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Abstract

Multispecies kinematic flow models are defined by systems of N strongly coupled, nonlinear first-order conservation
laws, where the solution is a vector of N partial volume fractions or densities. These models arise in various ap-
plications including multiclass vehicular tra�c and sedimentation of polydisperse suspensions. The solution vector
should take values in a set of physically relevant values (i.e., the components are nonnegative and sum up at most to
a given maximum value). It is demonstrated that this set, the so-called invariant region, is preserved by numerical
solutions produced by a new family of high-order finite volume numerical schemes adapted to this class of mod-
els. To achieve this property, and motivated by [X. Zhang, C.-W. Shu, On maximum-principle-satisfying high order
schemes for scalar conservation laws, J. Comput. Phys. 229 (2010) 3091–3120], a pair of linear scaling limiters is
applied to a high-order central weighted essentially non-oscillatory (CWENO) polynomial reconstruction to obtain
invariant-region-preserving (IRP) high-order polynomial reconstructions. These reconstructions are combined with a
local Lax-Friedrichs (LLF) or Harten-Lax-van Leer (HLL) numerical flux to obtain a high-order numerical scheme
for the system of conservation laws. It is proved that this scheme satisfies an IRP property under a suitable Courant-
Friedrichs-Lewy (CFL) condition. The theoretical analysis is corroborated with numerical simulations for models of
multiclass tra�c flow and polydisperse sedimentation.

Keywords: systems of conservation laws, invariant region preserving, high-order accuracy, multispecies kinematic
flow models, finite volume scheme, central weighted essentially non-oscillatory (CWENO) scheme

1. Introduction

1.1. Scope
This work concerns high-order numerical schemes for spatially one-dimensional systems of N first-order nonlinear

conservation laws

@t� + @x f (�) = 0, � = (�1, . . . , �N)T, f (�) B
�
f1(�), . . . , fN(�)

�T;
fi(�) B �ivi(�), i = 1, . . . ,N; x 2 I B [0, L] ⇢ R, t > 0,

(1.1)

where t is time, x is the spatial coordinate, and the solution � = �(x, t) usually denotes a vector of partial concentra-
tions �1, . . . , �N (volume fractions or densities) of a number N of species. The components of� should be nonnegative
and sum up at most to some maximum value �max that depends on the physical system under consideration. Conse-
quently, � is assumed to take values in the set

D�max B
�
� = (�1, . . . , �N)T

2 RN : �1 � 0, . . . , �N � 0, � B �1 + · · · + �N  �max
 
.
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The model (1.1) is called “kinematic” since it is assumed that the velocities v1, . . . , vN are not determined by additional
balance equations but are explicitly given functions of �. The system (1.1) is equipped with the initial condition

�(x, 0) = �0(x) 2 D�max , x 2 I, (1.2)

and either periodic boundary conditions

�(0, t) = �(L, t), t > 0 (1.3)

or zero-flux boundary conditions

f |x=0 = 0, f |x=L = 0, t > 0. (1.4)

System of PDEs like (1.1) arise in various applications including multiclass vehicular tra�c [1, 2], the sedimen-
tation of polydisperse suspensions [3, 4, 5, 6], or the separation kinetics of a dispersion of two immiscible liquids
under the action of gravity [7]. We herein focus on two alternative applications. The first is multiclass vehicular
tra�c, where we distinguish between N classes of vehicles di↵ering in preferential (freeway) velocities, and consider
a closed road of length L so the final model is the initial-boundary value problem (1.1)–(1.3). The second appli-
cation is sedimentation of a polydisperse suspension of small solid particles dispersed in a viscous fluid, where we
distinguish between N size classes (that settle at di↵erent velocities and hence segregate), the x-coordinate usually
is a vertical one aligned with gravity, and the zero-flux boundary conditions (1.4) are appropriate. Thus, within that
application, the initial-boundary value problem (1.1)–(1.2), (1.4) describes settling of a suspension of initial compo-
sition �0 in a closed column. In both applications we seek solutions that satisfy an IRP property, namely, we expect
that if �0(x) 2 Dmax for all x, then �(x, t) 2 Dmax for all x and t > 0.

In the scalar case N = 1, and where the unknown is � = �(x, t), the governing equation turns into the scalar
conservation law @t�+@x f (�) = 0, where f (�) = �v(�) is assumed to be a non-negative Lipschitz continuous function
with support in (0, �max). The periodic and zero-flux initial-boundary value problems then possess unique entropy
solutions �(x, t) taking values in [0, �max] for all t > 0 provided that �0(x) 2 [0, �max] for all x 2 I. (This is the
IRP property in the scalar case.) However, existing high-order numerical schemes for solving these problems do
not necessarily yield numerical values in that interval but produce oscillations with slight under- and overshoots. To
handle this shortcoming, Zhang and Shu [8] proposed a technique to create high-order schemes that do satisfy the IRP
property. For one space dimension, the idea is based on utilizing a standard two-point monotone numerical flux,
which if directly applied to the cell averages of the numerical solution adjacent to a cell interface would generate
an IRP scheme of first-order accuracy only. The key idea to ensure high-order accuracy consists in evaluating the
numerical flux on high-order reconstructions of the unknown to both sides of the cell interface. These reconstructions
are obtained by linear scaling around the cell average of the solution in those neighboring cells in conjunction with
a limiter function that controls the extrema of the reconstruction polynomial to ensure that the reconstructed solution
values lie within [0, �max] (in our setting). This procedure ensures high-order accuracy in space, and is combined
with a strong stability preserving (SSP) Runge-Kutta (RK) time discretization [9, 10] to ensure high-order accuracy in
time. The computation of the limiter involves determining the extrema of the reconstruction polynomial on the whole
cell; this task is simplified if these extrema are replaced by evaluations of the polynomial on the finite set of nodes of
the Legendre-Gauss-Lobatto quadrature formula on each interval.

It is the purpose of the present work to introduce high-order finite volume schemes with the IRP property for the
general case (N � 1) of the initial-boundary value problems (1.1)–(1.3) and (1.1)–(1.2), (1.4). To put the novelty into
the proper perspective, we mention that first-order finite volume schemes with the IRP property for at least one of these
problems have been studied in [11, 12, 13] while high-order WENO approximations for the same models have been ad-
vanced in [14, 15, 16, 17, 18, 19]. However, the IRP property is not ensured a priori by any of these available WENO-
based treatments, in which spurious oscillations and negative solution values can be observed in the numerical results.
Based on the ideas of [8, 20, 21], we herein construct high-order finite volume numerical schemes for the initial-
boundary value problems (1.1)–(1.3) and (1.1)–(1.2), (1.4) that do satisfy the IRP property. In fact, the linear scaling
limiter advanced in [8] cannot be applied directly to this class of problems since if we denote by �L,R

i, j+1/2, i = 1, . . . ,N
the reconstructed values at the cell boundaries, and supposedly applied the linear scaling limiter of [8] to ensure that
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�L,R
i, j+1/2 2 [0, �max] for i = 1, . . . ,N, then it would not be ensured that �L,R

j+1/2 B �L,R
1, j+1/2 + · · · + �

L,R
N, j+1/2  �max. Conse-

quently, the corresponding reconstructed solution vector �L,R
j+1/2 would not belong toD�max . To solve this issue, that is,

to guarantee that

�L,R
j+1/2 2 D�max for all j, (1.5)

and to point out the novelty, we herein propose a two-step approach: in the first step, a high-order polynomial recon-
struction of each component �i on each cell is applied to ensure that the reconstructed cell interface values for each
species are nonnegative, which is achieved by a modified version of the linear scaling limiter originally proposed in
[8]; and in the second step, another linear scaling limiter is applied to the sum of the reconstruction polynomials (those
of the first step) to ensure that the final reconstructed concentration values at the cell interfaces sum up to at most to
�max. It is proven that this procedure ensures that (1.5) holds.

The cell- and species-wise high-order polynomial reconstructions (to which the above-mentioned two-step proce-
dure is applied in each time step) are chosen as central weighted essentially non-oscillatory (CWENO) reconstructions
proposed by Levy, Puppo, and Russo in [22]. The advantage of this choice is that the underlying reconstructions do
not only provide single point values but a complete spatial reconstruction in every time step, which is beneficial for
evaluating the extrema of the reconstruction polynomials in each cell. However, it is possible to use other alternatives
such as WENO-JS [23], MR-WENO [24], or WENO-Z [25] reconstructions (with some modifications) in the imple-
mentation of the limiters. The numerical flux is chosen as the local Lax-Friedrichs (LLF) or Harten-Lax-van Leer
(HLL) numerical flux [26]. For both we prove that, under a suitable CFL condition, the first-order method applied
to either initial-boundary value problem has the IRP property. That said, it is possible to utilize alternative numerical
fluxes such as the Hilliges-Weidlich (HW) flux [12, 27] for the MCLWR model. As stated above, the fully discrete
scheme employs an SSP total variation diminishing (TVD) Runge-Kutta time discretization.

1.2. Related work
Numerical methods preserving physical properties of multiclass models have been explored in several works. For

instance, Jaouen and Lagoutière [28] propose a second-order numerical algorithm for the transport of an arbitrary
number of materials that is conservative for the mass of each component, i.e., each mass fraction stays in [0, 1] and
the sum of all mass fractions does not exceed one. Ancellin et al. [29] advance a volume-of-fluid (VOF) method that
guarantees natural properties of the volume fractions of a multi-phase flow. In the same direction, Baumgart and Blan-
quart [30] propose a simple method for preserving the sum of mass fractions in transport without penalizing the inert
species. Recently, Huang and Johnsen [31] proposed a general numerical approach, consisting of a consistent limiter
and the multiphase reduction-consistent formulation, to solve the multiphase Euler/phase-field model for compress-
ible N-phase (N � 1) flows in a consistent and conservative form. Finally, Bürger et al. [13] proposed a first-order
antidi↵usive and Lagrangian-remap scheme for the MCLWR tra�c model which has the IRP property under certain
CFL condition depending on the number of species N. The study of high-order IRP numerical methods is of interest
also for other kinds of problems. For instance, one can find schemes preserving density and pressure for the Euler
equations of compressible gas dynamics [20, 32, 33] or numerical methods preserving positivity for the shallow water
equations [34, 35]. An exhaustive survey of property-preserving numerical schemes for conservation laws and further
references are provided in the recent monograph by Kuzmin and Hajduk [36].

1.3. Outline of the paper
The remainder of the paper is organized as follows. The multispecies kinematic flow models studied are described

in Section 2, including models of multiclass vehicular tra�c (Section 2.1) and polydisperse sedimentation (Sec-
tion 2.2) along with their respective bounds of the eigenvalues of the Jacobian matrix J f (�) of the flux vector f (�).
These are obtained with the secular equation (see Appendix A). In what follows, we refer to the particular extension
of the LWR tra�c model [37, 38] to the multiclass case summarized in Section 2.1 simply as “MCLWR model” and
to the model of polydisperse sedimentation in conjunction with the Masliyah-Lockett-Bassoon velocity functions (see
Section 2.2) as “MLB model.” In Section 3 we first introduce the basic time and space finite volume discretizations
(Section 3.1). Then, in Section 3.2 we introduce the first-order LLF method and prove in that it satisfies the invariance
of the region D�max for both MCLWR and MLB models, under a certain CFL condition, while in Section 3.3 we do
the same for the HLL method. In Section 4 we briefly describe CWENO reconstructions for scalar conservation laws
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(Section 4.1) and then, in Section 4.2, explain component-wise CWENO reconstructions systems of conservation
laws. Then, in Section 4.3, which is at the core of the present work, we advance a modification to Zhang and Shu’s
limiters [8] for multiclass models like (1.1) to ensure that the reconstruction polynomials have the IRP property. Then
we consider a G-point Legendre Gauss-Lobatto quadrature formula (for ease of computation of the limiter) and prove
that the resulting high-order CWENO finite volume scheme is IRP under a CFL condition that depends on one of the
quadrature weights. Moreover, it is proved that this modification does not a↵ect the order of the reconstruction. To
obtain the correct order of convergence of the method we use an SSP Runge-Kutta time discretization scheme, see
Section 4.4. In Section 5 we present five examples in which the numerical methods introduced in Section 3, together
with the invariant region preserving CWENO reconstructions of Section 4, are used to numerically solve (1.1) for the
MCLWR and MLB models. Finally, in Section 6 we draw some conclusions and discuss open issues.

2. Multispecies kinematic flow models

2.1. Multiclass LWR tra�c model
The well-known Lighthill-Whitham-Richards (LWR) kinematic tra�c model [37, 38] describes the evolution of

the vehicle density �(x, t) on a single-lane road by a scalar conservation law @t� + @x(�v(�)) = 0, where the velocity
function v = v(�) is nonnegative and non-increasing (v0  0). In [1, 2] this model is generalized to N classes of
vehicles with individual densities �i(x, t), i = 1, . . . ,N. The governing equations of the resulting multiclass LWR
tra�c (MCLWR) model are (1.1), where the main assumption specific for the MCLWR model is that

vi(�) = �iv(�), i = 1, . . . ,N, �1 > · · · > �N > 0, � B �1 + · · · + �N ,

that is, drivers of di↵erent classes adjust their speed to the total tra�c � through the same function v(�), and �i is
the free-flowing speed of vehicles of class i on an empty highway. The behavioral law � 7! v(�) may be taken from
standard speed-density relations like the Greenshields (GS) model v(�) = 1 � �/�max [39], where �max represents a
maximal car density, or the Dick–Greenberg (DG) model [40, 41]

v(�) = min{1,�C ln(�/�max)} with a constant C > 0. (2.1)

The MCLWR model is strictly hyperbolic whenever �i > 0 and � < �max [42, 43]. The eigenvalues �i(�) of the
Jacobian matrix of the flux J f (�) B (@ fi(�)/@� j)1i, jN satisfy the interlacing property (A.3) with the bounds

M1(�) = �Nv(�) + v0(�)�T�, M2(�) = �1v(�), (2.2)

where � B (�1, . . . , �N)T. We assume that the function v(�) has the following properties:

v(�) > 0 for 0  � < �max, v(�max) = 0, v0(�)  0 for 0  �  �max;
v0(�) is nondecreasing, i.e., v0(�)  v0(�̃) if 0  �  �̃  �max.

(2.3)

This occurs, for instance, if v(�) is chosen according to the DG or GS models. The properties (2.3) ensure that for the
MCLWR model

M1(�) < M2(�) for all � 2 D�max . (2.4)

2.2. Polydisperse sedimentation
Polydisperse suspensions consist of small solid spherical particles that belong to a number N of species that di↵er

in size or density, and which are dispersed in a viscous fluid. Here we assume that all solid particles have the same
density ⇢s and that Di is the diameter of particle class (species) i, where D1 > D2 > · · · > DN . The sedimentation of
such a mixture of given initial concentration�0(x) in a column of depth L can be then described by the initial-boundary
value problem (1.1)–(1.2), (1.4), where �i denotes the local volume fraction of particle species i. A widely used choice
of the velocity functions vi, which is also supported by experimental evidence, is due to Masliyah [44] and Lockett
and Bassoon [45] (“MLB model”). This model arises from the continuity and linear momentum balance equations for
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the solid species and the fluid through constitutive assumptions and simplifications [4]. For equal-density particles,
the MLB velocities v1(�), . . . , vN(�) are given by

vi(�) B C(1 � �)V(�)(�i � �
T�), where �i B D2

i /D
2
1, i = 1, . . . ,N,

� B (�1 = 1, �2, . . . , �N)T, C B
⇢s � ⇢f

18µf
gD2

1,
(2.5)

where ⇢f is fluid density, g is the acceleration of gravity, µf is the fluid viscosity, � B �1 + · · · + �N is the total solids
volume fraction, and V(�) is a hindered settling factor that is assumed to satisfy V(0) = 1, V(�max) = 0, and V 0(�)  0
for � 2 [0, �max]. A standard choice is the Richardson-Zaki equation [46]

V(�) = Ṽ(�) B

8>><
>>:

(1 � �)nRZ�2 if � 2 D�max ,

0 otherwise,
nRZ > 3. (2.6)

Following [18] and if �max < 1, we use a “soft cuto↵” version of (2.6) to avoid the discontinuity at � = �max, namely

V(�) B

8>>>>><
>>>>>:

(1 � �)nRZ�2 for 0 < � < �⇤,
Ṽ(�⇤) + Ṽ 0(�⇤)(� � �⇤) for �⇤  �  �max,

0 otherwise,
nRZ > 3. (2.7)

Here ⌧(�) B Ṽ(�⇤)+ Ṽ 0(�⇤)(���⇤) is the tangent to Ṽ(�) at (�⇤, Ṽ(�⇤)), where �⇤ is chosen such that ⌧(�max) = 0, i.e.,

�⇤ =
(nRZ � 2)�max � 1

nRZ � 3
.

According to [6], when �i > 0 and � < �max, the MLB model is strictly hyperbolic and the eigenvalues �i(�) of
the Jacobian matrix of the flux J f (�) interlace with the velocities vi(�), as is expressed by (A.3) and where

M1(�) = C
�
�NV(�) +

�
(1 � �)V 0(�) � 2V(�)

�
�T�, M2(�) = v1(�). (2.8)

Let us define the function

w(�) B C(1 � �)2V(�). (2.9)

In what follows we always assume that

V(�) > 0 for 0  � < �max, V(�max) = 0, V 0(�)  0,
w0(�) is nondecreasing, i.e., w0(�)  w0(�̃) if 0  �  �̃  �max.

(2.10)

These properties hold, for instance, if V(�) is chosen according to (2.6), (2.7) with 0 < �max < 1. The properties
(2.10) ensure that (2.4) holds for the MLB model, where M1(�) and M2(�) are defined by (2.8).

3. First-order invariant-region-preserving schemes

3.1. Discretizations
We first discretize the domain [0, L] ⇥ [0,T ]. For the spatial interval [0, L], we choose M 2 N, a meshwidth

�x B L/M, and define the cell centers x j B ( j+1/2)�x for j 2 {0, . . . ,M�1} and the cell interfaces x j+1/2 = ( j+1)�x
for j 2 {0, . . . ,M} C ZM . With this setup x�1/2 = 0 and xM�1/2 = L. In this way, we subdivide the interval [0, L]
into cells I j B [x j�1/2, x j+1/2), j 2 {0, . . . ,M � 1}. Similarly, for the time interval [0,T ] we select NT 2 N and a
sequence of temporal mesh widths �tn, and defining t0 B 0 and tn+1 B tn + �tn for n 2 {0, . . . ,NT } subject to the
condition �t0 + · · · + �tNT�1 = T . This leads to time strips In B [tn, tn+1), n 2 {0, . . . ,NT � 1}. The ratio �n B �tn/�x
is assumed to satisfy a CFL condition that will be specified later. The numerical schemes produce an approximation
�n

j ⇡ �(x j, tn) defined at the mesh points (x j, tn) for j 2 ZM and n 2 {0, . . . ,NT }.
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We then define a marching formula for the solution as

�n+1
j = �n

j � �n
�
F

n
j+1/2 � F

n
j�1/2

�
, j = 0, . . . ,M � 1, n = 0, . . . ,NT � 1. (3.1)

For the periodic boundary conditions (1.3), we set

F
n
�1/2 = F

n
M�1/2, (3.2)

and for the zero-flux boundary conditions (1.4),

F
n
�1/2 = 0, F n

M�1/2 = 0. (3.3)

The computation of the numerical flux vector F n
j+1/2 in all other cases is described in what follows.

3.2. IRP property of the LLF scheme
We now describe a first-order method that satisfies the IRP property with respect to D�max . We utilize the local

Lax-Friedrichs (LLF) numerical flux

F
LLF
j+1/2 B

1
2
�
f (�n

j ) + f (�n
j+1) � ↵n

j+1/2(�n
j+1 � �

n
j )
�
, where ↵n

j+1/2 B max
�
|S n

L, j+1/2|, |S
n
R, j+1/2|

 
, (3.4)

where S n
L, j+1/2 and S n

R, j+1/2 denote lower and upper bounds for the eigenvalues �1(�), . . . , �N(�) of J f (�) at the
interface x j+1/2. These values can be estimated by setting

S n
L, j+1/2 = min

0s1
M1

�
s�n

j+1 + (1 � s)�n
j
�
, (3.5)

S n
R, j+1/2 = max

0s1
M2

�
s�n

j+1 + (1 � s)�n
j
�
, (3.6)

where M1 and M2 are given by (2.2) or (2.8) (depending on the model under study).
Now we can prove an IRP property for the first-order scheme (3.1), equipped with the LLF numerical flux (3.4).

For the proof, we use a slightly smaller bound for the smallest eigenvalue than the one stipulated by (2.2) for the
MCLWR model and by (2.8) for the MLB model; namely, we employ M̃1(�) B  (�)T�, where

 (�) B

8>><
>>:

v0(�) for the MCLWR model,
C[(1 � �)V 0(�) � 2V(�)] for the MLB model,

 B

8>><
>>:
� for the MCLWR model,
� for the MLB model.

(3.7)

Notice that  (�)  0 for 0  �  �max for both models due to the explicit respective assumptions (2.3) and (2.10).
For both models, M̃1(�)  M1(�), and to prove the IRP property for both models and the LLF and HHL schemes we
employ the slightly smaller lower estimate (instead of (3.5))

S n
L, j+1/2 = min

0s1
M̃1

�
�n

j+1/2(s)
�
, where �n

j+1/2(s) B s�n
j+1 + (1 � s)�n

j . (3.8)

Theorem 1. Consider the LLF scheme defined by the marching formula

�n+1
j = �n

j � �n
�
F

LLF
j+1/2 � F

LLF
j�1/2

�
, (3.9)

where the LLF numerical flux is given by (3.4) along with the definitions (3.6) and (3.8) of S R, j+1/2 and S L, j+1/2,
respectively. If the CFL condition

↵�n  1, where ↵ B max
j

�
|S L, j+1/2|, |S R, j+1/2|

 
(3.10)

is in e↵ect, then the LLF scheme for (1.1), with the velocity functions vi(�) defined by the MCLWR or MLB models,
satisfies the invariant region preservation property

for all n = 0, . . . ,NT � 1: �n
j 2 D�max for all j 2 ZM ) �

n+1
j 2 D�max for all j 2 ZM . (3.11)
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Proof. For simplicity, in the proof we omit the index n in the right-hand side of the marching formula, i.e., we set
� j B �n

j , ↵ j+1/2 B ↵n
j+1/2, and � B �n. Let us assume that both F LLF

j+1/2 and F LLF
j�1/2 are given by appropriate versions

of (3.4) (see Remark 1 below for the boundary flux vectors defined by (3.2) or (3.3)). Then

F
LLF
j+1/2 � F

LLF
j�1/2 =

↵ j+1/2 + ↵ j�1/2

2
� j �

↵ j+1/2

2

✓
� j+1 �

1
↵ j+1/2

f (� j+1)
◆
�
↵ j�1/2

2

✓
� j�1 +

1
↵ j�1/2

f (� j�1)
◆
,

hence by the marching formula (3.1) and defining

G1(� j+1) B � j+1 �
1

↵ j+1/2
f (� j+1) and G2(� j�1) B � j�1 +

1
↵ j�1/2

f (� j�1),

we can write
�n+1

j =

 
1 �

�(↵ j+1/2 + ↵ j�1/2)
2

!
� j +

�↵ j+1/2

2
G1(� j+1) +

�↵ j�1/2

2
G2(� j�1). (3.12)

Consequently, the CFL condition (3.10) implies that�n+1
j can be represented as a convex combination of� j,G1(� j+1),

and G2(� j�1). Noting that

G1,i(� j+1) = �i, j+1 �
fi(� j+1)
↵ j+1/2

= �i, j+1

✓
1 �

vi(� j+1)
↵ j+1/2

◆
� �i, j+1

✓
1 �
|v1(� j+1)|
↵ j+1/2

◆
� �i, j+1

✓
1 �
|S R, j+1/2|

↵ j+1/2

◆
and

G2,i(� j�1) = �i, j�1 +
fi(� j�1)
↵ j�1/2

= �i, j�1

✓
1 +

vi(� j�1)
↵ j�1/2

◆
� �i, j�1

✓
1 +

M1(� j�1)
↵ j�1/2

◆
� �i, j�1

✓
1 +

S L, j�1/2

↵ j�1/2

◆

� �i, j�1

✓
1 �
|S L, j�1/2|

↵ j�1/2

◆

and recalling the definition of ↵ j+1/2 in (3.4), we see that G1,i(� j+1) � 0 and G2,i(� j�1) � 0. Since the coe�cients
of �i, j, �i, j+1, and �i, j�1 are all nonnegative (this follows in case of the coe�cient of �i, j from the CFL condition), we
deduce that if �i, j � 0, �i, j+1 � 0, and �i, j�1 � 0, then �n+1

i, j � 0 for all i 2 {1, . . . ,N}.
It remains to prove that if � j B �n

j B �n
1, j + · · · + �

n
N, j  �max for all j, then �n+1

j  �max for all j. Component i,
i 2 {1, . . . ,N} of (3.12) can be rewritten as

�n+1
i, j =

 
1 �

�(↵ j+1/2 + ↵ j�1/2)
2

!
�i, j +

�↵ j+1/2

2

 
�i, j+1 �

�i, j+1vi(� j+1)
↵ j+1/2

!
+
�↵ j�1/2

2

 
�i, j�1 +

�i, j�1vi(� j�1)
↵ j�1/2

!

=

 
1 �

�(↵ j+1/2 + ↵ j�1/2)
2

!
�i, j +

�↵ j+1/2

2
�i, j+1 +

�↵ j�1/2

2
�i, j�1 �

�

2
�i, j+1vi(� j+1) +

�

2
�i, j�1vi(� j�1)

(3.13)

Summing (3.13) over i = 1, . . . ,N, we get

�n+1
j =

 
1 �

�(↵ j+1/2 + ↵ j�1/2)
2

!
� j +

�↵ j+1/2

2
� j+1 +

�↵ j�1/2

2
� j�1 �

�

2

NX

i=1

vi(� j+1)� j+1 +
�

2

NX

i=1

vi(� j�1)� j�1. (3.14)

To proceed, we first consider the MCLWR model, for which vi(�) = �iv(�) � 0 for all i and all � 2 D�max . For this
model, the first sum on the right-hand side of (3.14), with its minus sign, is nonpositive. Thus, we get

�n+1
j 

 
1 �

�(↵ j+1/2 + ↵ j�1/2)
2

!
� j +

�↵ j+1/2

2
� j+1 +

�↵ j�1/2

2
� j�1 +

�v(� j�1)
2

�T� j�1. (3.15)

Let us assume that � j, � j+1 2 [0, �max]. If � j�1 = �max then we deduce from v(�max) = 0, by appealing to a convex
combination argument, that �n+1

j  �max. To handle the remaining cases, i.e. 0  � j�1 < �max, we rewrite (3.15) as

�n+1
j 

 
1 �

�(↵ j+1/2 + ↵ j�1/2)
2

!
� j +

�↵ j+1/2

2
� j+1 +

�↵ j�1/2

2
�max +Y,
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where we define

Y B
�↵ j�1/2

2
(� j�1 � �max) +

�v(� j�1)
2

�T� j�1. (3.16)

We may divide (3.16) by � j�1 � �max to obtain

Y

� j�1 � �max
=
�↵ j�1/2

2
+
�

2
v(� j�1)

� j�1 � �max
�T� j�1. (3.17)

Notice that there exists a number ⇠ j�1 2 [� j�1, �max] such that

v(� j�1)
� j�1 � �max

=
v(� j�1) � v(�max)
� j�1 � �max

= v0(⇠ j�1) � v0(� j�1),

where the last inequality holds since v0 is nondecreasing (cf. (2.3)). Consequently, from (3.17) we get

Y

� j�1 � �max
�
�

2
�
�S �L, j�1/2 + v0(� j�1)�T� j�1

�
. (3.18)

Furthermore (3.8) implies that S �L, j�1/2  v0(� j�1)�T� j�1, hence �S �L, j�1/2 � �v0(� j�1)�T� j�1, so that from (3.18) we
deduce that Y/(� j�1 � �max) � 0, and therefore Y  0, which means that

�n+1
j 

 
1 �

�(↵ j+1/2 + ↵ j�1/2)
2

!
� j +

�↵ j+1/2

2
� j+1 +

�↵ j�1/2

2
�max.

Therefore, the right-hand side is a convex combination of � j, � j+1, and �max, so we deduce that if � j 2 [0, �max] and
� j+1 2 [0, �max], then �n+1

j  �max. We see that for the MCLWR model we always get �n+1
j  �max. This concludes the

proof of Theorem 1 for the MCLWR model.
We now consider the MLB model, i.e., the velocities are given by (2.5). For k 2 { j � 1, j, j + 1} there holds

NX

i=1

vi(�k)�i,k =

NX

i=1

C(1 � �k)V(�k)(�i � �
T�k)�i,k = C(1 � �k)V(�k)

0
BBBBB@�

T�k � �
T�k

NX

i=1

�i,k

1
CCCCCA = w(�k)�T�k, (3.19)

where w(�) is defined in (2.9). Therefore from (3.14) we obtain that

�n+1
j =

 
1 �

�(↵ j+1/2 + ↵ j�1/2)
2

!
� j +

�↵ j+1/2

2
� j+1 +

�↵ j�1/2

2
� j�1 �

�

2
w(� j+1)�T� j+1 +

�

2
w(� j�1)�T� j�1



 
1 �

�(↵ j+1/2 + ↵ j�1/2)
2

!
� j +

�↵ j+1/2

2
� j+1 +

�↵ j�1/2

2
� j�1 + w(� j�1)�T� j�1.

If we assume � j, � j+1 2 [0, �max], the proof for the cases � j�1 = �max follows analogously to the case of the MCLWR
model, because w(�max) = 0. To handle the cases 0  � j�1 < �max, we need to show that Y1  0 for the MLB model.
We observe that

w0(�) = (1 � �) (�) �  (�), (3.20)

since  (�)  0, where  is defined in (3.7). Therefore, (3.8) and (3.20) imply that S �L, j�1/2  w0(� j�1)�T� j�1 and
S �L, j�1/2  w0(� j)�T� j. In addition, by using the convexity assumption of function w given by (2.10), we can see that
the rest of the proof follows analogously to the one for MCLWR model. This last observation concludes the proof.

Remark 1. It is clear that the previous proof also handles the case of periodic boundary conditions (3.2) if we assume
that the marching formula (3.9) verbatim for all j = 0, . . . ,M � 1 but understand all indices j “modulo M”, with
the e↵ect that (3.2) is indeed enforced. As for the zero-flux boundary conditions (3.3), consider for example the case
F

n
�1/2 = 0. The corresponding boundary scheme then becomes

�n+1
0 = �n

0 � �F
LLF
1/2 = �

n
0 �

�

2
�
f (�n

0) + f (�n
1) � ↵n

1/2(�n
1 � �

n
0)
�
. (3.21)
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It can readily be verified that simpler versions of the arguments used in the proof of Theorem 1 su�ce to show that
also the boundary scheme (3.21) satisfies the IRP property. For instance, one may formally set G2(��1) B 0 and
↵�1/2 B 0 to demonstrate that �n+1

i,0 � 0 for all i = 1, . . . ,N, and ��1 B �max and ↵�1/2 = 0 in (3.15) to deduce that
�n+1

0  �max (under the conditions stated in Theorem 1). The boundary condition F n
M�1/2 = 0 is treated by similar

arguments.

3.3. IRP property of the HLL scheme
Let us now consider the HLL scheme [26] defined by the numerical flux

F
HLL
j+1/2 B

S +R, j+1/2 f (� j) � S �L, j+1/2 f (� j+1) + S �L, j+1/2S +R, j+1/2(� j+1 � � j)

S +R, j+1/2 � S �L, j+1/2
, (3.22)

where S L, j+1/2 and S R, j+1/2 are defined as in (3.6), and we have used the notation a� = min(a, 0) and a+ = max(a, 0).
First of all, observe that the HLL numerical flux (3.22) is well defined for both the MCLWR and MLB models, since
(2.4) ensures that always

S �L, j+1/2 < S +R, j+1/2 for all j. (3.23)

For the proof of the invariant region principle of the HLL scheme, we also use the bound for the smallest eigenvalue
stipulated by (3.7) and (3.8).

Theorem 2. Consider the HLL scheme defined by the marching formula

�n+1
j = �n

j � �n
�
F

HLL
j+1/2 � F

HLL
j�1/2

�
, (3.24)

where the HLL numerical flux is given by (3.22) along with the definitions (3.6) and (3.8) of S R, j+1/2 and S L, j+1/2,
respectively. If the CFL condition

↵�n 
1
2
, where ↵ B max

j

�
|S L, j+1/2|, |S R, j+1/2|

 
(3.25)

is in e↵ect, then the HLL scheme satisfies the invariant region preservation property (3.11) for the multispecies kine-
matic flow model (1.1) with the velocity functions vi(�) defined by the MCLWR or MLB model.

Proof. For simplicity, let us keep the same notation as in the proof of Theorem 1, i.e., we set � j B �n
j and � B �n. A

straightforward computation reveals that the marching formula of the HLL scheme (3.24) can be written as follows,
where we assume that S +R, j+1/2 > 0, S �L, j+1/2 < 0, S +R, j�1/2 > 0, and S �L, j�1/2 < 0:

�n+1
j = � j � �

0
BBBBB@

S +R, j+1/2 f (� j) � S �L, j+1/2 f (� j+1) + S �L, j+1/2S +R, j+1/2(� j+1 � � j)

S +R, j+1/2 � S �L, j+1/2

�

S +R, j�1/2 f (� j�1) � S �L, j�1/2 f (� j) + S �L, j�1/2S +R, j�1/2(� j � � j�1)

S +R, j�1/2 � S �L, j�1/2

1
CCCCCA

=

0
BBBBB@1 +

2�S �L, j+1/2S +R, j+1/2

S +R, j+1/2 � S �L, j+1/2
+

2�S �L, j�1/2S +R, j�1/2

S +R, j�1/2 � S �L, j�1/2

1
CCCCCA� j +

��S �L, j+1/2S +R, j+1/2

S +R, j+1/2 � S �L, j+1/2

0
BBBBB@� j+1 �

1
S +R, j+1/2

f (� j+1)
1
CCCCCA

+
��S �L, j+1/2S +R, j+1/2

S +R, j+1/2 � S �L, j+1/2

0
BBBBB@� j +

1
(�S �L, j+1/2)

f (� j)
1
CCCCCA +
��S �L, j�1/2S +R, j�1/2

S +R, j�1/2 � S �L, j�1/2

0
BBBBB@� j�1 +

1
(�S �L, j�1/2)

f (� j�1)
1
CCCCCA

+
��S �L, j�1/2S +R, j�1/2

S +R, j�1/2 � S �L, j�1/2

0
BBBBB@� j �

1
S +R, j�1/2

f (� j)
1
CCCCCA .

Consequently, if we define the coe�cients

� j+1/2 B
�S �L, j+1/2S +R, j+1/2

S +R, j+1/2 � S �L, j+1/2
> 0 for all j (3.26)
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and the functions

G1(� j+1) B � j+1 �
1

S +R, j+1/2
f (� j+1), G2(� j) B � j +

1
(�S �L, j+1/2)

f (� j),

G3(� j�1) B � j�1 +
1

(�S �L, j�1/2)
f (� j�1), G4(� j) B � j�1 �

1
S +R, j�1/2

f (� j),

then we obtain

�n+1
i, j =

�
1 � 2(� j+1/2 + � j�1/2)

�
�i, j + � j+1/2G1,i(� j+1) + � j+1/2G2,i(� j) + � j�1/2G3,i(� j�1) + � j�1/2G4,i(� j). (3.27)

Since � j+1/2 > 0 and � j�1/2 > 0, under the CFL condition (3.25) this identity represents a convex combination of �i, j,
G1,i(� j+1), G2,i(� j), G3,i(� j�1), and G4,i(� j). If we assume that �i, j � 0 for all i = 1, . . . ,N and j 2 ZM and take into
account that fi(�) = �ivi(�), then we get

G1,i(� j+1) = �i, j+1

0
BBBBB@1 �

vi(� j+1)
S +R, j+1/2

1
CCCCCA � �i, j+1

0
BBBBB@1 �

M2(� j+1)
S +R, j+1/2

1
CCCCCA � 0,

G2,i(� j) = �i, j

0
BBBBB@1 +

vi(� j)
(�S �L, j+1/2)

1
CCCCCA � �i, j

0
BBBBB@1 +

M1(� j)
(�S �L, j+1/2)

1
CCCCCA � 0,

G3,i(� j�1) = �i, j�1

0
BBBBB@1 +

vi(� j�1)
(�S �L, j�1/2)

1
CCCCCA � �i, j

0
BBBBB@1 +

M1(� j�1)
(�S �L, j�1/2)

1
CCCCCA � 0,

G4,i(� j) = �i, j

0
BBBBB@1 �

vi(� j)
S +R, j�1/2

1
CCCCCA � �i, j

0
BBBBB@1 �

M2(� j)
S +R, j�1/2

1
CCCCCA � 0.

Thus, Gk,i(� j) � 0 for all i = 1, . . . ,N, k = 1, . . . , 4, and j 2 ZM . Since the coe�cient of �i, j is non-negative (this
follows from the CFL condition), we deduce that if �i, j � 0, �i, j+1 � 0, and �i, j�1 � 0, then �n+1

i, j � 0.
It remains to prove that if � j  �max for all j, then �n+1

j  �max for all j. To this end, we rewrite (3.27) as

�n+1
i, j =

 
1 � �

S +R, j+1/2

S +R, j+1/2 � S �L, j+1/2

�
vi(� j) � S �L, j+1/2

�
+

�S �L, j�1/2

S +R, j�1/2 � S �L, j�1/2

�
S +R, j�1/2 � vi(� j)

�
!
�i, j

+
��S �L, j+1/2

S +R, j+1/2 � S �L, j+1/2

�
S +R, j+1/2 � vi(� j+1)

�
�i, j+1 +

�S +R, j�1/2

S +R, j�1/2 � S �L, j�1/2

�
vi(� j�1) � S �L, j�1/2

�
�i, j�1.

(3.28)

Summing (3.28) over i = 1, . . . ,N, we get

�n+1
j =

NX

i=1

 
1 � �

S +R, j+1/2

S +R, j+1/2 � S �L, j+1/2

�
vi(� j) � S �L, j+1/2

�
+

�S �L, j�1/2

S +R, j�1/2 � S �L, j�1/2

�
S +R, j�1/2 � vi(� j)

�
!
�i, j

+

NX

i=1

��S �L, j+1/2

S +R, j+1/2 � S �L, j+1/2

�
S +R, j+1/2 � vi(� j+1)

�
�i, j+1 +

NX

i=1

�S +R, j�1/2

S +R, j�1/2 � S �L, j�1/2

�
vi(� j�1) � S �L, j�1/2

�
�i, j�1.

(3.29)

From (3.29) we get

�n+1
j = (1 � �� j+1/2 � �� j�1/2)� j + �� j+1/2� j+1 + �� j�1/2� j�1

�

�S �L,j�1/2

S +R,j�1/2 � S �L,j�1/2

NX

i=1

vi(� j)�i, j �
�S +R,j+1/2

S +R,j+1/2 � S �L,j+1/2

NX

i=1

vi(� j)�i, j

+
�S �L,j+1/2

S +R,j+1/2 � S �L,j+1/2

NX

i=1

vi(� j+1)�i, j+1 +
�S +R,j�1/2

S +R,j�1/2 � S �L,j�1/2

NX

i=1

vi(� j�1)�i, j�1.

(3.30)
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To proceed, we first consider the MCLWR model, for which vi(�) = �iv(�) � 0 for all i and all � 2 D�max . For this
model, the first and the third sums on the right-hand side of (3.30), with their respective signs, are nonpositive. Thus
we get from (3.30) the inequality

�n+1
j  (1 � �� j+1/2 � �� j�1/2)� j + �� j+1/2� j+1 + �� j�1/2� j�1 �

�S �L,j�1/2v(� j)�T� j

S +R,j�1/2 � S �L,j�1/2
+
�S +R,j�1/2v(� j�1)�T� j�1

S +R,j�1/2 � S �L,j�1/2
.

(3.31)

If we assume that � j = �max, � j�1 = �max, and � j+1 2 [0, �max], then we deduce from v(�max) = 0, by appealing to a
convex combination argument, that �n+1

j  �max. To handle the remaining cases, we rewrite (3.31) as

�n+1
j 

✓1
2
� �� j+1/2

◆
� j +

✓1
2
� �� j�1/2

◆
� j + �� j+1/2� j+1 + �� j�1/2� j�1

�

�S �L,j�1/2v(� j)�T� j

S +R,j�1/2 � S �L,j�1/2
+
�S +R,j�1/2v(� j�1)�T� j�1

S +R,j�1/2 � S �L,j�1/2

=
✓1
2
� �� j+1/2

◆
� j +

✓1
2
� �� j�1/2

◆
�max + �� j+1/2� j+1 + �� j�1/2�max +Y1 +Y2,

where we define

Y1 B �� j�1/2(� j�1 � �max) +
�S +R,j�1/2v(� j�1)�T� j�1

S +R,j�1/2 � S �L,j�1/2
, (3.32)

Y2 B
✓1
2
� �� j�1/2

◆
(� j � �max) �

�S �L,j�1/2v(� j)�T� j

S +R,j�1/2 � S �L,j�1/2
. (3.33)

If � j�1 = �max, then Y1 = 0; otherwise we may divide (3.32) by � j�1 � �max to obtain

Y1

� j�1 � �max
= �� j�1/2 + �

S +R,j�1/2

S +R,j�1/2 � S �L,j�1/2

v(� j�1)
� j�1 � �max

�T� j�1. (3.34)

Notice that there exists a number ⇠ j�1 2 [� j�1, �max] such that

v(� j�1)
� j�1 � �max

=
v(� j�1) � v(�max)
� j�1 � �max

= v0(⇠ j�1) � v0(� j�1),

where we have used that v0 is nondecreasing (cf. (2.3)) to establish the last inequality. Thus, from (3.34) we get

Y1

� j�1 � �max
� �

S +R,j�1/2

S +R,j�1/2 � S �L,j�1/2

�
�S �L, j�1/2 + v0(� j�1)�T� j�1

�
. (3.35)

On the other hand, (3.8) implies that S �L, j�1/2  v0(� j�1)�T� j�1, hence �S �L, j�1/2 � �v0(� j�1)�T� j�1, so that from
(3.35) we deduce that Y1/(� j�1 � �max) � 0, and therefore Y1  0. Furthermore, we note that if � j = �max, then
Y2 = 0, otherwise we may divide (3.33) by � j � �max to obtain

Y2

� j � �max
=

1
2
� �� j�1/2 � �

S �L,j�1/2

S +R,j�1/2 � S �L,j�1/2

v(� j)
� j � �max

�T� j.

In light of (3.25), noticing that there exists ⇠ j 2 [� j, �max] such that

v(� j)
� j � �max

=
v(� j) � v(�max)
� j � �max

= v0(⇠ j) � v0(� j),
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taking into account that (3.8) implies that S �L, j�1/2  v0(� j)�T� j, hence �S �L, j�1/2 � �v0(� j)�T� j, and appealing to the
CFL condition, we obtain

Y2

� j � �max
=

1
2
� �

�S �L,j�1/2

S +R,j�1/2 � S �L,j�1/2

⇣
S +R, j�1/2 � v0(⇠ j)�T� j

⌘
�

1
2
+ �S �L,j�1/2 � 0,

and therefore Y2  0. Consequently, we deduce that Y1 +Y2  0 which in the present case means that

�n+1
j 

✓1
2
� �� j+1/2

◆
� j +

✓1
2
� �� j�1/2

◆
�max + �� j+1/2� j+1 + �� j�1/2�max.

The right-hand side is a convex combination of � j, � j+1, and �max, so we deduce that if � j 2 [0, �max] and � j+1 2

[0, �max], then �n+1
j  �max. We see that for the MCLWR model we always get �n+1

j  �max. This concludes the proof
of Theorem 2 for the MCLWR model.

We now consider the MLB model, i.e. the velocities are given by (2.5). By using (3.19) we can rewrite (3.30) as

�n+1
j = (1 � �� j+1/2 � �� j�1/2)� j + �� j+1/2� j+1 + �� j�1/2� j�1 �

�S �L,j�1/2w(� j)�T� j

S +R,j�1/2 � S �L,j�1/2
�

�S +R,j+1/2w(� j)�T� j

S +R,j+1/2 � S �L,j+1/2

+
�S �L,j+1/2w(� j+1)�T� j+1

S +R,j+1/2 � S �L,j+1/2
+
�S +R,j�1/2w(� j�1)�T� j�1

S +R,j�1/2 � S �L,j�1/2
.

(3.36)

Since the second and third fractions on the right-hand side, with their respective signs, are nonpositive, we get from
(3.36) the inequality

�n+1
j  (1 � �� j+1/2 � �� j�1/2)� j + �� j+1/2� j+1 + �� j�1/2� j�1 �

�S �L,j�1/2w(� j)�T� j

S +R,j�1/2 � S �L,j�1/2
+
�S +R,j�1/2w(� j�1)�T� j�1

S +R,j�1/2 � S �L,j�1/2
.

At this point, the proof for the cases � j = �max, � j�1 = �max, and � j+1 2 [0, �max], follows analogously to the case
of the MCLWR model, because w(�max) = 0. To show that Y1  0 and Y2  0 in the present case of the MLB model,
where Y1 and Y2 are defined analogously to (3.32) and (3.33) (replacing v by w), we notice that

w0(�) =  (�) + 2C�V(�) �C�(1 � �)V 0(�) �  (�), (3.37)

where  is defined by (3.7). Therefore, (3.8) and (3.37) imply that S �L, j�1/2  w0(� j�1)�T� j�1 and S �L, j�1/2  w0(� j)�T� j.
Furthermore, by using that w0 is nondecreasing (cf. (2.10)), we can see that the rest of the proof follows analogously
to the one for MCLWR model. This last observation concludes the proof.

Remark 2. A remark similar to Remark 1 is in place here. First of all, note that a simpler proof of �n+1
i, j � 0 applies

if one or two of the bounds S +R, j+1/2, S �L, j+1/2, S +R, j�1/2, and S �L, j�1/2 are zero (we recall that (3.23) is always in e↵ect).
In the latter case we have, of course, � j�1/2 = 0 or � j+1/2 = 0 (cf. (3.26)). On the other hand, as for the LLF scheme,
it su�ces to take all j-indices “modulo M” to demonstrate that the proof of of Theorem 2 also handles periodic
boundary conditions. In the case of zero-flux boundary conditions (3.3), the bound �n+1

i, j � 0 for j = 0 or j = M � 1
follows by taking into account that certain terms in the discussion leading to (3.27) are zero. With respect to the
upper bound of �n+1

0 , we note that if F n
�1/2 = 0, then ��1/2 = 0 and the last two terms on the right-hand side of (3.31)

are zero, and we deduce that �n+1
0  �max by applying a standard convex combination argument to the remaining

inequality. For j = M � 1, and considering the boundary condition F n
M�1/2 = 0, (3.27) is valid for j = M � 1 if we set

�M�1/2 = 0. The remainder of the proof for both models remains valid. Consequently, Theorems 1 and 2 remain valid
if appropriate numerical fluxes in the respective marching formulas (3.9) and (3.24) are replaced by boundary fluxes
coming from (3.2) or (3.3).

Remark 3. Notice that the CFL conditions (3.10) and (3.25) are utilized to calculate �t adaptively in every time step.
However, one may employ a more restrictive but fixed CFL condition defined by bounds for M1(�) and M2(�). For
instance, for the MCLWR model one may employ the condition �max{�1kvk1, �1�maxk k1}  µ, while for MLB model
one can consider �max{�1kw1k1, �1�maxk k1}  µ, where w1(�) = C(1 � �)V(�),  is defined by (3.7), and

µ =

8>><
>>:

1 for the LLF scheme,
1/2 for the HLL scheme.

(3.38)
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4. Invariant-region-preserving CWENO reconstruction

4.1. Central weighted essentially non-oscillatory (CWENO) reconstruction (scalar case)
The CWENO reconstruction [22] for the initial value problem of a one-dimensional scalar conservation law

@tu + @x f (u) = 0, x 2 R, t 2 (0,T ); u(x, 0) = u0(x), x 2 R

is independent of the time variable, hence it is su�cient to consider u = u(x) as a function of the spatial coordinate
only. We define the cell averages ū j of u over all cells I j B [x j�1/2, x j+1/2]:

ū j B
1
�x

Z x j+1/2

x j�1/2

u(x) dx, j 2 Z.

In what follows, ⇧R denotes the set of all polynomials with real coe�cients of maximal degree R 2 N0.

Definition 1. Consider a set of data (point values or cell averages) and a polynomial Popt 2 ⇧R, which interpolates
in the appropriate sense all the given data (optimal polynomial). The CWENO operator computes a reconstruction
polynomial Prec = CWENO(Popt, P1, . . . , Pm) 2 ⇧R from Popt 2 ⇧R and a set of m lower-order alternative polynomials
P1, . . . , Pm 2 ⇧r, where r < R and m � 1. The definition of Prec depends on the choice of a set of real coe�cients

C0,C1, . . . ,Cm 2 [0, 1], where C0 +C1 + · · · +Cm = 1, C0 > 0,

the so-called “linear weights,” as follows:

1. First, we define P0 2 ⇧R by

P0(x) B
1

C0

0
BBBBB@Popt(x) �

mX

k=1

CkPk(x)
1
CCCCCA .

2. Then the nonlinear weights !0, . . . ,!m are computed from the linear ones as

↵k B
Ck

(IS k + ")p , !k B
↵k

↵0 + · · · + ↵m
, k = 0, . . . ,m, (4.1)

where " > 0 is a small parameter, p � 2, and IS k denotes a suitable regularity indicator, e.g. the Jiang-Shu
indicator [23]

IS k B
degree(Pk)X

`=1

�x2`�1
Z x j+1/2

x j�1/2

 
d`Pk(x)

dx`

!2

dx, k = 0, . . . ,m.

3. Finally, the reconstruction polynomial Prec 2 ⇧R is defined as

Prec(x) B !0P0(x) + !1P1(x) + · · · + !mPm(x). (4.2)

The reconstructed values of u at the boundaries xi�1/2 and x j+1/2 of cell I j are now given by

uR
j�1/2 B Prec(x j�1/2), uL

j+1/2 B Prec(x j+1/2). (4.3)

Thus, based on cell averages ū j over all I j, a CWENO reconstruction of order 2r + 1 (r 2 {1, 2} within this work), we
consider on each interval a polynomial Popt 2 ⇧R=2r along with m = r + 1 polynomials P1, . . . , Pr+1 2 ⇧r defined by

Popt(x) B
2rX

s=0

a(0)
s (x � x j)s and Pk(x) B

rX

s=0

a(k)
s (x � x j)s, k = 1, . . . , r + 1,
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where Popt and Pk interpolate the cell averages associated with the respective stencils

S 0 =

r[

`=�r

I j+`, and S k =

r[

`=0

I j�r+k+`�1, k = 1, . . . , r + 1.

For a fixed cell I j these polynomials satisfy

1
�x

Z

I j+`

Popt(x) dx = ū j+`, ` = �r, . . . , r,

1
�x

Z

I j�r+k+`�1

Pk(x) dx = ū j�r+k+`�1, ` = 0, . . . , r, k = 1, . . . , r + 1.

The reconstructed values (4.3) are easily computable since

P0(x j±1/2) =
2rX

s=0

a(0)
s

✓
±
�x
2

◆s
=

2rX

s=0

↵(0)
s ū j+s�r and

Pk(x j±1/2) =
rX

`=0

a(k)
`

✓
±
�x
2

◆`
=

rX

`=0

↵(k)
` ū j�r+k+`�1, k = 1, . . . , r + 1.

4.2. CWENO reconstruction for systems of conservation laws
Let us consider a first-order IRP numerical flux F n

j+1/2 for (1.1), for instance the LLF flux (3.4) or the HLL flux
(3.22). To describe CWENO reconstructions for (1.1), we define F (�n

j ,�
n
j+1) B F n

j+1/2, so we can write (3.1) as

�n+1
j = �n

j � �n
�
F (�n

j ,�
n
j+1) � F (�n

j�1,�
n
j )
�
. (4.4)

In this work, we will use a component-wise CWENO reconstruction, i.e.,

�L
j+1/2 B

�
�L

1, j+1/2, . . . , �
L
N, j+1/2

�T, �R
j+1/2 B

�
�R

1, j+1/2, . . . , �
R
N, j+1/2

�T,

where �R
i, j�1/2 B P(i)

j (x j�1/2), �L
i, j+1/2 B P(i)

j (x j+1/2), i = 1, . . . ,N,

and P(i)
j denotes the reconstruction polynomial given by (4.2) for i = 1, . . . ,N. Then, we replace (4.4) by the CWENO

marching formula
�n+1

j = �n
j � �n

�
F (�L

j+1/2,�
R
j+1/2) � F (�L

j�1/2,�
R
j�1/2)

�
, (4.5)

where

�R
j�1/2 B P j(x j�1/2), �L

j+1/2 B P j(x j+1/2), (4.6)

and we define the vector of polynomials P j B (P(1)
j , . . . , P

(N)
j )T. In addition, to have the correct order of convergence

of the method we need to use high-order time integration schemes; we focus on this aspect later.

4.3. Zhang and Shu limiters for multispecies kinematic flow models
It is well known that the reconstruction procedure described in Section 4 leads to schemes that resolve discontinu-

ities sharply but in some cases fail to preserve the invariant regionD�max (see Examples 2 to 5 in Section 5 or numerical
examples in [15, 16, 18]). This shortcoming motivated the development of the linear scaling limiter by Zhang and Shu
[8]. We herein slightly modify this limiter to handle equations of the form (1.1). To this end, we assume �n

j 2 D�max ,
and define the polynomials

P̃(i)
j (x) B ✓i

�
P(i)

j (x) � �n
i, j
�
+ �n

i, j, ✓i B min
(������

�n
i, j

m(i)
j � �

n
i, j

������, 1
)
, m(i)

j B min
x2I j

P(i)
j (x), i = 1, . . . ,N, (4.7)
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that satisfy P̃(i)
j (x) � 0 for all x 2 I j and i = 1, . . . ,N. Next, we define the polynomial

P̂ j(x) B ✓̂

0
BBBBB@

NX

i=1

P̃(i)
j (x) � �n

j

1
CCCCCA + �

n
j , ✓̂ B min

(������
�max � �n

j

Mj � �n
j

������, 1
)
, Mj B max

x2I j

0
BBBBB@

NX

i=1

P̃(i)
j (x)

1
CCCCCA . (4.8)

Thus, P̂ j(x)  �max for all x 2 I j. Finally, we define the modified polynomials

P̄(i)
j (x) := ✓̂

�
P̃(i)

j (x) � �n
i, j
�
+ �n

i, j, i = 1, . . . ,N, (4.9)

and replace the reconstructed values (4.6) by

�R
j�1/2 = P̄ j(x j�1/2), �L

j+1/2 = P̄ j(x j+1/2). (4.10)

The quantities m(i)
j in (4.7) and Mj in (4.8) require evaluating the extrema of polynomials on each cell. This

inconvenience can be avoided if we define simplified limiters (as in [8]) that reduce the evaluations of each polynomial
to a finite number of nodes of a G-point Legendre-Gauss-Lobatto quadrature rule on the interval I j = [x j�1/2, x j+1/2].
This formula is exact for the integral of polynomials of degree up to 2G � 3. We denote the quadrature points on I j by

S j B
�
x j�1/2 = x̂1

j , x̂
2
j , . . . , x̂

G�1
j , x̂

G
j = x j+1/2

 
. (4.11)

Let ŵ↵ be the quadrature weights for the interval [�1/2, 1/2] such that ŵ1 + · · · + ŵG = 1. For instance, we have used
a three-point (G = 3) rule with weights

ŵ1 =
1
6
, ŵ2 =

2
3
, ŵ3 =

1
6

and a four-point (G = 4) rule with weights

ŵ1 =
1

12
, ŵ2 =

5
12
, ŵ3 =

5
12
, ŵ4 =

1
12

for the third and fifth order CWENO reconstructions, respectively (notice that ŵ1 = ŵG). Then we can write

�n
j =

1
�x

Z

I j

P̄ j(x) dx =
GX

↵=1

ŵ↵ P̄ j
�
x̂↵j

�
=

G�1X

↵=2

ŵ↵ P̄ j
�
x̂↵j

�
+ ŵ1�

R
j�1/2 + ŵG�

L
j+1/2. (4.12)

We first prove the following lemma related to the polynomials P̄ j B (P̄(1)
j , . . . , P̄

(N)
j )T.

Lemma 1. Consider the reconstruction polynomials P̄ j(x) defined by (4.9). If �n
j 2 D�max , then P̄ j(x) 2 D�max for all

x 2 I j. In particular, this is true for all x 2 S j, where S j is the stencil (4.11) of Legendre-Gauss-Lobatto quadrature
points for I j.

Proof. Let x 2 I j. By definition, we know that

P̄(i)
j (x) = ✓̂

�
P̃(i)

j (x) � �n
i, j
�
+ �n

i, j = ✓̂P̃(i)
j (x) + (1 � ✓̂)�n

i, j, i = 1, . . . ,N. (4.13)

Since 0  ✓̂  1 and P̃(i)
j (x) � 0, there holds P̄(i)

j (x) � 0 for i = 1, . . . ,N. In addition, by (4.8),

NX

i=1

P̄(i)
j (x) = ✓̂

0
BBBBB@

NX

i=1

P̃(i)
j (x) �

NX

i=1

�n
i, j

1
CCCCCA +

NX

i=1

�n
i, j = ✓̂

0
BBBBB@

NX

i=1

P̃(i)
j (x) � �n

j

1
CCCCCA + �

n
j = P̂ j(x)  �max. (4.14)

Combining (4.13) and (4.14) we deduce that P̄ j(x) 2 D�max for all x 2 I j.

Now, we are in position to state the following result.
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Theorem 3. Consider the finite volume scheme (4.5) associated with the reconstruction polynomials P̄ j(x) defined by
(4.9) in the sense that (4.10) is used, and where the quantities m(i)

j in (4.7) and Mj in (4.8) are redefined by

m(i)
j B min

x2S j
P(i)

j (x), i = 1, . . . ,N; Mj B max
x2S j

0
BBBBB@

NX

i=1

P̃(i)
j (x)

1
CCCCCA ,

where S j is the stencil (4.11) of Legendre-Gauss-Lobatto quadrature points for I j. Let µ be as in (3.38). If the CFL
condition

↵�n  µŵ1, ↵ B max
j

�
|S L, j+1/2|, |S R, j+1/2|

 
, (4.15)

is in e↵ect and �n
j 2 D�max , then �n+1

j 2 D�max .

Proof. We use the marching formula (4.5) along with (4.12) and add and subtract F (�R
j�1/2,�

L
j+1/2) to get

�n+1
j =

G�1X

↵=2

ŵ↵ P̄ j
�
x̂↵j

�
+ ŵG

✓
�L

j+1/2 �
�n

ŵG

�
F (�L

j+1/2,�
R
j+1/2) � F (�R

j�1/2,�
L
j+1/2)

�◆

+ ŵ1

✓
�R

j�1/2 �
�n

ŵ1

�
F (�R

j�1/2,�
L
j+1/2) � F (�L

j�1/2,�
R
j�1/2)

�◆

=

G�1X

↵=2

ŵ↵ P̄ j
�
x̂↵j

�
+ ŵGH

�
�R

j�1/2,�
L
j+1/2,�

R
j+1/2

�
+ ŵ1H

�
�L

j�1/2,�
R
j�1/2,�

L
j+1/2

�
,

whereH(·, ·, ·) is the three-point operator analyzed in Theorems 1-2. By Lemma 1 we know that P̄ j(x̂↵j ) 2 D�max for
j = 2, . . . ,G � 1, and Theorems 1-2, in conjunction with the CFL condition (4.15), guarantees that

H
�
�R

j�1/2,�
L
j+1/2,�

R
j+1/2

�
, H

�
�L

j�1/2,�
R
j�1/2,�

L
j+1/2

�
2 D�max .

Consequently, �n+1
j can be expressed as a convex combination of terms inD�max . This concludes the proof.

Remark 4. The limiters defined in (4.7) and (4.8) do not destroy the order of accuracy of the reconstruction. To see
this, for x 2 I j we define

���P̄ j(x) � P j(x)
��� B

NX

i=1

���P̄(i)
j (x) � P(i)

j (x)
���.

We can write

P̄(i)
j (x) � P(i)

j (x) =
�
P̄(i)

j (x) � P̃(i)
j (x)

�
+

�
P̃(i)

j (x) � P(i)
j (x)

�
,

and by [21, Lemma 2.3] we get P̄(i)
j (x) � P̃(i)

j (x) = O(�xr+1) and P̃(i)
j (x) � P(i)

j (x) = O(�xr+1), hence
���P̄ j(x) � P j(x)

��� = O(�xr+1) as �x! 0.

See Example 1 in Section 5 for a numerical illustration for the cases r = 1 and r = 2.

Remark 5. Following the ideas of Zhang and Shu [20], in practice we assume that �n
j 2 D

�
�max

for some � > 0, where

D
�
�max
B

�
� 2 RN : �1 � �, . . . , �N � �, � B �1 + · · · + �N  �max

 
,

and we slightly modify the limiters ✓i in (4.7) by defining

✓"i B min
(������

�n
i, j � �

m(i)
j � �

n
i, j

������, 1
)
.

SinceD�
�max
⇢ D�max , Theorem 3 is still valid. In all our numerical tests we set � = 10�12.
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Table 1: Example 1 (MLB model, N = 3): L1 errors and numerical order for IRP-LFCW-3, IRP-HLLCW-3, IRP-LFCW-5, and IRP-HLLCW-5
schemes applied to smooth initial conditions for T = 5 s (before shock formation) and T = 10 s (after shock formation). The reference solution is
computed by IRP-HLLCW-5 with Mref = 12800.

M etot
M ✓M cpu [s] etot

M ✓M cpu [s] etot
M ✓M cpu [s] etot

M ✓M cpu [s]

IRP-LFCW-3, T = 5 s IRP-LFCW-3, T = 10 s IRP-HLLCW-3, T = 5 s IRP-HLLCW-3, T = 10 s

100 2.01e-04 — 4.57e-03 1.06e-03 — 9.91e-03 6.54e-05 — 3.19e-03 3.67e-04 — 9.25e-03
200 3.29e-05 2.6 1.69e-02 4.48e-04 1.2 2.48e.02 9.78e-06 2.7 9.92e-03 1.61e-04 1.2 2.36e-02
400 4.42e-06 2.9 3.81e-02 2.03e-04 1.1 5.90e-02 1.28e-06 2.9 3.10e-02 7.12e-05 1.2 5.81e-02
800 5.61e-07 3.0 1.03e-01 8.37e-05, 1.3 1.94e-01 1.64e-07 3.0 1.02e-01 3.01e-05 1.2 1.95e-01

1600 7.05e-08 3.0 3.98e-01 3.38e-05 1.3 7.82e-01 2.05e-08 3.0 3.94e-01 1.02e-05 1.6 7.90e-01
3200 8.81e-09 3.0 1.57 2.00e-05 0.7 3.19 2.56e-09 3.0 1.59 7.84e-06 0.4 3.27

IRP-LFCW-5, T = 5 s IRP-LFCW-5, T = 10 s IRP-HLLCW-5, T = 5 s IRP-HLLCW-5, T = 10 s

100 2.81e-05 — 1.35e-02 5.95e-04 — 2.51e-02 6.92e-06 — 1.44e-02 2.38e-04 — 2.49e-02
200 2.62e-06 3.4 3.26e-02 2.92e-04 1.0 5.16e-02 6.90e-07 3.3 3.39e-02 1.09e-04 1.1 5.18e-02
400 1.59e-07 4.0 8.16e-02 1.20e-04 1.3 1.56e-01 3.43e-08 4.3 8.12e-02 4.80e-05 1.2 1.56e-01
800 6.00e-09 4.7 2.94e-01 4.21e-05 1.5 5.94e-01 1.30e-09 4.7 2.96e-01 1.74e-05 1.5 6.02e-01

1600 1.97e-10 4.9 1.16 1.18e-05 1.8 2.46 4.37e-11 4.9 1.20 5.27e-06 1.7 2.43
3200 6.29e-12 5.0 4.75 9.94e-06 0.2 9.90 1.40e-12 5.0 4.87 5.15e-06 0.0 9.69

4.4. Time discretization
High-order time integration is required to ensure the appropriate order of convergence of the method. In this work,

a strong-stability preserving (SSP) third-order TVD Runge-Kutta time discretization approach is used [47]. This time
stepping method could be described as follows. Assume that �n is the vector of approximate solutions of �0 = L(�)
at t = tn. Then the approximate values �n+1 associated with tn+1 = tn + �t are calculated by

�(1) = �n + �tL(�n),

�(2) =
3
4
�n +

1
4
�(1) +

1
4
�tL(�(1)),

�n+1 =
1
3
�n +

2
3
�(2) +

2
3
�tL(�(2)).

(4.16)

We refer to (4.16) as SSPRK (3,3). The SSP time discretization methods are widely used for hyperbolic PDE because
they preserve nonlinear stability properties necessary for problems with non-smooth solutions. On the other hand, due
to convexity, the intermediate stages of the SSPRK methods have SSP properties (i.e., k�n

k  k�n�1
k for the internal

stages). Consequently, the present finite volume CWENO scheme with this time discretization will still satisfy the
maximum principle. Since it is necessary to evaluate three times the operator L(·) to advance one time step, the
e↵ective SSP coe�cient for SSPRK (3,3) the method (which is defined as in [10]; namely the SSP coe�cient of the
method divided by the number of stages) equals 1/3.

To satisfy the CFL condition (4.15) the time step �t is computed adaptively for each time step n. More specifically,
the solution �n+1 at tn+1 = tn + �t is calculated from �n by using �t = µ(ŵ1�x/↵), where µ is given by (3.38).

5. Numerical examples

5.1. Preliminaries
We discretize the domain [0, L] ⇥ [0,T ] as outlined in Section 3.1. For the MLB model, we employ the first-order

LLF flux given by (3.4) and the HLL flux, defined by (3.22). For the MCLWR model, we only use the LLF method.
For the CWENO reconstruction procedure, we have set p = 2 and " = (�x)2, to compute the nonlinear weights
(4.1) and the rest of parameters of the reconstructions are taken as usual (see [48, 49]). In the first example, we
compare numerical results obtained by the invariant region preserving CWENO schemes of orders 3 and 5. For the
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Figure 1: Example 1 (MLB Model, N = 3): numerical results obtained by scheme IRP-HLLCW-5 with M = 1600 at simulated time (a) T = 5 s,
(b) T = 10 s, (c) approximate L1 errors for all schemes tested as function of M, (d) e�ciency plot obtained for discretization levels �x = 1/M with
M = 100, 200, 400, 800, and 1600.

rest of examples, we limit ourselves to third-order CWENO reconstructions. We denote by “IRP-LFCW-3” and “IRP-
HLLCW-3” the LLF and HLL methods, respectively, with third-order IRP CWENO reconstructions. Analogously,
“IRP-LFCW-5” and “IRP-HLLCW-5” denote the respective fifth-order versions.

For comparison purposes, we compute reference solutions for numerical tests by the IRP-CWENO-5 scheme with
Mref = 12800 in Example 1, by IRP-HLLCW-3 with Mref = 6400 in Examples 2 and 3, and by IRP-LFCW-3 with
Mref = 6400 in Examples 4 and 5. As in [15, 18], we compute approximate L1 errors at di↵erent times for each
scheme as follows. We denote by (�n

i, j(t))
M
j=1 and (�ref

i, j (t))Mref
j=1 the numerical solution for the i�th component at time t

calculated with M and Mref cells, respectively. We compute �̃ref
i, j (t), for j = 1, . . . ,M, by

�̃ref
i, j (t) =

1
R

RX

k=1

�ref
i,R( j�1)+k(t), R = Mref/M.

The total approximate L1 error of the numerical solution on the M-cell grid at time T is then given by

etot
M (t) B

1
M

NX

i=1

MX

j=1

����̃ref
i, j (t) � �M

i, j(t)
���. (5.1)

We may then calculate a numerical order of convergence from etot
M (t) and etot

2M(t) by

✓M(t) B log2
�
etot

M (t)/etot
2M(t)

�
. (5.2)

In order to study the e↵ect of the limiters (4.7) and (4.8), we compute the minimum values of the numerical
solution in space and time for each component and the maximum values of the numerical solution in space and time
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Figure 2: Example 2 (MLB model, N = 2): reference solution for (a) �1, �2 and (b) � at T = 50 s computed by scheme IRP-HLLCW-3 with
Mref = 6400, and comparison of schemes for (c) �1, (d) enlarged view of (c), (e) �, and (f) enlarged view of (e) at T = 50 s with M = 1600.

for the total concentration with and without the limiters, i.e. we compute:

�
,i
B min

( j,n)2ZM⇥ZT
{�n

i, j}, i = 1, . . . ,N, and � B max
( j,n)2ZM⇥ZT

{�n
j },

where ZT B {0, . . . ,NT }.

5.2. Example 1: MLB model, N = 3, numerical order of accuracy
In this example, we consider an experiment performed in [50] to verify numerically the convergence rate of the

IRP-LFCW-3, IRP-HLLCW-3, IRP-LFCW-5, and IRP-HLLCW-5 numerical schemes. We employ the MLB model
introduced in Section 2 with N = 3 species having normalized squared particle sizes � = (1, 0.8, 0.6)T with density
⇢s = 2790 kg/m3 and vessel height L = 1 m. The maximum total concentration is �max = 0.66. The hindered
settling factor V(�) is chosen according to (2.7) with the exponent nRZ = 4.7. The remaining parameters are g =
9.81 m/s2, µf = 0.02416 Pas and ⇢f = 1208 kg/m3. We choose a smooth initial concentration profile given by �0(x) =
0.12 exp(�200(x � 0.5)2)(0.12, 0.12, 0.12)T. We compute approximate solutions with �x = L/M, and M = 100 · 2`,
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Figure 3: Example 2 (MLB model, N = 2): reference solution for (a) �1, �2 and (b) � at T = 300 s computed by scheme IRP-HLLCW-3 with
Mref = 6400, and (c) comparison of schemes for �1, (d) enlarged view of (c), at T = 300 s with M = 1600.

` = 0 . . . , 5, and a fixed time step �t = 50�x, for the third-order method. Since the order of TVD Runge-Kutta time
step solver is 3, in the case of fifth-order schemes, we use a time step �t such that (�t)3 is maintained proportional to
(�x)5, i.e we just set �t / (�x)5/3, in order to get the correct convergence rate. Figure 1 shows the numerical results
for M = 1600 at T = 5 s (before shock formation, when the solution is still smooth) and for T = 10 s (after shock
formation).

The approximate L1 errors etot
M (T ) defined by (5.1) and their corresponding numerical orders ✓M(T ) given by (5.2)

are displayed in Table 1 at times T = 5 s and T = 10 s for both schemes. The reference solution is computed with
Mref = 12800 cells by using the fifth-order scheme IRP-HLLCW-5. The behavior of ✓M(5) for increasing values of M
confirms third-order convergence for smooth solutions for IRP-LFCW-3, IRP-HLLCW-3, and fifth order for schemes
IRP-LFCW-5, IRP-HLLCW-5. The results for T = 10 s indicate that accuracy is reduced to first order when shocks
are present, as expected.

5.3. Example 2: MLB model, N = 2
This example corresponds to N = 2 species with density ⇢s = 2790 kg/m3 and di↵erent diameters D1 = 4.96 ⇥

10�4 m and D2 = 1.25 ⇥ 10�4 m, such that � = (1, 0.063)T. The (unnormalized) depth of the vessel in the original
experiment is L = 0.3 m [51]. The maximum total concentration is �max = 0.6, and the initial concentrations are
�0(x) = (0.2, 0.05)T. The remaining parameters are taken as in Example 1. The well-known solution of Example 2
has been used as a test case for a variety of methods [14, 15, 18]. For comparison purposes, we calculate numerical
solutions for a sequence of spatial discretizations �x = L/M with IRP-LFCW-3 and IRP-HLLCW-3 schemes and
compare the solutions with a reference solution with M = Mref = 6400 obtained by the IRP-HLLCW-3 scheme. The
reference solution is shown in Figures 2 and 3 for the simulated times T = 50 s and T = 300 s, respectively. On the
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Figure 4: Example 2 (MLB model, N = 2): (a) comparison of the numerical solutions for � at T = 50 s computed by IRP-HLLCW-3 with various
step sizes, (b)–(d) enlarged views of (a).

other hand, we plot the solutions of the total concentration � with M = 2` · 100, ` = 0, 1, . . . , 3 and the reference
solution computed with M = 6400 mesh points in Figure 4.

In Table2 we show approximate L1 errors and CPU times for both schemes at two selected simulated times, these
approximate errors are computed by (5.1) and we observe the convergence of both methods. The minimum values
�
,i

for i = 1, 2 and the maximum value �, with and without the limiters are presented in Table 3. In the case of
schemes without limiters we observe some negative values of �

,i
and some values of � greater than �max due to

overshoots present in the numerical solution, see for example Figure 3 (d), while in the case of schemes with limiters
the numerical solution belongs toD�max , as expected.

5.4. Example 3: MLB model, N = 4
In this example we consider N = 4 particle sizes with D1 = 4.96 ⇥ 10�4 m, the rest of diameters Di, i = 2, 3, 4

are chosen such that � = (1, 0.8, 0.6, 0.4)T and we set �0(x) = (0.05, 0.05, 0.05, 0.05)T. The other parameters are as
in Example 2. This example goes back to Greenspan and Ungarish [52], and was solved numerically in [53] with
the slightly di↵erent hindered settling factor V(�) = (1 � (5/3)�)2.7. The reference solution is shown in Figures 5
and 6 for the simulated times T = 50 s and T = 300 s, respectively. In Table 4 we show approximate L1 errors and
CPU times for both schemes at two selected simulated times and we observe the convergence of both methods. These
approximate errors are computed by (5.1).The minimum values �

,i
for i = 1, . . . , 4 and the maximum value �, with and

without the limiters are presented in Table 5. In the case of schemes without limiters we observe some negative values
of �

,i
and some values of � greater than �max due to overshoots present in the numerical solution, see for example

Figure 6(d), while in the case of schemes with limiters the numerical solution belongs toD�max , as expected.
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Table 2: Example 2 (MLB model, N = 2): L1 errors, numerical order, and CPU time (seconds) for IRP-LFCW-3 and IRP-HLLCW-3 schemes at
T = 50 s and T = 300 s. The reference solution is computed by IRP-HLLCW-3 with Mref = 6400.

M etot
M ✓M cpu [s] etot

M ✓M cpu [s] etot
M ✓M cpu [s] etot

M ✓M cpu [s]

IRP-LFCW-3, T = 50 s IRP-LFCW-3, T = 300 s IRP-HLLCW-3, T = 50 s IRP-HLLCW-3, T = 300 s

100 6.56e-03 — 3.89e-02 9.50e-03 — 1.23e-01 4.78e-03 — 5.99e-02 4.93e-03 — 2.08e-01
200 3.83e-03 0.7 6.98e-02 4.79e-03 0.9 3.54e-01 2.83e-03 0.7 1.26e-01 2.10e-03 1.2 6.67e-01
400 2.05e-03 0.9 2.33e-01 2.35e-03 1.0 1.36 1.51e-03 0.9 5.04e-01 9.31e-04 1.1 2.59
800 1.02e-03 1.0 0.95e-01 9.69e-04 1.2 5.56 7.34e-04 1.0 2.04 4.59e-04 1.0 10.6

1600 4.67e-04 1.1 3.83 5.39e-04 0.8 21.8 3.15e-04 1.2 8.08 2.44e-04 0.9 41.7

5.5. Example 4: MCLWR model, N = 3
We now study the MCLWR model on a road of length L = 5 mi (mi stands for miles) with N = 3 driver classes

associated with �1 = 60 mi/h , �2 = 55 mi/h , and �3 = 50 mi/h . We employ the Dick–Greenberg model (2.1) with
�max = 1 and choose (as in [50]) �c = exp(�7/e) ⇡ 0.076142. The velocity is then given by

8>><
>>:

v(�) = 1, v0(�) = 0 for 0  �  �c = exp(�1/C) ⇡ 0.076142,
v(�) = �C ln(�), v0(�) = �C/� for �c < � < 1.

The initial density distribution is given by �0(x) = p(x)(0.25, 0.4, 0.35)T, where p describes an isolated platoon on
1  x  2 followed by a constant maximum density function for x � 4, i.e.,

p(x) B

8>>>>>>>>>>><
>>>>>>>>>>>:

10(x � 1) for 1  x  1.1,
1 for 1.1  x  1.9,
�10(x � 2) for 1.9  x  2,
1 for x � 4,
0 otherwise.

For this particular case we use zero flux boundary conditions in order to obtain a steady state solution. The reference
solution is shown in Figure 7 (a)-(b) and Figure 8 (a)-(b), for the simulated times T = 0.05 h and T = 0.5 h,
respectively. In Table 6 we show approximate L1 errors and CPU times for the scheme at the two selected simulated
times and we observe convergence of the method. These approximate errors are computed by (5.1). In the case of
the scheme without limiters we observe some negative values of �

,i
and some values of � greater than �max due to

overshoots present in the numerical solution, see for instance Figures 8(c) and (d).

5.6. Example 5: Daganzo’s test, N = 4
In this subsection, we study a test that Daganzo suggested in [54]. The parameters and boundary conditions are

the same as in Example 4 with densities �1 = 60 mi/h , �2 = 55 mi/h , �3 = 50 mi/h , and �4 = 45 mi/h . In order
to conduct a multiclass test that is appropriate for this scenario, we follow the ideas of Bürger et. al in [13] and we
consider the initial condition

�(x, 0) =

8>><
>>:
�L for x < L/2,
�R for x � L/2,

where �L = (0, 0, 0, 0)T and �R = (0.25, 0.25, 0.25, 0.25)T. This density distribution should be a stationary solution
for the model. The reference solution is shown in Figures 9(a) and (b) for the simulated time T = 0.5 h. The minimum
values �

,i
for i = 1, . . . , 4 and the maximum value �, with and without the limiters are presented in Table 8. See also

Figures 9(c)–(f).
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Table 3: Example 2 (MLB model, N = 2): minimum of the solutions �n
i, j, i = 1, 2, and maximum of the solution �n

j obtained by schemes LFCW-3
(without limiters), IRP-LFCW-3 (with limiters), HLLCW-3 (without limiters), and IRP-HLLCW-3 (with limiters) until specified times T .

M �
,1

�
,2

� �
,1

�
,2

�

LFCW-3, T = 50 s IRP-LFCW-3, T = 50 s

100 -4.122e-004 9.755e-004 0.600045 2.056e-025 9.763e-004 0.600000
200 -2.043e-004 -2.236e-004 0.600026 1.908e-039 7.263e-013 0.600000
400 -1.013e-004 -2.503e-004 0.600016 1.442e-067 3.434e-013 0.600000
800 -5.030e-005 -1.365e-004 0.600010 7.517e-124 1.163e-013 0.600000
1600 -2.513e-005 -6.839e-005 0.600010 2.073e-236 2.049e-014 0.600000

LFCW-3, T = 300 s IRP-LFCW-3, T = 300 s

100 -4.130e-004 -1.076e-003 0.618048 1.061e-046 1.648e-013 0.600000
200 -2.047e-004 -5.425e-004 0.654617 3.884e-083 4.135e-014 0.600000
400 -1.013e-004 -2.724e-004 0.637268 1.829e-155 3.924e-015 0.600000
800 -5.035e-005 -1.365e-004 0.650888 4.012e-300 5.758e-017 0.600000
1600 -2.513e-005 -6.839e-005 0.625597 1.729e-322 2.228e-020 0.600000

HLLCW-3, T = 50 s IRP-HLLCW-3, T = 50 s

100 -4.032e-004 -2.881e-004 0.600047 1.767e-025 2.279e-09 0.600000
200 -1.994e-004 -2.598e-004 0.600029 1.623e-039 3.968e-014 0.600000
400 -9.873e-005 -1.308e-004 0.600020 1.222e-067 4.873e-017 0.600000
800 -4.895e-005 -6.560e-005 0.600024 6.608e-124 3.263e-022 0.600000
1600 -2.442e-005 -3.288e-005 0.600034 1.771e-236 4.069e-032 0.600000

HLLCW-3, T = 300 s IRP-HLLCW-3, T = 300 s

100 -4.032e-004 -5.196e-004 0.656865 3.090e-047 7.971e-020 0.600000
200 -1.991e-004 -2.609e-004 0.666836 3.593e-083 2.388e-027 0.600000
400 -9.873e-005 -1.308e-004 0.642500 1.635e-155 5.389e-042 0.600000
800 -4.895e-005 -6.560e-005 0.646103 3.455e-300 6.799e-071 0.600000
1600 -2.442e-005 -3.288e-005 0.623364 2.734e-322 2.678e-128 0.600000

6. Conclusions

In this work, we have designed high-order finite volume numerical schemes for multiclass kinematic flow prob-
lems, including polydisperse sedimentation and multiclass vehicular tra�c models, whose numerical solution pre-
serves an invariant region which corresponds to the space D�max of physically relevant solutions of the model. The
first contribution of the paper is the proof that first order schemes with the LLF numerical flux given by (3.4) and
the HLL numerical flux given by (3.22) are invariant region preserving (IRP) for the MLB polydisperse sedimenta-
tion model, under some appropriate CFL conditions (3.10) and (3.25), respectively. The key part of the proof was
to assume the conditions (2.10) and to consider the slightly lower bound for the eigenvalues of the model given by
(3.8). We also proof that these schemes are IRP for MCLWR model under the assumptions (2.3). One can also use the
HW scheme (Scheme 4 in [12]) which satisfies Theorem 1 but happens to be too dissipative. Next, by considering a
component-wise CWENO reconstruction, we use a modification of Zhang and Shu’s scaling limiter [8] which consists
in two main steps: first, we define a linear scaling limiter for each species to get positive solutions in each component
and then we consider a second linear scaling limiter in such a way that the total concentration is bounded by �max.
Finally, we apply a strong-stability preserving (SSP) third-order TVD Runge-Kutta time discretization to obtain the
fully-discrete scheme. With this one can show that, under a more restrictive CFL condition, the resulting finite volume
scheme is IRP and the high order of accuracy is not destroyed.

The numerical results obtained support the theoretical findings. In all the numerical simulations the minimum
values of the solution for each species and the maximum value of the total concentration are computed and tabulated
and the e↵ect of the limiters is appreciated in both the tables and the plots of the solutions. As future perspectives, we
want to apply this strategy to multiclass vehicular dynamics with uneven space occupancy or with creeping, where
some physical invariant regions di↵erent toD�max are studied [55, 56]. Moreover, we want to explore the extension of
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Figure 5: Example 3 (MLB model, N = 4): reference solution for (a) �1, . . . , �4 and (b) � at T = 50 s computed by scheme IRP-HLLCW-3 with
Mref = 6400, and comparison of schemes for (c) �1, (d) enlarged view of (c), (e) �3, and (f) enlarged view of (e) at T = 50 s with M = 1600.

these modified scaling limiters to nonlocal two-dimensional mutispecies models.
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Appendix A. Interlacing property

Multispecies kinematic flow models are given by systems of conservation laws with fluxes as in (1.1) for su�-
ciently smooth functions vi. However, in most applications, these functions do not depend individually on each of the
densities �1, . . . , �N but rather on a small number m ⌧ N of functions p1, . . . , pm of �1, . . . , �N , as we presented in
Section 2.2 and 2.1, i.e, we have

vi = v1(p1, . . . , pm), p` = p`(�1, . . . , �N), i = 1, . . . ,N, ` = 1, . . . ,m, m ⌧ N.

Under this assumption we can write the Jacobian matrix J f = J f (�) in the form

J f = D + BCT, D B diag(v1, . . . , vN), (A.1)

B B (bi`) =
 
�i
@vi

@p`

!
, C B (ci j) =

 
@p`
@� j

!
, 1  i, j  N, 1  `  m. (A.2)

24



0

0.2

0.4

0.6

0.8

1
0 0.05 0.1 0.15 0.2 0.25

(a)
0

0.2

0.4

0.6

0.8

1
0 0.1 0.2 0.3 0.4 0.5 0.6

(b)

0

0.2

0.4

0.6

0.8

1
-0.05 0 0.05 0.1 0.15 0.2 0.25

LFCW-3

IRP-LFCW-3

HLLCW-3

IRP-HLLCW-3

REF

(c)
0.542

0.543

0.544

0.545

0.546

0.547

0.548

0.549

0.55

0.551

-4 -2 0 2 4

10
-5

LFCW-3

IRP-LFCW-3

HLLCW-3

IRP-HLLCW-3

REF

(d)

Figure 6: Example 3 (MLB model, N = 4): reference solution for (a) �1, . . . , �4 and (b) � at T = 300 s computed by scheme IRP-HLLCW-3 with
Mref = 6400, and (c) comparison of schemes for �, (d) enlarged view of (c) at T = 300 s with M = 1600.

The following Theorem has been proved in [57] and it is used to show hyperbolicity of selected multispecies kinematic
flow models and for the construction of spectral numerical schemes.

Theorem 4 (Secular equation [16, 57]). Assume that D is a diagonal matrix as given by (A.1) with vi > v j for i < j
and that C and B have the formats specified in (A.2). Let � , vi for i = 1, . . . ,N. Then � is an eigenvalue of D+ BCT

if and only if

R(�) B det(M�) = 1 +
NX

i=1

�i

vi � �
= 0.

The coe�cients �1, . . . , �N are given by the following expression, where I B {i1 < · · · < ik} 2 S N
k and J B { j1 < · · · <

j`} 2 S m
` are index sets:

�i =

min{N,m}X

r=1

X

i2I2S N
r ,J2S m

r

det CI,J
Q

`2I,`,i(v` � vi)
.

Corollary 1 (Interlacing property [6]). With the notation of the theorem above, assume that �i� j > 0 for i, j =
1, . . . ,N. Then D+BCT is diagonalizable with real eigenvalues �1, . . . , �N. If �1, . . . , �N < 0, the interlacing property

M1 B vN + �1 + · · · + �N < �N < vN < �N�1 < · · · < �1 < v1 (A.3)

holds, while for �1, . . . , �N > 0, the following analogous property holds:

vN < �N < vN�1 < �N�1 < · · · < v1 < �1 < M2 B v1 + �1 + · · · + �N . (A.4)

Remark 6. Theorem 4 and Corollary 1 apply to the MCLWR and MLB models (see (2.2) and (2.8) for the respective
specific bounds).
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Table 4: Example 3 (MLB model, N = 4): L1 errors, numerical order, and CPU time (seconds) for IRP-LFCW-3 and IRP-HLLCW-3 schemes at
T = 50 s and T = 300 s. The reference solution is computed by IRP-HLLCW-3 with Mref = 6400.

M etot
M ✓M cpu [s] etot

M ✓M cpu [s] etot
M ✓M cpu [s] etot

M ✓M cpu [s]

IRP-LFCW-3, T = 50 s IRP-LFCW-3, T = 300 s IRP-HLLCW-3, T = 50 s IRP-HLLCW-3, T = 300 s

100 6.89e-03 — 5.24e-02 1.83e-03 — 1.75e-01 5.60e-03 — 8.17e-02 1.75e-03 — 3.09e-01
200 3.54e-03 0.9 1.04e-01 1.15e-03 0.7 5.37e-01 2.86e-03 1.0 1.94e-01 6.69e-04 1.4 1.03
400 1.93e-03 0.8 4.11e-01 6.07e-04 0.9 2.15 1.54e-03 0.9 7.88e-01 3.36e-04 0.9 4.29
800 1.05e-03 0.8 1.61 2.82e-04 1.1 8.59 8.48e-04 0.8 3.21 1.64e-04 1.1 16.6

1600 4.87e-04 1.1 6.31 1.29e-04 1.1 33.6 3.78e-04 1.1 12.8 9.00e-05 0.8 67.6

Table 5: Example 3 (MLB model, N = 4): minimum of the solutions �n
i, j, i = 1, . . . , 4, and maximum of the solution �n

j obtained by schemes
LFCW-3 (without limiters) and IRP-LFCW-3 (with limiters) until specified times T .

M �
,1

�
,2

�
,3

�
,4

� �
,1

�
,2

�
,3

�
,4

�

LFCW-3, T = 50 s IRP- LFCW-3, T = 50 s

100 -6.109e-004 -5.443e-004 -4.791e-004 -4.305e-004 0.599930 8.428e-058 1.248e-024 2.774e-014 6.634e-08 0.598892
200 -3.687e-004 -3.199e-004 -2.806e-004 -2.157e-004 0.604964 2.437e-118 1.606e-047 1.825e-026 2.213e-013 0.599973
400 -1.845e-004 -1.598e-004 -1.401e-004 -1.080e-004 0.607519 1.817e-239 3.064e-093 7.809e-051 3.408e-024 0.600000
800 -9.229e-005 -7.978e-005 -6.993e-005 -5.411e-005 0.609175 1.828e-322 1.303e-184 1.687e-099 1.232e-045 0.600000

1600 -4.610e-005 -3.983e-005 -3.491e-005 -2.709e-005 0.605247 1.976e-322 3.112e-322 1.033e-196 2.660e-088 0.600000

LFCW-3, T = 300 s IRP- LFCW-3, T = 300 s

100 -8.523e-004 -6.713e-004 -5.662e-004 -4.305e-004 0.666358 1.172e-203 5.930e-064 5.930e-041 1.990e-025 0.600000
200 -3.908e-004 -3.403e-004 -2.806e-004 -2.157e-004 0.609710 2.173e-322 8.387e-128 3.934e-081 7.523e-050 0.600000
400 -2.070e-004 -1.701e-004 -1.401e-004 -1.080e-004 0.628049 2.025e-322 9.918e-256 1.585e-161 9.329e-099 0.600000
800 -1.376e-004 -1.329e-004 -1.314e-004 -5.411e-005 0.649020 1.729e-322 3.112e-322 6.175e-322 1.184e-196 0.600000

1600 -5.020e-004 -5.744e-005 -5.204e-005 -2.709e-005 0.605247 1.877e-322 3.013e-322 4.199e-322 6.472e-322 0.600000
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Figure 8: Example 4 (MCLWR model, N = 3): reference solution for (a) �1, �2, �3 and (b) � at T = 0.5 h computed by scheme IRP-HLLCW-3
with Mref = 6400, and comparison of schemes for (c) �2, (d) enlarged view of (c), (e) �, and (f) enlarged view of (e) at T = 0.5 h with M = 1600.
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Figure 9: Example 5 (MCLWR model, Daganzo’s test, N = 4): reference solution for (a) �1, . . . , �4 and �, (b) enlarged view of (a) at T = 0.5 h
computed by scheme IRP-HLLCW-3 with Mref = 6400, and comparison of schemes for (c) �1, (d) enlarged view of (c), (e) �, and (f) enlarged
view of (e) at T = 0.5 h with M = 1600.

29



Table 6: Example 4 (MCLWR model, N = 3): L1 errors, numerical order, and CPU time (seconds) for scheme IRP-LFCW-3 at T = 0.05 h and
T = 0.5 h. The reference solution is computed by IRP-LFCW-3 with Mref = 6400.

M etot
M ✓M cpu [s] etot

M ✓M cpu [s]

IRP-LFCW-3, T = 0.05 h IRP-LFCW-3, T = 0.5 h

100 7.45e-03 — 9.67e-03 4.99e-03 — 9.77e-02
200 3.51e-03 1.1 2.96e-02 2.67e-03 0.9 2.26e-01
400 1.87e-03 0.9 1.02e-01 1.32e-03 1.0 1.05
800 8.03e-04 1.2 4.23e-01 6.26e-04 1.0 4.07

1600 4.04e-04 1.0 1.6 2.70e-04 1.2 16.2

Table 7: Example 4 (MCLWR model, N = 3): minimum of the solutions �n
i, j, i = 1, . . . , 3, and maximum of the solution �n

j obtained by schemes
LFCW-3 (without limiters) and IRP-LFCW-3 (with limiters) until specified times T .

M �
,1

�
,2

�
,3

� �
,1

�
,2

�
,3

�

LFCW-3, T = 0.05 h IRP-LFCW-3, T = 0.05 h

100 -4.580e-03 -4.976e-03 -4.914e-03 1.01102 0.00000 0.00000 0.00000 1.00000
200 -2.744e-03 -3.031e-03 -2.636e-03 1.01537 0.00000 0.00000 0.00000 1.00000
400 -1.759e-03 -1.934e-03 -1.891e-03 1.04909 0.00000 0.00000 0.00000 1.00000
800 -1.117e-03 -1.531e-03 -1.344e-03 1.05402 0.00000 0.00000 0.00000 1.00000

1600 -9.064e-04 -1.058e-03 -9.975e-04 1.06708 0.00000 0.00000 0.00000 1.00000

LFCW-3, T = 0.5 h IRP-LFCW-3, T = 0.5 h

100 -5.041e-03 -5.887e-03 -7.050e-03 1.04260 0.00000 0.00000 0.00000 1.00000
200 -3.446e-03 -3.031e-03 -3.518e-03 1.07077 0.00000 0.00000 0.00000 1.00000
400 -2.447e-03 -2.711e-03 -1.891e-03 1.06805 0.00000 0.00000 0.00000 1.00000
800 -2.137e-03 -2.499e-03 -1.344e-03 1.09395 0.00000 0.00000 0.00000 1.00000

1600 -1.779e-03 -1.225e-03 -9.975e-04 1.09029 0.00000 0.00000 0.00000 1.00000
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Table 8: Example 5 (MCLWR model, Daganzo’s test, N = 4): minimum of the solutions �n
i, j, i = 1, . . . , 4, and maximum of the solution �n

j obtained
by schemes LFCW-3 (without limiters) and IRP-LFCW-3 (with limiters) until a specified time T .

M �
,1

�
,2

�
,3

�
,4

� �
,1

�
,2

�
,3

�
,4

�

LFCW-3, T = 0.5 h IRP-LFCW-3, T = 0.5 h

100 -2.186e-003 -2.673e-003 -3.177e-003 -3.691e-003 1.00403 0.00000 0.00000 0.00000 0.00000 1.00000
200 -1.832e-003 -1.938e-003 -1.987e-003 -1.953e-003 1.01107 0.00000 0.00000 0.00000 0.00000 1.00000
400 -9.020e-004 -6.778e-004 -6.999e-004 -8.780e-004 1.00369 0.00000 0.00000 0.00000 0.00000 1.00000
800 -3.076e-004 -3.848e-004 -4.523e-004 -4.882e-004 1.00107 0.00000 0.00000 0.00000 0.00000 1.00000
1600 -2.266e-004 -2.356e-004 -2.084e-004 -1.960e-004 1.00122 0.00000 0.00000 0.00000 0.00000 1.00000
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