0

For example, the set
1101000
0110100
0011010
A = 0001101
1000110
0100011
1010001

is a Steiner system with parameters (7,3,2). The previous construction gives us the
2-independent monotone network

fi(x) = (w2 Axy) V (x5 Axg) V (23 A7)
fo(x) = (x1 Azg) V (23 Aws) V (26 A7)
fa(x) = (wa Axs) V (x4 ANxg) V (21 A7)
fa(x) = (x1 Axa) V (x3 A g) V (x5 A7)
fs(x) = (w2 Aa3) V(x4 Axr) V (21 A 26)
fo(x) = (g Axg) V (z1 Axs) V (22 A7)
fr(x) = (g Aas) V (x2 Axg) V (21 A x3)

Finally, we conclude this section by showing that monotone networks on n vari-
ables cannot achieve independence number greater than n/2. We will state a more
general proposition for regulatory networks.

PROPOSITION 3.4. Let h:{0,1}" — {0,1} be an unate Boolean function. Define
vt = {i € [n] : h isincreasing on i} and v~ := {i € [n] : h is decreasing on i}.
Now we define a weight function, W, such that for every x € {0,1}",

w(x)={ieyt 1 x;i=1}+|[{j€y : z; =0}

Then,

max max n—w(x)), max w >n/2.
{{w:h(w)=1}( @) {y: h(y)=0} (y)} /
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Proof. Denote by £(h) the maximum from the proposition above. Suppose by
contradiction that £(h) < n/2 and assume that the maximum is attained in the
second element. That is, there exists y € {0,1}" such that h(y) = 0 and &(h) = @ (y).
Then, for every z € {0,1}" with w(z) > w(y), we have h(z) = 1. In particular, there
exists z € {0,1}"™ such that @w(z) = w(y) + 1 = &(h) + 1 and h(z) = 1. Therefore,

max (n—w(z)) >n—w(z) >n/2,

{z:h(z)=1}
which contradicts the assumption that £(h) < n/2. The proof in the case where the
maximum is reached at the first element follows analogously. |

Before stating the following corollary, we will need to consider an alternative way of
viewing k-set canalizing functions. To do so, recall that {0, 1}™ is the set of vertices of
an n-cube @, and that any Boolean function h : {0,1}™ — {0, 1} can be understood
as a coloring of the vertices of the n-cube with two colors (0 and 1). Now, fixing
k variables and considering all vectors that have these variables fixed translates into
viewing a (n — k)-subcube of @,,. Therefore, a function h is k-set canalizing if and
only if @),, has a monochromatic @, _j according to the coloring given by h.

COROLLARY 3.5. Let h : {0,1}™ — {0,1} be an unate function, then IC(h) <
n/2.

Proof. Consider v+ and v~ defined in the same manner than the previous propo-
sition. Suppose first that £(h) is attained in the second maximum and y € {0, 1}" sat-
isfies w(y) = &£(h). Denote 7} (z) = {i €y : 2, =1} and 7 (z) = {i € v+ : z; = 0}
(and analogously g (2),7; (z)) for € {0,1}" and consider

Sy ={z €{0,1}" : 75 (z) =73 (y) A 71 (2) =1 (v)}

Recall that @(y) = 77 (y) + 7 (y). Note that S, is a set of vectors in {0,1}" that
originates from fixing v (y) + 77 (y) = n — @ (y) variables, and therefore, it is a €(h)-
subcube of @,,. Now observe that we are fixing all increasing variables that are zero
and all decreasing variables that are one in y. Consider z € S, with < y; given
that the free decreasing variables of y are zero, it necessarily follows that z,+ < y.+,
and therefore h(xz) = 0. On the other hand, now consider € S, such that z > y.
Since the increasing variables not fixed in y are all ones, it necessarily follows that
xy- >y, and therefore h(x) = 0. For every x € S such that wy(z) = wy(y) we
are not able to determine if h(z) = 0 or not. However, we can consider

Sey={zxeS,:x<y} or Ssy={zxeS,: x>y} 0

where both sets contain a zero monochromatic Q¢(4)—1, which implies
IC(h) <n—¢&h)+1<n/2.

Finally, if £(h) is attained in the first element, a similar argument can be developed
by considering y € {0,1}" such that n — @w(y) = &(h), h(y) =1 and

Sy ={2z €{0,1}" : 7{ (&) =% (¥) A % () =% )}

COROLLARY 3.6. There is no k-independent monotone Boolean network with k >

n/2.

Proof. Suppose there exists f : {0,1}™ — {0,1}", a k-independent monotone
Boolean network with & > n/2. By Theorem 2.5, for every i € [n], IC(f;) > k > n/2.
Since f; is monotone, it is unate, and by the previous result, IC(f;) < n/2. d
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4. Concluding remarks and open problems. We introduced the concept of
k-independent Boolean networks and addressed fundamental questions about their ex-
istence, in the general case, through Theorem 2.2, and in the monotone case, through
Theorem 3.3, for specific values of n and k determined by the existence of Steiner sys-
tems with those parameters. Furthermore, we derived necessary conditions in terms
of the interaction graph to represent a k-independent network, as detailed in Theorem
2.5 and its respective corollaries. On the other hand, we also presented constructions
that demonstrate the existence of networks with fixed i(f) and disconnected interac-
tion graph, as shown in Remark 2.16; with connected interaction digraph, as detailed
in Proposition 2.10; with strongly connected graph, as presented in Proposition 2.22
and Proposition 2.11. Additionally, we explored constructions showing how the pa-
rameters m, n, and k vary for networks f in n variables, with i(f) = k and m fixed
points, as described in Proposition 2.18.

Furthermore, there is a wide range of open questions, such as the general existence
of monotone Boolean networks in n variables with 1 < k < n. Similarly to what was
discussed in Section 2.3, constructions are also needed to vary the parameters of
monotone networks. Likewise, characterizations of networks with i(f) = k in terms of
structural properties of the interaction graph, for a specific family of networks, remain
to be discovered. We believe it would be interesting to adapt and utilize results from
coding theory to advance in this direction. Similarly, we believe it could be interesting
to explore Boolean networks whose sets of fixed points exhibit other combinatorial
structures, such as Orthogonal arrays [19], Covering arrays avoiding Forbidden Edges
[5], Covering arrays on graphs [21], or more generally, to investigate how parameters
studied in set-systems (e.g., [20]) translate to the set of fixed points and understand
their implications in terms of the interaction graph.

Acknowledgments. Acknowledgements will be added in the final version.
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