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Abstract. This article examines the impact of Hamiltonian dynamics on the interaction graph
of Boolean networks. Three types of dynamics are considered: maximum height, Hamiltonian cycle,
and an intermediate dynamic between these two. The study addresses how these dynamics influence
the connectivity of the graph and the existence of variables that depend on all other variables in
the system. Additionally, a family of regulatory Boolean networks capable of describing these three
Hamiltonian behaviors is introduced, highlighting their specific properties and limitations. The
results provide theoretical tools for modeling complex systems and contribute to the understanding
of dynamic interactions in Boolean networks.
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1. Introduction. Boolean networks are a widely used mathematical model for
representing complex systems composed of variables, where each variables can assume
one of two possible states: 0 or 1. These networks have proven to be valuable tools in
various fields such as biology [21], genetics [10, 13, 20], and social network theory [9],
among others. By reducing problems to a binary context, Boolean networks enable
the modeling, simulation, and analysis of nonlinear interactions, as well as the study
of the dynamic behavior of systems with multiple interdependent variables.

A significant portion of existing studies has focused on specific complex systems,
emphasizing the interaction between variables to infer dynamic properties. Notable
examples include the analysis of interaction graphs with bounded in-degree and their
implications on dynamics [2], the existence of fixed points [1, 3], limit cycles [8, 16],
and the determination of the maximum length of limit cycles in certain families of
Boolean networks [4, 12].

However, most of these works rely on restrictions imposed on the interaction graph
to infer dynamic properties, leaving the study of conditions induced in the interaction
graph by a given dynamic largely unexplored.

The primary objective of this paper is to analyze the properties induced by Hamil-
tonian dynamics [23], characterized by a unique trajectory capable of visiting all states
of the system. This analysis includes cases of maximum height, maximum limit cycle
length, and dynamics intermediate to the two aforementioned cases.

Additionally, we address the problem: given a Hamiltonian digraph Gr, is it
possible to construct a regulatory Boolean network whose dynamics is isomorphic to
Gr? To understand this question, we explore certain families of Boolean networks
capable of exhibiting Hamiltonian cycle behaviors in neural networks [17, 14] and their
implications for self-dual networks. From this, we present a family of Hamiltonian
regulatory Boolean networks, self-dual and non-neural.

This document is organized as follows: section 2 introduces the fundamental def-
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2 A. ZAPATA-CORTES, AND J. ARACENA

initions and notations. section 3 focuses on the analysis of maximum in-degree and
connectivity in interaction graphs. In section 4, a family of Hamiltonian regulatory
Boolean networks is introduced, and finally, section 5 presents the conclusions, dis-
cussing the obtained results and future work.

2. Definitions and notation. A directed graph G = (V, A), where V is the
set of vertices and A is the set of arcs. The in-degree of a vertex j € V is denoted
as dg(j), and when there is no ambiguity, the subscript G is omitted. A directed
graph is said to have a source component if it is a component with no incoming
arcs from other components of the graph, while a sink component is a component
with no outgoing arcs to other components. Finally, two components are considered
independent if there is no directed path between them in G. For a more detailed
description of graph-related concepts, we recommend consulting [5, 22].

A Boolean network f : {0,1}" — {0,1}", where n € N, is a dynamic system
defined in discrete time and space, consisting of n binary variables z;, with j € [n] :=
{1,2,...,n}. The network is described by Boolean functions f = (f1, f2,.-., fn),
called local activation functions, where z;(t + 1) = f;(x(¢)) determines the tem-
poral evolution of each variable.

The temporal evolution of the system is represented by a directed graph called
the state transition graph or dynamics of f, defined as follows:

I'(f) = ({0,1}" {(z, f(x)) : © € {0,1}"}).

Since f is a function, each vertex has an out-degree of one. We denote by G(n) the
family of digraphs isomorphic to the dynamics of a Boolean network with n variables,
described as follows:

G(n) = {(V, A) digraph : |[V| = 2" and for all u € V, d*(u) = 1}.

The study of graphs Gr € G(n) aims to identify properties common to all Boolean
networks with the dynamic behavior Gr. The set of Boolean networks whose dynamics
are isomorphic to Gr is denoted by F(Gr):

F(Gr) ={f: f is a Boolean network and I'(f) = Gr}.

We focus on digraphs Gr € G(n) that possess a directed path capable of visiting
all their vertices, with the goal of analyzing the properties of the family of Boolean
networks F(Gr).

The configurations 0,1, e; € {0,1}™ are defined as those with all zeros, all ones,
and all zeros except for a one in component i € [n], respectively. Additionally, &
denotes the modulo two sum operator, generalized to configurations in {0,1}" by
applying the operator component-wise.

For a Boolean network f with n variables and a configuration = € {0,1}", the
following terms are defined: A Garden of Eden is a configuration = such that
f~t({z}) = 0. A configuration x is a fixed point if f(z) = z, and it is periodic if
there exists k € N such that f*(x) = z. Otherwise, z is called transient. A limit
cycle is a cycle in I'(f) of length at least two, and an attractor of the network is
any fixed point or limit cycle.

Moreover, the period of f, denoted as p(f), is the least common multiple of the
lengths of all its limit cycles. The height of f, denoted as h(f), is the smallest £ € N
such that, for any € {0,1}", f¥(z) is a periodic point. Finally, a trajectory R of
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HAMILTONIAN DYNAMICS OF BOOLEAN NETWORKS 3

f is a path in T'(f) that does not repeat arcs, and |R| is the length of the trajectory,
corresponding to the number of arcs.

We say that the local activation function f; depends on the variable x;, or on the
index ¢, if there exists a configuration « € {0,1}" such that f;(x) # f;(x ®e;). The
interaction graph or dependency graph of the Boolean network f, denoted by
G(f), is a directed graph with n vertices representing the network variables, where
an edge (4, 7) indicates that f; depends on x;.

Additionally, the local interaction graph at z, denoted by G.(f), is a sub-
graph of G(f) restricted to dependencies on a specific configuration z € {0,1}". The
interaction and local interaction graphs are formally defined as:

G(f) = ([n],{(i,7) € [n] x [n] : f; depends on the variable z;})
G=(f) = ([n):{(i;5) € [n] x [n] : f;(2) # fi(z @ ei)})

A source component isolates a set of variables whose dynamics can be analyzed
independently of the rest of the network. Let f be a Boolean network of n variables,
x €{0,1}", and I C [n] a set inducing a source component in G(f). The configuration
xy € {0, 1}'” is defined as the projection of x onto the components indexed by I,
while /' € {0,1}" is the negation of = on the components indexed by I. Finally,
the subnetwork of f induced by I is the Boolean network f; : {0, 1}//I — {0, 1}/,
defined as fr(z) = f(x,y)z, for any y € {0,1}~ I,

EXAMPLE 2.1. Let f be the Boolean network of 3 variables described by the local
activation functions and the network dynamics presented in Figure 1.

X
X

L(f):
o~ g vie i) (00 (10)3(010)5 (00O
e C(11) (101)(0)5 001

Fig. 1: Local activation functions and dynamics of the Boolean network f from Ex-
ample 2.1.

In this case, the configurations (1,0,0) and (1,0,1) are Garden of Eden states,
while (0,0,0) and (1,1,1) are fized points. The network’s limit cycle is [(0,1,1),
(0,0,1)], with a period p(f) =2 and a height h(f) = 3.

Note that f1 and fy depend on all variables. On the other hand, (2.1) shows that
the local activation function fs3 depends only on variable x3, since for any other index

i #3, f3(x) = fs(z ®e;) holds.
(21) f3(17171)7éf3((15171)@€3)

The interaction graph G(f) along with G 1,0)(f) is shown in Figure 2.

DEFINITION 2.1. For z,y € {0,1}", we define x < y if, for every component,
x; < y; holds. Given f, a Boolean network with n € N wvariables, the local activation
function f; is said to be:

This manuscript is for review purposes only.
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4 A. ZAPATA-CORTES, AND J. ARACENA

G(f): 8 G(1,1,0)(f) : @

@/Z"\ @// \@O

Fig. 2: Interaction graph and local interaction graph at (1,1,0) for f in Example 2.1.

e Increasing in component i € [n], if for any configuration x such that
x; =0, it holds that f;(z) < fi(z B e;).
e Decreasing in component i € [n], if for any configuration x such that
x; =0, it holds that f;(x) > fi(z ®e;).
Additionally, f; is called unate if it is either increasing or decreasing in each of its
components i € [n]. The network is said to be regulatory if all its local activation
functions are unate. Furthermore, the network is said to be monotone if all its local
activation functions are increasing in each of its components i € [n].

The arcs of the interaction graph of a regulatory Boolean network can be labeled
with signs (4, j) € {+1,—1}, which indicate the nature of the relationship between
the variables. A positive sign (+1) implies that f; is increasing with respect to z;,
while a negative sign (—1) indicates that f; is decreasing with respect to ;.

DEFINITION 2.2. A Boolean network f is said to be Hamiltonian if its dynamics
possess a trajectory that reaches all configurations. A Hamiltonian Boolean network f
is classified as maximum height if its only attractor is a fized point; intermediate
height if its only attractor is a limit cycle of length k € {2,3,...,2"—1}; or a Hamil-
tonian cycle if its dynamics form a limit cycle of length 2™. Similarly, a digraph
Gr € G(n) is classified as Hamiltonian of maximum height, intermediate height, or
Hamiltonian cycle if Gr 2 T'(f) and f belongs to the corresponding classification.

EXAMPLE 2.2. Let f = (f1, f2, f3) be a Boolean network with local activation
functions and the interaction graph described in Figure 3. The Boolean network is
Hamiltonian of mazimum height, and its dynamics are shown in Figure 4.

EXAMPLE 2.3. Given the Boolean network f = (f1, f2, f3) defined in Figure 5,
along with its interaction graph, we observe that the network is Hamiltonian of inter-
mediate height, as reflected in its dynamics described in Figure 6.

This manuscript is for review purposes only.
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G(f): @

fi(@)
fo(x) =71 V (21 A 22 AT3)

f3(@) = (w2 A x3) V (T2 A T3) Q@\M@O

T3

Fig. 3: Local activation functions and interaction graph of f from Example 2.2.

L) :

(000) (o1)- (1) (1) () 00)+ (29 + (@)D

Fig. 4: Hamiltonian dynamics of maximum height from Example 2.2.

fg(.’b) :(52 A xd) \Y (fl N l‘3) \Y ((El 1A\ $2)

f3(x) =T2 G@(’_\@

Fig. 5: Local activation functions and interaction graph of f from Example 2.3.

I'(f):

LN
(000)(101) 011> 110) > 010)
\/

Fig. 6: Intermediate height Hamiltonian dynamics of Example 2.3.

This manuscript is for review purposes only.
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6 A. ZAPATA-CORTES, AND J. ARACENA

EXAMPLE 2.4. Given f = (f1, fo, f3), described by the local activation functions
and the interaction graph shown in Figure 7, note that f is Hamiltonian with a cycle
since its dynamics form a cycle of length 23, as depicted in Figure 8.

ap:. G
(1)

fg(x) :(52 A 1‘3) \Y (fl A l‘3) \ (1‘1 N\ T2 /\53)

f3(z) =T, Cj@k—\@

Fig. 7: Local activation functions and interaction graph of f from Example 2.4.

I(f):

DA™

\

~E
\@/‘

gy

Fig. 8: Hamiltonian cycle dynamics of Example 2.4.

Our objective is on the properties of a Boolean network with Hamiltonian dy-
namic. Next, we define a partition of the configuration space to identify patterns in
the variable behavior that will be useful in the following results.

DEFINITION 2.3 ([7]). Given f, a Boolean network with n variables, and j € [n],
the set T'(f;) C {0,1}" is defined as the set of true points, and F(f;) C {0,1}" as the
set of false points of f;. These sets are defined as follows:

(2.2) T(f;) ={x €{0,1}": f;(z) = 1}

(2.3) F(f;) ={z€{0,1}": f;(z) =0}

If, for every j € [n], it holds that |T(f;)| = |F(f;)| = 2", the Boolean network f is
said to be balanced.

The sets of true and false points establish a partition of {0,1}", implying that
for any j € [n], |T(f;)| +|F(f;)| = 2" holds. Henceforth, results concerning the set T’
will also apply to the set of false points F'.

This manuscript is for review purposes only.
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3. In-degree and connectivity of the interaction graph. In [6], it is estab-
lished that any digraph Gr € G(n), other than the constant and identity digraphs,
admits a Boolean network f € F(Gr) with interaction graph K,,, a complete digraph
including loops. However, it does not analyze whether the existence of a digraph Gr
imposes common properties on all networks with dynamics isomorphic to Gr. To
address this question, Lemma 3.1 establishes a necessary condition on the in-degree
of the interaction graph, linking Boolean networks with their dynamic behavior.

LeMMA 3.1 ([19], [23]). Let f be a Boolean network with n € N variables and
j € [n] such that |T(f;)| is odd. Then, the in-degree of vertex j in the interaction
graph is n.

Proof. Suppose |T'(f;)| is odd and that f; does not depend on the index i € [n].
From the definition of dependence, it follows that for any configuration z € T'(f;),
x@®e; € T(f;). This contradicts the hypothesis that |T'(f;)| is odd, completing the
proof. 0

It is important to note that the converse implication of Lemma 3.1 is not true:
in Example 2.4, T(f3) is a set of even cardinality, although variable 2 has maximum
in-degree. On the other hand, if Gr € G(n) has a unique vertex with in-degree zero,
the associated dynamics differ in exactly one image compared to a bijective behavior,
motivating Theorem 3.2.

THEOREM 3.2. If Gr € G(n) (not necessarily connected) has exactly one vertex
with in-degree zero, then for any Boolean network f € F(Gr), there exists a component
J € [n] such that d=(j) =n in its interaction graph.

Proof. Suppose Gr has exactly one vertex with in-degree zero. By definition, the
out-degree of every vertex in Gr is one. Consequently, 2" — 2 vertices have in-degree
one, one vertex has in-degree zero, and one vertex has in-degree two.

For an arbitrary Boolean network f € F(Gr), denote u,v € {0,1}" as the Gar-
den of Eden and the configuration with two preimages, respectively. Since these are
distinct configurations, there exists a component j € [n] such that u; # v;. Let us
analyze the cases based on the value of component j of u.

o If u; = 1, given that the dynamics have 2" — 2 configurations with exactly
one preimage and v; = u; = 0, it follows that [T(f;)| = 2"~! — 1, which is
odd.

e If u; =0, it follows that |T'(f;)| = 2"~! + 1, which is also odd.

In both cases, T(f;) has odd cardinality, and by Lemma 3.1, it is concluded that
for any Boolean network f € F(Gr), there exists a vertex j € [n] with in-degree
d=(j) = nin G(f). O

Theorem 3.2 provides a sufficient condition to guarantee the existence of a vari-
able with in-degree n in G(f) for Hamiltonian Boolean networks of maximum and
intermediate height. However, this result does not apply to Hamiltonian cycle Bool-
ean networks, as there exists a counterexample where no variable reaches this degree
communicated by Florian Bridoux.

The proof of the theorem allows the identification of variables with in-degree n,
using the labels assigned to both the Garden of Eden and the configuration with an
odd number of preimages.

COROLLARY 3.3. Ewvery Boolean network whose dynamics possess a unique Gar-
den of Eden has a connected interaction graph. Moreover, if the Garden of Eden and
the configuration with an odd number of preimages are negated configurations of each

This manuscript is for review purposes only.
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8 A. ZAPATA-CORTES, AND J. ARACENA

other, then G(f) = K,
Proof. Follows directly from Theorem 3.2. 0

In Hamiltonian Boolean networks, there is a relationship between global dynamics
and the type of induced subnetworks. In particular, this relationship extends to any
Gt € G(n) that possesses a sufficiently long trajectory.

LEMMA 3.4. Let f be a Boolean network with n > 2 variables, and let I C [n] be
a set that induces a subnetwork of f. If the network has a trajectory in its dynamics
of length greater than 2" — 2"~ then f; is Hamiltonian cycle.

Proof. Let P be a trajectory in I'(f) of length greater than 2™ — 2=l and let
z € {0,1}™ be the initial configuration of the trajectory. Let k € N be the smallest
value such that (f;)%(z;) = z;. We can prove that k = 2/l Since P does not repeat
internal vertices and z; can appear at most 2”1 times in the trajectory, the length
of P is bounded as described in (3.1):

(3.1) 2m — ol < |P| < k- 2n

Since 2" — 2=l = (2M1 — 1) . 27~ it follows that k > 21/l — 1, implying that f; is
Hamiltonian cycle. ]

We name the quasi-Hamiltonian Boolean networks, whose dynamics consist of
a cycle of length 2™ — 1 and a fixed point. Although this network is neither strictly
Hamiltonian nor connected, it satisfies Lemma 3.4 and is of theoretical interest for
being modelable with a bounded interaction graph [2].

COROLLARY 3.5. Let f be a Hamiltonian or quasi-Hamiltonian Boolean network
with n > 2 variables, and let I C [n] be a set that induces a subnetwork of f. Then
fr is Hamiltonian cycle.

Proof. Follows directly from Lemma 3.4. O

Lemma 3.4 strengthens the connection between the dynamics digraph and the
resulting interaction graph, highlighting how the global properties of a network in-
fluence the characteristics of its induced subnetworks. Next, we explore how these
properties affect the connectivity of the interaction graph in Hamiltonian Boolean
networks.

PROPOSITION 3.6. If Gr is a Hamiltonian cycle, then for any f € F(Gr), G(f)
is guaranteed to be connected.

Proof. Suppose Gr is a Hamiltonian cycle, and consider f € F(Gr). By con-
tradiction, assume G(f) is not connected. This implies that G(f) has k > 2 con-
nected components, denoted as G(f)[S1], G(f)[S2].-.,G(f)[Sk], with S; C [n] for
i€ {1,2,...,k}. Since G(f)[S;] has no incoming or outgoing edges to other compo-
nents, by Lemma 3.4, each subnetwork induced by S; is a Hamiltonian cycle.

Let d € N denote the least common multiple described in (3.2). Since fg, is a
Hamiltonian cycle, its period p(fs,) is a power of two, and the least common multiple
of these periods corresponds to the largest of these powers:

(3.2) d=1lem{p(fs,):i€{1,2,...,k}}
(3.3) = max{21% i e {1,2,... k}}.

Since |S;| < n, it follows that d < 2". For an arbitrary configuration z € {0,1}",
note that (fs,)%(zs,) = xgs, for all i € {1,2,...,k}. This implies that the period

This manuscript is for review purposes only.
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HAMILTONIAN DYNAMICS OF BOOLEAN NETWORKS 9

p(f) < d < 2™, contradicting the assumption that f is a Hamiltonian cycle. Thus, for
any f € F(Gr), the digraph G(f) must be connected. O

Example 2.3 and 2.4 present Hamiltonian cycle and intermediate height Boolean
networks with interaction graphs that are not strongly connected. In contrast, for
maximum height, intermediate height, and quasi-Hamiltonian dynamics, the lenght of
the attractor plays a crucial role in variable dependence, leading to greater interaction
graph connectivity as shown in the following proposition.

PROPOSITION 3.7. Let f be a Hamiltonian Boolean network of maximum height,
quasi-Hamiltonian, or intermediate height, with p(f) being odd. Then G(f) is strongly
connected.

Proof. Let f be a Hamiltonian Boolean network of maximum height. By Corol-
lary 3.3, the digraph G(f) is connected. By contradiction, assume G(f) is not strongly
connected. Denote G(f)[I] as a source component of G(f) induced by I C V(G(f)).
By Lemma 3.4, f; is a Hamiltonian cycle with period p(f;) = 2!, which contradicts
the existence of a fixed point in f’s dynamics, thus proving that G(f) is strongly
connected.

Now, consider f as a quasi-Hamiltonian or intermediate height network with an
odd period. By contradiction, assume G(f) is not strongly connected, and let I C [n]
be the set inducing a source component in G(f). Then, f; is a Hamiltonian cycle by
Lemma 3.4.

Let y € {0,1}™ be an arbitrary configuration. For all a € N, it holds that
(f1)*PU1)(y;) = y;. For any periodic configuration = € {0,1}" of f, it follows that
x = fPU)(z). Projecting onto the components in I gives (3.4):

(3.4) zp = PP (2)r = (f)PD(xr).

The equality implies that p(f) is a multiple of p(f;). However, since p(f;) = 2!, p(f)
must be even. This contradicts the assumption that p(f) is odd, proving that G(f)
is strongly connected. a

Hamiltonian Boolean networks satisfy p(f) + h(f) = 2", which allows Proposi-
tion 3.7 to be reformulated in terms of height. On the other hand, if G(f) is not
strongly connected, then Hamiltonian cycle and intermediate height dynamics induce
an ordering among the components. This highlights the absence of independent com-
ponents in the interaction graph and limits the number of source and sink components.

DEFINITION 3.8. A digraph is unilaterally connected if, for every pair of ver-
tices, there exists at least one directed path between them.

It is straightforward to observe that a digraph is unilaterally connected if and
only if it has no independent components. This fact is fundamental to the proof of
Theorem 3.9, which establishes the connection between Hamiltonian dynamics and
the structure of the interaction graph.

THEOREM 3.9. Let f be a Boolean network with Hamiltonian cycle or intermedi-
ate height dynamics. The interaction graph of f is unilaterally connected.

Proof. Assume, by contradiction, that f has an interaction graph that is not
unilaterally connected. Then, there exist two vertices in G(f) with no directed path
between them, implying they belong to independent components induced by A, B C
[n].

Let M C [n] be a set inducing a subnetwork of f that has edges directed to vertices

This manuscript is for review purposes only.
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in A and B in G(f) but not the other way around. This implies that M U A, M U B,
and M U AU B =: D induce Hamiltonian cycle subnetworks due to Corollary 3.5.

Denote g = fp and let s = max{p(faua), p(farus)} < 2Pl Since p(farua) and
p(farup) are multiples of a power of two, for any configuration € {0, 1}/P!, it holds:

(3.:5)  g°(z) = (¢°(x) a, (9muB)*(zmuB)) = (9° (%) 4, 2mu) = (9°(T) 4,205 TB),
(3.6)  g°(z) = ((9mua)*(®mua), ¢°(x)B) = (Tmua, 9°(2)B) = (a4, 20, 9° () B).-

Equating (3.5) and (3.6), we obtain ¢*(z) = z, implying that the period of g is less
than 2Pl This contradicts the assumption that ¢ is a Hamiltonian cycle, proving
that G(f) is unilaterally connected. 0

Theorem 3.9 implies several relevant results. In particular, it establishes that
the interaction graph has at most one source component and one sink component,
guarantees that any pair of components is connected by a directed path, and ensures
that the component graph of G(f) contains a Hamiltonian path. It is conjectured
that if f has Hamiltonian cycle or intermediate height dynamics, the components of
G(f) form a topological ordering with all possible edges between them.

4. Regulatory family of Hamiltonian Boolean networks. Since not all
families of Boolean networks can exhibit Hamiltonian behaviors, this section focuses
on the construction of Hamiltonian-type regulatory Boolean networks.

From the literature, it is known that monotone networks without constant local
activation functions have at least two fixed points: 0 and 1. Additionally, the length
of their limit cycles |C| € N cannot reach 2", as it is upper-bounded by the number
of incomparable vectors with n components [4, 18]. This bound is presented in (4.1):

(4.1) o] < (LZJ> <om,

2

On the other hand, conjunctive and disjunctive networks have a height upper-
bounded by A(f) < 2n? — 3n + 2 [11]. If the interaction graph is strongly connected,
these networks also have at least two fixed points. Additionally, Hamiltonian cycle
Boolean networks are balanced in each of their local activation functions, a prop-
erty not satisfied by certain types of networks, such as conjunctive, disjunctive, or
canalizing networks with more than one variable.

In contrast, [17] states that Hamiltonian cycle Boolean networks can be modeled
using neural networks, a subfamily of regulatory Boolean networks, and demonstrates
that self-duality is a necessary condition to describe bijective behaviors. Along these
lines, we will prove the existence of regulatory, non-neural Boolean networks that
describe Hamiltonian dynamics of maximum height, intermediate height, and Hamil-
tonian cycle.

4.1. Self-dual Boolean networks. In this section, we explore self-duality, for-
mally described in Definition 4.1. It is conjectured that self-duality constitutes a
necessary condition for a Hamiltonian cycle Boolean network to be regulatory, de-
rived from the properties it induces and empirical results in the literature [15].

DEFINITION 4.1. A Boolean network f with n € N wvariables is said to be self-
dual in I C [n], with I # 0, if for any configuration x € {0,1}", it holds that

@) = @) -

This manuscript is for review purposes only.



339

340
341

343
344
345
346

347

HAMILTONIAN DYNAMICS OF BOOLEAN NETWORKS 11

LEMMA 4.2. Let I C [n] be non-empty. The Boolean network f is self-dual in I
if and only if, for any x € {0,1}™ and k € N, it holds that:

I

fHz) = fr(@")

Proof. Let f be self-dual in I. As shown in (4.2), applying the definition of
self-duality twice proves the case k = 2.

(4.2) Pa)=f(f@)=f(f@) ) =f(f@") =@ .

—1
Proceed by induction on k € N. Suppose that for all x € {0,1}", f¥(x) = f*(@!) .
We prove the case for k + 1:

43) @) = f(R@) = F(FRED ) = FRED) = )

For the reverse implication, consider & = 1, which corresponds to the definition of
self-duality. Thus, the property holds for all k£ € N, completing the proof. ]

A notable result is the relationship between self-duality and the distance between
configurations in a Hamiltonian cycle dynamic. This is formally established in the
following lemma.

LEMMA 4.3. Let f be a Hamiltonian cycle Boolean network with n € N variables
and I C [n], with I # 0. The network f is self-dual in I if and only if, for any
configuration x € {0,1}", it holds that:

7 @) =7
Proof. Suppose f is self-dual in I. By contradiction, assume there exists a con-

figuration z such that 2" (z) # Z'. Let k < 27! be the smallest value such that
f*(z) = 7!. By Lemma 4.2, we deduce:

(4.4) @) = @) =

This implies that the distance between Z' and z in the dynamics is k. However, this
contradicts the fact that f has a cycle of length 2". Therefore, for any x € {0,1}", it
holds that f2" ' (z) = z’.

For the converse, if every configuration x € {0,1}" satisfies f2n71(x) = 7!, the
bijectivity of the network allows us to take x = f(y), yielding f(y') = m17 which
is equivalent to the definition of self-duality. 0

A relevant result for our study is associated with local dependency. In the case
where a configuration x € {0,1}" induces an edge in G,(f), we can prove that such
dependency is also induced by 7.

LEMMA 4.4. Any self-dual Boolean network f in [n] satisfies, for every x €
{0,1}", the equality:

(Go(f),05) = (Gz(f), o).
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Proof. Let i,j € [n] be arbitrary, and suppose that the edge (7, j) belongs to the
digraph G (f). By the self-duality of f, the following chain of equivalences holds:

Therefore, both local interaction graphs are equal, i.e., G, (f) = Gz(f).

If 0,(i,7) € {+1,—1}, this label implies a value for x; in the chain of equiva-
lences, establishing an increasing or decreasing behavior of f; with respect to index
i. Evaluating at T, the value in component j is inverted, and the inequalities switch
from strictly greater to strictly lesser, and vice versa. Hence, 0.(i,7) = oz(i,7).
Consequently, we prove that (G,(f),or) = (Gz(f), o), completing the proof. d

Self-duality in I for Hamiltonian cycle Boolean networks ensures maximum in-
degree for such components. This is because self-duality guarantees that for arbitrary
= {0,1}", one belongs to the set of true points and the other to the set of false
points.

DEFINITION 4.5. Let f be a Boolean network with n wvariables, i,j € [n], and
a €{0,1}. We denote T(f;,xz; = a) = {x € T(f;) : x; = a} as a subset of the set of
true points of f; consisting of configurations such that x; takes the value a. Stmilarly,
F(fj,xzi=a) ={x € F(f;) : x; = a} is defined for the set of false points.

THEOREM 4.6. Let f be a Boolean network with n > 3 variables, i,j € [n], and
suppose that the set of true points T(f;) is a multiple of four and non-empty. If
there exists some a € {0,1} such that |T(f;,z; = a)| is odd, then f; depends on all
variables.

Proof. First, let us prove that if the cardinalities of T'(f;, z; = 0) and T'(f;,z; = 1)
differ, this implies that ¢ € N~(j). By contraposition, suppose that f; does not
depend on z;. In this case, for any configuration = € T'(f;), it also holds that z®e; €
T(f;). However, this implies that the cardinalities of T'(f;,z; = 0) and T'(f;,x; = 1)
are equal.

On the other hand, if there exists a € {0, 1} such that |T'(f;,2z; = a)| is odd, we can
prove that N~ (j) 2 [n]\ {i}. By contradiction, assume that there exists k € [n] \ {i}
such that k¥ ¢ N~(j). This implies that for any configuration = € T(f;,z; = a),
it also holds that = & e, € T(fj,x; = a), which contradicts the odd cardinality of
()i = a).

Finally, since |T'(f;)| is a multiple of four, the cardinalities of T'(f;,z; = 0) and
T(fj,z; = 1) must both be odd and different, as their sum must be a multiple of four.
If these cardinalities were equal, their sum would be a multiple of two but not of four.
This proves that N~ (j) = [n], implying that f; depends on all variables. O

PROPOSITION 4.7. If a Hamiltonian cycle Boolean network f with n € N\ {2}
variables is self-dual in I C [n], then, for any j € I, it holds that d~(j) = n.

Proof. Let j € I be arbitrary, and denote by P and @ the directed paths in I'(f)
from 0 € {0,1}" to the configuration 0der € {0,1}™ and vice versa, respectively.
From Lemma 4.3, we know that 0 and 0@ e; are at a distance of 271, implying that
|P| = |Q| = 2"~!. Moreover, since the network is a Hamiltonian cycle, these paths
cover all edges in the dynamics.
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The path P must contain at least one configuration z € T'(f;, z; = 0) to transition
the value of j from 0 to 1. In particular, if P contains & € N configurations in
T(fj,x; = 0), then P contains exactly k — 1 configurations w € F(fj,z; = 1), as
these transitions are necessary for the change in the value of j along P.

If w € F(fj,x; = 1) is arbitrary, the self-duality of f implies that f;(w) # f; (@),
which in turn establishes that w € F(f;,r; = 1) if and only if w’ € T(f;,z; = 0).
This means that w € F(f;,z; = 1) belongs to the trajectory P if and only if w’ €
T(f;,x; = 0) belongs to the trajectory Q.

Finally, the cardinality of T'(f;,z; = 0) is obtained as the sum of the config-
urations z,w’ € T(fj,z; = 0), resulting in an odd quantity as described in (4.5).

(45) |T(fj,l‘j:O)|=k+(k—1):2]€—1.

Applying Theorem 4.6, it is concluded that the index j € I has in-degree n in G(f),
completing the proof. O

It is not difficult to observe that if the Hamiltonian cycle Boolean network is self-dual
in [n], by the previous result, its interaction graph is K.

4.2. Family of Hamiltonian cycle Boolean networks. Initially, let us an-
alyze the case n = 1,2. From Lemma 4.8, given f as a Hamiltonian cycle Boolean
network described by a regulatory Boolean network, it has a unique interaction graph
G(f) with edges labeled with different signs. Figure 9 presents an example of such
an interaction graph with signs and details how f[? is constructed from the base case
fM = (Z,), a network of a single variable that is regulatory and has a Hamiltonian
cycle.

LEMMA 4.8. If f is a Hamiltonian cycle, requlatory Boolean network with n = 2
variables, then its interaction graph with signs (G(f),of) is a cycle without loops,
with edges labeled as o¢(i,j) = +1 and o¢(j,1) = —1, where i # j € [2].

Proof. An exhaustive analysis is carried out considering all possible configurations
of a regulatory Hamiltonian cycle Boolean network with n = 2 variables. a

(G(f#),0p02) : @ r(fe): (—\Q?
/\
@ o00)

Fig. 9: Interaction graph with signs for f1?(2y,22) = (Z2,2;) and its dynamics.

To extend this construction to the case n + 1, we use f™) a Hamiltonian cycle
Boolean network with n variables.

DEFINITION 4.9. Let fI = (Z1) be a Boolean network with a single variable.
Recursively, networks h"+1 flnt1 . £0 13741 5 10,1} are constructed from fI),
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n € N. Specifically, if 2" =: 2 € {0, 1} such that fI")(z,)) = 0 and z,11 = 0,
then:

W (@) = (£ (2a)), @),
£ ) = (W @) A dgnin (2)) V capor (2)

where i € [n], the Boolean functions c,,d= : {0,1}"** — {0,1} are conjunctive and

disjunctive clauses defined as c,(z) = 1, d=(Z) = 0, and take the opposite value
otherwise.
Figure 10 shows fPl(x1,25) = (Zo,21) and the associated auxiliary network

R3] (1‘1, xo, .133) = (fQ, xy, xg).

By modifying the auxiliary network, swapping the preimages of 0 € {0,1}"! and
T e {0,1}**1, a new Boolean network fl"*+1 is constructed, which is a Hamiltonian
cycle, regulatory, and self-dual in [n+1]. Figure 11 illustrates f Bl a self-dual Boolean
network in [3] defined by swapping preimages in the auxiliary network Ri3l

o9 o€
o

Fig. 10: Dynamics of hBl(z1, 29, 23) = (T2, 21, 23), the auxiliary network.

INGEOE

L(fBl) - A
W

(o) (o) (w0 )
W

Fig. 11: Dynamics of the network f3 constructed from the auxiliary network A in
Figure 10.

LEMMA 4.10. For any n € N, the Boolean network f" is a Hamiltonian cycle
and self-dual in [n].

Proof. Base Case n = 1,2,3: For n = 1, the network fl! = () is trivially a
Hamiltonian cycle and self-dual in [1]. It is explicitly verified that f 2l and fB3 are
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Hamiltonian cycles and self-dual in [2] and [3], respectively, according to the local
activation functions:

P =,
P) =,
Bl(2) = @1 AT2) V (@2 AT3) V(T ATs),
Bl@) = (a1 Awa) V (21 AT3) V (22 A Ts),
Bla) = @ Aws) V(w2 Aas) V (T1 Aas).

Induction for n > 3: Assume that f [7] is a Hamiltonian cycle and self-dual in
[n], and prove that fI**1 is as well.
Hamiltonian Cycle: Let c.,ds be the clauses defined for f"+11. Note that:

—

friilz) =1, frH(z) = 0.
For z € {0,1}"*1\ {z,%}, the network reduces to:

(4.6) Fr (@) = (U (@), )

Since fI™ is a Hamiltonian cycle, the configuration 6[n] reaches all configurations
u € {0, 1} with w, 41 = 0. Similarly, f[n] reaches all configurations v € {0,1}"*!
with v,41 = 1. Finally, since f**1(z) = T and fl**1(z) = 0, the dynamics are
strongly connected, and f["*1] is a Hamiltonian cycle.

Self-Duality: Let = € {0,1}""! be arbitrary. Using (4.6) and the inductive
hypothesis, we prove self-duality in [n + 1]:

(@) = (" (@), 20t
= (fI(T})), Tng),
-7,

Hence, fI"*1 is a Hamiltonian cycle and self-dual in [n + 1]. O

A distinctive feature of the networks in Definition 4.9 is that, except for n = 2,
they always generate complete digraphs including loops. This result, derived from the
self-dual structure of these networks, is formalized below.

COROLLARY 4.11. Any Boolean network f" with n € N\ {2} variables has a
complete interaction graph K, including loops.

Proof. For n = 1, the result is immediate, as fI!) = (z,).

For n > 3, Lemma 4.10 establishes that f[™ is self-dual in [n]. By Proposition 4.7,
it is concluded that for all j € [n], the in-degree satisfies d~ (j) = n, implying G(f")) =
K,. O

From this construction, certain properties justify the regulatory nature of the
network. Describing fj[”], with j € [n], as the concatenation of a conjunctive and
a disjunctive clause of size k € {j,j + 1,...,n} over the variable z;, it is possible
to infer the value of fj[n} when evaluated at an arbitrary configuration. This requires
projecting the first k variables of the configuration to be evaluated. By a case analysis,
given z € {0,1}" such that f[")(z) = 1, the cases where there exist 4,5 € [n] satisfying
the inequality f]w (2) # f]w (z @ e;) are summarized in Table 1.
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16 A. ZAPATA-CORTES, AND J. ARACENA

1> 1= 1< J
1 even 1 odd i even i odd J even 7 odd
n even True False False True True False
n odd False True True False False True

Table 1: Summary of the proposition: There exist 7,7 € [n] such that fj["] (2) #
1l oe).

It is important to emphasize that, due to the definition of f[", the conjunctive
and disjunctive clauses of size n in fj[”] dominate the rest of the local activation
function. For instance, we know that for any j € [n], f(*/(z) = 1. This holds because
each local activation function contains a conjunctive clause c¢, that fixes its value.
Similarly, when evaluating fI" at Z, each fj[n] includes a disjunctive clause dz that
sets the value to zero when evaluated at Z. This behavior extends to clauses of sizes
ke{j,j+1,...,n—1} when not evaluated at z,Z, enabling characterization of these
clauses. Following this direction, we generalize Table 1 to arbitrary configurations.

DEFINITION 4.12. Given k € N, the configuration t;, € {0,1}* is defined as one
that oscillates in its values by components, i.e., t, = (0,1,0,...) ort, = (1,0,1,...).
For x € {0,1}", k, € N denotes the largest value such that xp,,) = ty, .

The recursive construction of fI! incorporates clauses defined from the configu-
ration z[". The following result demonstrates that zI") = t;, contributing to under-
standing the construction of f["J.

LEMMA 4.13. The configurations 2™ and Z™ from Definition 4.9 are of type ty,
and ty, respectively. This establishes conjunctive clauses ¢y, and disjunctive clauses
dg- at each recursive step of the construction.

Proof. For the base case n = 2, these clauses are induced from z[? = (1,0) and
its negation. Assume by induction on n > 2 that for all k¥ < n, zlFl = ¢,. By
construction, the last component of any z*! has value zero, and by the induction
hypothesis 2zl = t, = (t,_1,0). Given that fl*+*3(zl" 0) = I, it follows that
21 = (7 0) = (,,,0) = t,,41, completing the proof. |

From Lemma 4.13, the relationship between 2l and 2["], i € [n], is established,
along with understanding the indices such that f;(z @ e;) = 1. For an arbitrary
configuration x € {0,1}", note that the analysis pertains to x,). The following result
classifies these effects based on the relationship between the original configuration and
its modification in component 4, providing a tool for further analysis.

LEMMA 4.14. Given f" described in Definition 4.9, i € [n], and x € {0,1}"
arbitrary:
1. Foralli € [n]\{j} such that ky, kuae, < j, it holds that f"(z) = [ (ze;)

2. kg, kage, <t if and only if ky = kzee,
3. If ky = kyge,, then for each j € [n]\ {i}, it holds that fj[n] (x) = fj[n} (x Dep)
Proof. (1) Suppose ki, kzge, < j, noting that the conjunctive and disjunctive
clauses in fj[n] do not contribute to the evaluation of x and x @ e;, as these clauses

are of size j and above. Hence, the value of fj[n} depends only on the variable z;,
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implying:
flaeea) =(@ee), =1 =f"(@).

(2.1) If ky, kyae; < i, note that z and x @ e; differ only in component ¢. If
kz # kyge,, this implies there exists j < ¢ where x and z @ e; differ, leading to a
contradiction. Thus, k; = kzae,-

(2.2) Assume k; = kzge,. If the change in component ¢ of 2 does not alter the
value of k;, then k., kyge, < 4, as desired.

(3) Let ky = kyge; and j € [n] \ {i}.

If j > ky, from (1) it follows that f]w (z) = f][”] (z ®e;).

If j <k, the value of f]["] (x) is determined by x; or the conjunctive and dis-
junctive clauses. By Lemma 4.13, these clauses are of type ¢;, and dg, with k > j.
Since k; = kzge,, it holds that z; = (x © e;);, and thus the clauses of f]["] (z) and

fj["] (z @ e;) take the same values:
e (x) = e (x @ ey), dg(m) = 5(:16 D e;).

Therefore, fj["] (z) = fj[n] (z®e;). 0

Lemma 4.14 is further refined considering the parity of n and the parity of the
altered index in « € {0,1}". Lemma 4.15 establishes how the conjunctive and disjunc-
tive clauses interact with the size of the oscillating configuration [ ; for predicting
the evaluation of the local activation function.

LEMMA 4.15. For the Boolean network fI", j € [n], and x € {0,1}" such that
k. > j, it holds that:
1. Assuming n is even and Tk, = 2l
f][n] (r®e,) =0 and fj[n] (x®ey) =1.
2. Conversely, if n is odd and z,) = Zk=]or n is even and Tk, = zlka] | then
f][n] (z®e,) =1 and f][n] (x®ey) =0.
Where p,q € {j +1,...,kz} such that p is even and q is odd.

k=l or n is odd and T(,] = zlk=] | then

Proof. Let i € {j +1,...,k,} and note that the parity or oddness of k,ge, =
i — 1 depends on i. From the proof of Lemma 4.13, and denoting z = z[", fj[n]
includes conjunctive clauses ¢, ¢z, _,; €z, _,, alternating in negation up to index
j. Similarly, the disjunctive clauses in fj[n} alternate as dz,,, dz,_,, dz,_,,
to index j. Denoting p,q € {j 4+ 1,...,k;} as described in the statement:

also up

(1) If n is even and x,] = 2zJ,], this implies that f][n] (z®ep) =dz, , (2) =0.
This result follows since (x @© e,)jp—1) = Tp—1] = 2p—1], and because n is even,
the clause of size p — 1 (odd) activated by evaluating 2, 1) corresponds to d _,,.
Similarly, for n odd and zy;,] = Z[,], we deduce that f][n] (z®ey) =cy,_yy(2) = 1.

(2) Since fI" is self-dual in [n], applying (1) yields the desired result. d

The results obtained are sufficient to demonstrate that the family of Boolean
networks f[™ is regulatory.

THEOREM 4.16. The Boolean network ™ is requlatory.

Proof. Suppose, by contradiction, that f"*1]is not a regulatory Boolean network.
[n]

Then, there exist 4,5 € [n], = € {0,1}"\ {2["),2[") @ ¢;}, such that ; = 2", and
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without loss of generality, satisfies (4.7) and (4.8).

(4.7) ) > (el g e,),
(48) @) < @ e e).
Evaluating at z[" is justified because, from Lemma 4.4, the local interaction graphs

with signs for z and Z coincide. Moreover, these are the only configurations with
distinct images in the regulatory Boolean network h = (f [n—1] Tn).

Note that the case ky,kzge, < @ cannot occur, as it would contradict (4.8) by
Lemma 4.14. Assuming n is even, we proceed with a case analysis on the relationship
between ¢ and j:

e Case ¢ > j: From Table 1, it follows that i is even. Suppose k, > i, so
kz@e; = ¢ — 1, an odd value. However, Lemma 4.15 implies that fj[n] (r @e) =0,
contradicting our assumption. Conversely, if kg, > ¢, it follows that k, = ¢ —1
(odd). Since z; = zl["], the only possible case is z[;_1] = zli=1 which returns 1 when
evaluated in the network by Lemma 4.15. This contradicts (4.8), ruling out the case
1> 7.

e Case i = j: Since n is even, Table 1 implies that ¢ is odd.

Suppose k; > 4 and note that k,ge, = ¢ — 1, an even value. However, since
i = j, kz@e, < j, implying that fj[n] (x®e) =(xdej); =7T; and fj[»n](z[”] De;) =
(M @e;); = Egn], values known to be equal because z; = zl["]. This contradicts (4.7)
and (4.8).

Suppose kyzge;, > i, S0 ky = ¢ — 1, an even value. Since ¢ = j, k, < j, imply-
ing fj[n] () = z; and f][-n](z[”]) = zj[-n]. These values are equal because z; = zz[n],
contradicting (4.7) and (4.8). Therefore, the case ¢ = j is impossible.

e Case i < j: From Table 1, j is even. Since k g, =t —1 < j, fj[n](z["] De;) =

z][n]. Furthermore, inequality (4.7) implies zj[."] =0.

Analyzing j, Lemma 4.14 precludes the possibility of k., kzae, < Jj, as this would
contradict (4.8).

If k> j, then kyge, =i —1 < j, so fj[n](x@ei) = (xPe;); = xj, and from (4.8),
[n]

xj = 1. Since x; = z; , it follows that z;,) = z[[Zl], which contradicts x; # ZJ[,”] =0.

Suppose kyge; > j, then k;, =7 — 1. Since x; = zz["]
and (z @ €) k., = EFIE}@ - Noting that i < j < kzge,, (xPe); = = 2;"] =1,

, it follows that x;_q) = Z%ﬁl]

and since k; =1 — 1 < 7, fj[n} (x) = z; = 0, contradicting our assumption.

The case for n odd follows similarly to the even case. It is proven that f]["] is
unate, and therefore, the network f is regulatory.

A corollary extending this intermediate result between the auxiliary network h"
and f[" is presented below.

COROLLARY 4.17. The Boolean networks hl™ v c,m) and AN dzim, defined in
(4.9) and (4.10) for all j € [n], are regulatory.

(4.9) (R ety (@) = (B V ) (@)
(4.10) (A" A degun) () = (B A dagun) ()

Proof. To prove that k"™ V c_p, is regulatory, we proceed analogously to the proof
of Theorem 4.16. This is because the fact that f[**1(z) = 0 is not used.

This manuscript is for review purposes only.
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For the network Al A dxin, from Lemma 4.4, the local interaction graphs with
signs satisfy:

(Gz(hM N dm), 04,) = (Gz(f1"1),04,) = (G.(f"™), 04,) = (G (W™ V i), 0,),

Hence, hl™ A dm is a regulatory network. ]

4.3. General case of Hamiltonian Boolean networks. Regulatory Boolean
networks can model Hamiltonian behaviors because, from Corollary 4.17, we can ma-
nipulate the local activation functions to establish Hamiltonian dynamics of maximum
and intermediate height.

THEOREM 4.18. Fvery Hamiltonian digraph Gr € G(n) has an associated regula-
tory Boolean network with dynamics isomorphic to Gr.

Proof. Let n € N and Gr be a Hamiltonian digraph with 2" vertices. The case
where Gr is a Hamiltonian cycle follows from Theorem 4.16. If Gr is not a Hamil-
tonian cycle, we can define g} € F(Gr) from fI". To do so, it suffices to change
the arc (I, 1) € A(D(fI")) to the arc (21", u), u # T, describing a Hamiltonian but
non-cyclic Hamiltonian dynamic.

Since by definition fI" = ((fI" U Ad ) Ve ), (20 Adgin) V cim), we can define
g™l € F(Gr) as described in (4.11).

(hg-n] Adz)(z) if 2 = 2" and u; =0,
f]["} (2) otherwise.

(4.11) gy (w) = {

According to Theorem 4.16 and Corollary 4.17, the local activation functions gJL"] are

unate. If z € {0,1}™\ {2}, it follows that ¢gl"l(x) = fI"!(x), forming a Hamiltonian
Boolean network. By definition, g[”](z[”]) = u, proving that ¢ is a regulatory and
Hamiltonian Boolean network of maximum height when u = 2"}, or of intermediate
height otherwise. |

The network k" served as an auxiliary tool for constructing Hamiltonian cycle
dynamics. However, this construction can be exploited further to extend the implica-
tions of Corollary 4.17.

Transitioning from a Hamiltonian cycle to another Hamiltonian dynamic requires
changing only one arc. However, we demonstrate that this can be done for both the
image of zI" and zI".

DEFINITION 4.19. A directed graph Gr € G(n) is called 2-Hamiltonian if all arcs
of the digraph can be covered by two trajectories of length 27 1.

2-Hamiltonian digraphs illustrate the ability to modify two images of the auxiliary
network A" while maintaining the property of being a regulatory Boolean network.
Examples of 2-Hamiltonian digraphs include Hamiltonian digraphs, I'(h[™), or the
one described in Figure 12, among others. For this last example, the arcs can be
covered by two trajectories P : 1,2,4,6,5 and @ : 8,7,5,3,3, both of equal length,
demonstrating its 2-Hamiltonian property.

Note that 2-Hamiltonian digraphs do not necessarily induce properties in the
connectivity of the interaction graph. A clear example of a disconnected interaction
graph is G(h").

COROLLARY 4.20. Any 2-Hamiltonian digraph Gr € G(n) has a regulatory Bool-
ean network with dynamics isomorphic to Gr.
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Gr:

Ole G

N

ONIRSNO

Fig. 12: Example of a 2-Hamiltonian digraph.

Proof. Let n € N, and suppose Gr is 2-Hamiltonian, distinct from a Hamiltonian
cycle, with 2" vertices. Since fI" is a Hamiltonian cycle, it is also 2-Hamiltonian,
with trajectories P and @ defined in (4.12) and (4.13), respectively.

(4.12) P =1, fU(D), (F)2(D),..., (fH2" T -2(1), 2,
(4.13) Q =0, (D), (f7)2(D),..., (fH2"=2(0), 2.

Since Gr is 2-Hamiltonian, it can be covered using P and Q. Let u,v € {0,1}" be the
images of Z"™ and z[" in the coverage of Gr, and define g™ € F (Gr) as the network

describing this coverage. Based on f[", the arcs (2[",1) and (z1",0) € A(D(f™))
are replaced with (21", ) and (2", v). g™ is described as shown in (4.14).

(h[.n] Adz)(z) if 2 = 2" and u; =0,
(4.14) gj[.n] (z) = (hi"] Ve,m)(z) if 2 =20 and v; = 1,
f J["] (z) otherwise.

From Theorem 4.16 and Corollary 4.17, gj[-n] are unate local activation functions. For
z e {0, 1)\ {2172}, gl (2) = fI"l(z). Additionally, g")(2") = u, gl (zI"]) = v,
and it follows that g™ € F(Gr). 0

5. Conclusions. In this work, Hamiltonian dynamics were addressed with the
aim of contributing to the understanding of extreme dynamic behaviors, which achieve
maximum possible values in parameters of interest such as height, the length of the
limit cycle, and the minimum number of Garden of Eden states, among others.

The relationship between the digraph Gr of Hamiltonian dynamics and the asso-
ciated interaction graph was demonstrated. In particular, the existence of networks
that cannot be modeled using interaction graphs G(f) with bounded in-degree was
proven, requiring specific connectivity conditions to reproduce these dynamics (see
Table 2).

Additionally, the inherent limitations of certain families of Boolean networks for
modeling Hamiltonian dynamics were analyzed. As a primary contribution, a family
of regulatory networks f" with Hamiltonian dynamics was presented, including cases
of maximum height, intermediate height, quasi-Hamiltonian, Hamiltonian cycles, and
their generalization to 2-Hamiltonian dynamics. The network f[™ is notable for being
self-dual, suggesting that self-duality in [n] may be a necessary condition for any
Hamiltonian cycle network to be regulatory.

Furthermore, the network fI™ allows corroboration of the capacity of regulatory
networks to model dynamics with an attractor of arbitrary length without requiring
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these networks to be bijective. This result broadens the understanding of regulatory
networks and their applications in modeling dynamic systems.

Finally, although the results presented are limited to networks defined over a
binary alphabet, the techniques and constructions developed in this work could be
generalizable to networks with alphabets of size ¢ > 2. This aspect opens the door to
new lines of research exploring the extension of these properties to complex systems.

. . Exi f
Type of Variable with Type of xistence o
dynamics total dependency | connectivity regulatory
4 network
Hamiltoni
ami toman' of Yes Strongly Yes
maximum height connected
Hamiltonian .
intermediate with Yes Unilaterally Yes
. connected
even period
Hamiltonian Stronel
intermediate with Yes gy Yes
. connected
odd period
Hamiltonian Not necessarily Unilaterally Yes
cycle connected
Quasi- s Strongly
Hamiltonian Not necessarily connected Unknown
2-Hamiltonian Not necessarily No restrictions Yes

Table 2: Summary of properties present in the dynamics under study.
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