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Abstract

We introduce and analyze a new mixed finite element method for the stationary model arising from
the coupling of the Brinkman–Forchheimer and Darcy equations. While the original unknowns are
given by the velocities and pressures of the more and less permeable porous media, our approach
is based on the introduction of the Brinkman–Forchheimer pseudostress as a further variable,
which allows us to eliminate the respective pressure. Needless to say, the latter can be recovered
later on by a postprocessing formula that depends only on the former. Next, aiming to perform a
proper treatment of the transmission conditions, the traces on the interface, of both the Brinkman–
Forchheimer velocity and the Darcy pressure, are also incorporated as auxiliary unknowns. Thus,
the resulting fully-mixed variational formulation can be seen as a nonlinear perturbation of, in
turn, a twofold perturbed saddle point operator equation. Additionally, the diagonal feature of
some of the bilinear forms involved, facilitates the proof of their corresponding inf-sup conditions.
Then, the fixed-point strategy arising from a linearization of the Forchheimer term, along with
suitable abstract results exploiting the aforementioned structure, and the classical Banach theorem,
are employed to prove the well-posedness of the continuous and discrete schemes. In particular,
Raviart–Thomas and piecewise polynomial subspaces of the lowest degree for the domain unknowns,
as well as continuous piecewise linear polynomials for the interface ones, constitute a feasible
choice. Optimal error estimates and associated rates of convergence are established. Finally, several
numerical results illustrating the good performance of the method and confirming the theoretical
findings, are reported.

Key words: Brinkman–Forchheimer problem, Darcy problem, pseudostress-velocity formulation,
mixed finite element methods, a priori error analysis
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1 Introduction

The phenomenon of filtration of an incompressible fluid through a non-deformable saturated porous
medium with heterogeneous permeability has a wide range of applications, including processes in
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chemical, environmental, and petroleum engineering. For instance, in air filtration systems with
multiple layers, where one layer is more permeable than another, the differences in permeability
significantly influence the flow through each section. Similarly, in groundwater remediation and oil
and gas extraction, the flow can be fast near injection or production wells, especially if the aquifer
or reservoir is highly porous. Accurate modeling and simulation of such flows are crucial in these
fields to optimize processes, ensure safety, and minimize environmental impact. Mathematical models
have been developed to capture different aspects of these flows. In particular, when two distinct
regions are present in the porous medium, Darcy’s law [18] is applicable in areas of low permeability
and Reynolds number, effectively describing fluid motion in these less permeable regions. However,
in regions where permeability is higher and flow rates rise, Darcy’s law becomes inadequate, and the
nonlinear Brinkman–Forchheimer model (see, e.g., [20], [12], [11]) is employed to account for the effects
of viscous forces and increased flow rates. Consequently, the combination of these models, along with
mass conservation and momentum continuity at the interface between the two regions, leads to the
coupled Brinkman–Forchheimer/Darcy problem.

Regarding the literature, and to the best of the authors’ knowledge, we begin by mentioning [7] as
the first work to propose and analyze the coupled Brinkman–Forchheimer/Darcy model. Specifically, a
standard mixed formulation was considered in the Brinkman–Forchheimer region, while a dual-mixed
formulation was used in the Darcy region, with the continuity of normal velocities enforced through the
introduction of a suitable Lagrange multiplier. For the discretization, Bernardi–Raugel and Raviart–
Thomas elements were used for the velocities, piecewise constant elements for the pressures, and
continuous piecewise linear elements for the Lagrange multiplier. Similar models have been explored
in [36], where the coupling of the Brinkman–Forchheimer, Darcy, and heat equations was proposed to
study the continuous dependence of the solution on variations in the heat source and the Forchheimer
coefficient.

On the other hand, several papers have been devoted to the design and analysis of numerical schemes
for simulating related coupled problems, such as the (Navier–)Stokes/Darcy(–Forchheimer) models
(see, e.g., [3], [27], [29], [30], [1], [13], [17], [10], [8], and references therein). In particular, in [29], a
fully-mixed finite element method was proposed and analyzed for the Stokes–Darcy coupled problem,
where the Fredholm and Babuška–Brezzi theories were employed to derive sufficient conditions for
the unique solvability of the resulting continuous and discrete formulations. In [30], an extension
of [29] to the coupling of Stokes and nonlinear Darcy models was developed. Both a priori and a
posteriori error analyses were carried out in this work. Subsequently, a fully-mixed finite element
method was developed and analyzed for the coupling of the Stokes and Darcy–Forchheimer problems
in [1]. This new approach yields non-Hilbertian normed spaces and a twofold saddle point structure
for the corresponding operator equation, whose continuous and discrete solvabilities are analyzed
using a suitable abstract theory developed for this purpose. We also refer to [17] for the analysis
of a conforming mixed finite element method for the Navier–Stokes/Darcy problem. Given that this
coupled system is nonlinear (due to the convective term in the free fluid region), the analysis of the
continuous problem starts with the linearization of the Oseen problem in the free fluid domain. This
simplified model is then studied using the classical Babuška–Brezzi theory, similarly to how it was done
for the Stokes–Darcy coupling in [27]. Meanwhile, the coupling of a 2D reservoir model with a 1.5D
vertical wellbore model was investigated in [3] using the compressible Navier–Stokes equations coupled
with the Darcy–Forchheimer model. In [13], a penalization approach was introduced and analyzed for
the Navier–Stokes/Darcy–Forchheimer model in both 2D and 3D domains, motivated by the study
of internal ventilation in motorcycle helmets. In this work, the authors considered the velocity and
pressure throughout the entire domain as the main unknowns of the system, employing a Galerkin
approximation with piecewise quadratic elements for the velocity and linear elements for the pressure.
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More recently, in [8], a primal-mixed formulation of the Navier–Stokes/Darcy–Forchheimer system
was analyzed using a fixed-point argument and classical results on nonlinear monotone operators.

The goal of the present paper is to develop and analyze a new mixed variational formulation for
the model introduced in [7]. Unlike [7] and similarly to [29], [1], this approach considers dual-mixed
formulations in both domains. Following the strategy in [29], we introduce the pseudostress ten-
sor as an auxiliary variable and eliminate the Brinkman–Forchheimer pressure unknown using the
incompressibility condition. The transmission conditions, which involve mass conservation and mo-
mentum continuity, are imposed weakly, leading to the inclusion of additional Lagrange multipliers:
the traces of the Brinkman–Forchheimer velocity and the Darcy pressure on the interface. The re-
sulting variational system is formulated within a Banach space framework due to the presence of the
Forchheimer nonlinear term and exhibits of both the continuous and discrete formulations using a
fixed-point argument, abstract results from [28] and [15], the Banach–Nečas–Babuška theorem, small
data assumptions, and the Banach fixed-point theorem. Since the formulation shares a similar struc-
ture with those analyzed in [29], our analysis extends or leverages the corresponding results available
there, including the continuous and discrete inf-sup conditions. Additionally, by applying an ad hoc
Strang-type lemma for Banach spaces, which is a slight variant of its Hilbert space counterpart devel-
oped in [22], we derive the corresponding a priori error estimates. Finally, using Raviart–Thomas and
piecewise polynomial subspaces of the lowest degree for the domain unknowns, along with continuous
piecewise linear polynomials for the interface unknowns, we prove that the method converges with
optimal rates.

This work is organized as follows. The remainder of this section describes the standard notation and
functional spaces used throughout the paper. In Section 2, we introduce the model problem, followed
by the derivation of the fully-mixed variational formulation within a Banach space framework and the
establishment of the well-posedness of the continuous scheme in Section 3. The corresponding Galerkin
system is introduced and analyzed in Section 4, where the discrete analogue of the theory used in the
continuous case is applied to prove the existence and uniqueness of the solution. In Section 5, we
derive the a priori error estimate and establish the corresponding rates of convergence. Finally, the
performance of the method is studied in Section 6 with several numerical examples in 2D, including
cases with and without manufactured solutions, verifying the aforementioned rates of convergence, as
well as illustrating its flexibility to handle spatially varying parameters in complex geometries.

Preliminary notations

Given an arbitrary domain O ⊂ Rn, n ∈ {2, 3}, with polyhedral boundary ∂O, we adopt the standard
notation for Lebesgue spaces Lt(O) and Sobolev spaces Ws,t(O), with s ∈ R and t > 1, whose
corresponding norms, either for the scalar, vectorial, or tensorial case, are denoted by ∥ · ∥0,t;O and
∥ · ∥s,t;O, respectively. Note that actually W0,t(O) = Lt(O). In turn, when t = 2, we simply write
Hs(O) instead of Ws,2(O), and denote the corresponding norm by ∥ · ∥s,O. In particular, when s = 1
we let H1/2(∂O) be the space of traces of functions of Hs(O) = H1(O), and H−1/2(∂O) stands for its
dual. In addition, given any generic scalar functional space S, we let S and S be the corresponding
vectorial and tensorial counterparts, whereas ∥ · ∥, with no subscripts, will be employed for the norm
of any element or operator whenever there is no confusion about the space to which they belong. Also,
| · | denotes the Euclidean norm in both Rn and Rn×n, and as usual, I stands for the identity tensor in
Rn×n. Furthermore, for any vector field v = (vi)i=1,n, we set the gradient and divergence operators as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

and div(v) :=

n∑
j=1

∂vj
∂xj

,
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whereas for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div(τ ) be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the deviatoric tensor, and
the tensor inner product, respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=

n∑
i=1

τii, τ d := τ − 1

n
tr(τ ) I, and τ : ζ :=

n∑
i,j=1

τij ζij .

On the other hand, for each t ∈ [1,+∞) we introduce the Banach spaces

H(divt;O) :=
{
η ∈ L2(O) : div(η) ∈ Lt(O)

}
, and

H(divt;O) :=
{
τ ∈ L2(O) : div(τ ) ∈ Lt(O)

}
, (1.1)

equipped with the natural norms

∥η∥divt;O := ∥η∥0,O + ∥div(η)∥0,t;O ∀η ∈ H(divt;O) , and

∥τ∥divt;O := ∥τ∥0,O + ∥div(τ )∥0,t;O ∀ τ ∈ H(divt;O) .

We notice that when t = 2, we just write H(div;O), ∥ · ∥div;O, H(div;O), and ∥ · ∥div;O instead
of H(div2;O), ∥ · ∥div2;O, H(div2;O), and ∥ · ∥div2;O, respectively. Additionally, we recall that,
proceeding as in [24, eq. (1.43), Section 1.3.4] (see also [14, Section 3.1]), one can prove that for

t ∈

{
(1,+∞] in R2 ,

[65 ,+∞] in R3 ,
there holds

⟨η · ν, v⟩ =
∫
O

{
η · ∇v + v div(η)

}
∀ (η, v) ∈ H(divt;O) × H1(O) , (1.2)

and

⟨τν,v⟩ =
∫
O

{
τ : ∇v + v · div(τ )

}
∀ (τ ,v) ∈ H(divt;O) × H1(O) , (1.3)

where ⟨·, ·⟩ denotes in (1.2) (resp. (1.3)) the duality pairing between H1/2(∂O) (resp. H1/2(∂O)) and
H−1/2(∂O) (resp. H−1/2(∂O)).

2 The model problem

In order to describe the geometry of the coupled Brinkman–Forchheimer/Darcy model, we let ΩB

and ΩD be bounded and simply connected open polyhedral domains in Rn, n ∈ {2, 3}, such that
∂ΩB ∩ ∂ΩD = Σ ̸= ∅ and ΩB ∩ΩD = ∅. Then, we let ΓB := ∂ΩB \Σ, ΓD := ∂ΩD \Σ, and denote by n
the unit normal vector on the boundaries, which is chosen pointing outward from Ω := ΩB∪Σ∪ΩD and
ΩB (and hence inward to ΩD when seen on Σ). A sketch of a 2D geometry is displayed in Figure 2.1.
The mathematical model is defined by two separate groups of equations and by a set of coupling
terms. In the more permeable porous medium domain ΩB, the governing equations are those of
the Brinkman–Forchheimer problem, which are written in the following pseudostress-velocity-pressure
formulation:

σB = µ∇uB − pB I in ΩB, div(uB) = 0 in ΩB,

K−1
B uB + F |uB|ρ−2uB − div(σB) = fB in ΩB, uB = 0 on ΓB,

(2.1)
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where σB is the pseudostress tensor, uB is the fluid velocity, pB is the pressure, µ is the kinematic
viscosity of the fluid, KB is an invertible symmetric tensor in ΩB, equal to the symmetric permeability
tensor scaled by the kinematic viscosity, F > 0 is the Forchheimer coefficient, ρ is a number in [3, 4],
and fB is a given external force. In turn, in the less permeable porous medium domain ΩD, we consider
the Darcy equations to approximate the velocity uD and the pressure pD, which read

K−1
D uD +∇pD = fD in ΩD, div(uD) = gD in ΩD, uD · n = 0 on ΓD , (2.2)

where KD is an invertible symmetric tensor in ΩD, equal to the permeability tensor scaled by the
kinematic viscosity, and fD ∈ L2(ΩD) and gD ∈ L2(ΩD) are sources terms. Finally, to couple the
Brinkman–Forchheimer and the Darcy models, we proceed as in [7] (see similar approaches in [21,
19, 36]), and consider transmission conditions that impose, respectively, the mass conservation and
continuity of momentum across the interface Σ:

uB · n = uD · n and σBn = −pDn on Σ . (2.3)

Figure 2.1: Sketch of a 2D geometry of the coupled Brinkman–Forchheimer/Darcy model

Throughout the paper we assume that for each ⋆ ∈ {B,D}, K⋆, K
−1
⋆ ∈ L∞(Ω⋆) and there exists a

constant CK⋆ > 0 such that
w ·K−1

⋆ (x)w ≥ CK⋆ |w|2 , (2.4)

for almost all x ∈ Ω⋆, and for all w ∈ Rn. In addition, according to the incompressibility of the fluid,
the boundary conditions on uB and uD, and the principle of mass conservation (cf. first equation in
(2.3)), the datum gD must satisfy ∫

ΩD

gD = 0 . (2.5)

3 The continuous formulation

In this section we proceed analogously to [29] (see also [30, 10]) and derive a fully-mixed formulation
of the coupled problem given by (2.1), (2.2), and (2.3).

3.1 Preliminaries

We first observe, owing to the fact that tr(∇uB) = div(uB) = 0, that the first two equations in (2.1)
are equivalent to

σB = µ∇uB − pBI , pB = − 1

n
tr(σB) in ΩB, (3.1)
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and hence, eliminating the pressure pB (which anyway can be approximated later on by the post-
processed formula suggested by the second equation of (3.1)), the Brinkman–Forchheimer problem
(2.1) can be rewritten as

1

µ
σd
B = ∇uB in ΩB, K−1

B uB + F |uB|ρ−2uB −div(σB) = fB in ΩB, uB = 0 on ΓB . (3.2)

Hence, gathering (3.2), (2.2), and (2.3), the coupled Brinkman–Forchheimer/Darcy model, without
the pressure pB, can be summarized as follows

1

µ
σd
B = ∇uB in ΩB ,

K−1
B uB + F |uB|ρ−2uB − div(σB) = fB in ΩB ,

K−1
D uD +∇pD = fD in ΩD ,

div(uD) = gD in ΩD ,

uB · n = uD · n and σBn = −pDn on Σ ,

uD · n = 0 on ΓD , uB = 0 on ΓB .

(3.3)

We now provide further notations and definitions. Firstly, for each ⋆ ∈ {B,D} we set

(p, q)⋆ :=

∫
Ω⋆

p q, (u,v)⋆ :=

∫
Ω⋆

u · v and (σ, τ )⋆ :=

∫
Ω⋆

σ : τ . (3.4)

Next, denoting by E0,⋆ : H
1/2(Σ) → L2(∂Ω⋆) the extension operator given by

E0,⋆(ψ) :=

{
ψ on Σ
0 on Γ⋆

∀ψ ∈ H1/2(Σ) ,

and proceeding as in [29] (see also [30, 10]), we define the space of traces

H
1/2
00 (Σ) :=

{
ψ ∈ H1/2(Σ) : E0,⋆(ψ) ∈ H1/2(∂Ω⋆)

}
, (3.5)

which is endowed with the norm

∥ψ∥1/2,00;Σ := ∥E0,⋆(ψ)∥1/2,∂Ω⋆
. (3.6)

Note that (3.5) actually says that H
1/2
00 (Σ) can be defined in two different, but equivalent, ways,

namely by performing the extension by 0 to either ΓB or ΓD. Then, we let H
1/2
00 (Σ) :=

[
H

1/2
00 (Σ)

]n
,

denote the dual spaces of H
1/2
00 (Σ) and H

1/2
00 (Σ) by H

−1/2
00 (Σ) and H

−1/2
00 (Σ), respectively, and let

⟨ ·, · ⟩Σ be the duality pairing for both cases. Since it is clear that H
1/2
00 (Σ) ⊆ H1/2(Σ), there

holds H−1/2(Σ) ⊆ H
−1/2
00 (Σ), and analogously H−1/2(Σ) ⊆ H

−1/2
00 (Σ). In addition, letting for

each ⋆ ∈
{
B,D

}
, ⟨·, ·⟩∂Ω⋆ be the duality pairing between H−1/2(∂Ω⋆) and H1/2(∂Ω⋆), and given any

η ∈ H−1/2(∂Ω⋆), its restriction to Σ, denoted η|Σ, is defined as

⟨η|Σ, ψ⟩Σ := ⟨η,E0,⋆(ψ)⟩∂Ω⋆ ∀ψ ∈ H
1/2
00 (Σ) . (3.7)
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Then, letting ∥ · ∥−1/2,00;Σ be the norm of both H
−1/2
00 (Σ) and H

−1/2
00 (Σ), it is easily seen from (3.6)

and (3.7) that η|Σ ∈ H
−1/2
00 (Σ), and that

∥η|Σ∥−1/2,00;Σ ≤ ∥η∥−1/2,∂Ω⋆
.

Moreover, it can be proved (see, e.g. [23, Section 2]) that in the particular case in which η|Γ⋆ is the

null functional of H
−1/2
00 (Γ⋆), there actually holds η|Σ ∈ H−1/2(Σ).

Certainly, the above also holds for the corresponding vector versions of the spaces involved.

3.2 The Banach spaces-based fully-mixed variational formulation

We now proceed with the derivation of our Banach spaces-based fully-mixed variational formulation
for the coupled Brinkman–Forchheimer/Darcy problem. To this end, we test the first and second
equations of (3.3) against functions τB and vB associated with the unknowns σB and uB, respectively,
whence, using the identity σd

B : τB = σd
B : τ d

B and the notations from (3.4), we formally get

1

µ
(σd

B, τ
d
B)B − (∇uB, τB)B = 0 , (3.8)

(vB,div(σB))B − (K−1
B uB,vB)B − F(|uB|ρ−2uB,vB)B = −(fB,vB)B . (3.9)

Notice that the first term of (3.8) is well-defined for σB, τB ∈ L2(ΩB). In turn, applying the Hölder
inequality twice, we find that the Forchheimer term, given by the third expression in (3.9), can be
bounded as ∣∣(|wB|ρ−2uB,vB)B

∣∣ ≤ ∥wB∥ρ−2
0,ρ;ΩB

∥uB∥0,ρ;ΩB
∥vB∥0,ρ;ΩB

, (3.10)

which shows that it is well-defined for all wB, uB, vB ∈ Lρ(Ω). We stress here that the above
bounding is more general than the one employed for the related model studied in [6], which, involving
the usual convective term from the Navier–Stokes equations, is forced to require uB, vB ∈ L4(Ω), and
hence wB ∈ L2(ρ−2)(ΩB). In this way, using that 2(ρ − 2) ≤ 4, ∥wB∥0,2(ρ−2);ΩB

is bounded in [6] by

C ∥wB∥0,4;ΩB
, where C is the norm of the continuous injection from L4(ΩB) into L2(ρ−2)(ΩB). Not

having that convective term in the present case, the estimate (3.10) does not need to restrict to ρ = 4,
and it is actually valid not only for ρ ∈ [3, 4], but also for an even larger range of this exponent.

Furthermore, since K−1
B ∈ L∞(ΩB) and Lρ(ΩB) is certainly contained in L2(ΩB), the second term

in (3.9) does also make sense. Next, knowing the space in which vB is taken, we deduce that the source
term of (3.9) is well-defined if fB belongs to Lϱ(ΩB), with ϱ the conjugate of ρ, that is ϱ ∈ [4/3, 3/2]
and 1/ρ + 1/ϱ = 1, which is assumed from now on, whereas the first term of (3.9) makes sense if
div(σB) lies in Lϱ(ΩB) as well, and thus initially we look for σB in the Banach space H(divϱ; ΩB) (cf.
(1.1)). Moreover, choosing also H(divϱ; ΩB) as the space to which the test functions τB belong, and
assuming originally that uB ∈ H1(ΩB), we can integrate by parts the second term in (3.8), so that,
using the Dirichlet boundary condition uB = 0 on ΓB, and defining the auxiliary unknown

φ := −uB|Σ ∈ H
1/2
00 (Σ) ,

that equation becomes

1

µ
(σd

B, τ
d
B)B + ⟨τBn,φ⟩Σ + (uB,div(τB))B = 0 ∀ τB ∈ H(divϱ; ΩB) , (3.11)

whereas, according to the previous discussion, (3.9) is tested against vB ∈ Lρ(ΩB).
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In turn, as suggested by the boundary condition on uD, we introduce the space

HΓD
(div; ΩD) :=

{
vD ∈ H(div; ΩD) : vD · n = 0 on ΓD

}
.

Thus, similarly to the procedure employed in [29] and [7], we test the third and fourth equations
of (3.3) against vD ∈ HΓD

(div; ΩD) and qD ∈ L2(ΩD), respectively, and then impose weakly the
transmission conditions on Σ (cf. fifth equation of (3.3)). In this way, introducing the additional
unknown

λ := pD|Σ ∈ H1/2(Σ) ,

we arrive at

(K−1
D uD,vD)D − ⟨vD · n, λ⟩Σ − (pD, div(vD))D = (fD,vD)D ∀vD ∈ HΓD

(div; ΩD) ,

(qD,div(uD))D = (gD, qD)D ∀ qD ∈ L2(ΩD) ,

−⟨φ · n, ξ⟩Σ − ⟨uD · n, ξ⟩Σ = 0 ∀ ξ ∈ H1/2(Σ) ,

⟨σBn,ψ⟩Σ + ⟨ψ · n, λ⟩Σ = 0 ∀ψ ∈ H
1/2
00 (Σ) .

(3.12)

We remark here that, being φ · n = 0 on ΓB and uD · n = 0 on ΓD, it follows that both φ · n|Σ
and uD · n|Σ belong to H−1/2(Σ), which explains the fact that the third equation of (3.12) is tested
against ξ ∈ H1/2(Σ). In turn, since σBn ∈ H−1/2(∂ΩB) and λn ∈ L2(∂ΩD) ⊆ H−1/2(∂ΩD), it is clear

that both σBn|Σ and λn|Σ belong to H
−1/2
00 (Σ), which confirms the validity of the fourth equation of

(3.12).

Now, let us observe that if (σB,uB,φ,uD, pD, λ) is a solution of (3.9), (3.11), and (3.12), then for
all c ∈ R, (σB − c I,uB,φ,uD, pD + c, λ+ c) is also a solution. Then, we avoid the non-uniqueness of
solution by requiring from now on that pD ∈ L2

0(ΩD), where

L2
0(ΩD) :=

{
qD ∈ L2(ΩD) : (qD, 1)D = 0

}
.

On the other hand, for convenience of the subsequent analysis, we consider the decomposition (see,
for instance, [5], [24])

H(divϱ; ΩB) = H0(divϱ; ΩB)⊕ R I, (3.13)

where
H0(divϱ; ΩB) :=

{
τB ∈ H(divϱ; ΩB) : (tr(τB), 1)B = 0

}
,

and redefine the pseudostress tensor as σB := σB + ℓ I, with the new unknowns σB ∈ H0(divϱ; ΩB)
and ℓ ∈ R. In this way, (3.11) and the fourth equation of (3.12) are rewritten, equivalently, as

1

µ
(σd

B, τ
d
B)B + ⟨τBn,φ⟩Σ + (uB,div(τB))B = 0 ∀ τB ∈ H0(divϱ; ΩB),

ȷ ⟨φ · n, 1⟩Σ = 0 ∀ ȷ ∈ R, (3.14)

⟨σBn,ψ⟩Σ + ⟨ψ · n, λ⟩Σ + ℓ ⟨ψ · n, 1⟩Σ = 0 ∀ψ ∈ H
1/2
00 (Σ) ,

so that the whole variational formulation reduces to (3.9), the first three rows of (3.12), and (3.14).
Note here that, due to (2.5) and the transmission and boundary conditions satisfied by uD and uB,
the second row of (3.12) is equivalently tested against qD ∈ L2

0(ΩD).

Now, it is clear that there are many different ways of ordering the aforementioned equations, but for
the sake of the subsequent analysis, we proceed closely to [28] (see also [30] and [10] for similar works),
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and adopt one leading to a nonlinear perturbation of a twofold perturbed saddle point problem in a
Banach spaces framework, namely: Find

(
σB,uD,φ, λ,uB, pD, ℓ

)
∈ H0(divϱ; ΩB) × HΓD

(div; ΩD) ×
H

1/2
00 (Σ)×H1/2(Σ)× Lρ(ΩB)× L2

0(ΩD)× R, such that

1

µ
(σB, τB)B +⟨τB n,φ⟩Σ +(uB,div(τB))B = 0

(K−1
D uD,vD)D −⟨vD · n, λ⟩Σ −(pD, div(vD))D = (fD,vD)D

−⟨σB n,ψ⟩Σ − ⟨ψ · n, λ⟩Σ − ℓ ⟨ψ · n, 1⟩Σ = 0

⟨uD · n, ξ⟩Σ + ⟨φ · n, ξ⟩Σ = 0

(vB,div(σB))B −(K−1
B uB,vB)B −F(|uB|ρ−2uB,vB)B = −(fB,vB)B

−(qD, div(uD))D = −(gD, qD)D

− ȷ ⟨φ · n, 1⟩Σ = 0

(3.15)

for all
(
τB,vD,ψ, ξ,vB, qD, ȷ

)
∈ H0(divϱ; ΩB)×HΓD

(div; ΩD)×H
1/2
00 (Σ)×H1/2(Σ)×Lρ(ΩB)×L2

0(ΩD)×
R. According to (3.15), we introduce the spaces

H1 := H0(divϱ; ΩB)×HΓD
(div; ΩD) , H2 := H

1/2
00 (Σ)×H1/2(Σ) ,

H := H1 ×H2 , and Q := Lρ(ΩB)× L2
0(ΩD)× R ,

and set the following notations for the unknowns and corresponding test functions

σ⃗ := (σB,uD) ∈ H1 , φ⃗ := (φ, λ) ∈ H2 , u⃗ := (uB, pD, ℓ) ∈ Q ,

τ⃗ := (τB,vD) ∈ H1 , ψ⃗ := (ψ, ξ) ∈ H2 , v⃗ := (vB, qD, ȷ) ∈ Q ,

ζ⃗ := (ζB, zD) ∈ H1 , ϕ⃗ := (ϕ, ϑ) ∈ H2 , z⃗ := (zB, rD, κ) ∈ Q ,

(3.16)

so that H1, H2, H, and Q are endowed with the norms

∥τ⃗∥H1 := ∥τB∥divϱ;ΩB
+ ∥vD∥div;ΩD

∀ τ⃗ := (τB,vD) ∈ H1 ,

∥ψ⃗∥H2 := ∥ψ∥1/2,00;Σ + ∥ξ∥1/2,Σ ∀ ψ⃗ := (ψ, ξ) ∈ H2 ,

∥(τ⃗ , ψ⃗)∥H := ∥τ⃗∥H1 + ∥ψ⃗∥H2 ∀ (τ⃗ , ψ⃗) ∈ H ,

∥v⃗∥Q := ∥vB∥0,ρ;ΩB
+ ∥qD∥0,ΩD

+ |ȷ| ∀ v⃗ := (vB, qD, ȷ) ∈ Q .

Hence, the mixed formulation (3.15) can be rewritten as: Find
(
(σ⃗, φ⃗), u⃗

)
∈ H×Q such that

A
(
(σ⃗, φ⃗), (τ⃗ , ψ⃗)

)
+ B

(
(τ⃗ , ψ⃗), u⃗

)
= F

(
(τ⃗ , ψ⃗)

)
,

B
(
(σ⃗, φ⃗), v⃗

)
− CuB

(
u⃗, v⃗

)
= G

(
v⃗
)
,

(3.17)

for all
(
(τ⃗ , ψ⃗), v⃗

)
∈ H × Q, where the bilinear forms A : H × H → R, B : H × Q → R, and

CwB : Q×Q → R, for each wB ∈ Lρ(ΩB), and the linear functionals F : H → R and G : Q → R, are
defined in what follows. Indeed, there holds

A
(
(ζ⃗, ϕ⃗), (τ⃗ , ψ⃗)

)
:= a(ζ⃗, τ⃗ ) + b1(τ⃗ , ϕ⃗) + b2(ζ⃗, ψ⃗) − c(ϕ⃗, ψ⃗) , (3.18)

with

a(ζ⃗, τ⃗ ) :=
1

µ
(ζB, τB)B + (K−1

D zD,vD)D ∀ ζ⃗, τ⃗ ∈ H1 ,

b1(τ⃗ , ψ⃗) := ⟨τB n,ψ⟩Σ − ⟨vD · n, ξ⟩Σ ∀ (τ⃗ , ψ⃗) ∈ H := H1 ×H2 ,

b2(τ⃗ , ψ⃗) := −⟨τB n,ψ⟩Σ + ⟨vD · n, ξ⟩Σ ∀ (τ⃗ , ψ⃗) ∈ H := H1 ×H2 ,

c(ϕ⃗, ψ⃗) := ⟨ψ · n, ϑ⟩Σ − ⟨ϕ · n, ξ⟩Σ ∀ (ϕ⃗, ψ⃗) ∈ H2 ×H2 ,

(3.19)
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whereas

B
(
(τ⃗ , ψ⃗), v⃗

)
:= (vB,div(τB))B − (qD, div(vD))D − ȷ⟨ψ · n, 1⟩Σ ∀

(
(τ⃗ , ψ⃗), v⃗

)
∈ H×Q , (3.20)

and
CwB (⃗z, v⃗) := (K−1

B zB,vB)B + F(|wB|ρ−2zB,vB)B ∀ (⃗z, v⃗) ∈ Q×Q . (3.21)

In turn,
F
(
(τ⃗ , ψ⃗)

)
:= (fD,vD)D ∀ (τ⃗ , ξ) ∈ Q ,

and
G(v⃗) := − (fB,vB)B − (gD, qD)D ∀ v⃗ ∈ Q .

Equivalently, letting AwB :
(
H×Q

)
×
(
H×Q

)
→ R be the bilinear form defined by

AwB

((
(ζ⃗, ϕ⃗), z⃗

)
,
(
(τ⃗ , ψ⃗), v⃗

))
:= A

(
(ζ⃗, ϕ⃗), (τ⃗ , ψ⃗)

)
+ B

(
(τ⃗ , ψ⃗), z⃗

)
+ B

(
(ζ⃗, ϕ⃗), v⃗

)
− CwB (⃗z, v⃗) ,

(3.22)

we deduce that (3.17) can be stated, equivalently, as: Find
(
(σ⃗, φ⃗), u⃗

)
∈ H×Q, such that

AuB

((
(σ⃗, φ⃗), u⃗

)
,
(
(τ⃗ , ψ⃗), v⃗

))
= F

((
(τ⃗ , ψ⃗), v⃗

))
∀
(
(τ⃗ , ψ⃗), v⃗

)
∈ H×Q , (3.23)

where F : H×Q → R is defined by the addition of F and G, that is

F
((
(τ⃗ , ψ⃗), v⃗

))
:= (fD,vD)D − (fB,vB)B − (gD, qD)D ∀

(
(τ⃗ , ψ⃗), v⃗

)
∈ H×Q .

It is readily seen, particularly according to (3.18) and (3.19), that a matrix representation of the
bilinear form AwB is given by

AwB :=

(
A B
B −CwB

)
=

 a b1

b2 −c
B

B −CwB

 , (3.24)

from which its twofold perturbed saddle point structure is evident. On the other hand, for further use
throughout the rest of the paper, we remark that b2 = −b1 and c(ψ⃗, ψ⃗) = 0 for all ψ⃗ ∈ H2, which,
along with (2.4), yields

A
(
(τ⃗ , ψ⃗), (τ⃗ , ψ⃗)

)
= a(τ⃗ , τ⃗ ) =

1

µ
∥τB∥20,ΩB

+ (K−1
D vD,vD)D

≥ 1

µ
∥τB∥20;ΩB

+ CKD
∥vD∥20;ΩD

≥ 0 ∀ (τ⃗ , ψ⃗) ∈ H .
(3.25)

In addition, besides being clearly symmetric, we notice that CwB is positive semi-definite as well since,
according to (3.21), and employing again (2.4), it follows that

CwB(v⃗, v⃗) := (K−1
B vB,vB)B + F(|wB|ρ−2vB,vB)B

≥ CKB
∥vB∥20;ΩB

+ F (|wB|ρ−2, |vB|2)B ≥ 0 ∀ v⃗ ∈ Q .
(3.26)

Furthermore, we notice that A :=

(
a b1

b2 −c

)
is invertible in a determined space, say the kernel of

B, and hence satisfy global inf-sup conditions there, if and only if

Ã :=

(
a b

b −c̃

)
(3.27)
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is invertible, where b = b1 and c̃ = − c. Note that Ã arises from A after multiplying by −1 the
second row of the later, and that obviously the resulting c̃ also satisfies the aforementioned property
of c, that is

c̃(ψ⃗, ψ⃗) = 0 ∀ ψ⃗ ∈ H2 . (3.28)

Finally, it is interesting to observe that the bilinear forms b1 (and hence b2) as well as B have diagonal
structures, whence proving the corresponding inf-sup conditions reduces, basically, to showing this
property for each one of their diagonal components.

We end this section with the stability properties of the bilinear forms and functionals involved
in (3.17). In fact, direct applications of the Cauchy-Schwarz and Hölder inequalities, along with
the boundedness of the normal trace on H(divϱ; ΩB) and H(div; ΩD), yield the existence of positive
constants, denoted and given as:

∥a∥ := max
{
µ−1, ∥K−1

D ∥∞;ΩD

}
, ∥b1∥ = ∥b2∥ := max

{
1, ∥iρ∥

}
,

∥c∥ := 2 , ∥A∥ := ∥a∥ + 2 ∥b1∥ + ∥c∥ , ∥B∥ := 3 ,

and ∥F∥ := ∥fD∥0;ΩD
+ ∥fB∥0,ϱ;ΩB

+ ∥gD∥0;ΩD
,

(3.29)

where ∥iρ∥ is the norm of the continuous injection iρ of H1(Ω) into Lρ(Ω), such that there hold

|a(ζ⃗, τ⃗ )| ≤ ∥a∥ ∥ζ⃗∥H1 ∥τ⃗∥H1 ∀ ζ⃗, τ⃗ ∈ H1 ,

|bi(τ⃗ , ψ⃗)| ≤ ∥bi∥ ∥τ⃗∥H1 ∥ψ⃗∥H2 ∀ (τ⃗ , ψ⃗) ∈ H ,

|c(ϕ⃗, ψ⃗)| ≤ ∥c∥ ∥ϕ⃗∥H2 ∥ψ⃗∥H2 ∀ ϕ⃗, ψ⃗ ∈ H2 ,

|A
(
(ζ⃗, ϕ⃗), (τ⃗ , ψ⃗)

)
| ≤ ∥A∥ ∥(ζ⃗, ϕ⃗)∥H ∥(τ⃗ , ψ⃗)∥H ∀ (ζ⃗, ϕ⃗), (τ⃗ , ψ⃗) ∈ H ,

|B((τ⃗ , ψ⃗), v⃗)| ≤ ∥B∥ ∥(τ⃗ , ψ⃗)∥H ∥v⃗∥Q ∀ ((τ⃗ , ψ⃗), v⃗) ∈ H×Q , and

|F
((
(τ⃗ , ψ⃗), v⃗

))
| ≤ ∥F∥ ∥

(
(τ⃗ , ψ⃗), v⃗

)
∥H×Q ∀

(
(τ⃗ , ψ⃗), v⃗

)
∈ H×Q .

(3.30)

In turn, employing (3.10), we readily find that for each wB ∈ Lρ(ΩB) there holds (cf. (3.16))

|F(|wB|ρ−2zB,vB)B| ≤ F∥wB∥ρ−2
0,ρ;ΩB

∥zB∥0,ρ;ΩB
∥vB∥0,ρ;ΩB

≤ F∥wB∥ρ−2
0,ρ;ΩB

∥z⃗∥Q ∥v⃗∥Q ∀ z⃗ , v⃗ ∈ Q ,

and thus, in virtue of the definition of CwB (cf. (3.21)), and using again Hölder’s inequality, we get

|CwB (⃗z, v⃗)| ≤
{
∥C∥+ F∥wB∥ρ−2

0,ρ;ΩB

}
∥z⃗∥Q ∥v⃗∥Q ∀ z⃗ , v⃗ ∈ Q , (3.31)

with
∥C∥ := |Ω|(ρ−2)/ρ ∥K−1

B ∥∞;ΩB
. (3.32)

3.3 Some abstract results on perturbed saddle point problems

In this section we collect two abstract theorems in Banach spaces that are employed later on to analyze
the solvability of (3.23) (equivalently (3.17)). The first one, taken from [28, Theorem 3.2] and stated
next, constitutes a slight improvement of the original result provided in [15, Theorem 3.4].

Theorem 3.1 Let H and Q be reflexive Banach spaces, and let a : H ×H → R, b : H ×Q→ R, and
c : Q × Q → R be given bounded bilinear forms. In addition, let B : H → Q′ be the bounded linear
operator induced by b, and let K = N(B) be the respective null space. Assume that:
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i) a and c are positive semi-definite, that is

a(τ, τ) ≥ 0 ∀ τ ∈ H and c(v, v) ≥ 0 ∀ v ∈ Q ,

and that c is symmetric.

ii) there exists a constant α > 0 such that

sup
τ∈K
τ ̸=0

a(ζ, τ)

∥τ∥H
≥ α ∥ζ∥H ∀ ζ ∈ K , and

sup
ζ∈K
ζ ̸=0

a(ζ, τ)

∥ζ∥H
≥ α ∥τ∥H ∀ τ ∈ K ,

iii) and there exists a constant β > 0 such that

sup
τ∈H
τ ̸=0

b(τ, v)

∥τ∥H
≥ β ∥v∥Q ∀v ∈ Q .

Then, for each pair (F,G) ∈ H ′ ×Q′ there exists a unique (σ, u) ∈ H ×Q such that

a(σ, τ) + b(τ, u) = F (τ) ∀ τ ∈ H ,

b(σ, v)− c(u, v) = G(v) ∀v ∈ Q .
(3.33)

Moreover, there exists a constant C > 0, depending only on ∥a∥, ∥c∥, α, and β, such that

∥(σ, u)∥H×Q ≤ C
{
∥F∥H′ + ∥G∥Q′

}
. (3.34)

We remark here that (3.34) is equivalent to a global inf-sup condition for the bilinear form A that
arises by summing up the equations in (3.33), namely

sup
(τ,v)∈H×Q
(τ,v)̸=0

A((ζ, w), (τ, v))

∥(τ, v)∥H×Q
≥ C ∥(ζ, w)∥H×Q ∀ (ζ, w) ∈ H ×Q ,

where
A((ζ, w), (τ, v)) := a(ζ, τ) + b(τ, w) + b(ζ, v)− c(w, v) .

Now, we present a variation of Theorem 3.1 in which the symmetry of the perturbation c is dropped
but the bilinear form a is required to be elliptic in the whole space.

Theorem 3.2 Let H and Q be reflexive Banach spaces, and let a : H × H → R, b : H × Q → R,
and c : Q×Q → R be bounded bilinear forms with boundedness constants denoted ∥a∥, ∥b∥, and ∥c∥,
respectively. Assume that:

i) c is positive semidefinite, that is c(v, v) ≥ 0 for all v ∈ Q.

ii) a is H-elliptic, that is there exists a positive constant α > 0 such that

a(τ, τ) ≥ α ∥τ∥2H ∀ τ ∈ H , and

12



iii) b verifies the inf-sup condition, that is there exists a positive constant β such that

sup
τ∈H
τ ̸=0

b(τ, v)

∥τ∥H
≥ β ∥v∥Q ∀v ∈ Q ,

Then, for each pair (F,G) ∈ H′ ×Q′ there exists a unique (σ, u) ∈ H×Q such that

a(σ, τ) + b(τ, u) = F (τ) ∀ τ ∈ H ,

b(σ, v)− c(u, v) = G(v) ∀ v ∈ Q .
(3.35)

Moreover, there exists a positive constant C, depending only on ∥a∥, ∥b∥, α, and β, such that

∥σ∥H + ∥u∥Q ≤ C
{
∥F∥H′ + ∥G∥Q′

}
. (3.36)

Proof. The proof proceeds as a natural simplification of the corresponding analysis developed in [1,
Section 3] for a nonlinear version of (3.35). We begin by establishing existence of solution, for which
we first observe, thanks to ii) and the Banach-Nečas-Babuška theorem (cf. [22, Theorem 2.6]), that
there exists a unique σ0 ∈ H such that

a(σ0, τ) = F (τ) ∀ τ ∈ H , (3.37)

and that for each w ∈ Q there exists a unique σw ∈ H such that

a(σw, τ) = − b(τ, w) ∀ τ ∈ H . (3.38)

The corresponding a priori estimates are given, respectively, by

∥σ0∥H ≤ 1

α
∥F∥H′ and ∥σw∥H ≤ ∥b∥

α
∥w∥Q ∀w ∈ Q . (3.39)

Next, employing iii) and (3.38) we get for each w ∈ Q

β ∥w∥Q ≤ sup
τ∈H
τ ̸=0

b(τ, w)

∥τ∥H
= sup

τ∈H
τ ̸=0

a(σw, τ)

∥τ∥H
,

from which it readily follows
β

∥a∥
∥w∥Q ≤ ∥σw∥H ∀w ∈ Q . (3.40)

Now, noting from (3.38) that σw depends linearly on w, we can introduce the bilinear form

Θ(w, v) := c(w, v)− b(σw, v) ∀w, v ∈ Q ,

which is clearly bounded due to the same property of c and b, and the second estimate in (3.39). In
addition, according to (3.38), i), ii), and (3.40), we deduce that for each v ∈ Q there holds

Θ(v, v) = c(v, v)− b(σv, v) = c(v, v) + a(σv, σv) ≥ α ∥σv∥2H ≥ αβ2

∥a∥2
∥v∥2Q ,

which shows that Θ is Q-elliptic. Thus, applying again the Banach-Nečas-Babuška theorem, we
conclude that there exists a unique u ∈ Q such that

Θ(u, v) = b(σ0, v)−G(v) ∀ v ∈ Q ,
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that is
c(u, v)− b(σu, v) = b(σ0, v)−G(v) ∀ v ∈ Q ,

which can be rearranged as

b(σ0 + σu, v)− c(u, v) = G(v) ∀ v ∈ Q . (3.41)

Now, letting σ := σ0 + σu ∈ H, it follows from (3.37) and (3.38) that

a(σ, τ) = a(σ0, τ) + a(σu, τ) = F (τ)− b(τ, u) ,

that is
a(σ, τ) + b(τ, u) = F (τ) ∀ τ ∈ H ,

which, along with (3.41), shows that (σ, u) ∈ H×Q is solution of (3.35). In turn, the a priori estimate
for u reads

∥u∥Q ≤ ∥a∥2

αβ2

{
∥b∥ ∥σ0∥H + ∥G∥Q′

}
,

which, using the first inequality in (3.39), becomes

∥u∥Q ≤ ∥a∥2 ∥b∥
α2 β2

∥F∥H′ +
∥a∥2

αβ2
∥G∥Q′ , (3.42)

whereas, employing both estimates in (3.39), and (3.42), we find that

∥σ∥H ≤ 1

α

(
1 +

∥a∥2 ∥b∥2

α2 β2

)
∥F∥H′ +

∥a∥2 ∥b∥
α2 β2

∥G∥Q′ . (3.43)

Having proved the existence of a solution (σ, u) of (3.35) satisfying (3.42) and (3.43), it only remains
to show the uniqueness, for which we let (σ̃, ũ) ∈ H×Q be such that

a(σ̃, τ) + b(τ, ũ) = 0 ∀ τ ∈ H ,

b(σ̃, v)− c(ũ, v) = 0 ∀ v ∈ Q .
(3.44)

Then, taking τ = σ̃ and v = ũ in (3.44), and then subtracting the resulting equations and using ii),
we get

0 = a(σ̃, σ̃) + c(ũ, ũ) ≥ α ∥σ̃∥2H ,

from which σ̃ = 0. In addition, it is clear from the first row of (3.44) and (3.38) that σ̃ũ = σ̃, which,
invoking (3.40), yields ũ = 0, thus confirming the uniqueness of solution for (3.35). Finally, (3.42) and
(3.43) imply (3.36) and complete the proof. □

3.4 Solvability analysis

In this section we adopt a fixed-point strategy (see, e.g. [6], [28] and some references therein) to
address the solvability of the variational formulation (3.23) (equivalently, that of (3.17)). To this end,
we introduce the operator T : Lρ(ΩB) → Lρ(ΩB) defined by

T(wB) := uB ∀wB ∈ Lρ(ΩB) , (3.45)

where
(
(σ⃗, φ⃗), u⃗

)
∈ H×Q, with u⃗ := (uB, pD, ℓ) ∈ Q, is the unique solution (to be confirmed later)

of the linear problem arising from (3.23) when AuB is replaced by AwB , that is

AwB

((
(σ⃗, φ⃗), u⃗

)
,
(
(τ⃗ , ψ⃗), v⃗

))
= F

((
(τ⃗ , ψ⃗), v⃗

))
∀
(
(τ⃗ , ψ⃗), v⃗

)
∈ H×Q . (3.46)
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It follows that (3.23) can be rewritten as the fixed-point equation: Find uB ∈ Lρ(ΩB) such that

T(uB) = uB . (3.47)

Now, as suggested by the matrix representation of AwB (cf. (3.24)), we plan to apply Theorem
3.1 to prove the well-posedness of (3.46), thus confirming that T is well-defined. To this end, we
first recall that the stability properties of all the forms involved in (3.46) were established in (3.30)
and (3.31). Next, and due to the diagonal structure of B, we realize that its kernel V reduces to
V := V1 ×V2, where

V1 :=
{
τ⃗ := (τB,vD) ∈ H1 : div(τB) = 0 in ΩB and div(vD) ∈ P0(ΩD)

}
, and (3.48)

V2 :=
{
ψ⃗ := (ψ, ξ) ∈ H2 : ⟨ψ · n, 1⟩Σ = 0

}
. (3.49)

Hereafter, we refer to the null space of the bounded linear operator induced by a bilinear form as the

kernel of the latter. Then, in order to prove the invertibility of A =

(
a b1

b2 −c

)
in V, which, as

said in Section 3.2, is equivalent to that of Ã =

(
a b
b −c̃

)
, we proceed in what follows to show that

Ã satisfy the hypotheses of Theorem 3.2. We begin with the V1-ellipticity of a.

Lemma 3.3 There exists a positive constant αa, depending only on µ and CKD
(cf. (2.4)), such that

a(τ⃗ , τ⃗ ) ≥ αa ∥τ⃗∥2H1
∀ τ⃗ ∈ V1 .

Proof. Given τ⃗ := (τB,vD) ∈ V1, and thanks to (2.4) and the divergence free property of τB, we
obtain

a(τ⃗ , τ⃗ ) ≥ 1

µ
∥τB∥20,ΩB

+ CKD
∥vD∥20,ΩD

=
1

µ
∥τB∥2divϱ;ΩB

+ CKD
∥vD∥20,ΩD

. (3.50)

In turn, since div(vD) ∈ P0(ΩD), it follows from [29, Lemma 3.2] that there exists a positive constant
c such that

∥vD∥0,ΩD
≥ c ∥vD∥div;ΩD

, (3.51)

which, along with (3.50), conclude the proof. □

Next, the required inf-sup condition for b = b1 is stated as follows.

Lemma 3.4 There exists a positive constant β, depending only on ΩB and ΩD, such that

sup
τ⃗∈V1
τ⃗ ̸=0

b(τ⃗ , ψ⃗)

∥τ⃗∥H1

≥ β∥ψ⃗∥H2 ∀ ψ⃗ ∈ V2 . (3.52)

Proof. As remarked in Section 3.2 (see also the matrix structure in (3.15)), we now take advantage of
the diagonal structure of b to facilitate the derivation of (3.52). Indeed, given ψ⃗ = (ψ, ξ) ∈ V2, and
bearing in mind (3.48), it is easily seen that

R1(ψ) + R2(ξ) ≥ sup
τ⃗∈V1
τ⃗ ̸=0

b(τ⃗ , ψ⃗)

∥τ⃗∥H1

≥ 1

2

(
R1(ψ) + R2(ξ)

)
, (3.53)
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where

R1(ψ) := sup
τB∈H0(divϱ;ΩB)\{0}

div(τB)=0

⟨τB n,ψ⟩Σ
∥τB∥divϱ;ΩB

, and R2(ξ) := sup
vD∈HΓD

(div;ΩD)\{0}

div(vD)∈P0(ΩD)

⟨vD · n, ξ⟩Σ
∥vD∥div;ΩD

, (3.54)

and hence, in order to prove (3.52), it suffices to suitably bound from below the above suprema. We
begin with R1(ψ) by reasoning as in the proof of [30, Lemma 3.3] (see, also [4, Theorem 2.1]), that is,

by taking η ∈ H
−1/2
00 (Σ) and defining τ̃B := ∇zB−dB I, where zB ∈ H1(ΩB) is the unique solution of

−∆zB = 0 in ΩB , zB = 0 on ΓB , ∇zB n = η on Σ , (3.55)

and dB ∈ R is chosen such that
∫
ΩB

tr(τ̃B) = 0, that is dB := 1
n|ΩB|

∫
ΩB

tr(∇zB). It follows that

div(τ̃B) = 0 in ΩB, τ̃Bn = η − dB n on Σ, and, thanks to the a priori estimate for the solution of
(3.55), there exists a constant CB > 0, depending only on ΩB, such that

∥τ̃B∥divϱ;ΩB
= ∥τ̃B∥0,ΩB

≤ CB ∥η∥−1/2,00;Σ .

Thus, recalling from (3.49) that ⟨ψ · n, 1⟩Σ = 0, we deduce that

R1(ψ) ≥
⟨τ̃Bn,ψ⟩Σ
∥τ̃B∥divϱ;ΩB

=
⟨η,ψ⟩Σ

∥τ̃B∥divϱ;ΩB

≥ 1

CB

⟨η,ψ⟩Σ
∥η∥−1/2,00;Σ

,

from which, taking supremum over η ∈ H
−1/2
00 (Σ), η ̸= 0, we get

R1(ψ) ≥ β1 ∥ψ∥1/2,00;Σ . (3.56)

with β1 := C−1
B . We proceed similarly with R2(ξ). In fact, given η ∈ H−1/2(Σ), we extend it by zero

to ΓD by defining η̃ ∈ H−1/2(∂ΩD) as

⟨η̃, ϕ⟩∂ΩD
:= ⟨η, ϕ|Σ⟩Σ ∀ϕ ∈ H1/2(∂ΩD) . (3.57)

In fact, by exchanging the roles of Σ and ΓD in (3.7), which means extending by 0 from ΓD to Σ, it

is easily seen, according to (3.57), that η̃|ΓD
becomes the null functional of H

−1/2
00 (ΓD), and hence, as

stated at the end of Section 3.1, η̃|Σ can be identified with a functional in H−1/2(Σ), namely

⟨η̃, ψ⟩Σ := ⟨η̃,ED(ψ)⟩∂ΩD
∀ψ ∈ H1/2(Σ) , (3.58)

where ED : H1/2(Σ) → H1/2(∂ΩD) is any bounded linear extension operator. In this way, it is clear
from (3.58) and (3.57) that

⟨η̃, ψ⟩Σ = ⟨η, ψ⟩Σ ∀ψ ∈ H1/2(Σ) . (3.59)

In addition, it is not difficult to show (see, e.g. [23, Section 2]) that there exists a constant c̃D > 0,
depending only on ΩD, such that

∥η̃∥−1/2,∂ΩD
≤ c̃D ∥η∥−1/2,Σ . (3.60)

Having established the above, we now set ṽD := ∇zD, where zD ∈ H1(ΩD) is the unique solution of

−∆zD = − 1

|ΩD|
⟨η̃, 1⟩∂ΩD

in ΩD , ∇zD · n = η̃ on ∂ΩD ,

∫
ΩD

zD = 0 . (3.61)

Note that the right hand sides of the first and second equalities in (3.61) satisfy the compatibility
condition required by this Neumann boundary value problem. It follows that div(ṽD) ∈ P0(ΩD), and
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ṽD · n = η̃ on ∂ΩD, so that, in particular, ṽD · n|ΓD
= η̃|ΓD

= 0. In addition, the a priori estimate

for the solution of (3.61) ensures the existence of a constant C̃D > 0, depending only on ΩD, such that
∥zD∥1,Ω ≤ C̃D ∥η̃∥−1/2,∂ΩD

, and thus, invoking (3.51) and (3.60), we find that

∥ṽD∥div;ΩD
≤ c−1 ∥ṽD∥0,ΩD

= c−1 |zD|1,Ω ≤ c−1 C̃D ∥η̃∥−1/2,∂ΩD
≤ CD ∥η∥−1/2,Σ , (3.62)

with CD := c−1 C̃D c̃D. Consequently, employing (3.59) and (3.62), we deduce that

R2(ξ) ≥
⟨ṽD · n, ξ⟩Σ
∥ṽD∥div;ΩD

=
⟨η̃, ξ⟩Σ

∥ṽD∥div;ΩD

=
⟨η, ξ⟩Σ

∥ṽD∥div;ΩD

≥ 1

CD

⟨η, ξ⟩Σ
∥η∥−1/2,Σ

,

from which, taking supremum over η ∈ H1/2(Σ), η ̸= 0, we obtain

R2(ξ) ≥ β2 ∥ξ∥1/2,Σ . (3.63)

with β2 := C−1
D . Finally, (3.53), (3.56), and (3.63) lead to (3.52) with β := 1

2 min
{
β1, β2

}
. □

Bearing in mind (3.28), along with Lemmas 3.3 and 3.4, we conclude that Ã (cf. (3.27)) satisfies
the hypotheses of Theorem 3.2, whence this matrix operator, and thus A as well, is invertible in V.
Moreover, it is readily seen that the same holds by exchanging the roles of b1 and b2 in A, so that
we can finally establish the following result.

Lemma 3.5 There exists a positive constant αA, depending only on ∥a∥, ∥b∥ = ∥b1∥ = ∥b2∥, αa,
and β, such that

sup
(τ⃗ ,ψ⃗)∈V

(τ⃗ ,ψ⃗)̸=0

A((ζ⃗, ϕ⃗), (τ⃗ , ψ⃗))

∥(τ⃗ , ψ⃗)∥H
≥ αA ∥(ζ⃗, ϕ⃗)∥H ∀ (ζ⃗, ϕ⃗) ∈ V ,

and

sup
(ζ⃗,ϕ⃗)∈V

(ζ⃗,ϕ⃗)̸=0

A((ζ⃗, ϕ⃗), (τ⃗ , ψ⃗))

∥(ζ⃗, ϕ⃗)∥H
≥ αA ∥(τ⃗ , ψ⃗)∥H ∀ (τ⃗ , ψ⃗) ∈ V .

We continue the analysis by proving the continuous inf-sup condition for B.

Lemma 3.6 There exists a positive constant β such that

sup
(τ⃗ ,ψ⃗)∈H
(τ⃗ ,ψ⃗) ̸=0

B((τ⃗ , ψ⃗), v⃗)

∥(τ⃗ , ψ⃗)∥H
≥ β ∥v⃗∥Q ∀ v⃗ ∈ Q . (3.64)

Proof. We begin by noticing that, given v⃗ := (vB, qD, ȷ) ∈ Q, the diagonal structure of B (cf. (3.20))
allows to show that

S1(vB) + S2(qD) + S3(ȷ) ≥ sup
(τ⃗ ,ψ⃗)∈H
(τ⃗ ,ψ⃗)̸=0

B((τ⃗ , ψ⃗), v⃗)

∥(τ⃗ , ψ⃗)∥H
≥ 1

3

(
S1(vB) + S2(qD) + S3(ȷ)

)
, (3.65)

where

S1(vB) = sup
τB∈H0(divϱ;ΩB)

τB ̸=0

(vB,div(τB))B
∥τB∥divϱ;ΩB

, S2(qD) := sup
vD∈HΓD

(div;ΩD)

vD ̸=0

(qD,div(vD))D
∥vD∥div;ΩD

, (3.66)
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and

S3(ȷ) := sup
ψ∈H1/2

00 (Σ)
ψ ̸=0

ȷ ⟨ψ · n, 1⟩Σ
∥ψ∥−1/2,00;Σ

, (3.67)

so that, similarly to the proof of Lemma 3.4, the rest of the proof reduces to bounding from below
the above suprema. Indeed, we begin with S1 by letting, as in [16, Section 4.2.1], vϱ := |vB|ρ−2vB,
which is easily seen to belong to Lϱ(ΩB) and satisfy∫

ΩB

vB · vϱ = ∥vB∥0,ρ;ΩB
∥vϱ∥0,ϱ;ΩB

. (3.68)

Then, we let wB be the unique element in H1
0(ΩB) such that∫

ΩB

∇wB : ∇z = −
∫
Ω
vϱ · z ∀ z ∈ H1

0(ΩB) ,

which is guaranteed by the Lax-Milgram lemma, and notice, thanks to the corresponding a priori

estimate, that ∥wB∥1,Ω ≤ ∥iρ∥
cP

∥vϱ∥0,ϱ;ΩB
. Hereafter, iρ stands for the continuous injection from

H1(ΩB) into Lρ(ΩB), and cP is the positive constant establishing cP ∥ · ∥1,ΩB
≤ | · |1,ΩB

in H1
0(ΩB).

Next, defining ζ := ∇wB, we readily see that div(ζ) = vϱ in ΩB, so that

ζ ∈ H(divϱ; ΩB) and ∥ζ∥divϱ;ΩB
≤
(
1 +

∥iρ∥
cP

)
∥vϱ∥0,ϱ;ΩB

. (3.69)

Thus, letting ζ0 be the H0(divϱ; ΩB)-component of ζ, we observe that div(ζ0) = vϱ, whence bounding
S1(vB) by below with τB = ζ0, noting that ∥ζ0∥divϱ;ΩB

≤ ∥ζ∥divϱ;ΩB
, and employing (3.68) and

(3.69), we deduce that

S1(vB) ≥ (vB,div(ζ0))B
∥ζ0∥divϱ;ΩB

=

∫
ΩB

vB · vϱ

∥ζ0∥divϱ;ΩB

≥ β1 ∥vB∥0,ρ;ΩB
, (3.70)

with β1 :=
(
1 +

∥iρ∥
cP

)−1
. In turn, regarding S2(qD), we let z be the unique element in H̃1(ΩD) :={

v ∈ H1(ΩD) :
∫
ΩD

v = 0
}
, whose existence follows from the Lax-Milgram lemma as well, such that∫
ΩD

∇z · ∇v = −
∫
ΩD

qD v ∀ v ∈ H̃1(ΩD) , (3.71)

and define wD := ∇z. The fact that qD ∈ L2
0(ΩD) implies that (3.71) is equivalent to requiring

it for all v ∈ H1(ΩD), from which it is easy to see that div(wD) = qD in ΩD and wD · n = 0 on
∂ΩD. It follows that wD ∈ HΓD

(div; ΩD), and that there exists a positive constant CD such that
∥wD∥div;ΩD

≤ CD ∥qD∥0,ΩD
. In this way, bounding S2(qD) by below with vD = wD, we find that

S2(qD) ≥ (div(wD), qD)D
∥wD∥div;ΩD

≥ β2 ∥qD∥0,ΩD
, (3.72)

with β2 := C−1
D . In turn, following the remark right after the proof of [30, Lemma 3.2], which is

actually taken from the last part of the proof of [29, Lemma 3.6], we can construct ψ0 ∈ H
1/2
00 (Σ) such

that ⟨ψ0 · n, 1⟩Σ ̸= 0. Thus, we readily find that

S3(ȷ) ≥ β3 |ȷ| , (3.73)
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with β3 :=
|⟨ψ0·n,1⟩Σ|
∥ψ0∥1/2,00,Σ

. Actually, it is easy to see that the existence of such ψ0 is equivalent to proving

(3.73). Finally, employing (3.70), (3.72), and (3.73) back into (3.65), we reach (3.64) with

β :=
1

3
min

{
β1,β2,β3

}
.

□

We are now in position to prove the well-posedness of (3.46), equivalently that T is well-defined.

Lemma 3.7 Given r > 0, we let wB ∈ Lρ(ΩB) be such that ∥wB∥0,ρ;ΩB
≤ r. Then, there exists a

unique solution
(
(σ⃗, φ⃗), u⃗

)
∈ H ×Q of (3.46), with u⃗ := (uB, pD, ℓ) ∈ Q, and hence one can define

T(wB) := uB. In addition, there exists a positive constant CT, depending on ∥A∥ (cf. (3.29) -
(3.30)), ∥C∥ (cf. (3.32)), F, r, ρ, αA, and β, such that

∥T(wB)∥0,ρ;ΩB
= ∥uB∥0,ρ;ΩB

≤
∥∥((σ⃗, φ⃗), u⃗)∥∥

H×Q
≤ CT

{
∥fD∥0,ΩD

+∥fB∥0,ϱ;ΩB
+∥gD∥0,ΩD

}
. (3.74)

Proof. We begin by remarking that the bilinear forms A (cf. (3.18)) and CwB (cf. (3.21)) satisfy the
hypothesis i) of Theorem 3.1. In particular, the semi-positiveness of them was established by (3.25)
and (3.26). In addition, Lemmas 3.5 and 3.6 provide the respective assumptions ii) and iii). In this
way, bearing in mind the structure described by (3.24), and applying the aforementioned abstract
result, we conclude the unique solvability of (3.46), which, according to the estimate for ∥F∥ provided
by (3.29), satisfies (3.74) with a positive constant CT, depending on ∥A∥, ∥CwB∥, αA, and β. Finally,
it is clear from (3.31) that we can take ∥CwB∥ = ∥C∥+ F rρ−2, which completes the proof. □

Having established the above lemma, and realizing that an analogue result is attained if we consider
the transpose of AwB , which simply reduces to exchange the bilinear forms b1 and b2 in (3.24), we
conclude that global inf-sup conditions are satisfied by AwB with respect to both components. More
precisely, there exists a positive constant αA, which depends only on CT, and hence on ∥A∥, ∥C∥, F,
r, ρ, αA, and β, such that for each wB ∈ Lρ(ΩB) with ∥wB∥0,ρ;ΩB

≤ r, there holds

sup
((τ⃗ ,ψ⃗),v⃗)∈H×Q

((τ⃗ ,ψ⃗),v⃗)̸=0

AwB

((
(ζ⃗, ϕ⃗), z⃗

)
,
(
(τ⃗ , ψ⃗), v⃗

))
∥
(
(τ⃗ , ψ⃗), v⃗

)
∥H×Q

≥ αA ∥
(
(ζ⃗, ϕ⃗), z⃗

)
∥H×Q ∀

(
(ζ⃗, ϕ⃗), z⃗

)
∈ H×Q , (3.75)

and

sup
((ζ⃗,ϕ⃗),⃗z)∈H×Q

((ζ⃗,ϕ⃗),⃗z) ̸=0

AwB

((
(ζ⃗, ϕ⃗), z⃗

)
,
(
(τ⃗ , ψ⃗), v⃗

))
∥
(
(ζ⃗, ϕ⃗), z⃗

)
∥H×Q

≥ αA ∥
(
(τ⃗ , ψ⃗), v⃗

)
∥H×Q ∀

(
(τ⃗ , ψ⃗), v⃗

)
∈ H×Q . (3.76)

In what follows, we apply the well-known Banach fixed-point theorem to prove the unique solvability
of (3.47). To this end, given r > 0, we first introduce the closed ball in Lρ(ΩB) centered at the origin
with radius r, namely

Wr :=
{
wB ∈ Lρ(ΩB) : ∥wB∥0,ρ;ΩB

≤ r
}
, (3.77)

and notice that, under the assumption

CT

{
∥fD∥0,ΩD

+ ∥fB∥0,ϱ;ΩB
+ ∥gD∥0,ΩD

}
≤ r , (3.78)

the a priori estimate (3.74) guarantees that T maps Wr into itself.

Our next goal is to prove the Lipschitz continuity of the operator T (cf. (3.45)), for which we need
the slight generalization of [6, Lemma 4.4] given by the following result.
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Lemma 3.8 For each ρ ∈ [3, 4] there exists a positive constant C(ρ), depending only on ρ, such that∣∣((|wB|ρ−2 − |w˜B|ρ−2)zB,vB

)
B

∣∣
≤ C(ρ)

{
∥wB∥0,ρ;ΩB

+ ∥w˜B∥0,ρ;ΩB

}ρ−3
∥wB −w˜B∥0,ρ;ΩB

∥zB∥0,ρ;ΩB
∥vB∥0,ρ;ΩB

(3.79)

for each wB, w˜B, zB, vB ∈ Lρ(ΩB).

Proof. We begin by recalling from the first half of the proof of [6, Lemma 4.4], which, in turn, makes
use of the key estimate provided by [32, Lemma 5.3], that there holds (cf. first inequality right after
[6, eq. (4.36)])∣∣((|wB|ρ−2 − |w˜B|ρ−2)zB,vB

)
B

∣∣ ≤ C(ρ)

∫
ΩB

(
|wB|+ |w˜B|

)ρ−3 |wB −w˜B| |zB · vB| . (3.80)

Next, applying Hölder’s inequality with conjugate indexes t = ρ
ρ−2 and t′ = ρ

2 to the right hand side
of (3.80), and then Cauchy-Schwarz’s inequality to the resulting second factor, we obtain∫

ΩB

(
|wB|+ |w˜B|

)ρ−3 |wB −w˜B| |zB · vB|

≤ ∥
(
|wB|+ |w˜B|

)ρ−3 |wB −w˜B| ∥0,t;ΩB
∥zB · vB∥0,t′;ΩB

≤ ∥
(
|wB|+ |w˜B|

)ρ−3 |wB −w˜B| ∥0,t;ΩB
∥zB∥0,ρ;ΩB

∥vB∥0,ρ;ΩB
,

(3.81)

which, along with (3.80), easily yields (3.79) for ρ = 3. In turn, when ρ ∈ (3, 4], the first factor above
is bounded by employing Hölder’s inequality again, but now with conjugate indexes r = ρ−2

ρ−3 and

r′ = ρ− 2. In this way, noting in this case that tr = ρ
ρ−3 and tr′ = ρ, and using the triangle inequality

in the last step, we are led to

∥
(
|wB|+ |w˜B|

)ρ−3 |wB −w˜B| ∥0,t;ΩB
≤ ∥

(
|wB|+ |w˜B|

)ρ−3∥0, ρ
ρ−3

;ΩB
∥wB −w˜B∥0,ρ;ΩB

= ∥ |wB|+ |w˜B| ∥ρ−3
0,ρ;ΩB

∥wB −w˜B∥0,ρ;ΩB

≤
(
∥wB∥0,ρ;ΩB

+ ∥w˜B∥0,ρ;ΩB

)ρ−3 ∥wB −w˜B∥0,ρ;ΩB
,

which, jointly with (3.81) and (3.80), imply (3.79) and complete the proof. □

We are now in position to establish the announced result on T.

Lemma 3.9 There exists a positive constant LT, depending only on αA, F, ρ, r, and CT, such that

∥T(wB)−T(w˜B)∥0,ρ;ΩB
≤ LT

{
∥fD∥0,ΩD

+ ∥fB∥0,ϱ;ΩB
+ ∥gD∥0,ΩD

}
∥wB −w˜B∥0,ρ;ΩB

, (3.82)

for all wB, w˜B ∈ Wr.

Proof. Given wB, w˜B ∈ Wr, let T(wB) := uB and T(w˜B) := u˜B, where ((σ⃗, φ⃗), u⃗) ∈ H × Q
and

(
(σ⃗˜ , φ⃗˜), u⃗˜) ∈ H×Q are the corresponding unique solutions of (3.46), with u⃗ := (uB, pD, ℓ) and

u⃗˜ := (u˜B, p˜D, ℓ˜). Then, according to the definitions of the forms CwB and AwB (cf. (3.21)), (3.22)),

and bearing in mind (3.46), we find

AwB

(
((σ⃗, φ⃗), u⃗)− ((σ⃗˜ , φ⃗˜), u⃗˜), ((τ⃗ , ψ⃗), v⃗)) =

(
CwB −Cw˜B)(u⃗˜, v⃗)

= F
(
(|wB|ρ−2 − |w˜B|ρ−2)u˜B,vB

)
B
,
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for all
(
(τ⃗ , ψ⃗), v⃗

)
∈ H × Q, from which, invoking (3.79) and the fact that both ∥wB∥0,ρ;ΩB

and
∥w˜B∥0,ρ;ΩB

are bounded by r, we deduce that

AwB

(
((σ⃗, φ⃗), u⃗)− ((σ⃗˜ , φ⃗˜), u⃗˜), ((τ⃗ , ψ⃗), v⃗))
≤ FC(ρ) (2 r)ρ−3 ∥wB − w˜B∥0,ρ;ΩB

∥u˜B∥0,ρ;ΩB
∥vB∥0,ρ;ΩB

.
(3.83)

Hence, applying the inf-sup condition (3.75) to
(
(ζ⃗, ϕ⃗), z⃗

)
=
(
(σ⃗, φ⃗), u⃗

)
−
(
(σ⃗˜ , φ⃗˜), u⃗˜), and then using

(3.83), we readily get

∥T(wB)−T(w˜B)∥0,ρ;ΩB
= ∥uB − u˜B∥0,ρ;ΩB

≤
∥∥((σ⃗, φ⃗), u⃗)− ((σ⃗˜ , φ⃗˜), u⃗˜)

∥∥
H×Q

≤ α−1
A sup

((τ⃗ ,ψ⃗),v⃗)∈H×Q

((τ⃗ ,ψ⃗),v⃗) ̸=0

AwB

((
(σ⃗, φ⃗), u⃗

)
−
(
(σ⃗˜ , φ⃗˜), u⃗˜), ((τ⃗ , ψ⃗), v⃗))

∥((τ⃗ , ψ⃗), v⃗)∥H×Q

≤ α−1
A FC(ρ) (2 r)ρ−3 ∥u˜B∥0,ρ;ΩB

∥wB − w˜B∥0,ρ;ΩB
.

(3.84)

Finally, bounding in (3.84) ∥u˜B∥0,ρ;ΩB
= ∥T(w˜B)∥0,ρ;ΩB

by (3.74) instead of directly by r, we obtain
(3.82) with the constant

LT := α−1
A FC(ρ) (2 r)ρ−3CT ,

thus concluding the proof. □

The main result concerning the solvability of the fixed-point equation (3.47), equivalently, that of
(3.23) (or (3.17)), is stated as follows.

Theorem 3.10 Assume that the data satisfy (3.78) and

LT

{
∥fD∥0,ΩD

+ ∥fB∥0,ϱ;ΩB
+ ∥gD∥0,ΩD

}
< 1 . (3.85)

Then, the operator T has a unique fixed-point uB ∈ Wr. Equivalently, (3.23) has a unique solution(
(σ⃗, φ⃗), u⃗

)
:=
(
(σB,uD,φ, λ), (uB, pD, ℓ)

)
∈ H×Q with uB ∈ Wr. Moreover, there holds

∥((σ⃗, φ⃗), u⃗)∥H×Q ≤ CT

{
∥fD∥0;ΩD

+ ∥fB∥0,ϱ;ΩB
+ ∥gD∥0;ΩD

}
. (3.86)

Proof. It is clear from Lemma 3.9 and the assumptions (3.78) and (3.85) that T is a contraction that
maps Wr into itself. Hence, a straightforward application of the classical Banach fixed-point theorem
implies the existence of a unique fixed point uB ∈ Wr of T, and therefore the solvability of (3.23).
Finally, the a priori estimate (3.86) follows from (3.74). □

4 The Galerkin scheme

Here, we introduce a generic Galerkin scheme for the problem (3.23) (equivalently (3.17)), and, under
suitable sufficient conditions on the finite element subspaces involved, establish its well-posedness and
derive the associated Céa estimate. In particular, the respective solvability analysis is carried out
by means of a discrete version of the fixed-point strategy from Section 3.4, which, in turn, employs
the discrete versions of Theorems 3.1 (cf. [28, Theorem 4.1]) and 3.2 to analyze the corresponding
Galerkin scheme of (3.46).
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4.1 The discrete problem

Let us consider arbitrary finite element subspaces

H̃h(ΩB) ⊆ H(divϱ; ΩB) , H̃h(ΩD) ⊆ H(div; ΩD) , ΛB
h (Σ) ⊆ H

1/2
00 (Σ) ,

ΛD
h (Σ) ⊆ H1/2(Σ) , Lh(ΩB) ⊆ Lρ(ΩB) , and L̃h(ΩD) ⊆ L2(ΩD) ,

(4.1)

and define

Hh(ΩB) := H̃h(ΩB) ∩H0(divϱ; ΩB) , Hh(ΩD) := H̃h(ΩD) ∩HΓD
(div; ΩD) ,

ΛB
h (Σ) := [ΛB

h (Σ)]
n , and Lh(ΩD) := L̃h(ΩD) ∩ L2

0(ΩD) .

Then, we introduce the global finite element spaces

Hh,1 := Hh(ΩB)×Hh(ΩD) , Hh,2 := ΛB
h (Σ)× ΛD

h (Σ) ,

Hh := Hh,1 ×Hh,2 , and Qh := Lh(ΩB)× Lh(ΩD)× R ,
(4.2)

and set the unknowns and test functions as

σ⃗h := (σB,h,uD,h) ∈ Hh,1 , φ⃗h := (φh, λh) ∈ Hh,2 , u⃗h := (uB,h, pD,h, ℓh) ∈ Qh ,

τ⃗ h := (τB,h,vD,h) ∈ Hh,1 , ψ⃗h := (ψh, ξh) ∈ Hh,2 , v⃗h := (vB,h, qD,h, ȷh) ∈ Qh ,

ζ⃗h := (ζB,h, zD,h) ∈ Hh,1 , ϕ⃗h := (ϕh, ϑh) ∈ Hh,2 , z⃗h := (zB,h, rD,h, κh) ∈ Qh .

Hence, the Galerkin scheme of (3.23) reads: Find ((σ⃗h, φ⃗h), u⃗h) ∈ Hh ×Qh such that:

AuB,h

(
((σ⃗h, φ⃗h), u⃗h), ((τ⃗ h, ψ⃗h), v⃗h)

)
= F(((τ⃗ h, ψ⃗h), v⃗h)) ∀ ((τ⃗ h, ψ⃗h), v⃗h) ∈ Hh ×Qh , (4.3)

where AwB,h
is defined as in (3.22) with wB,h instead of wB.

Note that throughout this section, h stands just for the index of each subspace. Later one, it will
be utilized to refer also to the sizes of triangulations of ΩB and ΩD.

In order to analyze the solvability of (4.3), and analogously to the continuous formulation, we realize
that this problem can be rewritten equivalently as the fixed-point equation: Find uB,h ∈ Lh(ΩB) such
that

Th(uB,h) = uB,h , (4.4)

where Th : Lh(ΩB) → Lh(ΩB) is the discrete version of T (cf. (3.45)), that is, given wB,h ∈ Lh(ΩB),
Th(wB,h) := uB,h, where

(
(σ⃗h, φ⃗h), u⃗h

)
∈ Hh ×Qh, with u⃗h := (uB,h, pD,h, ℓh) ∈ Qh, is the unique

solution (to be confirmed below) of the linearized version of (4.3), namely

AwB,h

(
((σ⃗h, φ⃗h), u⃗h), ((τ⃗ h, ψ⃗h), v⃗h)

)
= F(((τ⃗ h, ψ⃗h), v⃗h)) ∀ ((τ⃗ h, ψ⃗h), v⃗h) ∈ Hh ×Qh . (4.5)

4.2 Solvability analysis

In this section we address the solvability of (4.3), equivalently of (4.4), for which we previously need
to focus on that of (4.5). For this purpose, and as the respective discussion progresses, we introduce
suitable hypotheses on the finite element subspaces (4.2), which facilitate the corresponding analysis.
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We begin by noticing, similarly as done in Section 3.4 for the continuous case, that the kernel Vh of
B|Hh×Qh

reduces to Vh := Vh,1 ×Vh,2, where

Vh,1 :=
{
τ⃗ h =

(
τB,h,vD,h

)
∈ Hh,1 : (vB,h,div(τB,h))B = 0 ∀vB,h ∈ Lh(ΩB)

and (qD,h, div(vD,h))D = 0 ∀ qD,h ∈ Lh(ΩD)
}
,

(4.6)

and
Vh,2 :=

{
ψ⃗h ∈ Hh,2 : ⟨ψh · n, 1⟩Σ = 0

}
.

Next, we introduce the first hypotheses on the finite element subspaces, namely

(H.1) H̃h(ΩB) contains the multiplies of the identity tensor I,

(H.2) P0(ΩD) ⊆ L̃h(ΩD),

(H.3) div(H̃h(ΩB)) ⊆ Lh(ΩB), and

(H.4) div(H̃h(ΩD)) ⊆ L̃h(ΩD).

Note that, as a consequence of (H.1) and the decomposition (3.13), the subspace Hh(ΩB) (cf. (4.1))
can be redefined as

Hh(ΩB) :=
{
τB,h −

( 1

n|ΩB|

∫
ΩB

tr(τB,h)
)
I : τB,h ∈ H̃h(ΩB)

}
,

while it readily follows from (H.2) that there holds the decomposition

L̃h(ΩD) = Lh(ΩD) ⊕ P0(ΩD) .

In addition, thanks to (H.3) and (H.4), it follows from (4.6) that

Vh,1 =
{
τ⃗ h =

(
τB,h,vD,h

)
∈ Hh,1 : div(τB,h) = 0 in ΩB ,

and div(vD,h) ∈ P0(ΩD) in ΩD

}
,

so that Vh,1 ⊆ V1 (cf. (3.48)), and hence Lemma 3.3 is also valid in the discrete setting, which means
that, denoting αa,d := αa, there holds

a(τ⃗ h, τ⃗ h) ≥ αa,d ∥τ⃗ h∥2H1
∀ τ⃗ h ∈ Vh,1 .

Now, in order to apply Theorem 3.2 to A|Vh×Vh
, we add the remaining assumption iii) of that

result, which is the discrete counterpart of Lemma 3.4, as the following hypothesis:

(H.5) there exists a positive constant βd, independent of h, such that

sup
τ⃗h∈Vh,1

τ⃗h ̸=0

b(τ⃗ h, ψ⃗h)

∥τ⃗ h∥H1

≥ βd ∥ψ⃗h∥H2 ∀ ψ⃗h ∈ Vh,2 .

Analogously as remarked in the proof of Lemma 3.4, and due again to the diagonal structure of
b, we find it important to remark here that (H.5) is equivalent to the existence of positive constants
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βi,d, independent of h, such that the discrete counterparts of Ri (cf. (3.54)), i ∈
{
1, 2
}
, satisfy the

corresponding discrete inf-sup conditions, that is for each ψ⃗h = (ψh, ξh) ∈ Vh,2 there hold

R1,h(ψh) := sup
τB,h∈Hh(ΩB)\{0}
div(τB,h)=0

⟨τB,h n,ψh⟩Σ
∥τB,h∥divϱ;ΩB

≥ β1,d ∥ψh∥1/2,00;Σ (4.7)

and

R2,h(ξh) := sup
vD,h∈Hh(ΩD)\{0}
div(vD,h)∈P0(ΩD)

⟨vD,h · n, ξh⟩Σ
∥vD,h∥div;ΩD

≥ β2,d ∥ξh∥1/2,Σ . (4.8)

Next, noting that certainly there holds (cf. (3.19)) c(ψ⃗h, ψ⃗h) = 0 for all ψ⃗h ∈ Vh,2, we deduce,
as a straightforward application of Theorem 3.2, that A|Vh×Vh

satisfies the discrete counterpart of
Lemma 3.5, that is, there exists a positive constant αA,d, depending only on ∥a∥, ∥b∥, αa,d, and βd,
and hence independent of h, such that

sup
(τ⃗h,ψ⃗h)∈Vh

(τ⃗h,ψ⃗h) ̸=0

A((ζ⃗h, ϕ⃗h), (τ⃗ h, ψ⃗h))

∥(τ⃗ h, ψ⃗h)∥H
≥ αA,d ∥(ζ⃗h, ϕ⃗h)∥H ∀ (ζ⃗h, ϕ⃗h) ∈ Vh . (4.9)

The inf-sup condition with respect to the second component of A, being equivalent to (4.9), and with
the same constant αA,d, is omitted.

Finally, and aiming to apply the discrete version of Theorem 3.1 (cf. [28, Theorem 4.1]) to conclude
the well-posedness of (4.5), equivalently that Th (cf. (4.4)) is well-defined, we assume the remaining
assumption as the following hypothesis:

(H.6) there exists a positive constant βd, independent of h, such that

sup
(τ⃗h,ψ⃗h)∈Hh

(τ⃗h,ψ⃗h )̸=0

B((τ⃗ h, ψ⃗h), v⃗h)

∥(τ⃗ h, ψ⃗h)∥H
≥ βd ∥v⃗h∥Q ∀ v⃗h ∈ Qh .

Similarly as observed for (H.5), and due again to the diagonal structure of B exploited in the
proof of Lemma 3.6, we stress here that (H.6) is equivalent to the existence of positive constants βi,d,
independent of h, such that the discrete counterparts of Si (cf. (3.66), (3.67)), i ∈

{
1, 2, 3

}
, satisfy

the corresponding discrete inf-sup conditions, that is for each v⃗h := (vB,h, qD,h, ȷh) ∈ Qh there hold

S1,h(vB,h) := sup
τB,h∈Hh(ΩB)
τB,h ̸=0

(vB,h,div(τB,h))B
∥τB,h∥divϱ;ΩB

≥ β1,d ∥vB,h∥0,ρ;ΩB
, (4.10)

S2,h(qD,h) := sup
vD,h∈Hh(ΩD)

vD,h ̸=0

(qD,h,div(vD,h))D
∥vD,h∥div;ΩD

≥ β2,d ∥qD,h∥0;ΩD
, (4.11)

and

S3,h(ȷh) := sup
ψh∈ΛB

h (Σ)
ψh ̸=0

ȷh ⟨ψh · n, 1⟩Σ
∥ψh∥1/2,00;Σ

≥ β3,d |ȷh| . (4.12)
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Hence, proceeding as in the proof of Lemma 3.6, we readily find that βd =
1

3
min

{
β1,d,β2,d,β3,d

}
.

In addition to the above discussion, we observe here, thanks to (3.25) and (3.26), that A|Hh×Hh

and CwB,h
|Qh×Qh

are certainly positive semi-definite, besides the obvious fact that CwB,h
|Qh×Qh

is
symmetric as well. Hence, as a straightforward application of [28, Theorem 4.1], and making use again
of the estimate for ∥F∥ provided in (3.29), we are led to the discrete counterpart of Lemma 3.7, which
is stated as follows.

Lemma 4.1 Given r > 0, we let wB,h ∈ Lh(ΩB) be such that ∥wB,h∥0,ρ;ΩB
≤ r. Then, there exists a

unique solution
(
(σ⃗h, φ⃗h), u⃗h

)
∈ Hh ×Qh of (4.5), with u⃗h := (uB,h, pD,h, ℓh) ∈ Qh, and hence one

can define Th(wB,h) := uB,h. In addition, there exists a positive constant CT,d, depending only on
∥A∥ (cf. (3.29) - (3.30)), ∥C∥ (cf. (3.32)), F, r, ρ, αA,d, and βd, such that

∥Th(wB,h)∥0,ρ;ΩB
= ∥uB,h∥0,ρ;ΩB

≤
∥∥((σ⃗h, φ⃗h), u⃗h

)∥∥
H×Q

≤ CT,d

{
∥fD∥0,ΩD

+ ∥fB∥0,ϱ;ΩB
+ ∥gD∥0,ΩD

}
.

(4.13)

As a consequence of Lemma 4.1, we conclude the discrete versions of (3.75) and (3.76), which means
that there exists a positive constant αA,d, depending only on ∥A∥, ∥C∥, F, r, ρ, αA,d, and βd, and
hence independent of h, such that for each wB,h ∈ Lh(ΩB) with ∥wB,h∥0,ρ;ΩB

≤ r, there holds

sup
((τ⃗h,ψ⃗h),v⃗h)∈Hh×Qh

((τ⃗h,ψ⃗h),v⃗h )̸=0

AwB,h

((
(ζ⃗h, ϕ⃗h), z⃗h

)
,
(
(τ⃗ h, ψ⃗h), v⃗h

))
∥
(
(τ⃗ h, ψ⃗h), v⃗h

)
∥H×Q

≥ αA,d ∥
(
(ζ⃗h, ϕ⃗h), z⃗h

)
∥H×Q (4.14)

for all
(
(ζ⃗h, ϕ⃗h), z⃗h

)
∈ Hh × Qh. Similarly as for A|Vh×Vh

(cf. (4.9)), the inf-sup condition with
respect to the second component of AwB,h

, being equivalent to (4.14), and with the same constant
αA,d, is omitted.

We now aim to apply the Banach fixed-point theorem to establish the unique solvability of (4.4).
Indeed, given the same r > 0 as before, we first introduce the discrete ball

Wr,h :=
{
wB,h ∈ Lh(ΩB) : ∥wB,h∥0,ρ;ΩB

≤ r
}
, (4.15)

and observe from (4.13) that, under the assumption

CT,d

{
∥fD∥0,ΩD

+ ∥fB∥0,ϱ;ΩB
+ ∥gD∥0,ΩD

}
≤ r , (4.16)

there holds Th(Wr,h) ⊆ Wr,h.

Furthermore, employing now the discrete global inf-sup condition (4.14) along with the property
provided by Lemma 3.8, and following analogue arguments to those utilized in the proof of Lemma
3.9, we are able to prove the discrete counterpart of this latter result. More precisely, the Lipschitz-
continuity of Th is stated as follows.

Lemma 4.2 There exists a positive constant LT,d, depending only on αA,d, F, ρ, r, and CT,d, such
that

∥Th(wB,h)−Th(w˜B,h)∥0,ρ;ΩB

≤ LT,d

{
∥fD∥0,ΩD

+ ∥fB∥0,ϱ;ΩB
+ ∥gD∥0,ΩD

}
∥wB,h −w˜B,h∥0,ρ;ΩB

,

for all wB,h, w˜B,h ∈ Wr,h.
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We are now in position to state the main result of this section.

Theorem 4.3 Assume that the data satisfy (4.16) and

LT,d

{
∥fD∥0,ΩD

+ ∥fB∥0,ϱ;ΩB
+ ∥gD∥0,ΩD

}
< 1 .

Then, the operator Th has a unique fixed-point uB,h ∈ Wr,h. Equivalently, (4.3) has a unique solution(
(σ⃗h, φ⃗h), u⃗h

)
:=

(
(σB,h,uD,h,φh, λh), (uB,h, pD,h, ℓh)

)
∈ Hh × Qh with uB,h ∈ Wr,h. Moreover,

there holds ∥∥((σ⃗h, φ⃗h), u⃗h

)∥∥
H×Q

≤ CT,d

{
∥fD∥0,ΩD

+ ∥fB∥0,ρ;ΩB
+ ∥gD∥0;ΩD

}
.

Proof. It proceeds analogously to the proof of Theorem 3.10. □

4.3 A priori error analysis

In this section, we derive the a priori error estimate for the Galerkin scheme (4.3) with arbitrary finite
element subspaces satisfying the hypotheses (H.1)-(H.6) from Section 4.2. In other words, our main
goal is to establish the Céa estimate for the global error

∥((σ⃗, φ⃗), u⃗) − ((σ⃗h, φ⃗h), u⃗h)∥H×Q ,

where ((σ⃗, φ⃗), u⃗) ∈ H×Q and ((σ⃗h, φ⃗h), u⃗h) ∈ Hh×Qh are the unique solutions of (3.23) and (4.3),
respectively, with uB ∈ Wr (cf. (3.77)) and uB,h ∈ Wr,h (cf. (4.15)). Hereafter, given a subspace Xh

of a generic Banach space (X, ∥ · ∥X), we set as usual dist (x,Xh) := inf
xh∈Xh

∥x− xh∥X for all x ∈ X.

We begin by recalling from Sections 3.4 and 4.2 that, given r > 0, and thanks to the global inf-sup
conditions provided by (3.75), (3.76), and (4.14), the bilinear forms AuB and AuB,h

, with uB ∈ Wr

and uB,h ∈ Wr,h, satisfy the hypotheses of the Banach–Nečas–Babuška theorem (cf. [22, Theorem
2.6]) on H×Q and Hh ×Qh, respectively. Thus, applying a slight variant of the first Strang Lemma
(cf. [22, Lemma 2.27]) to the context given by (3.23) and (4.3), we deduce the existence of a positive
constant CA, depending only on ∥A∥, ∥B∥, ∥C∥, F, r, ρ, and αA,d, and hence independent of h, such
that

∥((σ⃗, φ⃗), u⃗) − ((σ⃗h, φ⃗h), u⃗h)∥H×Q ≤ CA

{
dist

(
((σ⃗, φ⃗), u⃗),Hh ×Qh

)
+ ∥

(
AuB −AuB,h

)(
((σ⃗, φ⃗), u⃗), ·

)
∥(Hh×Qh)′

}
,

(4.17)

where the consistency term from (4.17) is defined as

∥
(
AuB −AuB,h

)(
((σ⃗, φ⃗), u⃗), ·

)
∥(Hh×Qh)′

:= sup
((τ⃗h,ψ⃗h),v⃗h)∈Hh×Qh

((τ⃗h,ψ⃗h),v⃗h )̸=0

(
AuB −AuB,h

)(
((σ⃗, φ⃗), u⃗), ((τ⃗ h, ψ⃗h), v⃗h)

)
∥((τ⃗ h, ψ⃗h), v⃗h)∥H×Q

.
(4.18)

We point out here that the aforementioned variant (see, e.g. [9, Lemma 5.1]) is motivated in this
case by the fact that AuB,h

can be evaluated in the exact solution ((σ⃗, φ⃗), u⃗) as well. Hence, after
subtracting and adding the latter in the first component of both AuB and AuB,h

, the respective
consistency term from [22, Lemma 2.27] becomes separated from the infimum defining the distance to
the subspaces involved, thus yielding the resulting simplified estimate (4.17). Then, bearing in mind
the definitions of AwB (cf. (3.22)) and CwB (cf. (3.21)), and employing Lemma 3.8, and the fact that
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both ∥uB∥0,ρ;ΩB
and ∥uB,h∥0,ρ;ΩB

are bounded by r, as well as the upper bound for ∥uB∥0,ρ;ΩB
given

by Theorem 3.10, it readily follows from (4.18) that

∥
(
AuB −AuB,h

)(
((σ⃗, φ⃗), u⃗), ·

)
∥(Hh×Qh)′ ≤ ∥

(
CuB −CuB,h

)
(u⃗, ·)∥Q′

h

≤ LA

{
∥fD∥0,ΩD

+ ∥fB∥0,ϱ;ΩB
+ ∥gD∥0;ΩD

}
∥uB − uB,h∥0,ρ;ΩB

.
(4.19)

with LA := FC(ρ) (2r)ρ−3CT.

We are now in position to establish the required a priori error estimate.

Theorem 4.4 Assume that the data satisfy

CA LA

{
∥fD∥0,ΩD

+ ∥fB∥0,ϱ;ΩB
+ ∥gD∥0;ΩD

}
≤ 1

2
. (4.20)

Then, there holds

∥((σ⃗, φ⃗), u⃗) − ((σ⃗h, φ⃗h), u⃗h)∥H×Q ≤ 2CA dist
(
((σ⃗, φ⃗), u⃗),Hh ×Qh

)
. (4.21)

Proof. It suffices to replace (4.19) back into (4.17) and then use the assumption (4.20). □

5 A particular choice of finite element subspaces

In this section we proceed similarly to [2] and [29] (see also [30]), and specify a concrete example of
finite element subspaces satisfying the hypotheses (H.1) - (H.6). The approximation properties of
them and the consequent rates of convergence of the resulting Galerkin scheme are also established.

5.1 Preliminaries

We begin by letting T B
h and T D

h be triangulations of the domains ΩB and ΩD, respectively, formed by
shape-regular triangles (in R2) or tetrahedra (in R3) of diameter hT , which are assumed to match in
Σ. In particular, we may think of Σ as a polygonal curve in R2 (resp. a polyhedral region in R3). In
this way, being T B

h ∪T D
h a triangulation of ΩB ∪Σ∪ΩD, we denote by Σh the partition of Σ inherited

either from T B
h or T D

h . Also, we define h∗ := max{hT : T ∈ T ∗
h } (∗ ∈ {B,D}) and h := max{hB, hD}.

In addition, for each T ∈ T B
h ∪ T D

h we let P0(T ) be the space of polynomials on T of degree = 0,
and, according to the notation introduced in Section 1, we put P0(T ) := [P0(T )]

n. Then, we set the
vector and tensor local Raviart-Thomas spaces of order 0 as

RT0(T ) := P0(T )⊕ P0(T )x , and RT0(T ) :=
{
τ ∈ L2(T ) : τ i ∈ RT0(T ) ∀ i ∈

{
1, . . . , n

}}
,

where x := (x1, ..., xn)
t is a generic vector of Rn, and τ i stands for the i-th row of the tensor τ . Next,

we introduce the discrete domain subspaces in (4.1):

H̃h(ΩB) :=
{
τB,h ∈ H(divϱ; ΩB) : τB,h|T ∈ RT0(T ) ∀T ∈ T B

h

}
,

H̃h(ΩD) :=
{
vD,h ∈ H(div; ΩD) : vD,h|T ∈ RT0(T ) ∀T ∈ T D

h

}
,

Lh(ΩB) :=
{
vB,h ∈ Lρ(ΩB) : vB,h|T ∈ P0(T ) ∀T ∈ T B

h

}
, and

L̃h(ΩD) :=
{
qD,h ∈ L2(ΩD) : qD,h|T ∈ P0(T ) ∀T ∈ T D

h

}
,

(5.1)

27



whereas, denoting by ∂Σ the extreme points of Σ in 2D, or the polygonal boundary of Σ in 3D, the
discrete interface subspaces in (4.1) are initially defined as:

ΛB
h (Σ) :=

{
ψh : Σ → R continuous : ψh|e ∈ P1(e) ∀ edge/face e ∈ Σh , ψh|∂Σ = 0

}
and ΛD

h (Σ) :=
{
ξh : Σ → R continuous : ξh|e ∈ P1(e) ∀ edge/face e ∈ Σh

}
.

(5.2)

5.2 Verification of the assumptions

We first notice that, under the choice of finite element subspaces defined by (5.1), (H.1) up to (H.4)
are clearly satisfied.

Now, we jump to (H.6) and stress first that (4.10) follows from a simple extension of the vector
version of it provided by [26, Lemma 4.8] for any ρ > 2. Alternatively, the proof of (4.10) proceeds
almost verbatim to that for the particular case ρ = 4 given by [14, Lemma 5.5]. In turn, while most of
the main aspects regarding the proof of (4.11) are available in the literature, for sake of completeness
we provide next a full proof of it. To this end, we resort to some properties of the Raviart-Thomas
interpolation operator ΠD

h : H1(ΩD) → H̃h(ΩD), which are collected, for instance, in [2, Section 4.2.2,
items (a), (b), (c), and (d)] (see also [29, Section 5.2, items a), b), c), and d)]).

Lemma 5.1 There exists a positive constant β2,d, independent of h, such that

S2,h(qD,h) ≥ β2,d ∥qD,h∥0;ΩD
∀ qD,h ∈ Lh(ΩD) .

Proof. We proceed analogously to the proof of (3.72), the continuous version of (4.11). Indeed, given
qD,h ∈ Lh(ΩD), we now let z be the unique element in H̃1(ΩD), such that∫

ΩD

∇z · ∇v = −
∫
ΩD

qD,h v ∀ v ∈ H̃1(ΩD) , (5.3)

for which there exists a constant c̃D,d > 0, depending only on ΩD, such that ∥z∥1,ΩD
≤ c̃D,d ∥qD,h∥0,ΩD

.
Being (5.3) a particular case of (3.71) with qD,h instead of qD, it is clear that div(∇z) = qD,h in ΩD

and ∇z · n = 0 on ∂ΩD. In addition, the corresponding elliptic regularity result (cf. [33], [34])
establishes the existence of δ > 0 and another constant cD,d > 0, such that, actually, z ∈ H1+δ(ΩD)
and ∥z∥1+δ,ΩD

≤ cD,d ∥qD,h∥0,ΩD
, from which it follows that ∇z ∈ Hδ(ΩD) and

∥∇z∥δ,ΩD
≤ ∥z∥1+δ,ΩD

≤ cD,d ∥qD,h∥0,ΩD
. (5.4)

Then, bearing in mind [2, Section 4.2.2, items (a), (b), and (c)] we can define wD,h := ΠD
h (∇z) ∈

H̃h(ΩD), which satisfies div(wD,h) = qD,h in ΩD and wD,h · n = 0 on ∂ΩD, so that, in particular
wD,h · n = 0 on ΓD, and hence wD,h ∈ Hh(ΩD). Additionally, using the a priori estimate for ∥z∥1,ΩD

,
we readily obtain

∥wD,h∥0,ΩD
= ∥ΠD

h (∇z)∥0,ΩD
≤ ∥∇z −ΠD

h (∇z)∥0,ΩD
+ ∥∇z∥0,ΩD

≤ ∥∇z −ΠD
h (∇z)∥0,ΩD

+ c̃D,d ∥qD,h∥0,ΩD
.

(5.5)

In turn, employing the interpolation error estimate from [2, Section 4.2.2, item (d)], and invoking
(5.4), we find that

∥∇z −ΠD
h (∇z)∥20,ΩD

=
∑

T∈T D
h

∥∇z −ΠD
h (∇z)∥20,T ≤ C

∑
T∈T D

h

h2δT

{
∥∇z∥2δ,T + ∥div(∇z)∥20,T

}
≤ C h2δD

∑
T∈T D

h

{
∥∇z∥2δ,T + ∥qD,h∥20,T

}
≤ C h2δD

{
∥∇z∥2δ,ΩD

+ ∥qD,h∥20,ΩD

}
≤ C h2δD

(
c2D,d + 1

)
∥qD,h∥20,ΩD

,
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which, along with (5.5) and the identity satisfied by div(wD,h), yields

∥wD,h∥div;ΩD
≤ CD,d ∥qD,h∥0,ΩD

, (5.6)

with a positive constant CD,d, depending only on c̃D,d, C, |ΩD|, δ, and cD,d. In this way, from the
definition of S2,h(qD,h) (cf. (4.11)) and (5.6), we conclude that

S2,h(qD,h) ≥
(qD,h,div(wD,h))D

∥wD,h∥div;ΩD

=
∥qD,h∥20,ΩD

∥wD,h∥div;ΩD

≥ β2,d ∥qD,h∥0;ΩD
,

with β2,d := C−1
D,d, thus ending the proof. □

On the other hand, similarly as for the proof of (3.73), if we assume that there exists ψ0,d ∈ H
1/2
00 (Σ)

such that ψ0,d ∈ ΛB
h (Σ) for all h > 0, and ⟨ψ0,d · n, 1⟩Σ ̸= 0, then it is easy to show that there holds

(4.12) with β3,d :=
⟨ψ0,d·n,1⟩Σ

∥ψ0,d∥1/2,00;Σ
. In this regard, and as noticed at the beginning of [29, Section 5.3],

the existence of such ψ0,d is guaranteed, in particular, if the sequence of subspaces
{
ΛB

h (Σ)
}
h>0

is
nested. In this case, and as already mentioned in the proof of (3.73), ψ0,d can be constructed, for
instance, as indicated in the last part of the proof of [29, Lemma 3.6].

In what follows we focus on the verification of (H.5), which reduces to proving (4.7) and (4.8). To
this end, and proceeding as in [24, Section 4.4] (which collects the results from [29, Section 5]), and
[2, Section 4.2], we assume from now that T B

h and T D
h are quasi-uniform around Σ, which means that

there exists a Lipschitz-continuous open neighborhood ΩΣ of Σ, such that the elements of T B
h and T D

h

intersecting that region are roughly of the same size. More precisely, defining

Th,Σ :=
{
T ∈ T B

h ∪ T D
h : T ∩ ΩΣ ̸= ∅

}
,

there exists a positive constant c, independent of h, such that

max
T∈Th,Σ

hT ≤ c min
T∈Th,Σ

hT .

Then, defining the subspaces of H−1/2(Σ) and H−1/2(Σ) given, respectively, by

Φh(Σ) :=
{
ϕh ∈ L2(Σ) : ϕh|e ∈ P0(e) ∀ edge/face e ∈ Σh

}
and Φh(Σ) := [Φh(Σ)]

n ,

one can show (cf. [24, Theorem 4.1] and [2, Lemma 4.4] for the 2D and 3D cases, respectively)
that there exist ED

h ∈ L
(
Φh(Σ),Hh(ΩD)

)
and EB

h ∈ L
(
Φh(Σ),Hh(ΩB)

)
, with norms ∥ED

h ∥ and ∥EB
h∥

independent of h, such that

div
(
ED
h (ϕh)

)
∈ P0(ΩD) and ED

h (ϕh) · n = ϕh on Σ ∀ϕh ∈ Φh(Σ) , (5.7)

div
(
EB
h (ϕh)

)
= 0 in ΩB and EB

h (ϕh)n = ϕh on Σ ∀ϕh ∈ Φh(Σ) . (5.8)

In this way, having these so-called discrete lifting operators ED
h and EB

h satisfying (5.7) and (5.8), it is
not difficult to prove (cf. [24, Lemma 4.9] or [29, Lemma 4.2], and [2, proof of Lemma 4.6] for the 2D
and 3D cases, respectively) that (4.7) and (4.8) are equivalent to the existence of positive constants
γ1,d and γ2,d, respectively, such that

sup
ϕh∈Φh(Σ)\{0}

⟨ϕh,ψh⟩Σ
∥ϕh∥−1/2,Σ

≥ γ1,d ∥ψh∥1/2,00;Σ ∀ψh ∈ ΛB
h (Σ) such that ⟨ψh · n, 1⟩Σ = 0 , (5.9)
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and

sup
ϕh∈Φh(Σ)\{0}

⟨ϕh, ξh⟩Σ
∥ϕh∥−1/2,Σ

≥ γ2,d ∥ξh∥1/2,Σ ∀ ξh ∈ ΛD
h (Σ) . (5.10)

For the 2D case there are several ways of yielding the verification of (5.9) and (5.10), which usually
involve suitable modifications of the original mesh Σh when defining ΛB

h (Σ) and ΛD
h (Σ) (cf. (5.2)). In

particular, three options are described in [29, Section 5.3] (see also [24, Section 4.4] for two of them),
so that, being the third one the easiest to implement, here we stay with it. Its definition is based
on the assumption that the number of edges of Σh is even. Then, we let Σ2h be the partition of Σ
that arises by joining pairs of adjacent edges of Σh, denote the resulting edges still by e, and define
hΣ := max{he : e ∈ Σ2h}. If the number of edges of Σh were odd, we first reduce it to the even case
by joining any pair of two adjacent elements, construct Σ2h from this reduced partition, and define
hΣ as indicated above. In this way, redefining ΛB

h (Σ) and ΛD
h (Σ) in (5.2) with Σ2h instead of Σh, the

proofs of (5.9) and (5.10) follow directly from [29, Lemma 5.2] (see also [24, Lemma 4.12]).

For the 3D case, and up to the authors’ knowledge, there is no approach similar to the above one
available in the literature. Instead of it, we introduce now a partition Σ

h̃
of Σ, which is independent of

Σh, and which is formed by triangles ẽ of diameter hẽ, so that we set h̃ := max
{
hẽ : ẽ ∈ Σ

h̃

}
. Then,

denoting hΣ := max
{
he : e ∈ Σh

}
, and redefining ΛB

h (Σ) and ΛD
h (Σ) in (5.2) with Σ

h̃
instead of Σh,

it is possible to prove that, under a suitable relationship between h̃ and hΣ, the required inequalities
hold. More precisely, it is shown in [2, Lemma 4.5] (see also [25, Lemma 7.5]) that there exists a
positive constant C0 such that whenever hΣ ≤ C0 h̃, (5.9) and (5.10) are satisfied.

According to the different 2D and 3D notations for the meshsize in the interface, we now unify them

by defining h̃Σ :=

{
hΣ in 2D

h̃ in 3D
.

5.3 Rates of convergence

The approximation properties of the finite element subspaces involved, which are named after the
unknowns to which they are applied on, are collected next (cf. [22], [24], [31]):(
APσB

h

)
there exists a positive constant C, independent of h, such that for each s ∈ (0, 1], and for

each τB ∈ Hs(ΩB) ∩H0(divϱ; ΩB) with div(τB) ∈ Ws,ϱ(ΩB), there holds

dist
(
τB,Hh(ΩB)

)
≤ C hs

{
∥τB∥s,ΩB

+ ∥div(τB)∥s,ϱ;ΩB

}
,

(
APuD

h

)
there exists a positive constant C, independent of h, such that for each s ∈ (0, 1], and for

each vD ∈ Hs(ΩD) ∩HΓD
(div; ΩD) with div(vD) ∈ Hs(ΩD), there holds

dist
(
vD,Hh(ΩD)

)
≤ C hs

{
∥vD∥s;ΩD

+ ∥div(vD)∥s;ΩD

}
,

(
APφh

)
there exists a positive constant C, independent of h and h̃Σ, such that for each s ∈ [0, 1], and

for each ψ ∈ H1/2+s(Σ) ∩H
1/2
00 (Σ), there holds

dist
(
ψ,ΛB

h

)
≤ C h̃sΣ ∥ψ∥1/2+s;Σ ,
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(
APλ

h

)
there exists a positive constant C, independent of h and h̃Σ, such that for each s ∈ [0, 1], and

for each ξ ∈ H1/2+s(Σ), there holds

dist
(
ξ,ΛD

h

)
≤ C h̃sΣ ∥ξ∥1/2+s;Σ ,

(
APuB

h

)
there exists a positive constant C, independent of h, such that for each s ∈ [0, 1], and for

each vB ∈ Ws,ρ(ΩB), there holds

dist
(
vB,Lh(ΩB)

)
≤ C hs ∥vB∥s,ρ;ΩB

,

(
APpD

h

)
there exists a positive constant C, independent of h, such that for each s ∈ [0, 1], and for

each qD ∈ Hs(ΩD) ∩ L2
0(ΩD), there holds

dist
(
qD,Lh(ΩD)

)
≤ C hs ∥qD∥s;ΩD

.

Hence, we are now in position to provide the rates of convergence of the Galerkin scheme (4.3) with
the finite element subspaces defined throughout this section.

Theorem 5.2 In addition to the hypotheses of the Theorems 3.10, 4.3 and 4.4, assume that there
exists s ∈ (0, 1] such that σB ∈ Hs(ΩB) ∩ H0(divϱ; ΩB), div(σB) ∈ Ws,ϱ(ΩB), uD ∈ Hs(ΩD) ∩
HΓD

(div; ΩD), div(uD) ∈ Hs(ΩD), φ ∈ H1/2+s(Σ) ∩ H
1/2
00 (Σ), λ ∈ H1/2+s(Σ), uB ∈ Ws,ρ(ΩB), and

pD ∈ Hs(ΩD) ∩ L2
0(ΩD). Then, there exists a positive constant C, independent of h and h̃Σ, such that

∥((σ⃗, φ⃗), u⃗) − ((σ⃗, φ⃗)h, u⃗h)∥H×Q ≤ C
{
hs
(
∥σB∥s,ΩB

+ ∥div(σB)∥s,ϱ;ΩB
+ ∥uD∥s;ΩD

+ ∥div(uD)∥s;ΩD
+ ∥uB∥s,ρ;ΩB

+ ∥pD∥s;ΩD

)
+ h̃sΣ

(
∥φ∥1/2+s;Σ + ∥λ∥1/2+s;Σ

)}
.

Proof. It follows straightforwardly from the Céa estimate (4.21) and the approximation properties(
APσB

h

)
,
(
APuD

h

)
,
(
APφh

)
,
(
APλ

h

)
,
(
APuB

h

)
, and

(
APpD

h

)
. □

6 Numerical results

In this section we present three examples illustrating the performance of the mixed finite element
scheme (4.3) on a set of quasi-uniform triangulations of the respective domains, and considering the
finite element subspaces defined by (5.1)–(5.2) (cf. Section 5). The implementation of the numerical
method is based on a FreeFem++ code [35]. A Newton–Raphson algorithm with a fixed tolerance
tol = 1E−6 is used for the resolution of the nonlinear problem (4.3). As usual, the iterative method is
finished when the relative error between two consecutive iterations of the complete coefficient vector,
namely coeffm and coeffm+1, is sufficiently small, that is,

∥coeffm+1 − coeffm∥ℓ2
∥coeffm+1∥ℓ2

≤ tol ,

where ∥·∥ℓ2 is the standard ℓ2-norm in RDoF, with DoF denoting the total number of degrees of freedom
defining the finite element subspaces Hh,1,Hh,2, and Qh (cf. (4.2) and (5.1)–(5.2)).
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We now introduce some additional notation. The individual errors are denoted by

e(σB) := ∥σB − σB,h∥divϱ,ΩB
, e(uB) := ∥uB − uB,h∥0,ρ;ΩB

, e(pB) := ∥pB − pB,h∥0,ΩB
,

e(uD) := ∥uD − uD,h∥div;ΩD
, e(pD) := ∥pD − pD,h∥0,ΩD

,

e(φ) := ∥φ−φh∥1/2,00;Σ , e(λ) := ∥λ− λh∥1/2,Σ ,

with ρ ∈ [3, 4] and ϱ ∈ [4/3, 3/2] satisfying 1/ρ + 1/ϱ = 1, to be specified in the examples below.
In turn, pB,h stands for the post-processed Brinkman–Forchheimer pressure suggested by the second
formula in (3.1) and the decomposition (3.13), that is

pB,h = − 1

n
tr(σB,h)− ℓh in ΩB .

Notice that, for ease of computation, the interface norm ∥λ−λh∥1/2,Σ will be replaced by ∥λ−λh∥(0,1),Σ
with

∥ξ∥(0,1),Σ := ∥ξ∥1/20,Σ ∥ξ∥1/21,Σ ∀ ξ ∈ H1(Σ) ,

owing to the fact that H1/2(Σ) is the interpolation space with index 1/2 between H1(Σ) and L2(Σ).
Similarly, the interface norm ∥φ − φh∥1/2,00;Σ will be replaced by ∥φ − φh∥(0,1),Σ. Furthermore, the
respective experimental rates of convergence are computed as

r(⋄) :=
log(e(⋄)/ê(⋄))

log(h/ĥ)
for each ⋄ ∈

{
σB,uB, pB,uD, pD,φ, λ

}
,

where h and ĥ denote two consecutive mesh sizes, taken accordingly from h ∈ {hB, hD, hΣ}, with their
respective errors e and ê.

The examples considered in this section are described below. In all cases, we use u0
B,h = (0, 1E−6)t

as the initial guess. Additionally, the conditions (tr(σB,h), 1)B = 0 and (pD,h, 1)D = 0 are imposed
using a penalization strategy.

Example 1: 2D convex domain with varying µ, F, and KD parameters

In the first example, inspired by [7, Example 1 in Section 5], we validate the rates of convergence
in a two-dimensional convex domain and also study the performance of the numerical method with
respect to the number of Newton iterations when different values of the parameters µ, F, and KD are
considered. More precisely, we consider a semi-disk-shaped porous domain coupled with a porous unit
square, i.e.,

ΩB :=
{
(x1, x2) : x21 + (x2 − 0.5)2 < 0.52, x2 > 0.5

}
and ΩD := (−0.5, 0.5)2 ,

with interface Σ := (−0.5, 0.5) × {0.5}. We consider the model parameters ρ = 3, ϱ = 3/2, µ = 1,
F = 10, KB = I, and KD = 10−1 I. The data fB, fD, and gD are chosen such that the exact solution
in the tombstone-shaped porous domain Ω = ΩB ∪ Σ ∪ ΩD is given by the smooth functions

uB :=

(
cos(πx1) sin(πx2)

− sin(πx1) cos(πx2)

)
, uD :=

(
cos(πx1) exp(x2)
exp(x1) cos(πx2)

)
,

p⋆ := sin(πx1) sin(πx2) in Ω⋆, with ⋆ ∈ {B,D}.

Note that this solution satisfies mass conservation on the interface, i.e., uB ·n = uD ·n on Σ. However,
the continuity of momentum (cf. the second transmission condition in (2.3)) is not met. Additionally,
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DoF hB e(σB) r(σB) e(uB) r(uB) e(pB) r(pB) hΣ e(φ) r(φ)

197 0.330 1.8E-00 – 1.5E-01 – 1.8E-01 – 1/2 2.5E-01 –
733 0.191 9.5E-01 1.162 7.9E-02 1.188 9.3E-02 1.209 1/4 9.3E-02 1.415
2736 0.091 4.6E-01 0.976 3.8E-02 0.989 3.9E-02 1.161 1/8 3.3E-02 1.506

10718 0.049 2.3E-01 1.112 1.9E-02 1.112 1.9E-02 1.145 1/16 1.2E-02 1.512
42915 0.024 1.1E-01 1.013 9.4E-03 1.009 1.0E-02 0.937 1/32 4.1E-03 1.503
170305 0.013 5.8E-02 1.156 4.7E-03 1.159 4.9E-03 1.219 1/64 1.4E-03 1.506

hD e(uD) r(uD) e(pD) r(pD) hΣ e(λ) r(λ) iter

0.373 7.3E-01 – 1.3E-01 – 1/2 4.9E-01 – 4
0.190 3.2E-01 1.217 7.5E-02 0.842 1/4 2.0E-01 1.275 4
0.095 1.6E-01 0.963 3.0E-02 1.330 1/8 5.1E-02 1.969 4
0.054 8.4E-02 1.168 1.5E-02 1.196 1/16 1.7E-02 1.568 4
0.025 4.2E-02 0.908 7.5E-03 0.911 1/32 6.2E-03 1.478 4
0.014 2.1E-02 1.290 3.7E-03 1.291 1/64 2.2E-03 1.528 4

Table 6.1: [Example 1] Degrees of freedom, mesh sizes, errors, convergence history, and Newton
iteration count for the approximation of the coupled Brinkman–Forchheimer/Darcy problem with
ρ = 3, µ = 1, KB = I, KD = 10−1I, and F = 10.

the Dirichlet boundary condition for the Brinkman–Forchheimer velocity on ΓB and the Neumann
boundary condition for the Darcy velocity on ΓD are both non-homogeneous, leading to extra contri-
butions on the right-hand side of the resulting system. The results reported in Table 6.1 are consistent
with the theoretical optimal convergence rate of O(h), as stated in Theorem 5.2. The domain config-
uration and some components of the numerical solution are shown in Figure 6.1, computed using the
fully-mixed approximation with a mesh size of h = 0.014 and 53, 511 triangular elements (correspond-
ing to 170, 305 DoF). We observe that the continuity of the normal component of the velocities on Σ
is maintained, as the second components of uB and uD match on Σ, as expected. It can also be noted
that the pressure remains continuous throughout the domain and retains its sinusoidal pattern.

Table 6.2 presents the number of Newton iterations as a function of the parameters µ, F, and
KD = κD I, with KB = I and different mesh sizes h. It can be observed that Newton’s method
remains robust with respect to both h and KD. However, the number of iterations increases for
smaller values of µ and larger values of F, respectively. This dependence aligns with the theoretical
rate of convergence of the mixed approach (4.3) (cf. Theorem 5.2). In particular, the behavior of the
iterative method with varying Forchheimer numbers F ∈ {1, 10, 102, 103, 104} is justified by the greater
influence of the nonlinear term F|uB|uB in the Brinkman–Forchheimer model.

Example 2: Accuracy assessment in a 2D non-convex domain

In the second example, we test the fully-mixed scheme (4.3) in a 2D non-convex domain. Specifically,
we consider the 2D helmet-shaped domain defined by Ω = ΩB ∪ Σ ∪ ΩD, where

ΩB := (−1, 1)× (0, 1.25)\(−0.75, 0.75)× (0.25, 1.25) , ΩD := (−1, 1)× (−0.5, 0) ,

and Σ := (−1, 1)×{0} (see the first plot of Figure 6.2 below). We use the model parameters ρ = 7/2,
ϱ = 7/5, µ = 10−1, F = 10, KB = 10−1 I, and KD = 10−2 I. The data fB, fD, and gD are adjusted so
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µ F κD h = 0.373 h = 0.191 h = 0.095 h = 0.054 h = 0.025 h = 0.014

1 10 10−1 4 4 4 4 4 4
1 10 10−2 4 4 4 4 4 4
1 10 10−3 4 4 4 4 4 4
1 10 10−4 4 4 4 4 4 4

10−1 10 10−1 6 6 6 6 6 6
10−2 10 10−1 8 7 7 7 7 7
10−3 10 10−1 8 9 9 9 9 9
10−4 10 10−1 9 9 9 10 10 10
1 1 10−1 4 4 4 4 4 4
1 102 10−1 6 6 6 6 6 6
1 103 10−1 9 10 9 9 9 9
1 104 10−1 13 13 13 13 13 13

Table 6.2: [Example 1] Number of Newton iterations for different values of µ, F, and KD = κD I.

Figure 6.1: [Example 1] Domain configuration, computed velocity field and magnitude of its second
component, and pressure field in the whole domain.

that the exact solution in the 2D helmet-shaped domain Ω is given by the smooth functions

uB =

(
− sin(πx1) cos(πx2)
cos(πx1) sin(πx2)

)
in ΩB, uD =

(
sin(2πx1) exp(x2)
exp(x1) sin(2πx2)

)
in ΩD,

p⋆ = sin(πx1) exp(x2) in Ω⋆, with ⋆ ∈ {B,D} .

The model problem is then complemented with the appropriate boundary conditions. Some com-
ponents of the numerical solution are displayed in Figure 6.2, which were obtained using the mixed
approximation (4.3) with a mesh size of h = 0.007 and 284, 356 triangular elements (representing a
total of 1, 072, 673 DoF).

The convergence history for a series of quasi-uniform mesh refinements using the particular discrete
spaces (5.1)–(5.2) is presented in Table 6.3. Once again, the mixed finite element method exhibits
optimal convergence with an order of O(h), as established by Theorem 5.2.
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DoF hB e(σB) r(σB) e(uB) r(uB) e(pB) r(pB) hΣ e(φ) r(φ)

1137 0.188 1.3E-00 – 1.2E-01 – 6.6E-01 – 1/4 2.4E-01 –
4578 0.100 4.4E-01 1.717 5.7E-02 1.251 2.1E-01 1.796 1/8 9.6E-02 1.299

17075 0.050 1.4E-01 1.616 2.7E-02 1.062 5.8E-02 1.895 1/16 3.4E-02 1.518
68304 0.026 5.6E-02 1.421 1.3E-02 1.069 1.8E-02 1.742 1/32 1.2E-02 1.490
267557 0.014 2.6E-02 1.325 6.7E-03 1.190 7.6E-03 1.487 1/64 4.2E-03 1.515
1072673 0.007 1.2E-02 0.974 3.3E-03 0.932 3.5E-03 1.047 1/128 1.5E-03 1.518

hD e(uD) r(uD) e(pD) r(pD) hΣ e(λ) r(λ) iter

0.200 1.3E-00 – 2.7E-01 – 1/4 1.1E-00 – 5
0.095 6.2E-01 0.983 6.1E-02 2.009 1/8 4.1E-01 1.351 5
0.049 3.2E-01 1.036 1.9E-02 1.805 1/16 1.6E-01 1.411 5
0.026 1.6E-01 1.082 7.3E-03 1.483 1/32 5.6E-02 1.467 5
0.013 7.9E-02 0.967 3.3E-03 1.093 1/64 1.9E-02 1.534 5
0.007 4.0E-02 1.205 1.6E-03 1.253 1/128 6.1E-03 1.670 5

Table 6.3: [Example 2] Degrees of freedom, mesh sizes, errors, convergence history, and Newton
iteration count for the approximation of the coupled Brinkman–Forchheimer/Darcy problem with
ρ = 7/2, µ = 10−1, KB = 10−1I, KD = 10−2I, and F = 10.

Figure 6.2: [Example 2] Domain configuration, computed velocity field and magnitude of its second
component, and pressure field in the whole domain.

Example 3: Flow through a heterogeneous porous media

In the final example, we examine the behavior of the numerical method for different values of F with
ρ = 4, in order to model the higher-order inertial correction F |uB|2uB discussed in [7, Example 2 in
Section 5]. We consider the rectangular domain Ω = ΩB ∪ Σ ∪ ΩD, where

ΩB := (0, 2)× (0, 1), Σ := (0, 2)× {0}, and ΩD := (0, 2)× (−1, 0) ,

with boundaries ΓB = ΓB,left∪ΓB,top∪ΓB,right and ΓD = ΓD,left∪ΓD,bottom∪ΓD,right, respectively. The
problem parameters are µ = 1, KB = 10−1 I and KD = 10−3 I. The right-hand side data fB, fD, and
gD are chosen as zero, and the boundary conditions are

uB = (−10x2 (x2 − 1), 0)t on ΓB,left , uB = 0 on ΓB,top , σBn = 0 on ΓB,right ,

pD = 0 on ΓD,bottom , uD · n = 0 on ΓD,left ∪ ΓD,right .
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In Figure 6.3, we plot the magnitude of the second component of the velocity across the entire
domain for F ∈ {0, 101, 102, 104}, computed using the mixed approximation (4.3) with a mesh size of
h = 0.027 and 37, 238 triangular elements (corresponding to 141, 032 DoF). The number of Newton
iterations for the different values of F is {1, 5, 6, 9}, respectively, indicating an increase as F becomes
larger, which is consistent with the observations from Example 1. Note that when F = 0, the problem
becomes linear, requiring only one Newton iteration. As expected, we observe that most of the flow
moves from left to right within the more permeable Brinkman–Forchheimer domain, while part of it
is diverted into the less permeable Darcy medium due to the zero pressure condition at the bottom of
the domain. For all considered values of F, the continuity of the normal velocity across the interface is
preserved, illustrating mass conservation on Σ. Finally, we observe that as F increases, the magnitude
of the vertical component of the velocity decreases at the interface. This behavior illustrates the role
of the inertial term F |uB|2uB in correcting the potential overestimation of fluid flow between the more
and less permeable porous media when using the Brinkman/Darcy model (i.e., when F = 0).

Figure 6.3: [Example 3] From left to right: magnitude of the second component of the velocity in
the whole domain for F ∈ {0, 101, 102, 104}.
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[2] M. Álvarez, G.N. Gatica and R. Ruiz-Baier, A vorticity-based fully-mixed formulation for
the 3D Brinkman–Darcy problem. Comput. Methods Appl. Mech. Engrg. 307 (2016), 68–95.

[3] M. Amara, D. Capatina, and L. Lizaik, Coupling of Darcy–Forchheimer and compressible
Navier–Stokes equations with heat transfer. SIAM J. Sci. Comput. 31 (2008/09), no. 2, 1470–1499.
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Ricardo Oyarzúa, Manuel Solano: Mixed finite element methods for coupled
fluid flow problems arising from reverse osmosis modeling
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